1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
|
-----------------------------------------------------------------------------
--
-- The register liveness determinator
--
-- (c) The University of Glasgow 2004
--
-----------------------------------------------------------------------------
{-# OPTIONS -Wall -fno-warn-name-shadowing #-}
module RegLiveness (
RegSet,
RegMap, emptyRegMap,
BlockMap, emptyBlockMap,
LiveCmmTop,
LiveInstr (..),
Liveness (..),
LiveInfo (..),
LiveBasicBlock,
mapBlockTop, mapBlockTopM,
mapGenBlockTop, mapGenBlockTopM,
stripLive,
spillNatBlock,
slurpConflicts,
slurpReloadCoalesce,
eraseDeltasLive,
patchEraseLive,
patchRegsLiveInstr,
regLiveness
) where
#include "HsVersions.h"
import MachRegs
import MachInstrs
import PprMach
import RegAllocInfo
import Cmm hiding (RegSet)
import Digraph
import Outputable
import Unique
import UniqSet
import UniqFM
import UniqSupply
import Bag
import State
import Data.List
import Data.Maybe
-----------------------------------------------------------------------------
type RegSet = UniqSet Reg
type RegMap a = UniqFM a
emptyRegMap :: UniqFM a
emptyRegMap = emptyUFM
type BlockMap a = UniqFM a
emptyBlockMap :: UniqFM a
emptyBlockMap = emptyUFM
-- | A top level thing which carries liveness information.
type LiveCmmTop
= GenCmmTop
CmmStatic
LiveInfo
(ListGraph (GenBasicBlock LiveInstr))
-- the "instructions" here are actually more blocks,
-- single blocks are acyclic
-- multiple blocks are taken to be cyclic.
-- | An instruction with liveness information.
data LiveInstr
= Instr Instr (Maybe Liveness)
-- | Liveness information.
-- The regs which die are ones which are no longer live in the *next* instruction
-- in this sequence.
-- (NB. if the instruction is a jump, these registers might still be live
-- at the jump target(s) - you have to check the liveness at the destination
-- block to find out).
data Liveness
= Liveness
{ liveBorn :: RegSet -- ^ registers born in this instruction (written to for first time).
, liveDieRead :: RegSet -- ^ registers that died because they were read for the last time.
, liveDieWrite :: RegSet } -- ^ registers that died because they were clobbered by something.
-- | Stash regs live on entry to each basic block in the info part of the cmm code.
data LiveInfo
= LiveInfo
[CmmStatic] -- cmm static stuff
(Maybe BlockId) -- id of the first block
(BlockMap RegSet) -- argument locals live on entry to this block
-- | A basic block with liveness information.
type LiveBasicBlock
= GenBasicBlock LiveInstr
instance Outputable LiveInstr where
ppr (Instr instr Nothing)
= ppr instr
ppr (Instr instr (Just live))
= ppr instr
$$ (nest 8
$ vcat
[ pprRegs (ptext SLIT("# born: ")) (liveBorn live)
, pprRegs (ptext SLIT("# r_dying: ")) (liveDieRead live)
, pprRegs (ptext SLIT("# w_dying: ")) (liveDieWrite live) ]
$+$ space)
where pprRegs :: SDoc -> RegSet -> SDoc
pprRegs name regs
| isEmptyUniqSet regs = empty
| otherwise = name <> (hcat $ punctuate space $ map (docToSDoc . pprUserReg) $ uniqSetToList regs)
instance Outputable LiveInfo where
ppr (LiveInfo static firstId liveOnEntry)
= (vcat $ map ppr static)
$$ text "# firstId = " <> ppr firstId
$$ text "# liveOnEntry = " <> ppr liveOnEntry
-- | map a function across all the basic blocks in this code
--
mapBlockTop
:: (LiveBasicBlock -> LiveBasicBlock)
-> LiveCmmTop -> LiveCmmTop
mapBlockTop f cmm
= evalState (mapBlockTopM (\x -> return $ f x) cmm) ()
-- | map a function across all the basic blocks in this code (monadic version)
--
mapBlockTopM
:: Monad m
=> (LiveBasicBlock -> m LiveBasicBlock)
-> LiveCmmTop -> m LiveCmmTop
mapBlockTopM _ cmm@(CmmData{})
= return cmm
mapBlockTopM f (CmmProc header label params (ListGraph comps))
= do comps' <- mapM (mapBlockCompM f) comps
return $ CmmProc header label params (ListGraph comps')
mapBlockCompM :: Monad m => (a -> m a') -> (GenBasicBlock a) -> m (GenBasicBlock a')
mapBlockCompM f (BasicBlock i blocks)
= do blocks' <- mapM f blocks
return $ BasicBlock i blocks'
-- map a function across all the basic blocks in this code
mapGenBlockTop
:: (GenBasicBlock i -> GenBasicBlock i)
-> (GenCmmTop d h (ListGraph i) -> GenCmmTop d h (ListGraph i))
mapGenBlockTop f cmm
= evalState (mapGenBlockTopM (\x -> return $ f x) cmm) ()
-- | map a function across all the basic blocks in this code (monadic version)
mapGenBlockTopM
:: Monad m
=> (GenBasicBlock i -> m (GenBasicBlock i))
-> (GenCmmTop d h (ListGraph i) -> m (GenCmmTop d h (ListGraph i)))
mapGenBlockTopM _ cmm@(CmmData{})
= return cmm
mapGenBlockTopM f (CmmProc header label params (ListGraph blocks))
= do blocks' <- mapM f blocks
return $ CmmProc header label params (ListGraph blocks')
-- | Slurp out the list of register conflicts and reg-reg moves from this top level thing.
-- Slurping of conflicts and moves is wrapped up together so we don't have
-- to make two passes over the same code when we want to build the graph.
--
slurpConflicts :: LiveCmmTop -> (Bag (UniqSet Reg), Bag (Reg, Reg))
slurpConflicts live
= slurpCmm (emptyBag, emptyBag) live
where slurpCmm rs CmmData{} = rs
slurpCmm rs (CmmProc info _ _ (ListGraph blocks))
= foldl' (slurpComp info) rs blocks
slurpComp info rs (BasicBlock _ blocks)
= foldl' (slurpBlock info) rs blocks
slurpBlock info rs (BasicBlock blockId instrs)
| LiveInfo _ _ blockLive <- info
, Just rsLiveEntry <- lookupUFM blockLive blockId
, (conflicts, moves) <- slurpLIs rsLiveEntry rs instrs
= (consBag rsLiveEntry conflicts, moves)
| otherwise
= error "RegLiveness.slurpBlock: bad block"
slurpLIs rsLive (conflicts, moves) []
= (consBag rsLive conflicts, moves)
slurpLIs rsLive rs (Instr _ Nothing : lis) = slurpLIs rsLive rs lis
slurpLIs rsLiveEntry (conflicts, moves) (Instr instr (Just live) : lis)
= let
-- regs that die because they are read for the last time at the start of an instruction
-- are not live across it.
rsLiveAcross = rsLiveEntry `minusUniqSet` (liveDieRead live)
-- regs live on entry to the next instruction.
-- be careful of orphans, make sure to delete dying regs _after_ unioning
-- in the ones that are born here.
rsLiveNext = (rsLiveAcross `unionUniqSets` (liveBorn live))
`minusUniqSet` (liveDieWrite live)
-- orphan vregs are the ones that die in the same instruction they are born in.
-- these are likely to be results that are never used, but we still
-- need to assign a hreg to them..
rsOrphans = intersectUniqSets
(liveBorn live)
(unionUniqSets (liveDieWrite live) (liveDieRead live))
--
rsConflicts = unionUniqSets rsLiveNext rsOrphans
in case isRegRegMove instr of
Just rr -> slurpLIs rsLiveNext
( consBag rsConflicts conflicts
, consBag rr moves) lis
Nothing -> slurpLIs rsLiveNext
( consBag rsConflicts conflicts
, moves) lis
-- | For spill/reloads
--
-- SPILL v1, slot1
-- ...
-- RELOAD slot1, v2
--
-- If we can arrange that v1 and v2 are allocated to the same hreg it's more likely
-- the spill/reload instrs can be cleaned and replaced by a nop reg-reg move.
--
--
slurpReloadCoalesce :: LiveCmmTop -> Bag (Reg, Reg)
slurpReloadCoalesce live
= slurpCmm emptyBag live
where slurpCmm cs CmmData{} = cs
slurpCmm cs (CmmProc _ _ _ (ListGraph blocks))
= foldl' slurpComp cs blocks
slurpComp cs comp
= let (moveBags, _) = runState (slurpCompM comp) emptyUFM
in unionManyBags (cs : moveBags)
slurpCompM (BasicBlock _ blocks)
= do -- run the analysis once to record the mapping across jumps.
mapM_ (slurpBlock False) blocks
-- run it a second time while using the information from the last pass.
-- We /could/ run this many more times to deal with graphical control
-- flow and propagating info across multiple jumps, but it's probably
-- not worth the trouble.
mapM (slurpBlock True) blocks
slurpBlock propagate (BasicBlock blockId instrs)
= do -- grab the slot map for entry to this block
slotMap <- if propagate
then getSlotMap blockId
else return emptyUFM
(_, mMoves) <- mapAccumLM slurpLI slotMap instrs
return $ listToBag $ catMaybes mMoves
slurpLI :: UniqFM Reg -- current slotMap
-> LiveInstr
-> State (UniqFM [UniqFM Reg]) -- blockId -> [slot -> reg]
-- for tracking slotMaps across jumps
( UniqFM Reg -- new slotMap
, Maybe (Reg, Reg)) -- maybe a new coalesce edge
slurpLI slotMap (Instr instr _)
-- remember what reg was stored into the slot
| SPILL reg slot <- instr
, slotMap' <- addToUFM slotMap slot reg
= return (slotMap', Nothing)
-- add an edge betwen the this reg and the last one stored into the slot
| RELOAD slot reg <- instr
= case lookupUFM slotMap slot of
Just reg2
| reg /= reg2 -> return (slotMap, Just (reg, reg2))
| otherwise -> return (slotMap, Nothing)
Nothing -> return (slotMap, Nothing)
-- if we hit a jump, remember the current slotMap
| targets <- jumpDests instr []
, not $ null targets
= do mapM_ (accSlotMap slotMap) targets
return (slotMap, Nothing)
| otherwise
= return (slotMap, Nothing)
-- record a slotmap for an in edge to this block
accSlotMap slotMap blockId
= modify (\s -> addToUFM_C (++) s blockId [slotMap])
-- work out the slot map on entry to this block
-- if we have slot maps for multiple in-edges then we need to merge them.
getSlotMap blockId
= do map <- get
let slotMaps = fromMaybe [] (lookupUFM map blockId)
return $ foldr mergeSlotMaps emptyUFM slotMaps
mergeSlotMaps :: UniqFM Reg -> UniqFM Reg -> UniqFM Reg
mergeSlotMaps map1 map2
= listToUFM
$ [ (k, r1) | (k, r1) <- ufmToList map1
, case lookupUFM map2 k of
Nothing -> False
Just r2 -> r1 == r2 ]
-- | Strip away liveness information, yielding NatCmmTop
stripLive :: LiveCmmTop -> NatCmmTop
stripLive live
= stripCmm live
where stripCmm (CmmData sec ds) = CmmData sec ds
stripCmm (CmmProc (LiveInfo info _ _) label params (ListGraph comps))
= CmmProc info label params (ListGraph $ concatMap stripComp comps)
stripComp (BasicBlock _ blocks) = map stripBlock blocks
stripBlock (BasicBlock i instrs) = BasicBlock i (map stripLI instrs)
stripLI (Instr instr _) = instr
-- | Make real spill instructions out of SPILL, RELOAD pseudos
spillNatBlock :: NatBasicBlock -> NatBasicBlock
spillNatBlock (BasicBlock i is)
= BasicBlock i instrs'
where (instrs', _)
= runState (spillNat [] is) 0
spillNat acc []
= return (reverse acc)
spillNat acc (DELTA i : instrs)
= do put i
spillNat acc instrs
spillNat acc (SPILL reg slot : instrs)
= do delta <- get
spillNat (mkSpillInstr reg delta slot : acc) instrs
spillNat acc (RELOAD slot reg : instrs)
= do delta <- get
spillNat (mkLoadInstr reg delta slot : acc) instrs
spillNat acc (instr : instrs)
= spillNat (instr : acc) instrs
-- | Erase Delta instructions.
eraseDeltasLive :: LiveCmmTop -> LiveCmmTop
eraseDeltasLive cmm
= mapBlockTop eraseBlock cmm
where
isDelta (DELTA _) = True
isDelta _ = False
eraseBlock (BasicBlock id lis)
= BasicBlock id
$ filter (\(Instr i _) -> not $ isDelta i)
$ lis
-- | Patch the registers in this code according to this register mapping.
-- also erase reg -> reg moves when the reg is the same.
-- also erase reg -> reg moves when the destination dies in this instr.
patchEraseLive
:: (Reg -> Reg)
-> LiveCmmTop -> LiveCmmTop
patchEraseLive patchF cmm
= patchCmm cmm
where
patchCmm cmm@CmmData{} = cmm
patchCmm (CmmProc info label params (ListGraph comps))
| LiveInfo static id blockMap <- info
= let patchRegSet set = mkUniqSet $ map patchF $ uniqSetToList set
blockMap' = mapUFM patchRegSet blockMap
info' = LiveInfo static id blockMap'
in CmmProc info' label params $ ListGraph $ map patchComp comps
patchComp (BasicBlock id blocks)
= BasicBlock id $ map patchBlock blocks
patchBlock (BasicBlock id lis)
= BasicBlock id $ patchInstrs lis
patchInstrs [] = []
patchInstrs (li : lis)
| Instr i (Just live) <- li'
, Just (r1, r2) <- isRegRegMove i
, eatMe r1 r2 live
= patchInstrs lis
| otherwise
= li' : patchInstrs lis
where li' = patchRegsLiveInstr patchF li
eatMe r1 r2 live
-- source and destination regs are the same
| r1 == r2 = True
-- desination reg is never used
| elementOfUniqSet r2 (liveBorn live)
, elementOfUniqSet r2 (liveDieRead live) || elementOfUniqSet r2 (liveDieWrite live)
= True
| otherwise = False
-- | Patch registers in this LiveInstr, including the liveness information.
--
patchRegsLiveInstr
:: (Reg -> Reg)
-> LiveInstr -> LiveInstr
patchRegsLiveInstr patchF li
= case li of
Instr instr Nothing
-> Instr (patchRegs instr patchF) Nothing
Instr instr (Just live)
-> Instr
(patchRegs instr patchF)
(Just live
{ -- WARNING: have to go via lists here because patchF changes the uniq in the Reg
liveBorn = mkUniqSet $ map patchF $ uniqSetToList $ liveBorn live
, liveDieRead = mkUniqSet $ map patchF $ uniqSetToList $ liveDieRead live
, liveDieWrite = mkUniqSet $ map patchF $ uniqSetToList $ liveDieWrite live })
---------------------------------------------------------------------------------
-- Annotate code with register liveness information
--
regLiveness
:: NatCmmTop
-> UniqSM LiveCmmTop
regLiveness (CmmData i d)
= returnUs $ CmmData i d
regLiveness (CmmProc info lbl params (ListGraph []))
= returnUs $ CmmProc
(LiveInfo info Nothing emptyUFM)
lbl params (ListGraph [])
regLiveness (CmmProc info lbl params (ListGraph blocks@(first : _)))
= let first_id = blockId first
sccs = sccBlocks blocks
(ann_sccs, block_live) = computeLiveness sccs
liveBlocks
= map (\scc -> case scc of
AcyclicSCC b@(BasicBlock l _) -> BasicBlock l [b]
CyclicSCC bs@(BasicBlock l _ : _) -> BasicBlock l bs
CyclicSCC []
-> panic "RegLiveness.regLiveness: no blocks in scc list")
$ ann_sccs
in returnUs $ CmmProc
(LiveInfo info (Just first_id) block_live)
lbl params (ListGraph liveBlocks)
sccBlocks :: [NatBasicBlock] -> [SCC NatBasicBlock]
sccBlocks blocks = stronglyConnComp graph
where
getOutEdges :: [Instr] -> [BlockId]
getOutEdges instrs = foldl' (\a x -> jumpDests x a) [] instrs
graph = [ (block, getUnique id, map getUnique (getOutEdges instrs))
| block@(BasicBlock id instrs) <- blocks ]
-- -----------------------------------------------------------------------------
-- Computing liveness
computeLiveness
:: [SCC NatBasicBlock]
-> ([SCC LiveBasicBlock], -- instructions annotated with list of registers
-- which are "dead after this instruction".
BlockMap RegSet) -- blocks annontated with set of live registers
-- on entry to the block.
-- NOTE: on entry, the SCCs are in "reverse" order: later blocks may transfer
-- control to earlier ones only. The SCCs returned are in the *opposite*
-- order, which is exactly what we want for the next pass.
computeLiveness sccs
= livenessSCCs emptyBlockMap [] sccs
livenessSCCs
:: BlockMap RegSet
-> [SCC LiveBasicBlock] -- accum
-> [SCC NatBasicBlock]
-> ([SCC LiveBasicBlock], BlockMap RegSet)
livenessSCCs blockmap done [] = (done, blockmap)
livenessSCCs blockmap done (AcyclicSCC block : sccs)
= let (blockmap', block') = livenessBlock blockmap block
in livenessSCCs blockmap' (AcyclicSCC block' : done) sccs
livenessSCCs blockmap done
(CyclicSCC blocks : sccs) =
livenessSCCs blockmap' (CyclicSCC blocks':done) sccs
where (blockmap', blocks')
= iterateUntilUnchanged linearLiveness equalBlockMaps
blockmap blocks
iterateUntilUnchanged
:: (a -> b -> (a,c)) -> (a -> a -> Bool)
-> a -> b
-> (a,c)
iterateUntilUnchanged f eq a b
= head $
concatMap tail $
groupBy (\(a1, _) (a2, _) -> eq a1 a2) $
iterate (\(a, _) -> f a b) $
(a, error "RegisterAlloc.livenessSCCs")
linearLiveness :: BlockMap RegSet -> [NatBasicBlock]
-> (BlockMap RegSet, [LiveBasicBlock])
linearLiveness = mapAccumL livenessBlock
-- probably the least efficient way to compare two
-- BlockMaps for equality.
equalBlockMaps a b
= a' == b'
where a' = map f $ ufmToList a
b' = map f $ ufmToList b
f (key,elt) = (key, uniqSetToList elt)
-- | Annotate a basic block with register liveness information.
--
livenessBlock
:: BlockMap RegSet
-> NatBasicBlock
-> (BlockMap RegSet, LiveBasicBlock)
livenessBlock blockmap (BasicBlock block_id instrs)
= let
(regsLiveOnEntry, instrs1)
= livenessBack emptyUniqSet blockmap [] (reverse instrs)
blockmap' = addToUFM blockmap block_id regsLiveOnEntry
instrs2 = livenessForward regsLiveOnEntry instrs1
output = BasicBlock block_id instrs2
in ( blockmap', output)
-- | Calculate liveness going forwards,
-- filling in when regs are born
livenessForward
:: RegSet -- regs live on this instr
-> [LiveInstr] -> [LiveInstr]
livenessForward _ [] = []
livenessForward rsLiveEntry (li@(Instr instr mLive) : lis)
| Nothing <- mLive
= li : livenessForward rsLiveEntry lis
| Just live <- mLive
, RU _ written <- regUsage instr
= let
-- Regs that are written to but weren't live on entry to this instruction
-- are recorded as being born here.
rsBorn = mkUniqSet
$ filter (\r -> not $ elementOfUniqSet r rsLiveEntry) written
rsLiveNext = (rsLiveEntry `unionUniqSets` rsBorn)
`minusUniqSet` (liveDieRead live)
`minusUniqSet` (liveDieWrite live)
in Instr instr (Just live { liveBorn = rsBorn })
: livenessForward rsLiveNext lis
livenessForward _ _ = panic "RegLiveness.livenessForward: no match"
-- | Calculate liveness going backwards,
-- filling in when regs die, and what regs are live across each instruction
livenessBack
:: RegSet -- regs live on this instr
-> BlockMap RegSet -- regs live on entry to other BBs
-> [LiveInstr] -- instructions (accum)
-> [Instr] -- instructions
-> (RegSet, [LiveInstr])
livenessBack liveregs _ done [] = (liveregs, done)
livenessBack liveregs blockmap acc (instr : instrs)
= let (liveregs', instr') = liveness1 liveregs blockmap instr
in livenessBack liveregs' blockmap (instr' : acc) instrs
-- don't bother tagging comments or deltas with liveness
liveness1 :: RegSet -> BlockMap RegSet -> Instr -> (RegSet, LiveInstr)
liveness1 liveregs _ (instr@COMMENT{})
= (liveregs, Instr instr Nothing)
liveness1 liveregs _ (instr@DELTA{})
= (liveregs, Instr instr Nothing)
liveness1 liveregs blockmap instr
| not_a_branch
= (liveregs1, Instr instr
(Just $ Liveness
{ liveBorn = emptyUniqSet
, liveDieRead = mkUniqSet r_dying
, liveDieWrite = mkUniqSet w_dying }))
| otherwise
= (liveregs_br, Instr instr
(Just $ Liveness
{ liveBorn = emptyUniqSet
, liveDieRead = mkUniqSet r_dying_br
, liveDieWrite = mkUniqSet w_dying }))
where
RU read written = regUsage instr
-- registers that were written here are dead going backwards.
-- registers that were read here are live going backwards.
liveregs1 = (liveregs `delListFromUniqSet` written)
`addListToUniqSet` read
-- registers that are not live beyond this point, are recorded
-- as dying here.
r_dying = [ reg | reg <- read, reg `notElem` written,
not (elementOfUniqSet reg liveregs) ]
w_dying = [ reg | reg <- written,
not (elementOfUniqSet reg liveregs) ]
-- union in the live regs from all the jump destinations of this
-- instruction.
targets = jumpDests instr [] -- where we go from here
not_a_branch = null targets
targetLiveRegs target
= case lookupUFM blockmap target of
Just ra -> ra
Nothing -> emptyBlockMap
live_from_branch = unionManyUniqSets (map targetLiveRegs targets)
liveregs_br = liveregs1 `unionUniqSets` live_from_branch
-- registers that are live only in the branch targets should
-- be listed as dying here.
live_branch_only = live_from_branch `minusUniqSet` liveregs
r_dying_br = uniqSetToList (mkUniqSet r_dying `unionUniqSets`
live_branch_only)
|