summaryrefslogtreecommitdiff
path: root/compiler/nativeGen/X86/Ppr.hs
blob: 6ecd4cd17045b3fb68b9a494b634484a3ee79966 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
{-# LANGUAGE CPP #-}

-----------------------------------------------------------------------------
--
-- Pretty-printing assembly language
--
-- (c) The University of Glasgow 1993-2005
--
-----------------------------------------------------------------------------

{-# OPTIONS_GHC -fno-warn-orphans #-}
module X86.Ppr (
        pprNatCmmDecl,
        pprData,
        pprInstr,
        pprFormat,
        pprImm,
        pprDataItem,
)

where

#include "HsVersions.h"
#include "nativeGen/NCG.h"

import GhcPrelude

import X86.Regs
import X86.Instr
import X86.Cond
import Instruction
import Format
import Reg
import PprBase


import Hoopl.Collections
import Hoopl.Label
import BasicTypes       (Alignment)
import DynFlags
import Cmm              hiding (topInfoTable)
import BlockId
import CLabel
import Unique           ( pprUniqueAlways )
import Platform
import FastString
import Outputable

import Data.Word
import Data.Bits

-- -----------------------------------------------------------------------------
-- Printing this stuff out
--
--
-- Note [Subsections Via Symbols]
--
-- If we are using the .subsections_via_symbols directive
-- (available on recent versions of Darwin),
-- we have to make sure that there is some kind of reference
-- from the entry code to a label on the _top_ of of the info table,
-- so that the linker will not think it is unreferenced and dead-strip
-- it. That's why the label is called a DeadStripPreventer (_dsp).
--
-- The LLVM code gen already creates `iTableSuf` symbols, where
-- the X86 would generate the DeadStripPreventer (_dsp) symbol.
-- Therefore all that is left for llvm code gen, is to ensure
-- that all the `iTableSuf` symbols are marked as used.
-- As of this writing the documentation regarding the
-- .subsections_via_symbols and -dead_strip can be found at
-- <https://developer.apple.com/library/mac/documentation/DeveloperTools/Reference/Assembler/040-Assembler_Directives/asm_directives.html#//apple_ref/doc/uid/TP30000823-TPXREF101>

pprProcAlignment :: SDoc
pprProcAlignment = sdocWithDynFlags $ \dflags ->
  (maybe empty pprAlign . cmmProcAlignment $ dflags)

pprNatCmmDecl :: NatCmmDecl (Alignment, CmmStatics) Instr -> SDoc
pprNatCmmDecl (CmmData section dats) =
  pprSectionAlign section $$ pprDatas dats

pprNatCmmDecl proc@(CmmProc top_info lbl _ (ListGraph blocks)) =
  sdocWithDynFlags $ \dflags ->
  pprProcAlignment $$
  case topInfoTable proc of
    Nothing ->
        -- special case for code without info table:
        pprSectionAlign (Section Text lbl) $$
        pprProcAlignment $$
        pprLabel lbl $$ -- blocks guaranteed not null, so label needed
        vcat (map (pprBasicBlock top_info) blocks) $$
        (if debugLevel dflags > 0
         then ppr (mkAsmTempEndLabel lbl) <> char ':' else empty) $$
        pprSizeDecl lbl

    Just (Statics info_lbl _) ->
      sdocWithPlatform $ \platform ->
      pprSectionAlign (Section Text info_lbl) $$
      pprProcAlignment $$
      (if platformHasSubsectionsViaSymbols platform
          then ppr (mkDeadStripPreventer info_lbl) <> char ':'
          else empty) $$
      vcat (map (pprBasicBlock top_info) blocks) $$
      -- above: Even the first block gets a label, because with branch-chain
      -- elimination, it might be the target of a goto.
      (if platformHasSubsectionsViaSymbols platform
       then -- See Note [Subsections Via Symbols]
                text "\t.long "
            <+> ppr info_lbl
            <+> char '-'
            <+> ppr (mkDeadStripPreventer info_lbl)
       else empty) $$
      pprSizeDecl info_lbl

-- | Output the ELF .size directive.
pprSizeDecl :: CLabel -> SDoc
pprSizeDecl lbl
 = sdocWithPlatform $ \platform ->
   if osElfTarget (platformOS platform)
   then text "\t.size" <+> ppr lbl <> ptext (sLit ", .-") <> ppr lbl
   else empty

pprBasicBlock :: LabelMap CmmStatics -> NatBasicBlock Instr -> SDoc
pprBasicBlock info_env (BasicBlock blockid instrs)
  = sdocWithDynFlags $ \dflags ->
    maybe_infotable dflags $
    pprLabel asmLbl $$
    vcat (map pprInstr instrs) $$
    (if debugLevel dflags > 0
     then ppr (mkAsmTempEndLabel asmLbl) <> char ':' else empty)
  where
    asmLbl = blockLbl blockid
    maybe_infotable dflags c = case mapLookup blockid info_env of
       Nothing -> c
       Just (Statics infoLbl info) ->
           pprAlignForSection Text $$
           infoTableLoc $$
           vcat (map pprData info) $$
           pprLabel infoLbl $$
           c $$
           (if debugLevel dflags > 0
            then ppr (mkAsmTempEndLabel infoLbl) <> char ':' else empty)
    -- Make sure the info table has the right .loc for the block
    -- coming right after it. See [Note: Info Offset]
    infoTableLoc = case instrs of
      (l@LOCATION{} : _) -> pprInstr l
      _other             -> empty

pprDatas :: (Alignment, CmmStatics) -> SDoc
pprDatas (align, (Statics lbl dats))
 = vcat (pprAlign align : pprLabel lbl : map pprData dats)

pprData :: CmmStatic -> SDoc
pprData (CmmString str) = pprBytes str

pprData (CmmUninitialised bytes)
 = sdocWithPlatform $ \platform ->
   if platformOS platform == OSDarwin then text ".space " <> int bytes
                                      else text ".skip "  <> int bytes

pprData (CmmStaticLit lit) = pprDataItem lit

pprGloblDecl :: CLabel -> SDoc
pprGloblDecl lbl
  | not (externallyVisibleCLabel lbl) = empty
  | otherwise = text ".globl " <> ppr lbl

pprLabelType' :: DynFlags -> CLabel -> SDoc
pprLabelType' dflags lbl =
  if isCFunctionLabel lbl || functionOkInfoTable then
    text "@function"
  else
    text "@object"
  where
    {-
    NOTE: This is a bit hacky.

    With the `tablesNextToCode` info tables look like this:
    ```
      <info table data>
    label_info:
      <info table code>
    ```
    So actually info table label points exactly to the code and we can mark
    the label as @function. (This is required to make perf and potentially other
    tools to work on Haskell binaries).
    This usually works well but it can cause issues with a linker.
    A linker uses different algorithms for the relocation depending on
    the symbol type.For some reason, a linker will generate JUMP_SLOT relocation
    when constructor info table is referenced from a data section.
    This only happens with static constructor call so
    we mark _con_info symbols as `@object` to avoid the issue with relocations.

    @SimonMarlow hack explanation:
    "The reasoning goes like this:

    * The danger when we mark a symbol as `@function` is that the linker will
      redirect it to point to the PLT and use a `JUMP_SLOT` relocation when
      the symbol refers to something outside the current shared object.
      A PLT / JUMP_SLOT reference only works for symbols that we jump to, not
      for symbols representing data,, nor for info table symbol references which
      we expect to point directly to the info table.
    * GHC generates code that might refer to any info table symbol from the text
      segment, but that's OK, because those will be explicit GOT references
      generated by the code generator.
    * When we refer to info tables from the data segment, it's either
      * a FUN_STATIC/THUNK_STATIC local to this module
      * a `con_info` that could be from anywhere

    So, the only info table symbols that we might refer to from the data segment
    of another shared object are `con_info` symbols, so those are the ones we
    need to exclude from getting the @function treatment.
    "

    A good place to check for more
    https://ghc.haskell.org/trac/ghc/wiki/Commentary/PositionIndependentCode

    Another possible hack is to create an extra local function symbol for
    every code-like thing to give the needed information for to the tools
    but mess up with the relocation. https://phabricator.haskell.org/D4730
    -}
    functionOkInfoTable = tablesNextToCode dflags &&
      isInfoTableLabel lbl && not (isConInfoTableLabel lbl)


pprTypeDecl :: CLabel -> SDoc
pprTypeDecl lbl
    = sdocWithPlatform $ \platform ->
      if osElfTarget (platformOS platform) && externallyVisibleCLabel lbl
      then
        sdocWithDynFlags $ \df ->
          text ".type " <> ppr lbl <> ptext (sLit  ", ") <> pprLabelType' df lbl
      else empty

pprLabel :: CLabel -> SDoc
pprLabel lbl = pprGloblDecl lbl
            $$ pprTypeDecl lbl
            $$ (ppr lbl <> char ':')

pprAlign :: Int -> SDoc
pprAlign bytes
        = sdocWithPlatform $ \platform ->
          text ".align " <> int (alignment platform)
  where
        alignment platform = if platformOS platform == OSDarwin
                             then log2 bytes
                             else      bytes

        log2 :: Int -> Int  -- cache the common ones
        log2 1 = 0
        log2 2 = 1
        log2 4 = 2
        log2 8 = 3
        log2 n = 1 + log2 (n `quot` 2)

-- -----------------------------------------------------------------------------
-- pprInstr: print an 'Instr'

instance Outputable Instr where
    ppr instr = pprInstr instr


pprReg :: Format -> Reg -> SDoc
pprReg f r
  = case r of
      RegReal    (RealRegSingle i) ->
          sdocWithPlatform $ \platform ->
          if target32Bit platform then ppr32_reg_no f i
                                  else ppr64_reg_no f i
      RegReal    (RealRegPair _ _) -> panic "X86.Ppr: no reg pairs on this arch"
      RegVirtual (VirtualRegI  u)  -> text "%vI_"   <> pprUniqueAlways u
      RegVirtual (VirtualRegHi u)  -> text "%vHi_"  <> pprUniqueAlways u
      RegVirtual (VirtualRegF  u)  -> text "%vF_"   <> pprUniqueAlways u
      RegVirtual (VirtualRegD  u)  -> text "%vD_"   <> pprUniqueAlways u
      RegVirtual (VirtualRegSSE u) -> text "%vSSE_" <> pprUniqueAlways u
  where
    ppr32_reg_no :: Format -> Int -> SDoc
    ppr32_reg_no II8   = ppr32_reg_byte
    ppr32_reg_no II16  = ppr32_reg_word
    ppr32_reg_no _     = ppr32_reg_long

    ppr32_reg_byte i = ptext
      (case i of {
         0 -> sLit "%al";     1 -> sLit "%bl";
         2 -> sLit "%cl";     3 -> sLit "%dl";
        _  -> sLit $ "very naughty I386 byte register: " ++ show i
      })

    ppr32_reg_word i = ptext
      (case i of {
         0 -> sLit "%ax";     1 -> sLit "%bx";
         2 -> sLit "%cx";     3 -> sLit "%dx";
         4 -> sLit "%si";     5 -> sLit "%di";
         6 -> sLit "%bp";     7 -> sLit "%sp";
        _  -> sLit "very naughty I386 word register"
      })

    ppr32_reg_long i = ptext
      (case i of {
         0 -> sLit "%eax";    1 -> sLit "%ebx";
         2 -> sLit "%ecx";    3 -> sLit "%edx";
         4 -> sLit "%esi";    5 -> sLit "%edi";
         6 -> sLit "%ebp";    7 -> sLit "%esp";
         _  -> ppr_reg_float i
      })

    ppr64_reg_no :: Format -> Int -> SDoc
    ppr64_reg_no II8   = ppr64_reg_byte
    ppr64_reg_no II16  = ppr64_reg_word
    ppr64_reg_no II32  = ppr64_reg_long
    ppr64_reg_no _     = ppr64_reg_quad

    ppr64_reg_byte i = ptext
      (case i of {
         0 -> sLit "%al";     1 -> sLit "%bl";
         2 -> sLit "%cl";     3 -> sLit "%dl";
         4 -> sLit "%sil";    5 -> sLit "%dil"; -- new 8-bit regs!
         6 -> sLit "%bpl";    7 -> sLit "%spl";
         8 -> sLit "%r8b";    9  -> sLit "%r9b";
        10 -> sLit "%r10b";   11 -> sLit "%r11b";
        12 -> sLit "%r12b";   13 -> sLit "%r13b";
        14 -> sLit "%r14b";   15 -> sLit "%r15b";
        _  -> sLit $ "very naughty x86_64 byte register: " ++ show i
      })

    ppr64_reg_word i = ptext
      (case i of {
         0 -> sLit "%ax";     1 -> sLit "%bx";
         2 -> sLit "%cx";     3 -> sLit "%dx";
         4 -> sLit "%si";     5 -> sLit "%di";
         6 -> sLit "%bp";     7 -> sLit "%sp";
         8 -> sLit "%r8w";    9  -> sLit "%r9w";
        10 -> sLit "%r10w";   11 -> sLit "%r11w";
        12 -> sLit "%r12w";   13 -> sLit "%r13w";
        14 -> sLit "%r14w";   15 -> sLit "%r15w";
        _  -> sLit "very naughty x86_64 word register"
      })

    ppr64_reg_long i = ptext
      (case i of {
         0 -> sLit "%eax";    1  -> sLit "%ebx";
         2 -> sLit "%ecx";    3  -> sLit "%edx";
         4 -> sLit "%esi";    5  -> sLit "%edi";
         6 -> sLit "%ebp";    7  -> sLit "%esp";
         8 -> sLit "%r8d";    9  -> sLit "%r9d";
        10 -> sLit "%r10d";   11 -> sLit "%r11d";
        12 -> sLit "%r12d";   13 -> sLit "%r13d";
        14 -> sLit "%r14d";   15 -> sLit "%r15d";
        _  -> sLit "very naughty x86_64 register"
      })

    ppr64_reg_quad i = ptext
      (case i of {
         0 -> sLit "%rax";      1 -> sLit "%rbx";
         2 -> sLit "%rcx";      3 -> sLit "%rdx";
         4 -> sLit "%rsi";      5 -> sLit "%rdi";
         6 -> sLit "%rbp";      7 -> sLit "%rsp";
         8 -> sLit "%r8";       9 -> sLit "%r9";
        10 -> sLit "%r10";    11 -> sLit "%r11";
        12 -> sLit "%r12";    13 -> sLit "%r13";
        14 -> sLit "%r14";    15 -> sLit "%r15";
        _  -> ppr_reg_float i
      })

ppr_reg_float :: Int -> PtrString
ppr_reg_float i = case i of
        16 -> sLit "%fake0";  17 -> sLit "%fake1"
        18 -> sLit "%fake2";  19 -> sLit "%fake3"
        20 -> sLit "%fake4";  21 -> sLit "%fake5"
        24 -> sLit "%xmm0";   25 -> sLit "%xmm1"
        26 -> sLit "%xmm2";   27 -> sLit "%xmm3"
        28 -> sLit "%xmm4";   29 -> sLit "%xmm5"
        30 -> sLit "%xmm6";   31 -> sLit "%xmm7"
        32 -> sLit "%xmm8";   33 -> sLit "%xmm9"
        34 -> sLit "%xmm10";  35 -> sLit "%xmm11"
        36 -> sLit "%xmm12";  37 -> sLit "%xmm13"
        38 -> sLit "%xmm14";  39 -> sLit "%xmm15"
        _  -> sLit "very naughty x86 register"

pprFormat :: Format -> SDoc
pprFormat x
 = ptext (case x of
                II8   -> sLit "b"
                II16  -> sLit "w"
                II32  -> sLit "l"
                II64  -> sLit "q"
                FF32  -> sLit "ss"      -- "scalar single-precision float" (SSE2)
                FF64  -> sLit "sd"      -- "scalar double-precision float" (SSE2)
                FF80  -> sLit "t"
                )

pprFormat_x87 :: Format -> SDoc
pprFormat_x87 x
  = ptext $ case x of
                FF32  -> sLit "s"
                FF64  -> sLit "l"
                FF80  -> sLit "t"
                _     -> panic "X86.Ppr.pprFormat_x87"

pprCond :: Cond -> SDoc
pprCond c
 = ptext (case c of {
                GEU     -> sLit "ae";   LU    -> sLit "b";
                EQQ     -> sLit "e";    GTT   -> sLit "g";
                GE      -> sLit "ge";   GU    -> sLit "a";
                LTT     -> sLit "l";    LE    -> sLit "le";
                LEU     -> sLit "be";   NE    -> sLit "ne";
                NEG     -> sLit "s";    POS   -> sLit "ns";
                CARRY   -> sLit "c";   OFLO  -> sLit "o";
                PARITY  -> sLit "p";   NOTPARITY -> sLit "np";
                ALWAYS  -> sLit "mp"})


pprImm :: Imm -> SDoc
pprImm (ImmInt i)     = int i
pprImm (ImmInteger i) = integer i
pprImm (ImmCLbl l)    = ppr l
pprImm (ImmIndex l i) = ppr l <> char '+' <> int i
pprImm (ImmLit s)     = s

pprImm (ImmFloat _)  = text "naughty float immediate"
pprImm (ImmDouble _) = text "naughty double immediate"

pprImm (ImmConstantSum a b) = pprImm a <> char '+' <> pprImm b
pprImm (ImmConstantDiff a b) = pprImm a <> char '-'
                            <> lparen <> pprImm b <> rparen



pprAddr :: AddrMode -> SDoc
pprAddr (ImmAddr imm off)
  = let pp_imm = pprImm imm
    in
    if (off == 0) then
        pp_imm
    else if (off < 0) then
        pp_imm <> int off
    else
        pp_imm <> char '+' <> int off

pprAddr (AddrBaseIndex base index displacement)
  = sdocWithPlatform $ \platform ->
    let
        pp_disp  = ppr_disp displacement
        pp_off p = pp_disp <> char '(' <> p <> char ')'
        pp_reg r = pprReg (archWordFormat (target32Bit platform)) r
    in
    case (base, index) of
      (EABaseNone,  EAIndexNone) -> pp_disp
      (EABaseReg b, EAIndexNone) -> pp_off (pp_reg b)
      (EABaseRip,   EAIndexNone) -> pp_off (text "%rip")
      (EABaseNone,  EAIndex r i) -> pp_off (comma <> pp_reg r <> comma <> int i)
      (EABaseReg b, EAIndex r i) -> pp_off (pp_reg b <> comma <> pp_reg r
                                       <> comma <> int i)
      _                         -> panic "X86.Ppr.pprAddr: no match"

  where
    ppr_disp (ImmInt 0) = empty
    ppr_disp imm        = pprImm imm

-- | Print section header and appropriate alignment for that section.
pprSectionAlign :: Section -> SDoc
pprSectionAlign (Section (OtherSection _) _) =
     panic "X86.Ppr.pprSectionAlign: unknown section"
pprSectionAlign sec@(Section seg _) =
  sdocWithPlatform $ \platform ->
    pprSectionHeader platform sec $$
    pprAlignForSection seg

-- | Print appropriate alignment for the given section type.
pprAlignForSection :: SectionType -> SDoc
pprAlignForSection seg =
  sdocWithPlatform $ \platform ->
    text ".align " <>
    case platformOS platform of
      -- Darwin: alignments are given as shifts.
      OSDarwin
       | target32Bit platform ->
          case seg of
           ReadOnlyData16    -> int 4
           CString           -> int 1
           _                 -> int 2
       | otherwise ->
          case seg of
           ReadOnlyData16    -> int 4
           CString           -> int 1
           _                 -> int 3
      -- Other: alignments are given as bytes.
      _
       | target32Bit platform ->
          case seg of
           Text              -> text "4,0x90"
           ReadOnlyData16    -> int 16
           CString           -> int 1
           _                 -> int 4
       | otherwise ->
          case seg of
           ReadOnlyData16    -> int 16
           CString           -> int 1
           _                 -> int 8

pprDataItem :: CmmLit -> SDoc
pprDataItem lit = sdocWithDynFlags $ \dflags -> pprDataItem' dflags lit

pprDataItem' :: DynFlags -> CmmLit -> SDoc
pprDataItem' dflags lit
  = vcat (ppr_item (cmmTypeFormat $ cmmLitType dflags lit) lit)
    where
        platform = targetPlatform dflags
        imm = litToImm lit

        -- These seem to be common:
        ppr_item II8   _ = [text "\t.byte\t" <> pprImm imm]
        ppr_item II16  _ = [text "\t.word\t" <> pprImm imm]
        ppr_item II32  _ = [text "\t.long\t" <> pprImm imm]

        ppr_item FF32  (CmmFloat r _)
           = let bs = floatToBytes (fromRational r)
             in  map (\b -> text "\t.byte\t" <> pprImm (ImmInt b)) bs

        ppr_item FF64 (CmmFloat r _)
           = let bs = doubleToBytes (fromRational r)
             in  map (\b -> text "\t.byte\t" <> pprImm (ImmInt b)) bs

        ppr_item II64 _
            = case platformOS platform of
              OSDarwin
               | target32Bit platform ->
                  case lit of
                  CmmInt x _ ->
                      [text "\t.long\t"
                          <> int (fromIntegral (fromIntegral x :: Word32)),
                       text "\t.long\t"
                          <> int (fromIntegral
                              (fromIntegral (x `shiftR` 32) :: Word32))]
                  _ -> panic "X86.Ppr.ppr_item: no match for II64"
               | otherwise ->
                  [text "\t.quad\t" <> pprImm imm]
              _
               | target32Bit platform ->
                  [text "\t.quad\t" <> pprImm imm]
               | otherwise ->
                  -- x86_64: binutils can't handle the R_X86_64_PC64
                  -- relocation type, which means we can't do
                  -- pc-relative 64-bit addresses. Fortunately we're
                  -- assuming the small memory model, in which all such
                  -- offsets will fit into 32 bits, so we have to stick
                  -- to 32-bit offset fields and modify the RTS
                  -- appropriately
                  --
                  -- See Note [x86-64-relative] in includes/rts/storage/InfoTables.h
                  --
                  case lit of
                  -- A relative relocation:
                  CmmLabelDiffOff _ _ _ _ ->
                      [text "\t.long\t" <> pprImm imm,
                       text "\t.long\t0"]
                  _ ->
                      [text "\t.quad\t" <> pprImm imm]

        ppr_item _ _
                = panic "X86.Ppr.ppr_item: no match"


asmComment :: SDoc -> SDoc
asmComment c = whenPprDebug $ text "# " <> c

pprInstr :: Instr -> SDoc

pprInstr (COMMENT s)
   = asmComment (ftext s)

pprInstr (LOCATION file line col _name)
   = text "\t.loc " <> ppr file <+> ppr line <+> ppr col

pprInstr (DELTA d)
   = asmComment $ text ("\tdelta = " ++ show d)

pprInstr (NEWBLOCK _)
   = panic "PprMach.pprInstr: NEWBLOCK"

pprInstr (UNWIND lbl d)
   = asmComment (text "\tunwind = " <> ppr d)
     $$ ppr lbl <> colon

pprInstr (LDATA _ _)
   = panic "PprMach.pprInstr: LDATA"

{-
pprInstr (SPILL reg slot)
   = hcat [
        text "\tSPILL",
        char ' ',
        pprUserReg reg,
        comma,
        text "SLOT" <> parens (int slot)]

pprInstr (RELOAD slot reg)
   = hcat [
        text "\tRELOAD",
        char ' ',
        text "SLOT" <> parens (int slot),
        comma,
        pprUserReg reg]
-}

-- Replace 'mov $0x0,%reg' by 'xor %reg,%reg', which is smaller and cheaper.
-- The code generator catches most of these already, but not all.
pprInstr (MOV format (OpImm (ImmInt 0)) dst@(OpReg _))
  = pprInstr (XOR format' dst dst)
  where format' = case format of
          II64 -> II32          -- 32-bit version is equivalent, and smaller
          _    -> format
pprInstr (MOV format src dst)
  = pprFormatOpOp (sLit "mov") format src dst

pprInstr (CMOV cc format src dst)
  = pprCondOpReg (sLit "cmov") format cc src dst

pprInstr (MOVZxL II32 src dst) = pprFormatOpOp (sLit "mov") II32 src dst
        -- 32-to-64 bit zero extension on x86_64 is accomplished by a simple
        -- movl.  But we represent it as a MOVZxL instruction, because
        -- the reg alloc would tend to throw away a plain reg-to-reg
        -- move, and we still want it to do that.

pprInstr (MOVZxL formats src dst)
  = pprFormatOpOpCoerce (sLit "movz") formats II32 src dst
        -- zero-extension only needs to extend to 32 bits: on x86_64,
        -- the remaining zero-extension to 64 bits is automatic, and the 32-bit
        -- instruction is shorter.

pprInstr (MOVSxL formats src dst)
  = sdocWithPlatform $ \platform ->
    pprFormatOpOpCoerce (sLit "movs") formats (archWordFormat (target32Bit platform)) src dst

-- here we do some patching, since the physical registers are only set late
-- in the code generation.
pprInstr (LEA format (OpAddr (AddrBaseIndex (EABaseReg reg1) (EAIndex reg2 1) (ImmInt 0))) dst@(OpReg reg3))
  | reg1 == reg3
  = pprFormatOpOp (sLit "add") format (OpReg reg2) dst

pprInstr (LEA format (OpAddr (AddrBaseIndex (EABaseReg reg1) (EAIndex reg2 1) (ImmInt 0))) dst@(OpReg reg3))
  | reg2 == reg3
  = pprFormatOpOp (sLit "add") format (OpReg reg1) dst

pprInstr (LEA format (OpAddr (AddrBaseIndex (EABaseReg reg1) EAIndexNone displ)) dst@(OpReg reg3))
  | reg1 == reg3
  = pprInstr (ADD format (OpImm displ) dst)

pprInstr (LEA format src dst) = pprFormatOpOp (sLit "lea") format src dst

pprInstr (ADD format (OpImm (ImmInt (-1))) dst)
  = pprFormatOp (sLit "dec") format dst
pprInstr (ADD format (OpImm (ImmInt 1)) dst)
  = pprFormatOp (sLit "inc") format dst
pprInstr (ADD format src dst) = pprFormatOpOp (sLit "add") format src dst
pprInstr (ADC format src dst) = pprFormatOpOp (sLit "adc") format src dst
pprInstr (SUB format src dst) = pprFormatOpOp (sLit "sub") format src dst
pprInstr (SBB format src dst) = pprFormatOpOp (sLit "sbb") format src dst
pprInstr (IMUL format op1 op2) = pprFormatOpOp (sLit "imul") format op1 op2

pprInstr (ADD_CC format src dst)
  = pprFormatOpOp (sLit "add") format src dst
pprInstr (SUB_CC format src dst)
  = pprFormatOpOp (sLit "sub") format src dst

{- A hack.  The Intel documentation says that "The two and three
   operand forms [of IMUL] may also be used with unsigned operands
   because the lower half of the product is the same regardless if
   (sic) the operands are signed or unsigned.  The CF and OF flags,
   however, cannot be used to determine if the upper half of the
   result is non-zero."  So there.
-}

-- Use a 32-bit instruction when possible as it saves a byte.
-- Notably, extracting the tag bits of a pointer has this form.
-- TODO: we could save a byte in a subsequent CMP instruction too,
-- but need something like a peephole pass for this
pprInstr (AND II64 src@(OpImm (ImmInteger mask)) dst)
  | 0 <= mask && mask < 0xffffffff
    = pprInstr (AND II32 src dst)
pprInstr (AND FF32 src dst) = pprOpOp (sLit "andps") FF32 src dst
pprInstr (AND FF64 src dst) = pprOpOp (sLit "andpd") FF64 src dst
pprInstr (AND format src dst) = pprFormatOpOp (sLit "and") format src dst
pprInstr (OR  format src dst) = pprFormatOpOp (sLit "or")  format src dst

pprInstr (XOR FF32 src dst) = pprOpOp (sLit "xorps") FF32 src dst
pprInstr (XOR FF64 src dst) = pprOpOp (sLit "xorpd") FF64 src dst
pprInstr (XOR format src dst) = pprFormatOpOp (sLit "xor")  format src dst

pprInstr (POPCNT format src dst) = pprOpOp (sLit "popcnt") format src (OpReg dst)
pprInstr (LZCNT format src dst)  = pprOpOp (sLit "lzcnt")  format src (OpReg dst)
pprInstr (TZCNT format src dst)  = pprOpOp (sLit "tzcnt")  format src (OpReg dst)
pprInstr (BSF format src dst)    = pprOpOp (sLit "bsf")    format src (OpReg dst)
pprInstr (BSR format src dst)    = pprOpOp (sLit "bsr")    format src (OpReg dst)

pprInstr (PDEP format src mask dst)   = pprFormatOpOpReg (sLit "pdep") format src mask dst
pprInstr (PEXT format src mask dst)   = pprFormatOpOpReg (sLit "pext") format src mask dst

pprInstr (PREFETCH NTA format src ) = pprFormatOp_ (sLit "prefetchnta") format src
pprInstr (PREFETCH Lvl0 format src) = pprFormatOp_ (sLit "prefetcht0") format src
pprInstr (PREFETCH Lvl1 format src) = pprFormatOp_ (sLit "prefetcht1") format src
pprInstr (PREFETCH Lvl2 format src) = pprFormatOp_ (sLit "prefetcht2") format src

pprInstr (NOT format op) = pprFormatOp (sLit "not") format op
pprInstr (BSWAP format op) = pprFormatOp (sLit "bswap") format (OpReg op)
pprInstr (NEGI format op) = pprFormatOp (sLit "neg") format op

pprInstr (SHL format src dst) = pprShift (sLit "shl") format src dst
pprInstr (SAR format src dst) = pprShift (sLit "sar") format src dst
pprInstr (SHR format src dst) = pprShift (sLit "shr") format src dst

pprInstr (BT  format imm src) = pprFormatImmOp (sLit "bt") format imm src

pprInstr (CMP format src dst)
  | isFloatFormat format =  pprFormatOpOp (sLit "ucomi") format src dst -- SSE2
  | otherwise     =  pprFormatOpOp (sLit "cmp")   format src dst

pprInstr (TEST format src dst) = sdocWithPlatform $ \platform ->
  let format' = case (src,dst) of
        -- Match instructions like 'test $0x3,%esi' or 'test $0x7,%rbx'.
        -- We can replace them by equivalent, but smaller instructions
        -- by reducing the size of the immediate operand as far as possible.
        -- (We could handle masks larger than a single byte too,
        -- but it would complicate the code considerably
        -- and tag checks are by far the most common case.)
        -- The mask must have the high bit clear for this smaller encoding
        -- to be completely equivalent to the original; in particular so
        -- that the signed comparison condition bits are the same as they
        -- would be if doing a full word comparison. See #13425.
        (OpImm (ImmInteger mask), OpReg dstReg)
          | 0 <= mask && mask < 128 -> minSizeOfReg platform dstReg
        _ -> format
  in pprFormatOpOp (sLit "test") format' src dst
  where
    minSizeOfReg platform (RegReal (RealRegSingle i))
      | target32Bit platform && i <= 3        = II8  -- al, bl, cl, dl
      | target32Bit platform && i <= 7        = II16 -- si, di, bp, sp
      | not (target32Bit platform) && i <= 15 = II8  -- al .. r15b
    minSizeOfReg _ _ = format                 -- other

pprInstr (PUSH format op) = pprFormatOp (sLit "push") format op
pprInstr (POP format op) = pprFormatOp (sLit "pop") format op

-- both unused (SDM):
-- pprInstr PUSHA = text "\tpushal"
-- pprInstr POPA = text "\tpopal"

pprInstr NOP = text "\tnop"
pprInstr (CLTD II8) = text "\tcbtw"
pprInstr (CLTD II16) = text "\tcwtd"
pprInstr (CLTD II32) = text "\tcltd"
pprInstr (CLTD II64) = text "\tcqto"
pprInstr (CLTD x) = panic $ "pprInstr: " ++ show x

pprInstr (SETCC cond op) = pprCondInstr (sLit "set") cond (pprOperand II8 op)

pprInstr (JXX cond blockid)
  = pprCondInstr (sLit "j") cond (ppr lab)
  where lab = blockLbl blockid

pprInstr        (JXX_GBL cond imm) = pprCondInstr (sLit "j") cond (pprImm imm)

pprInstr        (JMP (OpImm imm) _) = text "\tjmp " <> pprImm imm
pprInstr (JMP op _)          = sdocWithPlatform $ \platform ->
                               text "\tjmp *"
                                   <> pprOperand (archWordFormat (target32Bit platform)) op
pprInstr (JMP_TBL op _ _ _)  = pprInstr (JMP op [])
pprInstr        (CALL (Left imm) _)    = text "\tcall " <> pprImm imm
pprInstr (CALL (Right reg) _)   = sdocWithPlatform $ \platform ->
                                  text "\tcall *"
                                      <> pprReg (archWordFormat (target32Bit platform)) reg

pprInstr (IDIV fmt op)   = pprFormatOp (sLit "idiv") fmt op
pprInstr (DIV fmt op)    = pprFormatOp (sLit "div")  fmt op
pprInstr (IMUL2 fmt op)  = pprFormatOp (sLit "imul") fmt op

-- x86_64 only
pprInstr (MUL format op1 op2) = pprFormatOpOp (sLit "mul") format op1 op2
pprInstr (MUL2 format op) = pprFormatOp (sLit "mul") format op

pprInstr (FDIV format op1 op2) = pprFormatOpOp (sLit "div") format op1 op2
pprInstr (SQRT format op1 op2) = pprFormatOpReg (sLit "sqrt") format op1 op2

pprInstr (CVTSS2SD from to)      = pprRegReg (sLit "cvtss2sd") from to
pprInstr (CVTSD2SS from to)      = pprRegReg (sLit "cvtsd2ss") from to
pprInstr (CVTTSS2SIQ fmt from to) = pprFormatFormatOpReg (sLit "cvttss2si") FF32 fmt from to
pprInstr (CVTTSD2SIQ fmt from to) = pprFormatFormatOpReg (sLit "cvttsd2si") FF64 fmt from to
pprInstr (CVTSI2SS fmt from to)   = pprFormatOpReg (sLit "cvtsi2ss") fmt from to
pprInstr (CVTSI2SD fmt from to)   = pprFormatOpReg (sLit "cvtsi2sd") fmt from to

    -- FETCHGOT for PIC on ELF platforms
pprInstr (FETCHGOT reg)
   = vcat [ text "\tcall 1f",
            hcat [ text "1:\tpopl\t", pprReg II32 reg ],
            hcat [ text "\taddl\t$_GLOBAL_OFFSET_TABLE_+(.-1b), ",
                   pprReg II32 reg ]
          ]

    -- FETCHPC for PIC on Darwin/x86
    -- get the instruction pointer into a register
    -- (Terminology note: the IP is called Program Counter on PPC,
    --  and it's a good thing to use the same name on both platforms)
pprInstr (FETCHPC reg)
   = vcat [ text "\tcall 1f",
            hcat [ text "1:\tpopl\t", pprReg II32 reg ]
          ]


-- -----------------------------------------------------------------------------
-- i386 floating-point

-- Simulating a flat register set on the x86 FP stack is tricky.
-- you have to free %st(7) before pushing anything on the FP reg stack
-- so as to preclude the possibility of a FP stack overflow exception.
pprInstr g@(GMOV src dst)
   | src == dst
   = empty
   | otherwise
   = pprG g (hcat [gtab, gpush src 0, gsemi, gpop dst 1])

-- GLD fmt addr dst ==> FLDsz addr ; FSTP (dst+1)
pprInstr g@(GLD fmt addr dst)
 = pprG g (hcat [gtab, text "fld", pprFormat_x87 fmt, gsp,
                 pprAddr addr, gsemi, gpop dst 1])

-- GST fmt src addr ==> FLD dst ; FSTPsz addr
pprInstr g@(GST fmt src addr)
 | src == fake0 && fmt /= FF80 -- fstt instruction doesn't exist
 = pprG g (hcat [gtab,
                 text "fst", pprFormat_x87 fmt, gsp, pprAddr addr])
 | otherwise
 = pprG g (hcat [gtab, gpush src 0, gsemi,
                 text "fstp", pprFormat_x87 fmt, gsp, pprAddr addr])

pprInstr g@(GLDZ dst)
 = pprG g (hcat [gtab, text "fldz ; ", gpop dst 1])
pprInstr g@(GLD1 dst)
 = pprG g (hcat [gtab, text "fld1 ; ", gpop dst 1])

pprInstr (GFTOI src dst)
   = pprInstr (GDTOI src dst)

pprInstr g@(GDTOI src dst)
   = pprG g (vcat [
         hcat [gtab, text "subl $8, %esp ; fnstcw 4(%esp)"],
         hcat [gtab, gpush src 0],
         hcat [gtab, text "movzwl 4(%esp), ", reg,
                     text " ; orl $0xC00, ", reg],
         hcat [gtab, text "movl ", reg, text ", 0(%esp) ; fldcw 0(%esp)"],
         hcat [gtab, text "fistpl 0(%esp)"],
         hcat [gtab, text "fldcw 4(%esp) ; movl 0(%esp), ", reg],
         hcat [gtab, text "addl $8, %esp"]
     ])
   where
     reg = pprReg II32 dst

pprInstr (GITOF src dst)
   = pprInstr (GITOD src dst)

pprInstr g@(GITOD src dst)
   = pprG g (hcat [gtab, text "pushl ", pprReg II32 src,
                   text " ; fildl (%esp) ; ",
                   gpop dst 1, text " ; addl $4,%esp"])

pprInstr g@(GDTOF src dst)
  = pprG g (vcat [gtab <> gpush src 0,
                  gtab <> text "subl $4,%esp ; fstps (%esp) ; flds (%esp) ; addl $4,%esp ;",
                  gtab <> gpop dst 1])

{- Gruesome swamp follows.  If you're unfortunate enough to have ventured
   this far into the jungle AND you give a Rat's Ass (tm) what's going
   on, here's the deal.  Generate code to do a floating point comparison
   of src1 and src2, of kind cond, and set the Zero flag if true.

   The complications are to do with handling NaNs correctly.  We want the
   property that if either argument is NaN, then the result of the
   comparison is False ... except if we're comparing for inequality,
   in which case the answer is True.

   Here's how the general (non-inequality) case works.  As an
   example, consider generating the an equality test:

     pushl %eax         -- we need to mess with this
     <get src1 to top of FPU stack>
     fcomp <src2 location in FPU stack> and pop pushed src1
                -- Result of comparison is in FPU Status Register bits
                -- C3 C2 and C0
     fstsw %ax  -- Move FPU Status Reg to %ax
     sahf       -- move C3 C2 C0 from %ax to integer flag reg
     -- now the serious magic begins
     setpo %ah     -- %ah = if comparable(neither arg was NaN) then 1 else 0
     sete  %al     -- %al = if arg1 == arg2 then 1 else 0
     andb %ah,%al  -- %al &= %ah
                   -- so %al == 1 iff (comparable && same); else it holds 0
     decb %al      -- %al == 0, ZeroFlag=1  iff (comparable && same);
                      else %al == 0xFF, ZeroFlag=0
     -- the zero flag is now set as we desire.
     popl %eax

   The special case of inequality differs thusly:

     setpe %ah     -- %ah = if incomparable(either arg was NaN) then 1 else 0
     setne %al     -- %al = if arg1 /= arg2 then 1 else 0
     orb %ah,%al   -- %al = if (incomparable || different) then 1 else 0
     decb %al      -- if (incomparable || different) then (%al == 0, ZF=1)
                                                     else (%al == 0xFF, ZF=0)
-}
pprInstr g@(GCMP cond src1 src2)
   | case cond of { NE -> True; _ -> False }
   = pprG g (vcat [
        hcat [gtab, text "pushl %eax ; ",gpush src1 0],
        hcat [gtab, text "fcomp ", greg src2 1,
                    text "; fstsw %ax ; sahf ;  setpe %ah"],
        hcat [gtab, text "setne %al ;  ",
              text "orb %ah,%al ;  decb %al ;  popl %eax"]
    ])
   | otherwise
   = pprG g (vcat [
        hcat [gtab, text "pushl %eax ; ",gpush src1 0],
        hcat [gtab, text "fcomp ", greg src2 1,
                    text "; fstsw %ax ; sahf ;  setpo %ah"],
        hcat [gtab, text "set", pprCond (fix_FP_cond cond), text " %al ;  ",
              text "andb %ah,%al ;  decb %al ;  popl %eax"]
    ])
    where
        {- On the 486, the flags set by FP compare are the unsigned ones!
           (This looks like a HACK to me.  WDP 96/03)
        -}
        fix_FP_cond :: Cond -> Cond
        fix_FP_cond GE   = GEU
        fix_FP_cond GTT  = GU
        fix_FP_cond LTT  = LU
        fix_FP_cond LE   = LEU
        fix_FP_cond EQQ  = EQQ
        fix_FP_cond NE   = NE
        fix_FP_cond _    = panic "X86.Ppr.fix_FP_cond: no match"
        -- there should be no others


pprInstr g@(GABS _ src dst)
   = pprG g (hcat [gtab, gpush src 0, text " ; fabs ; ", gpop dst 1])

pprInstr g@(GNEG _ src dst)
   = pprG g (hcat [gtab, gpush src 0, text " ; fchs ; ", gpop dst 1])

pprInstr g@(GSQRT fmt src dst)
   = pprG g (hcat [gtab, gpush src 0, text " ; fsqrt"] $$
             hcat [gtab, gcoerceto fmt, gpop dst 1])

pprInstr g@(GSIN fmt l1 l2 src dst)
   = pprG g (pprTrigOp "fsin" False l1 l2 src dst fmt)

pprInstr g@(GCOS fmt l1 l2 src dst)
   = pprG g (pprTrigOp "fcos" False l1 l2 src dst fmt)

pprInstr g@(GTAN fmt l1 l2 src dst)
   = pprG g (pprTrigOp "fptan" True l1 l2 src dst fmt)

-- In the translations for GADD, GMUL, GSUB and GDIV,
-- the first two cases are mere optimisations.  The otherwise clause
-- generates correct code under all circumstances.

pprInstr g@(GADD _ src1 src2 dst)
   | src1 == dst
   = pprG g (text "\t#GADD-xxxcase1" $$
             hcat [gtab, gpush src2 0,
                   text " ; faddp %st(0),", greg src1 1])
   | src2 == dst
   = pprG g (text "\t#GADD-xxxcase2" $$
             hcat [gtab, gpush src1 0,
                   text " ; faddp %st(0),", greg src2 1])
   | otherwise
   = pprG g (hcat [gtab, gpush src1 0,
                   text " ; fadd ", greg src2 1, text ",%st(0)",
                   gsemi, gpop dst 1])


pprInstr g@(GMUL _ src1 src2 dst)
   | src1 == dst
   = pprG g (text "\t#GMUL-xxxcase1" $$
             hcat [gtab, gpush src2 0,
                   text " ; fmulp %st(0),", greg src1 1])
   | src2 == dst
   = pprG g (text "\t#GMUL-xxxcase2" $$
             hcat [gtab, gpush src1 0,
                   text " ; fmulp %st(0),", greg src2 1])
   | otherwise
   = pprG g (hcat [gtab, gpush src1 0,
             text " ; fmul ", greg src2 1, text ",%st(0)",
             gsemi, gpop dst 1])


pprInstr g@(GSUB _ src1 src2 dst)
   | src1 == dst
   = pprG g (text "\t#GSUB-xxxcase1" $$
             hcat [gtab, gpush src2 0,
                   text " ; fsubrp %st(0),", greg src1 1])
   | src2 == dst
   = pprG g (text "\t#GSUB-xxxcase2" $$
             hcat [gtab, gpush src1 0,
                   text " ; fsubp %st(0),", greg src2 1])
   | otherwise
   = pprG g (hcat [gtab, gpush src1 0,
                   text " ; fsub ", greg src2 1, text ",%st(0)",
                   gsemi, gpop dst 1])


pprInstr g@(GDIV _ src1 src2 dst)
   | src1 == dst
   = pprG g (text "\t#GDIV-xxxcase1" $$
             hcat [gtab, gpush src2 0,
                   text " ; fdivrp %st(0),", greg src1 1])
   | src2 == dst
   = pprG g (text "\t#GDIV-xxxcase2" $$
             hcat [gtab, gpush src1 0,
                   text " ; fdivp %st(0),", greg src2 1])
   | otherwise
   = pprG g (hcat [gtab, gpush src1 0,
                   text " ; fdiv ", greg src2 1, text ",%st(0)",
                   gsemi, gpop dst 1])


pprInstr GFREE
   = vcat [ text "\tffree %st(0) ;ffree %st(1) ;ffree %st(2) ;ffree %st(3)",
            text "\tffree %st(4) ;ffree %st(5)"
          ]

-- Atomics

pprInstr (LOCK i) = text "\tlock" $$ pprInstr i

pprInstr MFENCE = text "\tmfence"

pprInstr (XADD format src dst) = pprFormatOpOp (sLit "xadd") format src dst

pprInstr (CMPXCHG format src dst)
   = pprFormatOpOp (sLit "cmpxchg") format src dst


pprTrigOp :: String -> Bool -> CLabel -> CLabel
          -> Reg -> Reg -> Format -> SDoc
pprTrigOp op -- fsin, fcos or fptan
          isTan -- we need a couple of extra steps if we're doing tan
          l1 l2 -- internal labels for us to use
          src dst fmt
    = -- We'll be needing %eax later on
      hcat [gtab, text "pushl %eax;"] $$
      -- tan is going to use an extra space on the FP stack
      (if isTan then hcat [gtab, text "ffree %st(6)"] else empty) $$
      -- First put the value in %st(0) and try to apply the op to it
      hcat [gpush src 0, text ("; " ++ op)] $$
      -- Now look to see if C2 was set (overflow, |value| >= 2^63)
      hcat [gtab, text "fnstsw %ax"] $$
      hcat [gtab, text "test   $0x400,%eax"] $$
      -- If we were in bounds then jump to the end
      hcat [gtab, text "je     " <> ppr l1] $$
      -- Otherwise we need to shrink the value. Start by
      -- loading pi, doubleing it (by adding it to itself),
      -- and then swapping pi with the value, so the value we
      -- want to apply op to is in %st(0) again
      hcat [gtab, text "ffree %st(7); fldpi"] $$
      hcat [gtab, text "fadd   %st(0),%st"] $$
      hcat [gtab, text "fxch   %st(1)"] $$
      -- Now we have a loop in which we make the value smaller,
      -- see if it's small enough, and loop if not
      (ppr l2 <> char ':') $$
      hcat [gtab, text "fprem1"] $$
      -- My Debian libc uses fstsw here for the tan code, but I can't
      -- see any reason why it should need to be different for tan.
      hcat [gtab, text "fnstsw %ax"] $$
      hcat [gtab, text "test   $0x400,%eax"] $$
      hcat [gtab, text "jne    " <> ppr l2] $$
      hcat [gtab, text "fstp   %st(1)"] $$
      hcat [gtab, text op] $$
      (ppr l1 <> char ':') $$
      -- Pop the 1.0 tan gave us
      (if isTan then hcat [gtab, text "fstp %st(0)"] else empty) $$
      -- Restore %eax
      hcat [gtab, text "popl %eax;"] $$
      -- And finally make the result the right size
      hcat [gtab, gcoerceto fmt, gpop dst 1]

--------------------------

-- coerce %st(0) to the specified size
gcoerceto :: Format -> SDoc
gcoerceto FF64 = empty
gcoerceto FF32 = empty --text "subl $4,%esp ; fstps (%esp) ; flds (%esp) ; addl $4,%esp ; "
gcoerceto _    = panic "X86.Ppr.gcoerceto: no match"

gpush :: Reg -> RegNo -> SDoc
gpush reg offset
   = hcat [text "fld ", greg reg offset]

gpop :: Reg -> RegNo -> SDoc
gpop reg offset
   = hcat [text "fstp ", greg reg offset]

greg :: Reg -> RegNo -> SDoc
greg reg offset = text "%st(" <> int (gregno reg - firstfake+offset) <> char ')'

gsemi :: SDoc
gsemi = text " ; "

gtab :: SDoc
gtab  = char '\t'

gsp :: SDoc
gsp   = char ' '

gregno :: Reg -> RegNo
gregno (RegReal (RealRegSingle i)) = i
gregno _           = --pprPanic "gregno" (ppr other)
                     999   -- bogus; only needed for debug printing

pprG :: Instr -> SDoc -> SDoc
pprG fake actual
   = (char '#' <> pprGInstr fake) $$ actual


pprGInstr :: Instr -> SDoc
pprGInstr (GMOV src dst)   = pprFormatRegReg (sLit "gmov") FF64 src dst
pprGInstr (GLD fmt src dst) = pprFormatAddrReg (sLit "gld") fmt src dst
pprGInstr (GST fmt src dst) = pprFormatRegAddr (sLit "gst") fmt src dst

pprGInstr (GLDZ dst) = pprFormatReg (sLit "gldz") FF64 dst
pprGInstr (GLD1 dst) = pprFormatReg (sLit "gld1") FF64 dst

pprGInstr (GFTOI src dst) = pprFormatFormatRegReg (sLit "gftoi") FF32 II32 src dst
pprGInstr (GDTOI src dst) = pprFormatFormatRegReg (sLit "gdtoi") FF64 II32 src dst

pprGInstr (GITOF src dst) = pprFormatFormatRegReg (sLit "gitof") II32 FF32 src dst
pprGInstr (GITOD src dst) = pprFormatFormatRegReg (sLit "gitod") II32 FF64 src dst
pprGInstr (GDTOF src dst) = pprFormatFormatRegReg (sLit "gdtof") FF64 FF32 src dst

pprGInstr (GCMP co src dst) = pprCondRegReg (sLit "gcmp_") FF64 co src dst
pprGInstr (GABS fmt src dst) = pprFormatRegReg (sLit "gabs") fmt src dst
pprGInstr (GNEG fmt src dst) = pprFormatRegReg (sLit "gneg") fmt src dst
pprGInstr (GSQRT fmt src dst) = pprFormatRegReg (sLit "gsqrt") fmt src dst
pprGInstr (GSIN fmt _ _ src dst) = pprFormatRegReg (sLit "gsin") fmt src dst
pprGInstr (GCOS fmt _ _ src dst) = pprFormatRegReg (sLit "gcos") fmt src dst
pprGInstr (GTAN fmt _ _ src dst) = pprFormatRegReg (sLit "gtan") fmt src dst

pprGInstr (GADD fmt src1 src2 dst) = pprFormatRegRegReg (sLit "gadd") fmt src1 src2 dst
pprGInstr (GSUB fmt src1 src2 dst) = pprFormatRegRegReg (sLit "gsub") fmt src1 src2 dst
pprGInstr (GMUL fmt src1 src2 dst) = pprFormatRegRegReg (sLit "gmul") fmt src1 src2 dst
pprGInstr (GDIV fmt src1 src2 dst) = pprFormatRegRegReg (sLit "gdiv") fmt src1 src2 dst

pprGInstr _ = panic "X86.Ppr.pprGInstr: no match"

pprDollImm :: Imm -> SDoc
pprDollImm i = text "$" <> pprImm i


pprOperand :: Format -> Operand -> SDoc
pprOperand f (OpReg r)   = pprReg f r
pprOperand _ (OpImm i)   = pprDollImm i
pprOperand _ (OpAddr ea) = pprAddr ea


pprMnemonic_  :: PtrString -> SDoc
pprMnemonic_ name =
   char '\t' <> ptext name <> space


pprMnemonic  :: PtrString -> Format -> SDoc
pprMnemonic name format =
   char '\t' <> ptext name <> pprFormat format <> space


pprFormatImmOp :: PtrString -> Format -> Imm -> Operand -> SDoc
pprFormatImmOp name format imm op1
  = hcat [
        pprMnemonic name format,
        char '$',
        pprImm imm,
        comma,
        pprOperand format op1
    ]


pprFormatOp_ :: PtrString -> Format -> Operand -> SDoc
pprFormatOp_ name format op1
  = hcat [
        pprMnemonic_ name ,
        pprOperand format op1
    ]

pprFormatOp :: PtrString -> Format -> Operand -> SDoc
pprFormatOp name format op1
  = hcat [
        pprMnemonic name format,
        pprOperand format op1
    ]


pprFormatOpOp :: PtrString -> Format -> Operand -> Operand -> SDoc
pprFormatOpOp name format op1 op2
  = hcat [
        pprMnemonic name format,
        pprOperand format op1,
        comma,
        pprOperand format op2
    ]


pprOpOp :: PtrString -> Format -> Operand -> Operand -> SDoc
pprOpOp name format op1 op2
  = hcat [
        pprMnemonic_ name,
        pprOperand format op1,
        comma,
        pprOperand format op2
    ]


pprFormatReg :: PtrString -> Format -> Reg -> SDoc
pprFormatReg name format reg1
  = hcat [
        pprMnemonic name format,
        pprReg format reg1
    ]


pprFormatRegReg :: PtrString -> Format -> Reg -> Reg -> SDoc
pprFormatRegReg name format reg1 reg2
  = hcat [
        pprMnemonic name format,
        pprReg format reg1,
        comma,
        pprReg format reg2
    ]


pprRegReg :: PtrString -> Reg -> Reg -> SDoc
pprRegReg name reg1 reg2
  = sdocWithPlatform $ \platform ->
    hcat [
        pprMnemonic_ name,
        pprReg (archWordFormat (target32Bit platform)) reg1,
        comma,
        pprReg (archWordFormat (target32Bit platform)) reg2
    ]


pprFormatOpReg :: PtrString -> Format -> Operand -> Reg -> SDoc
pprFormatOpReg name format op1 reg2
  = sdocWithPlatform $ \platform ->
    hcat [
        pprMnemonic name format,
        pprOperand format op1,
        comma,
        pprReg (archWordFormat (target32Bit platform)) reg2
    ]

pprCondOpReg :: PtrString -> Format -> Cond -> Operand -> Reg -> SDoc
pprCondOpReg name format cond op1 reg2
  = hcat [
        char '\t',
        ptext name,
        pprCond cond,
        space,
        pprOperand format op1,
        comma,
        pprReg format reg2
    ]

pprCondRegReg :: PtrString -> Format -> Cond -> Reg -> Reg -> SDoc
pprCondRegReg name format cond reg1 reg2
  = hcat [
        char '\t',
        ptext name,
        pprCond cond,
        space,
        pprReg format reg1,
        comma,
        pprReg format reg2
    ]

pprFormatFormatRegReg :: PtrString -> Format -> Format -> Reg -> Reg -> SDoc
pprFormatFormatRegReg name format1 format2 reg1 reg2
  = hcat [
        char '\t',
        ptext name,
        pprFormat format1,
        pprFormat format2,
        space,
        pprReg format1 reg1,
        comma,
        pprReg format2 reg2
    ]

pprFormatFormatOpReg :: PtrString -> Format -> Format -> Operand -> Reg -> SDoc
pprFormatFormatOpReg name format1 format2 op1 reg2
  = hcat [
        pprMnemonic name format2,
        pprOperand format1 op1,
        comma,
        pprReg format2 reg2
    ]

pprFormatRegRegReg :: PtrString -> Format -> Reg -> Reg -> Reg -> SDoc
pprFormatRegRegReg name format reg1 reg2 reg3
  = hcat [
        pprMnemonic name format,
        pprReg format reg1,
        comma,
        pprReg format reg2,
        comma,
        pprReg format reg3
    ]

pprFormatOpOpReg :: PtrString -> Format -> Operand -> Operand -> Reg -> SDoc
pprFormatOpOpReg name format op1 op2 reg3
  = hcat [
        pprMnemonic name format,
        pprOperand format op1,
        comma,
        pprOperand format op2,
        comma,
        pprReg format reg3
    ]

pprFormatAddrReg :: PtrString -> Format -> AddrMode -> Reg -> SDoc
pprFormatAddrReg name format op dst
  = hcat [
        pprMnemonic name format,
        pprAddr op,
        comma,
        pprReg format dst
    ]


pprFormatRegAddr :: PtrString -> Format -> Reg -> AddrMode -> SDoc
pprFormatRegAddr name format src op
  = hcat [
        pprMnemonic name format,
        pprReg format src,
        comma,
        pprAddr op
    ]


pprShift :: PtrString -> Format -> Operand -> Operand -> SDoc
pprShift name format src dest
  = hcat [
        pprMnemonic name format,
        pprOperand II8 src,  -- src is 8-bit sized
        comma,
        pprOperand format dest
    ]


pprFormatOpOpCoerce :: PtrString -> Format -> Format -> Operand -> Operand -> SDoc
pprFormatOpOpCoerce name format1 format2 op1 op2
  = hcat [ char '\t', ptext name, pprFormat format1, pprFormat format2, space,
        pprOperand format1 op1,
        comma,
        pprOperand format2 op2
    ]


pprCondInstr :: PtrString -> Cond -> SDoc -> SDoc
pprCondInstr name cond arg
  = hcat [ char '\t', ptext name, pprCond cond, space, arg]