1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
|
module X86.Regs (
-- squeese functions for the graph allocator
virtualRegSqueeze,
realRegSqueeze,
-- immediates
Imm(..),
strImmLit,
litToImm,
-- addressing modes
AddrMode(..),
addrOffset,
-- registers
spRel,
argRegs,
allArgRegs,
allIntArgRegs,
allHaskellArgRegs,
callClobberedRegs,
instrClobberedRegs,
allMachRegNos,
classOfRealReg,
showReg,
-- machine specific
EABase(..), EAIndex(..), addrModeRegs,
eax, ebx, ecx, edx, esi, edi, ebp, esp,
fake0, fake1, fake2, fake3, fake4, fake5, firstfake,
rax, rbx, rcx, rdx, rsi, rdi, rbp, rsp,
r8, r9, r10, r11, r12, r13, r14, r15,
xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7,
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15,
xmm,
ripRel,
allFPArgRegs,
-- horror show
freeReg,
globalRegMaybe,
allocatableRegs
)
where
#include "nativeGen/NCG.h"
#include "HsVersions.h"
#include "../includes/stg/MachRegs.h"
import Reg
import RegClass
import BlockId
import OldCmm
import CmmCallConv
import CLabel ( CLabel )
import Outputable
import Platform
import FastTypes
import FastBool
import Constants
-- | regSqueeze_class reg
-- Calculuate the maximum number of register colors that could be
-- denied to a node of this class due to having this reg
-- as a neighbour.
--
{-# INLINE virtualRegSqueeze #-}
virtualRegSqueeze :: RegClass -> VirtualReg -> FastInt
virtualRegSqueeze cls vr
= case cls of
RcInteger
-> case vr of
VirtualRegI{} -> _ILIT(1)
VirtualRegHi{} -> _ILIT(1)
_other -> _ILIT(0)
RcDouble
-> case vr of
VirtualRegD{} -> _ILIT(1)
VirtualRegF{} -> _ILIT(0)
_other -> _ILIT(0)
RcDoubleSSE
-> case vr of
VirtualRegSSE{} -> _ILIT(1)
_other -> _ILIT(0)
_other -> _ILIT(0)
{-# INLINE realRegSqueeze #-}
realRegSqueeze :: RegClass -> RealReg -> FastInt
realRegSqueeze cls rr
= case cls of
RcInteger
-> case rr of
RealRegSingle regNo
| regNo < firstfake -> _ILIT(1)
| otherwise -> _ILIT(0)
RealRegPair{} -> _ILIT(0)
RcDouble
-> case rr of
RealRegSingle regNo
| regNo >= firstfake && regNo <= lastfake -> _ILIT(1)
| otherwise -> _ILIT(0)
RealRegPair{} -> _ILIT(0)
RcDoubleSSE
-> case rr of
RealRegSingle regNo | regNo >= firstxmm -> _ILIT(1)
_otherwise -> _ILIT(0)
_other -> _ILIT(0)
-- -----------------------------------------------------------------------------
-- Immediates
data Imm
= ImmInt Int
| ImmInteger Integer -- Sigh.
| ImmCLbl CLabel -- AbstractC Label (with baggage)
| ImmLit SDoc -- Simple string
| ImmIndex CLabel Int
| ImmFloat Rational
| ImmDouble Rational
| ImmConstantSum Imm Imm
| ImmConstantDiff Imm Imm
strImmLit :: String -> Imm
strImmLit s = ImmLit (text s)
litToImm :: CmmLit -> Imm
litToImm (CmmInt i w) = ImmInteger (narrowS w i)
-- narrow to the width: a CmmInt might be out of
-- range, but we assume that ImmInteger only contains
-- in-range values. A signed value should be fine here.
litToImm (CmmFloat f W32) = ImmFloat f
litToImm (CmmFloat f W64) = ImmDouble f
litToImm (CmmLabel l) = ImmCLbl l
litToImm (CmmLabelOff l off) = ImmIndex l off
litToImm (CmmLabelDiffOff l1 l2 off)
= ImmConstantSum
(ImmConstantDiff (ImmCLbl l1) (ImmCLbl l2))
(ImmInt off)
litToImm (CmmBlock id) = ImmCLbl (infoTblLbl id)
litToImm _ = panic "X86.Regs.litToImm: no match"
-- addressing modes ------------------------------------------------------------
data AddrMode
= AddrBaseIndex EABase EAIndex Displacement
| ImmAddr Imm Int
data EABase = EABaseNone | EABaseReg Reg | EABaseRip
data EAIndex = EAIndexNone | EAIndex Reg Int
type Displacement = Imm
addrOffset :: AddrMode -> Int -> Maybe AddrMode
addrOffset addr off
= case addr of
ImmAddr i off0 -> Just (ImmAddr i (off0 + off))
AddrBaseIndex r i (ImmInt n) -> Just (AddrBaseIndex r i (ImmInt (n + off)))
AddrBaseIndex r i (ImmInteger n)
-> Just (AddrBaseIndex r i (ImmInt (fromInteger (n + toInteger off))))
AddrBaseIndex r i (ImmCLbl lbl)
-> Just (AddrBaseIndex r i (ImmIndex lbl off))
AddrBaseIndex r i (ImmIndex lbl ix)
-> Just (AddrBaseIndex r i (ImmIndex lbl (ix+off)))
_ -> Nothing -- in theory, shouldn't happen
addrModeRegs :: AddrMode -> [Reg]
addrModeRegs (AddrBaseIndex b i _) = b_regs ++ i_regs
where
b_regs = case b of { EABaseReg r -> [r]; _ -> [] }
i_regs = case i of { EAIndex r _ -> [r]; _ -> [] }
addrModeRegs _ = []
-- registers -------------------------------------------------------------------
-- @spRel@ gives us a stack relative addressing mode for volatile
-- temporaries and for excess call arguments. @fpRel@, where
-- applicable, is the same but for the frame pointer.
spRel :: Platform
-> Int -- ^ desired stack offset in words, positive or negative
-> AddrMode
spRel platform n
| target32Bit platform
= AddrBaseIndex (EABaseReg esp) EAIndexNone (ImmInt (n * wORD_SIZE))
| otherwise
= AddrBaseIndex (EABaseReg rsp) EAIndexNone (ImmInt (n * wORD_SIZE))
-- The register numbers must fit into 32 bits on x86, so that we can
-- use a Word32 to represent the set of free registers in the register
-- allocator.
firstfake, lastfake :: RegNo
firstfake = 16
lastfake = 21
firstxmm, lastxmm :: RegNo
firstxmm = 24
#if i386_TARGET_ARCH
lastxmm = 31
#else
lastxmm = 39
#endif
lastint :: RegNo
#if i386_TARGET_ARCH
lastint = 7 -- not %r8..%r15
#else
lastint = 15
#endif
intregnos, fakeregnos, xmmregnos, floatregnos :: [RegNo]
intregnos = [0..lastint]
fakeregnos = [firstfake .. lastfake]
xmmregnos = [firstxmm .. lastxmm]
floatregnos = fakeregnos ++ xmmregnos;
-- argRegs is the set of regs which are read for an n-argument call to C.
-- For archs which pass all args on the stack (x86), is empty.
-- Sparc passes up to the first 6 args in regs.
argRegs :: RegNo -> [Reg]
argRegs _ = panic "MachRegs.argRegs(x86): should not be used!"
-- | The complete set of machine registers.
allMachRegNos :: [RegNo]
allMachRegNos = intregnos ++ floatregnos
-- | Take the class of a register.
{-# INLINE classOfRealReg #-}
classOfRealReg :: RealReg -> RegClass
-- On x86, we might want to have an 8-bit RegClass, which would
-- contain just regs 1-4 (the others don't have 8-bit versions).
-- However, we can get away without this at the moment because the
-- only allocatable integer regs are also 8-bit compatible (1, 3, 4).
classOfRealReg reg
= case reg of
RealRegSingle i
| i <= lastint -> RcInteger
| i <= lastfake -> RcDouble
| otherwise -> RcDoubleSSE
RealRegPair{} -> panic "X86.Regs.classOfRealReg: RegPairs on this arch"
-- | Get the name of the register with this number.
showReg :: Platform -> RegNo -> String
showReg platform n
| n >= firstxmm = "%xmm" ++ show (n-firstxmm)
| n >= firstfake = "%fake" ++ show (n-firstfake)
| n >= 8 = "%r" ++ show n
| otherwise = regNames platform !! n
regNames :: Platform -> [String]
regNames platform
= if target32Bit platform
then ["%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp"]
else ["%rax", "%rbx", "%rcx", "%rdx", "%rsi", "%rdi", "%rbp", "%rsp"]
-- machine specific ------------------------------------------------------------
{-
Intel x86 architecture:
- All registers except 7 (esp) are available for use.
- Only ebx, esi, edi and esp are available across a C call (they are callee-saves).
- Registers 0-7 have 16-bit counterparts (ax, bx etc.)
- Registers 0-3 have 8 bit counterparts (ah, bh etc.)
- Registers fake0..fake5 are fakes; we pretend x86 has 6 conventionally-addressable
fp registers, and 3-operand insns for them, and we translate this into
real stack-based x86 fp code after register allocation.
The fp registers are all Double registers; we don't have any RcFloat class
regs. @regClass@ barfs if you give it a VirtualRegF, and mkVReg above should
never generate them.
-}
fake0, fake1, fake2, fake3, fake4, fake5,
eax, ebx, ecx, edx, esp, ebp, esi, edi :: Reg
eax = regSingle 0
ebx = regSingle 1
ecx = regSingle 2
edx = regSingle 3
esi = regSingle 4
edi = regSingle 5
ebp = regSingle 6
esp = regSingle 7
fake0 = regSingle 16
fake1 = regSingle 17
fake2 = regSingle 18
fake3 = regSingle 19
fake4 = regSingle 20
fake5 = regSingle 21
{-
AMD x86_64 architecture:
- All 16 integer registers are addressable as 8, 16, 32 and 64-bit values:
8 16 32 64
---------------------
al ax eax rax
bl bx ebx rbx
cl cx ecx rcx
dl dx edx rdx
sil si esi rsi
dil si edi rdi
bpl bp ebp rbp
spl sp esp rsp
r10b r10w r10d r10
r11b r11w r11d r11
r12b r12w r12d r12
r13b r13w r13d r13
r14b r14w r14d r14
r15b r15w r15d r15
-}
rax, rbx, rcx, rdx, rsp, rbp, rsi, rdi,
r8, r9, r10, r11, r12, r13, r14, r15,
xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7,
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15 :: Reg
rax = regSingle 0
rbx = regSingle 1
rcx = regSingle 2
rdx = regSingle 3
rsi = regSingle 4
rdi = regSingle 5
rbp = regSingle 6
rsp = regSingle 7
r8 = regSingle 8
r9 = regSingle 9
r10 = regSingle 10
r11 = regSingle 11
r12 = regSingle 12
r13 = regSingle 13
r14 = regSingle 14
r15 = regSingle 15
xmm0 = regSingle 24
xmm1 = regSingle 25
xmm2 = regSingle 26
xmm3 = regSingle 27
xmm4 = regSingle 28
xmm5 = regSingle 29
xmm6 = regSingle 30
xmm7 = regSingle 31
xmm8 = regSingle 32
xmm9 = regSingle 33
xmm10 = regSingle 34
xmm11 = regSingle 35
xmm12 = regSingle 36
xmm13 = regSingle 37
xmm14 = regSingle 38
xmm15 = regSingle 39
ripRel :: Displacement -> AddrMode
ripRel imm = AddrBaseIndex EABaseRip EAIndexNone imm
-- so we can re-use some x86 code:
{-
eax = rax
ebx = rbx
ecx = rcx
edx = rdx
esi = rsi
edi = rdi
ebp = rbp
esp = rsp
-}
xmm :: RegNo -> Reg
xmm n = regSingle (firstxmm+n)
-- horror show -----------------------------------------------------------------
freeReg :: RegNo -> FastBool
globalRegMaybe :: GlobalReg -> Maybe RealReg
allArgRegs :: [(Reg, Reg)]
allIntArgRegs :: [Reg]
allFPArgRegs :: [Reg]
callClobberedRegs :: [Reg]
#if defined(i386_TARGET_ARCH) || defined(x86_64_TARGET_ARCH)
#if i386_TARGET_ARCH
#define eax 0
#define ebx 1
#define ecx 2
#define edx 3
#define esi 4
#define edi 5
#define ebp 6
#define esp 7
#endif
#if x86_64_TARGET_ARCH
#define rax 0
#define rbx 1
#define rcx 2
#define rdx 3
#define rsi 4
#define rdi 5
#define rbp 6
#define rsp 7
#define r8 8
#define r9 9
#define r10 10
#define r11 11
#define r12 12
#define r13 13
#define r14 14
#define r15 15
#endif
#define fake0 16
#define fake1 17
#define fake2 18
#define fake3 19
#define fake4 20
#define fake5 21
#define xmm0 24
#define xmm1 25
#define xmm2 26
#define xmm3 27
#define xmm4 28
#define xmm5 29
#define xmm6 30
#define xmm7 31
#define xmm8 32
#define xmm9 33
#define xmm10 34
#define xmm11 35
#define xmm12 36
#define xmm13 37
#define xmm14 38
#define xmm15 39
#if i386_TARGET_ARCH
freeReg esp = fastBool False -- %esp is the C stack pointer
#endif
#if x86_64_TARGET_ARCH
freeReg rsp = fastBool False -- %rsp is the C stack pointer
#endif
#ifdef REG_Base
freeReg REG_Base = fastBool False
#endif
#ifdef REG_Sp
freeReg REG_Sp = fastBool False
#endif
#ifdef REG_SpLim
freeReg REG_SpLim = fastBool False
#endif
#ifdef REG_Hp
freeReg REG_Hp = fastBool False
#endif
#ifdef REG_HpLim
freeReg REG_HpLim = fastBool False
#endif
-- All other regs are considered to be "free", because we can track
-- their liveness accurately.
freeReg _ = fastBool True
-- | Returns 'Nothing' if this global register is not stored
-- in a real machine register, otherwise returns @'Just' reg@, where
-- reg is the machine register it is stored in.
#ifdef REG_Base
globalRegMaybe BaseReg = Just (RealRegSingle REG_Base)
#endif
#ifdef REG_R1
globalRegMaybe (VanillaReg 1 _) = Just (RealRegSingle REG_R1)
#endif
#ifdef REG_R2
globalRegMaybe (VanillaReg 2 _) = Just (RealRegSingle REG_R2)
#endif
#ifdef REG_R3
globalRegMaybe (VanillaReg 3 _) = Just (RealRegSingle REG_R3)
#endif
#ifdef REG_R4
globalRegMaybe (VanillaReg 4 _) = Just (RealRegSingle REG_R4)
#endif
#ifdef REG_R5
globalRegMaybe (VanillaReg 5 _) = Just (RealRegSingle REG_R5)
#endif
#ifdef REG_R6
globalRegMaybe (VanillaReg 6 _) = Just (RealRegSingle REG_R6)
#endif
#ifdef REG_R7
globalRegMaybe (VanillaReg 7 _) = Just (RealRegSingle REG_R7)
#endif
#ifdef REG_R8
globalRegMaybe (VanillaReg 8 _) = Just (RealRegSingle REG_R8)
#endif
#ifdef REG_R9
globalRegMaybe (VanillaReg 9 _) = Just (RealRegSingle REG_R9)
#endif
#ifdef REG_R10
globalRegMaybe (VanillaReg 10 _) = Just (RealRegSingle REG_R10)
#endif
#ifdef REG_F1
globalRegMaybe (FloatReg 1) = Just (RealRegSingle REG_F1)
#endif
#ifdef REG_F2
globalRegMaybe (FloatReg 2) = Just (RealRegSingle REG_F2)
#endif
#ifdef REG_F3
globalRegMaybe (FloatReg 3) = Just (RealRegSingle REG_F3)
#endif
#ifdef REG_F4
globalRegMaybe (FloatReg 4) = Just (RealRegSingle REG_F4)
#endif
#ifdef REG_D1
globalRegMaybe (DoubleReg 1) = Just (RealRegSingle REG_D1)
#endif
#ifdef REG_D2
globalRegMaybe (DoubleReg 2) = Just (RealRegSingle REG_D2)
#endif
#ifdef REG_Sp
globalRegMaybe Sp = Just (RealRegSingle REG_Sp)
#endif
#ifdef REG_Lng1
globalRegMaybe (LongReg 1) = Just (RealRegSingle REG_Lng1)
#endif
#ifdef REG_Lng2
globalRegMaybe (LongReg 2) = Just (RealRegSingle REG_Lng2)
#endif
#ifdef REG_SpLim
globalRegMaybe SpLim = Just (RealRegSingle REG_SpLim)
#endif
#ifdef REG_Hp
globalRegMaybe Hp = Just (RealRegSingle REG_Hp)
#endif
#ifdef REG_HpLim
globalRegMaybe HpLim = Just (RealRegSingle REG_HpLim)
#endif
#ifdef REG_CurrentTSO
globalRegMaybe CurrentTSO = Just (RealRegSingle REG_CurrentTSO)
#endif
#ifdef REG_CurrentNursery
globalRegMaybe CurrentNursery = Just (RealRegSingle REG_CurrentNursery)
#endif
globalRegMaybe _ = Nothing
--
#if defined(mingw32_HOST_OS) && x86_64_TARGET_ARCH
allArgRegs = zip (map regSingle [rcx,rdx,r8,r9])
(map regSingle [firstxmm ..])
allIntArgRegs = panic "X86.Regs.allIntArgRegs: not defined for this platform"
allFPArgRegs = panic "X86.Regs.allFPArgRegs: not defined for this platform"
#else
allArgRegs = panic "X86.Regs.allArgRegs: not defined for this arch"
# if i386_TARGET_ARCH
allIntArgRegs = panic "X86.Regs.allIntArgRegs: should not be used!"
# elif x86_64_TARGET_ARCH
allIntArgRegs = map regSingle [rdi,rsi,rdx,rcx,r8,r9]
# else
allIntArgRegs = panic "X86.Regs.allIntArgRegs: not defined for this arch"
# endif
allFPArgRegs = map regSingle [firstxmm .. firstxmm+7]
#endif
-- All machine registers that are used for argument-passing to Haskell functions
allHaskellArgRegs :: [Reg]
allHaskellArgRegs = [ RegReal r | Just r <- map globalRegMaybe globalArgRegs ]
-- Machine registers which might be clobbered by instructions that
-- generate results into fixed registers, or need arguments in a fixed
-- register.
instrClobberedRegs :: [RealReg]
#if i386_TARGET_ARCH
instrClobberedRegs = map RealRegSingle [ eax, ecx, edx ]
#elif x86_64_TARGET_ARCH
instrClobberedRegs = map RealRegSingle [ rax, rcx, rdx ]
#endif
-- | these are the regs which we cannot assume stay alive over a C call.
#if i386_TARGET_ARCH
-- caller-saves registers
callClobberedRegs
= map regSingle ([eax,ecx,edx] ++ floatregnos)
#elif x86_64_TARGET_ARCH
-- all xmm regs are caller-saves
-- caller-saves registers
callClobberedRegs
= map regSingle ([rax,rcx,rdx,rsi,rdi,r8,r9,r10,r11] ++ floatregnos)
#else
callClobberedRegs
= panic "X86.Regs.callClobberedRegs: not defined for this architecture"
#endif
#else /* i386_TARGET_ARCH || x86_64_TARGET_ARCH */
freeReg _ = 0#
globalRegMaybe _ = panic "X86.Regs.globalRegMaybe: not defined"
allArgRegs = panic "X86.Regs.allArgRegs: not defined"
allIntArgRegs = panic "X86.Regs.allIntArgRegs: not defined"
allFPArgRegs = panic "X86.Regs.allFPArgRegs: not defined"
callClobberedRegs = panic "X86.Regs.callClobberedRegs: not defined"
instrClobberedRegs :: [RealReg]
instrClobberedRegs = panic "X86.Regs.instrClobberedRegs: not defined for this arch"
allHaskellArgRegs :: [Reg]
allHaskellArgRegs = panic "X86.Regs.allHaskellArgRegs: not defined for this arch"
#endif
-- allocatableRegs is allMachRegNos with the fixed-use regs removed.
-- i.e., these are the regs for which we are prepared to allow the
-- register allocator to attempt to map VRegs to.
allocatableRegs :: [RealReg]
allocatableRegs
= let isFree i = isFastTrue (freeReg i)
in map RealRegSingle $ filter isFree allMachRegNos
|