summaryrefslogtreecommitdiff
path: root/compiler/ndpFlatten/FlattenMonad.hs
blob: 45405088fc67f96e55650b2f4c9f7a89bcae9e42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
--  $Id$
--
--  Copyright (c) [2001..2002] Manuel M T Chakravarty & Gabriele Keller
--
--  Monad maintaining parallel contexts and substitutions for flattening.
--
--- DESCRIPTION ---------------------------------------------------------------
--
--  The flattening transformation needs to perform a fair amount of plumbing.
--  It needs to mainatin a set of variables, called the parallel context for
--  lifting, variable substitutions in case alternatives, and so on.
--  Moreover, we need to manage uniques to create new variables.  The monad
--  defined in this module takes care of maintaining this state.
-- 
--- DOCU ----------------------------------------------------------------------
--
--  Language: Haskell 98
--
--  * a parallel context is a set of variables that get vectorised during a
--    lifting transformations (ie, their type changes from `t' to `[:t:]')
--
--  * all vectorised variables in a parallel context have the same size; we
--    call this also the size of the parallel context
--
--  * we represent contexts by maps that give the lifted version of a variable
--    (remember that in GHC, variables contain type information that changes
--    during lifting)
--
--- TODO ----------------------------------------------------------------------
--
--  * Assumptions currently made that should (if they turn out to be true) be
--    documented in The Commentary:
--
--    - Local bindings can be copied without any need to alpha-rename bound
--      variables (or their uniques).  Such renaming is only necessary when
--      bindings in a recursive group are replicated; implying that this is
--      required in the case of top-level bindings).  (Note: The CoreTidy path
--      generates global uniques before code generation.)
--
--  * One FIXME left to resolve.
--

module FlattenMonad (

  -- monad definition
  --
  Flatten, runFlatten,

  -- variable generation
  --
  newVar, mkBind,
  
  -- context management & query operations
  --
  extendContext, packContext, liftVar, liftConst, intersectWithContext,

  -- construction of prelude functions
  --
  mk'fst, mk'eq, mk'neq, mk'and, mk'or, mk'lengthP, mk'replicateP, mk'mapP,
  mk'bpermuteP, mk'bpermuteDftP, mk'indexOfP
) where

-- standard
import Monad	    (mplus)

-- GHC
import Panic        (panic)
import Outputable   (Outputable(ppr), pprPanic)
import UniqSupply   (UniqSupply, splitUniqSupply, uniqFromSupply)
import Var          (Var, idType)
import Id	    (Id, mkSysLocal)
import Name	    (Name)
import VarSet       (VarSet, emptyVarSet, extendVarSet, varSetElems )
import VarEnv       (VarEnv, emptyVarEnv, zipVarEnv, plusVarEnv,
		     elemVarEnv, lookupVarEnv, lookupVarEnv_NF, delVarEnvList)
import Type	    (Type, tyConAppTyCon)
import HscTypes	    (HomePackageTable,
		     ExternalPackageState(eps_PTE), HscEnv(hsc_HPT),
		     TyThing(..), lookupType)
import PrelNames    ( fstName, andName, orName,
		     lengthPName, replicatePName, mapPName, bpermutePName,
		     bpermuteDftPName, indexOfPName)
import TysPrim      ( charPrimTyCon, intPrimTyCon, floatPrimTyCon, doublePrimTyCon )
import PrimOp	    ( PrimOp(..) )
import PrelInfo	    ( primOpId )
import CoreSyn      (Expr(..), Bind(..), CoreBndr, CoreExpr, CoreBind, mkApps)
import CoreUtils    (exprType)
import FastString   (FastString)

-- friends
import NDPCoreUtils (parrElemTy)


-- definition of the monad
-- -----------------------

-- state maintained by the flattening monad
--
data FlattenState = FlattenState {

		      -- our source for uniques
		      --
		      us       :: UniqSupply,

		      -- environment containing all known names (including all
		      -- Prelude functions)
		      --
		      env      :: Name -> Id,

		      -- this variable determines the parallel context; if
		      -- `Nothing', we are in pure vectorisation mode, no
		      -- lifting going on
		      --
		      ctxtVar  :: Maybe Var,

		      -- environment that maps each variable that is
		      -- vectorised in the current parallel context to the
		      -- vectorised version of that variable
		      --
		      ctxtEnv :: VarEnv Var,

		      -- those variables from the *domain* of `ctxtEnv' that
		      -- have been used since the last context restriction (cf.
		      -- `restrictContext') 
		      --
		      usedVars :: VarSet
		    }

-- initial value of the flattening state
--
initialFlattenState :: ExternalPackageState
		    -> HomePackageTable 
		    -> UniqSupply 
		    -> FlattenState
initialFlattenState eps hpt us = 
  FlattenState {
    us	     = us,
    env      = lookup,
    ctxtVar  = Nothing,
    ctxtEnv  = emptyVarEnv,
    usedVars = emptyVarSet
  }
  where
    lookup n = 
      case lookupType hpt (eps_PTE eps) n of
        Just (AnId v) -> v 
	_             -> pprPanic "FlattenMonad: unknown name:" (ppr n)

-- the monad representation (EXPORTED ABSTRACTLY)
--
newtype Flatten a = Flatten {
		      unFlatten :: (FlattenState -> (a, FlattenState))
		    }

instance Monad Flatten where
  return x = Flatten $ \s -> (x, s)
  m >>= n  = Flatten $ \s -> let 
			       (r, s') = unFlatten m s
			     in
			     unFlatten (n r) s'

-- execute the given flattening computation (EXPORTED)
--
runFlatten :: HscEnv
	   -> ExternalPackageState
	   -> UniqSupply 
	   -> Flatten a 
	   -> a    
runFlatten hsc_env eps us m 
  = fst $ unFlatten m (initialFlattenState eps (hsc_HPT hsc_env) us)


-- variable generation
-- -------------------

-- generate a new local variable whose name is based on the given lexeme and
-- whose type is as specified in the second argument (EXPORTED)
--
newVar           :: FastString -> Type -> Flatten Var
newVar lexeme ty  = Flatten $ \state ->
  let
    (us1, us2) = splitUniqSupply (us state)
    state'     = state {us = us2}
  in
  (mkSysLocal lexeme (uniqFromSupply us1) ty, state')

-- generate a non-recursive binding using a new binder whose name is derived
-- from the given lexeme (EXPORTED)
--
mkBind          :: FastString -> CoreExpr -> Flatten (CoreBndr, CoreBind)
mkBind lexeme e  =
  do
    v <- newVar lexeme (exprType e)
    return (v, NonRec v e)


-- context management
-- ------------------

-- extend the parallel context by the given set of variables (EXPORTED)
--
--  * if there is no parallel context at the moment, the first element of the
--   variable list will be used to determine the new parallel context
--
--  * the second argument is executed in the current context extended with the
--   given variables
--
--  * the variables must already have been lifted by transforming their type,
--   but they *must* have retained their original name (or, at least, their
--   unique); this is needed so that they match the original variable in
--   variable environments
--
--  * any trace of the given set of variables has to be removed from the state
--   at the end of this operation
--
extendContext      :: [Var] -> Flatten a -> Flatten a
extendContext [] m  = m
extendContext vs m  = Flatten $ \state -> 
  let 
    extState       = state {
		       ctxtVar = ctxtVar state `mplus` Just (head vs),
		       ctxtEnv = ctxtEnv state `plusVarEnv` zipVarEnv vs vs
		     }
    (r, extState') = unFlatten m extState
    resState       = extState' { -- remove `vs' from the result state
		       ctxtVar  = ctxtVar state,
		       ctxtEnv  = ctxtEnv state,
		       usedVars = usedVars extState' `delVarEnvList` vs
		     }
  in
  (r, resState)

-- execute the second argument in a restricted context (EXPORTED)
--
--  * all variables in the current parallel context are packed according to
--   the permutation vector associated with the variable passed as the first
--   argument (ie, all elements of vectorised context variables that are
--   invalid in the restricted context are dropped)
--
--  * the returned list of core binders contains the operations that perform
--   the restriction on all variables in the parallel context that *do* occur
--   during the execution of the second argument (ie, `liftVar' is executed at
--   least once on any such variable)
--
packContext        :: Var -> Flatten a -> Flatten (a, [CoreBind])
packContext perm m  = Flatten $ \state ->
  let
    -- FIXME: To set the packed environment to the unpacked on is a hack of
    --   which I am not sure yet (a) whether it works and (b) whether it's
    --   really worth it.  The one advantages is that, we can use a var set,
    --   after all, instead of a var environment.
    --
    --	 The idea is the following: If we have to pack a variable `x', we
    --	 generate `let{-NonRec-} x = bpermuteP perm x in ...'.  As this is a
    --	 non-recursive binding, the lhs `x' overshadows the rhs `x' in the
    --	 body of the let.
    --
    --   NB: If we leave it like this, `mkCoreBind' can be simplified.
    packedCtxtEnv     = ctxtEnv state
    packedState       = state {
	                  ctxtVar  = fmap
				       (lookupVarEnv_NF packedCtxtEnv)
				       (ctxtVar state),
		          ctxtEnv  = packedCtxtEnv, 
		          usedVars = emptyVarSet
		        }
    (r, packedState') = unFlatten m packedState
    resState	      = state {    -- revert to the unpacked context
			  ctxtVar  = ctxtVar state,
			  ctxtEnv  = ctxtEnv state
		        }
    bndrs	      = map mkCoreBind . varSetElems . usedVars $ packedState'

    -- generate a binding for the packed variant of a context variable
    --
    mkCoreBind var    = let
			  rhs = fst $ unFlatten (mk'bpermuteP (idType var) 
							      (Var perm) 
							      (Var var)
						) state
			in
			NonRec (lookupVarEnv_NF packedCtxtEnv var) $ rhs
		          
  in
  ((r, bndrs), resState)

-- lift a single variable in the current context (EXPORTED)
--
--  * if the variable does not occur in the context, it's value is vectorised to
--   match the size of the current context
--
--  * otherwise, the variable is replaced by whatever the context environment
--   maps it to (this may either be simply the lifted version of the original
--   variable or a packed variant of that variable)
--
--  * the monad keeps track of all lifted variables that occur in the parallel
--   context, so that `packContext' can determine the correct set of core
--   bindings
--
liftVar     :: Var -> Flatten CoreExpr
liftVar var  = Flatten $ \s ->
  let 
    v          = ctxtVarErr s
    v'elemType = parrElemTy . idType $ v
    len        = fst $ unFlatten (mk'lengthP v'elemType (Var v)) s
    replicated = fst $ unFlatten (mk'replicateP (idType var) len (Var var)) s
  in case lookupVarEnv (ctxtEnv s) var of
    Just liftedVar -> (Var liftedVar, 
		       s {usedVars = usedVars s `extendVarSet` var})
    Nothing        -> (replicated, s)

-- lift a constant expression in the current context (EXPORTED)
--
--  * the value of the constant expression is vectorised to match the current
--   parallel context
--
liftConst   :: CoreExpr -> Flatten CoreExpr
liftConst e  = Flatten $ \s ->
  let
     v          = ctxtVarErr s
     v'elemType = parrElemTy . idType $ v
     len        = fst $ unFlatten (mk'lengthP v'elemType (Var v)) s
  in 
  (fst $ unFlatten (mk'replicateP (exprType e) len e ) s, s)

-- pick those variables of the given set that occur (if albeit in lifted form)
-- in the current parallel context (EXPORTED)
--
--  * the variables returned are from the given set and *not* the corresponding
--   context variables
--
intersectWithContext    :: VarSet -> Flatten [Var]
intersectWithContext vs  = Flatten $ \s ->
  let
    vs' = filter (`elemVarEnv` ctxtEnv s) (varSetElems vs)
  in
  (vs', s)


-- construct applications of prelude functions
-- -------------------------------------------

-- NB: keep all the used names listed in `FlattenInfo.namesNeededForFlattening'

-- generate an application of `fst' (EXPORTED)
--
mk'fst           :: Type -> Type -> CoreExpr -> Flatten CoreExpr
mk'fst ty1 ty2 a  = mkFunApp fstName [Type ty1, Type ty2, a]

-- generate an application of `&&' (EXPORTED)
--
mk'and       :: CoreExpr -> CoreExpr -> Flatten CoreExpr
mk'and a1 a2  = mkFunApp andName [a1, a2]

-- generate an application of `||' (EXPORTED)
--
mk'or       :: CoreExpr -> CoreExpr -> Flatten CoreExpr
mk'or a1 a2  = mkFunApp orName [a1, a2]

-- generate an application of `==' where the arguments may only be literals
-- that may occur in a Core case expression (i.e., `Char', `Int', `Float', and
-- `Double') (EXPORTED)
--
mk'eq          :: Type -> CoreExpr -> CoreExpr -> Flatten CoreExpr
mk'eq ty a1 a2  = return (mkApps (Var eqName) [a1, a2])
		  where
		    tc = tyConAppTyCon ty
		    --
		    eqName | tc == charPrimTyCon   = primOpId CharEqOp
			   | tc == intPrimTyCon    = primOpId IntEqOp
			   | tc == floatPrimTyCon  = primOpId FloatEqOp
			   | tc == doublePrimTyCon = primOpId DoubleEqOp
			   | otherwise 		         =
			     pprPanic "FlattenMonad.mk'eq: " (ppr ty)

-- generate an application of `==' where the arguments may only be literals
-- that may occur in a Core case expression (i.e., `Char', `Int', `Float', and
-- `Double') (EXPORTED)
--
mk'neq          :: Type -> CoreExpr -> CoreExpr -> Flatten CoreExpr
mk'neq ty a1 a2  = return (mkApps (Var neqName) [a1, a2])
		   where
		     tc = tyConAppTyCon ty
		     --
		     neqName {-  | name == charPrimTyConName   = neqCharName -}
			     | tc == intPrimTyCon	      = primOpId IntNeOp
			     {-  | name == floatPrimTyConName  = neqFloatName -}
			     {-  | name == doublePrimTyConName = neqDoubleName -}
			     | otherwise		   =
			       pprPanic "FlattenMonad.mk'neq: " (ppr ty)

-- generate an application of `lengthP' (EXPORTED)
--
mk'lengthP      :: Type -> CoreExpr -> Flatten CoreExpr
mk'lengthP ty a  = mkFunApp lengthPName [Type ty, a]

-- generate an application of `replicateP' (EXPORTED)
--
mk'replicateP          :: Type -> CoreExpr -> CoreExpr -> Flatten CoreExpr
mk'replicateP ty a1 a2  = mkFunApp replicatePName [Type ty, a1, a2]

-- generate an application of `replicateP' (EXPORTED)
--
mk'mapP :: Type -> Type -> CoreExpr -> CoreExpr -> Flatten CoreExpr
mk'mapP ty1 ty2 a1 a2  = mkFunApp mapPName [Type ty1, Type ty2, a1, a2]

-- generate an application of `bpermuteP' (EXPORTED)
--
mk'bpermuteP          :: Type -> CoreExpr -> CoreExpr -> Flatten CoreExpr
mk'bpermuteP ty a1 a2  = mkFunApp bpermutePName [Type ty, a1, a2]

-- generate an application of `bpermuteDftP' (EXPORTED)
--
mk'bpermuteDftP :: Type -> CoreExpr -> CoreExpr -> CoreExpr -> Flatten CoreExpr
mk'bpermuteDftP ty a1 a2 a3 = mkFunApp bpermuteDftPName [Type ty, a1, a2, a3]

-- generate an application of `indexOfP' (EXPORTED)
--
mk'indexOfP          :: Type -> CoreExpr -> CoreExpr -> Flatten CoreExpr
mk'indexOfP ty a1 a2  = mkFunApp indexOfPName [Type ty, a1, a2]


-- auxilliary functions
-- --------------------

-- obtain the context variable, aborting if it is not available (as this
-- signals an internal error in the usage of the `Flatten' monad)
--
ctxtVarErr   :: FlattenState -> Var
ctxtVarErr s  = case ctxtVar s of
		  Nothing -> panic "FlattenMonad.ctxtVarErr: No context variable available!"
		  Just v  -> v

-- given the name of a known function and a set of arguments (needs to include
-- all needed type arguments), build a Core expression that applies the named
-- function to those arguments
--
mkFunApp           :: Name -> [CoreExpr] -> Flatten CoreExpr
mkFunApp name args  =
  do
    fun <- lookupName name
    return $ mkApps (Var fun) args

-- get the `Id' of a known `Name'
--
--  * this can be the `Name' of any function that's visible on the toplevel of
--   the current compilation unit
--
lookupName      :: Name -> Flatten Id
lookupName name  = Flatten $ \s ->
  (env s name, s)