1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
|
-- -*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------
{
{-# LANGUAGE BangPatterns #-} -- required for versions of Happy before 1.18.6
{-# OPTIONS -Wwarn -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details
{-# OPTIONS_GHC -O0 -fno-ignore-interface-pragmas #-}
{-
Careful optimisation of the parser: we don't want to throw everything
at it, because that takes too long and doesn't buy much, but we do want
to inline certain key external functions, so we instruct GHC not to
throw away inlinings as it would normally do in -O0 mode.
-}
module Parser ( parseModule, parseStmt, parseIdentifier, parseType,
parseHeader ) where
import HsSyn
import RdrHsSyn
import HscTypes ( IsBootInterface, WarningTxt(..) )
import Lexer
import RdrName
import TcEvidence ( emptyTcEvBinds )
import TysPrim ( liftedTypeKindTyConName, eqPrimTyCon )
import TysWiredIn ( unitTyCon, unitDataCon, tupleTyCon, tupleCon, nilDataCon,
unboxedUnitTyCon, unboxedUnitDataCon,
listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR, eqTyCon_RDR )
import Type ( funTyCon )
import ForeignCall
import OccName ( varName, dataName, tcClsName, tvName )
import DataCon ( DataCon, dataConName )
import SrcLoc
import Module
import StaticFlags ( opt_SccProfilingOn, opt_Hpc )
import Kind ( Kind, liftedTypeKind, unliftedTypeKind, mkArrowKind )
import Class ( FunDep )
import BasicTypes
import DynFlags
import OrdList
import HaddockUtils
import FastString
import Maybes ( orElse )
import Outputable
import Control.Monad ( unless )
import GHC.Exts
import Data.Char
import Control.Monad ( mplus )
}
{-
-----------------------------------------------------------------------------
24 Februar 2006
Conflicts: 33 shift/reduce
1 reduce/reduce
The reduce/reduce conflict is weird. It's between tyconsym and consym, and I
would think the two should never occur in the same context.
-=chak
-----------------------------------------------------------------------------
31 December 2006
Conflicts: 34 shift/reduce
1 reduce/reduce
The reduce/reduce conflict is weird. It's between tyconsym and consym, and I
would think the two should never occur in the same context.
-=chak
-----------------------------------------------------------------------------
6 December 2006
Conflicts: 32 shift/reduce
1 reduce/reduce
The reduce/reduce conflict is weird. It's between tyconsym and consym, and I
would think the two should never occur in the same context.
-=chak
-----------------------------------------------------------------------------
26 July 2006
Conflicts: 37 shift/reduce
1 reduce/reduce
The reduce/reduce conflict is weird. It's between tyconsym and consym, and I
would think the two should never occur in the same context.
-=chak
-----------------------------------------------------------------------------
Conflicts: 38 shift/reduce (1.25)
10 for abiguity in 'if x then y else z + 1' [State 178]
(shift parses as 'if x then y else (z + 1)', as per longest-parse rule)
10 because op might be: : - ! * . `x` VARSYM CONSYM QVARSYM QCONSYM
1 for ambiguity in 'if x then y else z :: T' [State 178]
(shift parses as 'if x then y else (z :: T)', as per longest-parse rule)
4 for ambiguity in 'if x then y else z -< e' [State 178]
(shift parses as 'if x then y else (z -< T)', as per longest-parse rule)
There are four such operators: -<, >-, -<<, >>-
2 for ambiguity in 'case v of { x :: T -> T ... } ' [States 11, 253]
Which of these two is intended?
case v of
(x::T) -> T -- Rhs is T
or
case v of
(x::T -> T) -> .. -- Rhs is ...
10 for ambiguity in 'e :: a `b` c'. Does this mean [States 11, 253]
(e::a) `b` c, or
(e :: (a `b` c))
As well as `b` we can have !, VARSYM, QCONSYM, and CONSYM, hence 5 cases
Same duplication between states 11 and 253 as the previous case
1 for ambiguity in 'let ?x ...' [State 329]
the parser can't tell whether the ?x is the lhs of a normal binding or
an implicit binding. Fortunately resolving as shift gives it the only
sensible meaning, namely the lhs of an implicit binding.
1 for ambiguity in '{-# RULES "name" [ ... #-} [State 382]
we don't know whether the '[' starts the activation or not: it
might be the start of the declaration with the activation being
empty. --SDM 1/4/2002
1 for ambiguity in '{-# RULES "name" forall = ... #-}' [State 474]
since 'forall' is a valid variable name, we don't know whether
to treat a forall on the input as the beginning of a quantifier
or the beginning of the rule itself. Resolving to shift means
it's always treated as a quantifier, hence the above is disallowed.
This saves explicitly defining a grammar for the rule lhs that
doesn't include 'forall'.
1 for ambiguity when the source file starts with "-- | doc". We need another
token of lookahead to determine if a top declaration or the 'module' keyword
follows. Shift parses as if the 'module' keyword follows.
-- ---------------------------------------------------------------------------
-- Adding location info
This is done in a stylised way using the three macros below, L0, L1
and LL. Each of these macros can be thought of as having type
L0, L1, LL :: a -> Located a
They each add a SrcSpan to their argument.
L0 adds 'noSrcSpan', used for empty productions
-- This doesn't seem to work anymore -=chak
L1 for a production with a single token on the lhs. Grabs the SrcSpan
from that token.
LL for a production with >1 token on the lhs. Makes up a SrcSpan from
the first and last tokens.
These suffice for the majority of cases. However, we must be
especially careful with empty productions: LL won't work if the first
or last token on the lhs can represent an empty span. In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.
| 'newtype' tycl_hdr '=' newconstr deriving
{ L (comb3 $1 $4 $5)
(mkTyData NewType (unLoc $2) [$4] (unLoc $5)) }
We provide comb3 and comb4 functions which are useful in such cases.
Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.
/*
* We must expand these macros *before* running Happy, which is why this file is
* Parser.y.pp rather than just Parser.y - we run the C pre-processor first.
*/
#define L0 L noSrcSpan
#define L1 sL (getLoc $1)
#define LL sL (comb2 $1 $>)
-- -----------------------------------------------------------------------------
-}
%token
'_' { L _ ITunderscore } -- Haskell keywords
'as' { L _ ITas }
'case' { L _ ITcase }
'class' { L _ ITclass }
'data' { L _ ITdata }
'default' { L _ ITdefault }
'deriving' { L _ ITderiving }
'do' { L _ ITdo }
'else' { L _ ITelse }
'hiding' { L _ IThiding }
'if' { L _ ITif }
'import' { L _ ITimport }
'in' { L _ ITin }
'infix' { L _ ITinfix }
'infixl' { L _ ITinfixl }
'infixr' { L _ ITinfixr }
'instance' { L _ ITinstance }
'let' { L _ ITlet }
'module' { L _ ITmodule }
'newtype' { L _ ITnewtype }
'of' { L _ ITof }
'qualified' { L _ ITqualified }
'then' { L _ ITthen }
'type' { L _ ITtype }
'where' { L _ ITwhere }
'_scc_' { L _ ITscc } -- ToDo: remove
'forall' { L _ ITforall } -- GHC extension keywords
'foreign' { L _ ITforeign }
'export' { L _ ITexport }
'label' { L _ ITlabel }
'dynamic' { L _ ITdynamic }
'safe' { L _ ITsafe }
'interruptible' { L _ ITinterruptible }
'unsafe' { L _ ITunsafe }
'mdo' { L _ ITmdo }
'family' { L _ ITfamily }
'stdcall' { L _ ITstdcallconv }
'ccall' { L _ ITccallconv }
'capi' { L _ ITcapiconv }
'prim' { L _ ITprimcallconv }
'proc' { L _ ITproc } -- for arrow notation extension
'rec' { L _ ITrec } -- for arrow notation extension
'group' { L _ ITgroup } -- for list transform extension
'by' { L _ ITby } -- for list transform extension
'using' { L _ ITusing } -- for list transform extension
'{-# INLINE' { L _ (ITinline_prag _ _) }
'{-# SPECIALISE' { L _ ITspec_prag }
'{-# SPECIALISE_INLINE' { L _ (ITspec_inline_prag _) }
'{-# SOURCE' { L _ ITsource_prag }
'{-# RULES' { L _ ITrules_prag }
'{-# CORE' { L _ ITcore_prag } -- hdaume: annotated core
'{-# SCC' { L _ ITscc_prag }
'{-# GENERATED' { L _ ITgenerated_prag }
'{-# DEPRECATED' { L _ ITdeprecated_prag }
'{-# WARNING' { L _ ITwarning_prag }
'{-# UNPACK' { L _ ITunpack_prag }
'{-# NOUNPACK' { L _ ITnounpack_prag }
'{-# ANN' { L _ ITann_prag }
'{-# VECTORISE' { L _ ITvect_prag }
'{-# VECTORISE_SCALAR' { L _ ITvect_scalar_prag }
'{-# NOVECTORISE' { L _ ITnovect_prag }
'{-# CTYPE' { L _ ITctype }
'#-}' { L _ ITclose_prag }
'..' { L _ ITdotdot } -- reserved symbols
':' { L _ ITcolon }
'::' { L _ ITdcolon }
'=' { L _ ITequal }
'\\' { L _ ITlam }
'|' { L _ ITvbar }
'<-' { L _ ITlarrow }
'->' { L _ ITrarrow }
'@' { L _ ITat }
'~' { L _ ITtilde }
'~#' { L _ ITtildehsh }
'=>' { L _ ITdarrow }
'-' { L _ ITminus }
'!' { L _ ITbang }
'*' { L _ ITstar }
'-<' { L _ ITlarrowtail } -- for arrow notation
'>-' { L _ ITrarrowtail } -- for arrow notation
'-<<' { L _ ITLarrowtail } -- for arrow notation
'>>-' { L _ ITRarrowtail } -- for arrow notation
'.' { L _ ITdot }
'{' { L _ ITocurly } -- special symbols
'}' { L _ ITccurly }
vocurly { L _ ITvocurly } -- virtual open curly (from layout)
vccurly { L _ ITvccurly } -- virtual close curly (from layout)
'[' { L _ ITobrack }
']' { L _ ITcbrack }
'[:' { L _ ITopabrack }
':]' { L _ ITcpabrack }
'(' { L _ IToparen }
')' { L _ ITcparen }
'(#' { L _ IToubxparen }
'#)' { L _ ITcubxparen }
'(|' { L _ IToparenbar }
'|)' { L _ ITcparenbar }
';' { L _ ITsemi }
',' { L _ ITcomma }
'`' { L _ ITbackquote }
SIMPLEQUOTE { L _ ITsimpleQuote } -- 'x
VARID { L _ (ITvarid _) } -- identifiers
CONID { L _ (ITconid _) }
VARSYM { L _ (ITvarsym _) }
CONSYM { L _ (ITconsym _) }
QVARID { L _ (ITqvarid _) }
QCONID { L _ (ITqconid _) }
QVARSYM { L _ (ITqvarsym _) }
QCONSYM { L _ (ITqconsym _) }
PREFIXQVARSYM { L _ (ITprefixqvarsym _) }
PREFIXQCONSYM { L _ (ITprefixqconsym _) }
IPDUPVARID { L _ (ITdupipvarid _) } -- GHC extension
CHAR { L _ (ITchar _) }
STRING { L _ (ITstring _) }
INTEGER { L _ (ITinteger _) }
RATIONAL { L _ (ITrational _) }
PRIMCHAR { L _ (ITprimchar _) }
PRIMSTRING { L _ (ITprimstring _) }
PRIMINTEGER { L _ (ITprimint _) }
PRIMWORD { L _ (ITprimword _) }
PRIMFLOAT { L _ (ITprimfloat _) }
PRIMDOUBLE { L _ (ITprimdouble _) }
DOCNEXT { L _ (ITdocCommentNext _) }
DOCPREV { L _ (ITdocCommentPrev _) }
DOCNAMED { L _ (ITdocCommentNamed _) }
DOCSECTION { L _ (ITdocSection _ _) }
-- Template Haskell
'[|' { L _ ITopenExpQuote }
'[p|' { L _ ITopenPatQuote }
'[t|' { L _ ITopenTypQuote }
'[d|' { L _ ITopenDecQuote }
'|]' { L _ ITcloseQuote }
TH_ID_SPLICE { L _ (ITidEscape _) } -- $x
'$(' { L _ ITparenEscape } -- $( exp )
TH_TY_QUOTE { L _ ITtyQuote } -- ''T
TH_QUASIQUOTE { L _ (ITquasiQuote _) }
%monad { P } { >>= } { return }
%lexer { lexer } { L _ ITeof }
%name parseModule module
%name parseStmt maybe_stmt
%name parseIdentifier identifier
%name parseType ctype
%partial parseHeader header
%tokentype { (Located Token) }
%%
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
: qvar { $1 }
| qcon { $1 }
| qvarop { $1 }
| qconop { $1 }
| '(' '->' ')' { LL $ getRdrName funTyCon }
-----------------------------------------------------------------------------
-- Module Header
-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)
module :: { Located (HsModule RdrName) }
: maybedocheader 'module' modid maybemodwarning maybeexports 'where' body
{% fileSrcSpan >>= \ loc ->
return (L loc (HsModule (Just $3) $5 (fst $7) (snd $7) $4 $1
) )}
| body2
{% fileSrcSpan >>= \ loc ->
return (L loc (HsModule Nothing Nothing
(fst $1) (snd $1) Nothing Nothing
)) }
maybedocheader :: { Maybe LHsDocString }
: moduleheader { $1 }
| {- empty -} { Nothing }
missing_module_keyword :: { () }
: {- empty -} {% pushCurrentContext }
maybemodwarning :: { Maybe WarningTxt }
: '{-# DEPRECATED' strings '#-}' { Just (DeprecatedTxt $ unLoc $2) }
| '{-# WARNING' strings '#-}' { Just (WarningTxt $ unLoc $2) }
| {- empty -} { Nothing }
body :: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
: '{' top '}' { $2 }
| vocurly top close { $2 }
body2 :: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
: '{' top '}' { $2 }
| missing_module_keyword top close { $2 }
top :: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
: importdecls { (reverse $1,[]) }
| importdecls ';' cvtopdecls { (reverse $1,$3) }
| cvtopdecls { ([],$1) }
cvtopdecls :: { [LHsDecl RdrName] }
: topdecls { cvTopDecls $1 }
-----------------------------------------------------------------------------
-- Module declaration & imports only
header :: { Located (HsModule RdrName) }
: maybedocheader 'module' modid maybemodwarning maybeexports 'where' header_body
{% fileSrcSpan >>= \ loc ->
return (L loc (HsModule (Just $3) $5 $7 [] $4 $1
))}
| header_body2
{% fileSrcSpan >>= \ loc ->
return (L loc (HsModule Nothing Nothing $1 [] Nothing
Nothing)) }
header_body :: { [LImportDecl RdrName] }
: '{' importdecls { $2 }
| vocurly importdecls { $2 }
header_body2 :: { [LImportDecl RdrName] }
: '{' importdecls { $2 }
| missing_module_keyword importdecls { $2 }
-----------------------------------------------------------------------------
-- The Export List
maybeexports :: { Maybe [LIE RdrName] }
: '(' exportlist ')' { Just $2 }
| {- empty -} { Nothing }
exportlist :: { [LIE RdrName] }
: expdoclist ',' expdoclist { $1 ++ $3 }
| exportlist1 { $1 }
exportlist1 :: { [LIE RdrName] }
: expdoclist export expdoclist ',' exportlist { $1 ++ ($2 : $3) ++ $5 }
| expdoclist export expdoclist { $1 ++ ($2 : $3) }
| expdoclist { $1 }
expdoclist :: { [LIE RdrName] }
: exp_doc expdoclist { $1 : $2 }
| {- empty -} { [] }
exp_doc :: { LIE RdrName }
: docsection { L1 (case (unLoc $1) of (n, doc) -> IEGroup n doc) }
| docnamed { L1 (IEDocNamed ((fst . unLoc) $1)) }
| docnext { L1 (IEDoc (unLoc $1)) }
-- No longer allow things like [] and (,,,) to be exported
-- They are built in syntax, always available
export :: { LIE RdrName }
: qvar { L1 (IEVar (unLoc $1)) }
| oqtycon { L1 (IEThingAbs (unLoc $1)) }
| oqtycon '(' '..' ')' { LL (IEThingAll (unLoc $1)) }
| oqtycon '(' ')' { LL (IEThingWith (unLoc $1) []) }
| oqtycon '(' qcnames ')' { LL (IEThingWith (unLoc $1) (reverse $3)) }
| 'module' modid { LL (IEModuleContents (unLoc $2)) }
qcnames :: { [RdrName] }
: qcnames ',' qcname_ext { unLoc $3 : $1 }
| qcname_ext { [unLoc $1] }
qcname_ext :: { Located RdrName } -- Variable or data constructor
-- or tagged type constructor
: qcname { $1 }
| 'type' qcon { sL (comb2 $1 $2)
(setRdrNameSpace (unLoc $2)
tcClsName) }
-- Cannot pull into qcname_ext, as qcname is also used in expression.
qcname :: { Located RdrName } -- Variable or data constructor
: qvar { $1 }
| qcon { $1 }
-----------------------------------------------------------------------------
-- Import Declarations
-- import decls can be *empty*, or even just a string of semicolons
-- whereas topdecls must contain at least one topdecl.
importdecls :: { [LImportDecl RdrName] }
: importdecls ';' importdecl { $3 : $1 }
| importdecls ';' { $1 }
| importdecl { [ $1 ] }
| {- empty -} { [] }
importdecl :: { LImportDecl RdrName }
: 'import' maybe_src maybe_safe optqualified maybe_pkg modid maybeas maybeimpspec
{ L (comb4 $1 $6 $7 $8) $
ImportDecl { ideclName = $6, ideclPkgQual = $5
, ideclSource = $2, ideclSafe = $3
, ideclQualified = $4, ideclImplicit = False
, ideclAs = unLoc $7, ideclHiding = unLoc $8 } }
maybe_src :: { IsBootInterface }
: '{-# SOURCE' '#-}' { True }
| {- empty -} { False }
maybe_safe :: { Bool }
: 'safe' { True }
| {- empty -} { False }
maybe_pkg :: { Maybe FastString }
: STRING { Just (getSTRING $1) }
| {- empty -} { Nothing }
optqualified :: { Bool }
: 'qualified' { True }
| {- empty -} { False }
maybeas :: { Located (Maybe ModuleName) }
: 'as' modid { LL (Just (unLoc $2)) }
| {- empty -} { noLoc Nothing }
maybeimpspec :: { Located (Maybe (Bool, [LIE RdrName])) }
: impspec { L1 (Just (unLoc $1)) }
| {- empty -} { noLoc Nothing }
impspec :: { Located (Bool, [LIE RdrName]) }
: '(' exportlist ')' { LL (False, $2) }
| 'hiding' '(' exportlist ')' { LL (True, $3) }
-----------------------------------------------------------------------------
-- Fixity Declarations
prec :: { Int }
: {- empty -} { 9 }
| INTEGER {% checkPrecP (L1 (fromInteger (getINTEGER $1))) }
infix :: { Located FixityDirection }
: 'infix' { L1 InfixN }
| 'infixl' { L1 InfixL }
| 'infixr' { L1 InfixR }
ops :: { Located [Located RdrName] }
: ops ',' op { LL ($3 : unLoc $1) }
| op { L1 [$1] }
-----------------------------------------------------------------------------
-- Top-Level Declarations
topdecls :: { OrdList (LHsDecl RdrName) }
: topdecls ';' topdecl { $1 `appOL` $3 }
| topdecls ';' { $1 }
| topdecl { $1 }
topdecl :: { OrdList (LHsDecl RdrName) }
: cl_decl { unitOL (L1 (TyClD (unLoc $1))) }
| ty_decl { unitOL (L1 (TyClD (unLoc $1))) }
| inst_decl { unitOL (L1 (InstD (unLoc $1))) }
| stand_alone_deriving { unitOL (LL (DerivD (unLoc $1))) }
| 'default' '(' comma_types0 ')' { unitOL (LL $ DefD (DefaultDecl $3)) }
| 'foreign' fdecl { unitOL (LL (unLoc $2)) }
| '{-# DEPRECATED' deprecations '#-}' { $2 }
| '{-# WARNING' warnings '#-}' { $2 }
| '{-# RULES' rules '#-}' { $2 }
| '{-# VECTORISE_SCALAR' qvar '#-}' { unitOL $ LL $ VectD (HsVect $2 Nothing) }
| '{-# VECTORISE' qvar '=' exp '#-}' { unitOL $ LL $ VectD (HsVect $2 (Just $4)) }
| '{-# NOVECTORISE' qvar '#-}' { unitOL $ LL $ VectD (HsNoVect $2) }
| '{-# VECTORISE' 'type' gtycon '#-}'
{ unitOL $ LL $
VectD (HsVectTypeIn False $3 Nothing) }
| '{-# VECTORISE_SCALAR' 'type' gtycon '#-}'
{ unitOL $ LL $
VectD (HsVectTypeIn True $3 Nothing) }
| '{-# VECTORISE' 'type' gtycon '=' gtycon '#-}'
{ unitOL $ LL $
VectD (HsVectTypeIn False $3 (Just $5)) }
| '{-# VECTORISE_SCALAR' 'type' gtycon '=' gtycon '#-}'
{ unitOL $ LL $
VectD (HsVectTypeIn True $3 (Just $5)) }
| '{-# VECTORISE' 'class' gtycon '#-}' { unitOL $ LL $ VectD (HsVectClassIn $3) }
| '{-# VECTORISE_SCALAR' 'instance' type '#-}'
{ unitOL $ LL $ VectD (HsVectInstIn $3) }
| annotation { unitOL $1 }
| decl { unLoc $1 }
-- Template Haskell Extension
-- The $(..) form is one possible form of infixexp
-- but we treat an arbitrary expression just as if
-- it had a $(..) wrapped around it
| infixexp { unitOL (LL $ mkTopSpliceDecl $1) }
-- Type classes
--
cl_decl :: { LTyClDecl RdrName }
: 'class' tycl_hdr fds where_cls {% mkClassDecl (comb4 $1 $2 $3 $4) $2 $3 $4 }
-- Type declarations (toplevel)
--
ty_decl :: { LTyClDecl RdrName }
-- ordinary type synonyms
: 'type' capi_ctype type '=' ctypedoc
-- Note ctype, not sigtype, on the right of '='
-- We allow an explicit for-all but we don't insert one
-- in type Foo a = (b,b)
-- Instead we just say b is out of scope
--
-- Note the use of type for the head; this allows
-- infix type constructors to be declared
{% mkTySynonym (comb2 $1 $5) False $2 $3 $5 }
-- type family declarations
| 'type' 'family' type opt_kind_sig
-- Note the use of type for the head; this allows
-- infix type constructors to be declared
{% mkTyFamily (comb3 $1 $3 $4) TypeFamily $3 (unLoc $4) }
-- ordinary data type or newtype declaration
| data_or_newtype capi_ctype tycl_hdr constrs deriving
{% mkTyData (comb4 $1 $3 $4 $5) (unLoc $1) False $2 $3
Nothing (reverse (unLoc $4)) (unLoc $5) }
-- We need the location on tycl_hdr in case
-- constrs and deriving are both empty
-- ordinary GADT declaration
| data_or_newtype capi_ctype tycl_hdr opt_kind_sig
gadt_constrlist
deriving
{% mkTyData (comb4 $1 $3 $5 $6) (unLoc $1) False $2 $3
(unLoc $4) (unLoc $5) (unLoc $6) }
-- We need the location on tycl_hdr in case
-- constrs and deriving are both empty
-- data/newtype family
| 'data' 'family' type opt_kind_sig
{% mkTyFamily (comb3 $1 $2 $4) DataFamily $3 (unLoc $4) }
inst_decl :: { LInstDecl RdrName }
: 'instance' inst_type where_inst
{ let (binds, sigs, ats, _) = cvBindsAndSigs (unLoc $3)
in L (comb3 $1 $2 $3) (ClsInstDecl $2 binds sigs ats) }
-- type instance declarations
| 'type' 'instance' capi_ctype type '=' ctype
-- Note the use of type for the head; this allows
-- infix type constructors and type patterns
{% do { L loc d <- mkTySynonym (comb2 $1 $6) True $3 $4 $6
; return (L loc (FamInstDecl d)) } }
-- data/newtype instance declaration
| data_or_newtype 'instance' tycl_hdr constrs deriving
{% do { L loc d <- mkTyData (comb4 $1 $3 $4 $5) (unLoc $1) True Nothing $3
Nothing (reverse (unLoc $4)) (unLoc $5)
; return (L loc (FamInstDecl d)) } }
-- GADT instance declaration
| data_or_newtype 'instance' tycl_hdr opt_kind_sig
gadt_constrlist
deriving
{% do { L loc d <- mkTyData (comb4 $1 $3 $5 $6) (unLoc $1) True Nothing $3
(unLoc $4) (unLoc $5) (unLoc $6)
; return (L loc (FamInstDecl d)) } }
-- Associated type family declarations
--
-- * They have a different syntax than on the toplevel (no family special
-- identifier).
--
-- * They also need to be separate from instances; otherwise, data family
-- declarations without a kind signature cause parsing conflicts with empty
-- data declarations.
--
at_decl_cls :: { LTyClDecl RdrName }
-- type family declarations
: 'type' capi_ctype type opt_kind_sig
-- Note the use of type for the head; this allows
-- infix type constructors to be declared.
-- Note that we ignore the capi_ctype for now, but
-- we need it in the grammar or we get loads of
-- extra shift/reduce conflicts and parsing goes wrong.
{% mkTyFamily (comb3 $1 $3 $4) TypeFamily $3 (unLoc $4) }
-- default type instance
| 'type' capi_ctype type '=' ctype
-- Note the use of type for the head; this allows
-- infix type constructors and type patterns
{% mkTySynonym (comb2 $1 $5) True $2 $3 $5 }
-- data/newtype family declaration
| 'data' type opt_kind_sig
{% mkTyFamily (comb3 $1 $2 $3) DataFamily $2 (unLoc $3) }
-- Associated type instances
--
at_decl_inst :: { LTyClDecl RdrName }
-- type instance declarations
: 'type' capi_ctype type '=' ctype
-- Note the use of type for the head; this allows
-- infix type constructors and type patterns
{% mkTySynonym (comb2 $1 $5) True $2 $3 $5 }
-- data/newtype instance declaration
| data_or_newtype capi_ctype tycl_hdr constrs deriving
{% mkTyData (comb4 $1 $3 $4 $5) (unLoc $1) True $2 $3
Nothing (reverse (unLoc $4)) (unLoc $5) }
-- GADT instance declaration
| data_or_newtype capi_ctype tycl_hdr opt_kind_sig
gadt_constrlist
deriving
{% mkTyData (comb4 $1 $3 $5 $6) (unLoc $1) True $2 $3
(unLoc $4) (unLoc $5) (unLoc $6) }
data_or_newtype :: { Located NewOrData }
: 'data' { L1 DataType }
| 'newtype' { L1 NewType }
opt_kind_sig :: { Located (Maybe (LHsKind RdrName)) }
: { noLoc Nothing }
| '::' kind { LL (Just $2) }
-- tycl_hdr parses the header of a class or data type decl,
-- which takes the form
-- T a b
-- Eq a => T a
-- (Eq a, Ord b) => T a b
-- T Int [a] -- for associated types
-- Rather a lot of inlining here, else we get reduce/reduce errors
tycl_hdr :: { Located (Maybe (LHsContext RdrName), LHsType RdrName) }
: context '=>' type { LL (Just $1, $3) }
| type { L1 (Nothing, $1) }
capi_ctype :: { Maybe CType }
capi_ctype : '{-# CTYPE' STRING '#-}' { Just (CType (getSTRING $2)) }
| { Nothing }
-----------------------------------------------------------------------------
-- Stand-alone deriving
-- Glasgow extension: stand-alone deriving declarations
stand_alone_deriving :: { LDerivDecl RdrName }
: 'deriving' 'instance' inst_type { LL (DerivDecl $3) }
-----------------------------------------------------------------------------
-- Nested declarations
-- Declaration in class bodies
--
decl_cls :: { Located (OrdList (LHsDecl RdrName)) }
decl_cls : at_decl_cls { LL (unitOL (L1 (TyClD (unLoc $1)))) }
| decl { $1 }
-- A 'default' signature used with the generic-programming extension
| 'default' infixexp '::' sigtypedoc
{% do { (TypeSig l ty) <- checkValSig $2 $4
; return (LL $ unitOL (LL $ SigD (GenericSig l ty))) } }
decls_cls :: { Located (OrdList (LHsDecl RdrName)) } -- Reversed
: decls_cls ';' decl_cls { LL (unLoc $1 `appOL` unLoc $3) }
| decls_cls ';' { LL (unLoc $1) }
| decl_cls { $1 }
| {- empty -} { noLoc nilOL }
decllist_cls
:: { Located (OrdList (LHsDecl RdrName)) } -- Reversed
: '{' decls_cls '}' { LL (unLoc $2) }
| vocurly decls_cls close { $2 }
-- Class body
--
where_cls :: { Located (OrdList (LHsDecl RdrName)) } -- Reversed
-- No implicit parameters
-- May have type declarations
: 'where' decllist_cls { LL (unLoc $2) }
| {- empty -} { noLoc nilOL }
-- Declarations in instance bodies
--
decl_inst :: { Located (OrdList (LHsDecl RdrName)) }
decl_inst : at_decl_inst { LL (unitOL (L1 (TyClD (unLoc $1)))) }
| decl { $1 }
decls_inst :: { Located (OrdList (LHsDecl RdrName)) } -- Reversed
: decls_inst ';' decl_inst { LL (unLoc $1 `appOL` unLoc $3) }
| decls_inst ';' { LL (unLoc $1) }
| decl_inst { $1 }
| {- empty -} { noLoc nilOL }
decllist_inst
:: { Located (OrdList (LHsDecl RdrName)) } -- Reversed
: '{' decls_inst '}' { LL (unLoc $2) }
| vocurly decls_inst close { $2 }
-- Instance body
--
where_inst :: { Located (OrdList (LHsDecl RdrName)) } -- Reversed
-- No implicit parameters
-- May have type declarations
: 'where' decllist_inst { LL (unLoc $2) }
| {- empty -} { noLoc nilOL }
-- Declarations in binding groups other than classes and instances
--
decls :: { Located (OrdList (LHsDecl RdrName)) }
: decls ';' decl { let { this = unLoc $3;
rest = unLoc $1;
these = rest `appOL` this }
in rest `seq` this `seq` these `seq`
LL these }
| decls ';' { LL (unLoc $1) }
| decl { $1 }
| {- empty -} { noLoc nilOL }
decllist :: { Located (OrdList (LHsDecl RdrName)) }
: '{' decls '}' { LL (unLoc $2) }
| vocurly decls close { $2 }
-- Binding groups other than those of class and instance declarations
--
binds :: { Located (HsLocalBinds RdrName) } -- May have implicit parameters
-- No type declarations
: decllist { L1 (HsValBinds (cvBindGroup (unLoc $1))) }
| '{' dbinds '}' { LL (HsIPBinds (IPBinds (unLoc $2) emptyTcEvBinds)) }
| vocurly dbinds close { L (getLoc $2) (HsIPBinds (IPBinds (unLoc $2) emptyTcEvBinds)) }
wherebinds :: { Located (HsLocalBinds RdrName) } -- May have implicit parameters
-- No type declarations
: 'where' binds { LL (unLoc $2) }
| {- empty -} { noLoc emptyLocalBinds }
-----------------------------------------------------------------------------
-- Transformation Rules
rules :: { OrdList (LHsDecl RdrName) }
: rules ';' rule { $1 `snocOL` $3 }
| rules ';' { $1 }
| rule { unitOL $1 }
| {- empty -} { nilOL }
rule :: { LHsDecl RdrName }
: STRING activation rule_forall infixexp '=' exp
{ LL $ RuleD (HsRule (getSTRING $1)
($2 `orElse` AlwaysActive)
$3 $4 placeHolderNames $6 placeHolderNames) }
activation :: { Maybe Activation }
: {- empty -} { Nothing }
| explicit_activation { Just $1 }
explicit_activation :: { Activation } -- In brackets
: '[' INTEGER ']' { ActiveAfter (fromInteger (getINTEGER $2)) }
| '[' '~' INTEGER ']' { ActiveBefore (fromInteger (getINTEGER $3)) }
rule_forall :: { [RuleBndr RdrName] }
: 'forall' rule_var_list '.' { $2 }
| {- empty -} { [] }
rule_var_list :: { [RuleBndr RdrName] }
: rule_var { [$1] }
| rule_var rule_var_list { $1 : $2 }
rule_var :: { RuleBndr RdrName }
: varid { RuleBndr $1 }
| '(' varid '::' ctype ')' { RuleBndrSig $2 $4 }
-----------------------------------------------------------------------------
-- Warnings and deprecations (c.f. rules)
warnings :: { OrdList (LHsDecl RdrName) }
: warnings ';' warning { $1 `appOL` $3 }
| warnings ';' { $1 }
| warning { $1 }
| {- empty -} { nilOL }
-- SUP: TEMPORARY HACK, not checking for `module Foo'
warning :: { OrdList (LHsDecl RdrName) }
: namelist strings
{ toOL [ LL $ WarningD (Warning n (WarningTxt $ unLoc $2))
| n <- unLoc $1 ] }
deprecations :: { OrdList (LHsDecl RdrName) }
: deprecations ';' deprecation { $1 `appOL` $3 }
| deprecations ';' { $1 }
| deprecation { $1 }
| {- empty -} { nilOL }
-- SUP: TEMPORARY HACK, not checking for `module Foo'
deprecation :: { OrdList (LHsDecl RdrName) }
: namelist strings
{ toOL [ LL $ WarningD (Warning n (DeprecatedTxt $ unLoc $2))
| n <- unLoc $1 ] }
strings :: { Located [FastString] }
: STRING { L1 [getSTRING $1] }
| '[' stringlist ']' { LL $ fromOL (unLoc $2) }
stringlist :: { Located (OrdList FastString) }
: stringlist ',' STRING { LL (unLoc $1 `snocOL` getSTRING $3) }
| STRING { LL (unitOL (getSTRING $1)) }
-----------------------------------------------------------------------------
-- Annotations
annotation :: { LHsDecl RdrName }
: '{-# ANN' name_var aexp '#-}' { LL (AnnD $ HsAnnotation (ValueAnnProvenance (unLoc $2)) $3) }
| '{-# ANN' 'type' tycon aexp '#-}' { LL (AnnD $ HsAnnotation (TypeAnnProvenance (unLoc $3)) $4) }
| '{-# ANN' 'module' aexp '#-}' { LL (AnnD $ HsAnnotation ModuleAnnProvenance $3) }
-----------------------------------------------------------------------------
-- Foreign import and export declarations
fdecl :: { LHsDecl RdrName }
fdecl : 'import' callconv safety fspec
{% mkImport $2 $3 (unLoc $4) >>= return.LL }
| 'import' callconv fspec
{% do { d <- mkImport $2 PlaySafe (unLoc $3);
return (LL d) } }
| 'export' callconv fspec
{% mkExport $2 (unLoc $3) >>= return.LL }
callconv :: { CCallConv }
: 'stdcall' { StdCallConv }
| 'ccall' { CCallConv }
| 'capi' { CApiConv }
| 'prim' { PrimCallConv}
safety :: { Safety }
: 'unsafe' { PlayRisky }
| 'safe' { PlaySafe }
| 'interruptible' { PlayInterruptible }
fspec :: { Located (Located FastString, Located RdrName, LHsType RdrName) }
: STRING var '::' sigtypedoc { LL (L (getLoc $1) (getSTRING $1), $2, $4) }
| var '::' sigtypedoc { LL (noLoc nilFS, $1, $3) }
-- if the entity string is missing, it defaults to the empty string;
-- the meaning of an empty entity string depends on the calling
-- convention
-----------------------------------------------------------------------------
-- Type signatures
opt_sig :: { Maybe (LHsType RdrName) }
: {- empty -} { Nothing }
| '::' sigtype { Just $2 }
opt_asig :: { Maybe (LHsType RdrName) }
: {- empty -} { Nothing }
| '::' atype { Just $2 }
sigtype :: { LHsType RdrName } -- Always a HsForAllTy,
-- to tell the renamer where to generalise
: ctype { L1 (mkImplicitHsForAllTy (noLoc []) $1) }
-- Wrap an Implicit forall if there isn't one there already
sigtypedoc :: { LHsType RdrName } -- Always a HsForAllTy
: ctypedoc { L1 (mkImplicitHsForAllTy (noLoc []) $1) }
-- Wrap an Implicit forall if there isn't one there already
sig_vars :: { Located [Located RdrName] }
: sig_vars ',' var { LL ($3 : unLoc $1) }
| var { L1 [$1] }
sigtypes1 :: { [LHsType RdrName] } -- Always HsForAllTys
: sigtype { [ $1 ] }
| sigtype ',' sigtypes1 { $1 : $3 }
-----------------------------------------------------------------------------
-- Types
infixtype :: { LHsType RdrName }
: btype qtyconop type { LL $ mkHsOpTy $1 $2 $3 }
| btype tyvarop type { LL $ mkHsOpTy $1 $2 $3 }
strict_mark :: { Located HsBang }
: '!' { L1 HsStrict }
| '{-# UNPACK' '#-}' '!' { LL HsUnpack }
| '{-# NOUNPACK' '#-}' '!' { LL HsNoUnpack }
-- A ctype is a for-all type
ctype :: { LHsType RdrName }
: 'forall' tv_bndrs '.' ctype { LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
| context '=>' ctype { LL $ mkImplicitHsForAllTy $1 $3 }
-- A type of form (context => type) is an *implicit* HsForAllTy
| ipvar '::' type { LL (HsIParamTy (unLoc $1) $3) }
| type { $1 }
----------------------
-- Notes for 'ctypedoc'
-- It would have been nice to simplify the grammar by unifying `ctype` and
-- ctypedoc` into one production, allowing comments on types everywhere (and
-- rejecting them after parsing, where necessary). This is however not possible
-- since it leads to ambiguity. The reason is the support for comments on record
-- fields:
-- data R = R { field :: Int -- ^ comment on the field }
-- If we allow comments on types here, it's not clear if the comment applies
-- to 'field' or to 'Int'. So we must use `ctype` to describe the type.
ctypedoc :: { LHsType RdrName }
: 'forall' tv_bndrs '.' ctypedoc { LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
| context '=>' ctypedoc { LL $ mkImplicitHsForAllTy $1 $3 }
-- A type of form (context => type) is an *implicit* HsForAllTy
| ipvar '::' type { LL (HsIParamTy (unLoc $1) $3) }
| typedoc { $1 }
----------------------
-- Notes for 'context'
-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype. The basic problem is that
-- (Eq a, Ord a)
-- looks so much like a tuple type. We can't tell until we find the =>
-- We have the t1 ~ t2 form both in 'context' and in type,
-- to permit an individual equational constraint without parenthesis.
-- Thus for some reason we allow f :: a~b => blah
-- but not f :: ?x::Int => blah
context :: { LHsContext RdrName }
: btype '~' btype {% checkContext
(LL $ HsEqTy $1 $3) }
| btype {% checkContext $1 }
type :: { LHsType RdrName }
: btype { $1 }
| btype qtyconop type { LL $ mkHsOpTy $1 $2 $3 }
| btype tyvarop type { LL $ mkHsOpTy $1 $2 $3 }
| btype '->' ctype { LL $ HsFunTy $1 $3 }
| btype '~' btype { LL $ HsEqTy $1 $3 }
-- see Note [Promotion]
| btype SIMPLEQUOTE qconop type { LL $ mkHsOpTy $1 $3 $4 }
| btype SIMPLEQUOTE varop type { LL $ mkHsOpTy $1 $3 $4 }
typedoc :: { LHsType RdrName }
: btype { $1 }
| btype docprev { LL $ HsDocTy $1 $2 }
| btype qtyconop type { LL $ mkHsOpTy $1 $2 $3 }
| btype qtyconop type docprev { LL $ HsDocTy (L (comb3 $1 $2 $3) (mkHsOpTy $1 $2 $3)) $4 }
| btype tyvarop type { LL $ mkHsOpTy $1 $2 $3 }
| btype tyvarop type docprev { LL $ HsDocTy (L (comb3 $1 $2 $3) (mkHsOpTy $1 $2 $3)) $4 }
| btype '->' ctypedoc { LL $ HsFunTy $1 $3 }
| btype docprev '->' ctypedoc { LL $ HsFunTy (L (comb2 $1 $2) (HsDocTy $1 $2)) $4 }
| btype '~' btype { LL $ HsEqTy $1 $3 }
btype :: { LHsType RdrName }
: btype atype { LL $ HsAppTy $1 $2 }
| atype { $1 }
atype :: { LHsType RdrName }
: ntgtycon { L1 (HsTyVar (unLoc $1)) } -- Not including unit tuples
| tyvar { L1 (HsTyVar (unLoc $1)) } -- (See Note [Unit tuples])
| strict_mark atype { LL (HsBangTy (unLoc $1) $2) } -- Constructor sigs only
| '{' fielddecls '}' {% checkRecordSyntax (LL $ HsRecTy $2) } -- Constructor sigs only
| '(' ')' { LL $ HsTupleTy HsBoxedOrConstraintTuple [] }
| '(' ctype ',' comma_types1 ')' { LL $ HsTupleTy HsBoxedOrConstraintTuple ($2:$4) }
| '(#' '#)' { LL $ HsTupleTy HsUnboxedTuple [] }
| '(#' comma_types1 '#)' { LL $ HsTupleTy HsUnboxedTuple $2 }
| '[' ctype ']' { LL $ HsListTy $2 }
| '[:' ctype ':]' { LL $ HsPArrTy $2 }
| '(' ctype ')' { LL $ HsParTy $2 }
| '(' ctype '::' kind ')' { LL $ HsKindSig $2 $4 }
| quasiquote { L1 (HsQuasiQuoteTy (unLoc $1)) }
| '$(' exp ')' { LL $ mkHsSpliceTy $2 }
| TH_ID_SPLICE { LL $ mkHsSpliceTy $ L1 $ HsVar $
mkUnqual varName (getTH_ID_SPLICE $1) }
-- see Note [Promotion] for the followings
| SIMPLEQUOTE qconid { LL $ HsTyVar $ unLoc $2 }
| SIMPLEQUOTE '(' ')' { LL $ HsTyVar $ getRdrName unitDataCon }
| SIMPLEQUOTE '(' ctype ',' comma_types1 ')' { LL $ HsExplicitTupleTy [] ($3 : $5) }
| SIMPLEQUOTE '[' comma_types0 ']' { LL $ HsExplicitListTy placeHolderKind $3 }
| '[' ctype ',' comma_types1 ']' { LL $ HsExplicitListTy placeHolderKind ($2 : $4) }
-- An inst_type is what occurs in the head of an instance decl
-- e.g. (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type, with a MonoDictTy at the right
-- hand corner, for convenience.
inst_type :: { LHsType RdrName }
: sigtype { $1 }
inst_types1 :: { [LHsType RdrName] }
: inst_type { [$1] }
| inst_type ',' inst_types1 { $1 : $3 }
comma_types0 :: { [LHsType RdrName] }
: comma_types1 { $1 }
| {- empty -} { [] }
comma_types1 :: { [LHsType RdrName] }
: ctype { [$1] }
| ctype ',' comma_types1 { $1 : $3 }
tv_bndrs :: { [LHsTyVarBndr RdrName] }
: tv_bndr tv_bndrs { $1 : $2 }
| {- empty -} { [] }
tv_bndr :: { LHsTyVarBndr RdrName }
: tyvar { L1 (UserTyVar (unLoc $1) placeHolderKind) }
| '(' tyvar '::' kind ')' { LL (KindedTyVar (unLoc $2) $4 placeHolderKind) }
fds :: { Located [Located (FunDep RdrName)] }
: {- empty -} { noLoc [] }
| '|' fds1 { LL (reverse (unLoc $2)) }
fds1 :: { Located [Located (FunDep RdrName)] }
: fds1 ',' fd { LL ($3 : unLoc $1) }
| fd { L1 [$1] }
fd :: { Located (FunDep RdrName) }
: varids0 '->' varids0 { L (comb3 $1 $2 $3)
(reverse (unLoc $1), reverse (unLoc $3)) }
varids0 :: { Located [RdrName] }
: {- empty -} { noLoc [] }
| varids0 tyvar { LL (unLoc $2 : unLoc $1) }
-----------------------------------------------------------------------------
-- Kinds
kind :: { LHsKind RdrName }
: bkind { $1 }
| bkind '->' kind { LL $ HsFunTy $1 $3 }
bkind :: { LHsKind RdrName }
: akind { $1 }
| bkind akind { LL $ HsAppTy $1 $2 }
akind :: { LHsKind RdrName }
: '*' { L1 $ HsTyVar (nameRdrName liftedTypeKindTyConName) }
| '(' kind ')' { LL $ HsParTy $2 }
| pkind { $1 }
pkind :: { LHsKind RdrName } -- promoted type, see Note [Promotion]
: qtycon { L1 $ HsTyVar $ unLoc $1 }
| '(' ')' { LL $ HsTyVar $ getRdrName unitTyCon }
| '(' kind ',' comma_kinds1 ')' { LL $ HsTupleTy HsBoxedTuple ($2 : $4) }
| '[' kind ']' { LL $ HsListTy $2 }
comma_kinds1 :: { [LHsKind RdrName] }
: kind { [$1] }
| kind ',' comma_kinds1 { $1 : $3 }
{- Note [Promotion]
~~~~~~~~~~~~~~~~
- Syntax of promoted qualified names
We write 'Nat.Zero instead of Nat.'Zero when dealing with qualified
names. Moreover ticks are only allowed in types, not in kinds, for a
few reasons:
1. we don't need quotes since we cannot define names in kinds
2. if one day we merge types and kinds, tick would mean look in DataName
3. we don't have a kind namespace anyway
- Syntax of explicit kind polymorphism (IA0_TODO: not yet implemented)
Kind abstraction is implicit. We write
> data SList (s :: k -> *) (as :: [k]) where ...
because it looks like what we do in terms
> id (x :: a) = x
- Name resolution
When the user write Zero instead of 'Zero in types, we parse it a
HsTyVar ("Zero", TcClsName) instead of HsTyVar ("Zero", DataName). We
deal with this in the renamer. If a HsTyVar ("Zero", TcClsName) is not
bounded in the type level, then we look for it in the term level (we
change its namespace to DataName, see Note [Demotion] in OccName). And
both become a HsTyVar ("Zero", DataName) after the renamer.
-}
-----------------------------------------------------------------------------
-- Datatype declarations
gadt_constrlist :: { Located [LConDecl RdrName] } -- Returned in order
: 'where' '{' gadt_constrs '}' { L (comb2 $1 $3) (unLoc $3) }
| 'where' vocurly gadt_constrs close { L (comb2 $1 $3) (unLoc $3) }
| {- empty -} { noLoc [] }
gadt_constrs :: { Located [LConDecl RdrName] }
: gadt_constr ';' gadt_constrs { L (comb2 (head $1) $3) ($1 ++ unLoc $3) }
| gadt_constr { L (getLoc (head $1)) $1 }
| {- empty -} { noLoc [] }
-- We allow the following forms:
-- C :: Eq a => a -> T a
-- C :: forall a. Eq a => !a -> T a
-- D { x,y :: a } :: T a
-- forall a. Eq a => D { x,y :: a } :: T a
gadt_constr :: { [LConDecl RdrName] } -- Returns a list because of: C,D :: ty
: con_list '::' sigtype
{ map (sL (comb2 $1 $3)) (mkGadtDecl (unLoc $1) $3) }
-- Deprecated syntax for GADT record declarations
| oqtycon '{' fielddecls '}' '::' sigtype
{% do { cd <- mkDeprecatedGadtRecordDecl (comb2 $1 $6) $1 $3 $6
; cd' <- checkRecordSyntax cd
; return [cd'] } }
constrs :: { Located [LConDecl RdrName] }
: maybe_docnext '=' constrs1 { L (comb2 $2 $3) (addConDocs (unLoc $3) $1) }
constrs1 :: { Located [LConDecl RdrName] }
: constrs1 maybe_docnext '|' maybe_docprev constr { LL (addConDoc $5 $2 : addConDocFirst (unLoc $1) $4) }
| constr { L1 [$1] }
constr :: { LConDecl RdrName }
: maybe_docnext forall context '=>' constr_stuff maybe_docprev
{ let (con,details) = unLoc $5 in
addConDoc (L (comb4 $2 $3 $4 $5) (mkSimpleConDecl con (unLoc $2) $3 details))
($1 `mplus` $6) }
| maybe_docnext forall constr_stuff maybe_docprev
{ let (con,details) = unLoc $3 in
addConDoc (L (comb2 $2 $3) (mkSimpleConDecl con (unLoc $2) (noLoc []) details))
($1 `mplus` $4) }
forall :: { Located [LHsTyVarBndr RdrName] }
: 'forall' tv_bndrs '.' { LL $2 }
| {- empty -} { noLoc [] }
constr_stuff :: { Located (Located RdrName, HsConDeclDetails RdrName) }
-- We parse the constructor declaration
-- C t1 t2
-- as a btype (treating C as a type constructor) and then convert C to be
-- a data constructor. Reason: it might continue like this:
-- C t1 t2 %: D Int
-- in which case C really would be a type constructor. We can't resolve this
-- ambiguity till we come across the constructor oprerator :% (or not, more usually)
: btype {% splitCon $1 >>= return.LL }
| btype conop btype { LL ($2, InfixCon $1 $3) }
fielddecls :: { [ConDeclField RdrName] }
: {- empty -} { [] }
| fielddecls1 { $1 }
fielddecls1 :: { [ConDeclField RdrName] }
: fielddecl maybe_docnext ',' maybe_docprev fielddecls1
{ [ addFieldDoc f $4 | f <- $1 ] ++ addFieldDocs $5 $2 }
-- This adds the doc $4 to each field separately
| fielddecl { $1 }
fielddecl :: { [ConDeclField RdrName] } -- A list because of f,g :: Int
: maybe_docnext sig_vars '::' ctype maybe_docprev { [ ConDeclField fld $4 ($1 `mplus` $5)
| fld <- reverse (unLoc $2) ] }
-- We allow the odd-looking 'inst_type' in a deriving clause, so that
-- we can do deriving( forall a. C [a] ) in a newtype (GHC extension).
-- The 'C [a]' part is converted to an HsPredTy by checkInstType
-- We don't allow a context, but that's sorted out by the type checker.
deriving :: { Located (Maybe [LHsType RdrName]) }
: {- empty -} { noLoc Nothing }
| 'deriving' qtycon { let { L loc tv = $2 }
in LL (Just [L loc (HsTyVar tv)]) }
| 'deriving' '(' ')' { LL (Just []) }
| 'deriving' '(' inst_types1 ')' { LL (Just $3) }
-- Glasgow extension: allow partial
-- applications in derivings
-----------------------------------------------------------------------------
-- Value definitions
{- Note [Declaration/signature overlap]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There's an awkward overlap with a type signature. Consider
f :: Int -> Int = ...rhs...
Then we can't tell whether it's a type signature or a value
definition with a result signature until we see the '='.
So we have to inline enough to postpone reductions until we know.
-}
{-
ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
instead of qvar, we get another shift/reduce-conflict. Consider the
following programs:
{ (^^) :: Int->Int ; } Type signature; only var allowed
{ (^^) :: Int->Int = ... ; } Value defn with result signature;
qvar allowed (because of instance decls)
We can't tell whether to reduce var to qvar until after we've read the signatures.
-}
docdecl :: { LHsDecl RdrName }
: docdecld { L1 (DocD (unLoc $1)) }
docdecld :: { LDocDecl }
: docnext { L1 (DocCommentNext (unLoc $1)) }
| docprev { L1 (DocCommentPrev (unLoc $1)) }
| docnamed { L1 (case (unLoc $1) of (n, doc) -> DocCommentNamed n doc) }
| docsection { L1 (case (unLoc $1) of (n, doc) -> DocGroup n doc) }
decl :: { Located (OrdList (LHsDecl RdrName)) }
: sigdecl { $1 }
| '!' aexp rhs {% do { let { e = LL (SectionR (LL (HsVar bang_RDR)) $2) };
pat <- checkPattern e;
return $ LL $ unitOL $ LL $ ValD $
PatBind pat (unLoc $3)
placeHolderType placeHolderNames (Nothing,[]) } }
-- Turn it all into an expression so that
-- checkPattern can check that bangs are enabled
| infixexp opt_sig rhs {% do { r <- checkValDef $1 $2 $3;
let { l = comb2 $1 $> };
return $! (sL l (unitOL $! (sL l $ ValD r))) } }
| docdecl { LL $ unitOL $1 }
rhs :: { Located (GRHSs RdrName) }
: '=' exp wherebinds { sL (comb3 $1 $2 $3) $ GRHSs (unguardedRHS $2) (unLoc $3) }
| gdrhs wherebinds { LL $ GRHSs (reverse (unLoc $1)) (unLoc $2) }
gdrhs :: { Located [LGRHS RdrName] }
: gdrhs gdrh { LL ($2 : unLoc $1) }
| gdrh { L1 [$1] }
gdrh :: { LGRHS RdrName }
: '|' guardquals '=' exp { sL (comb2 $1 $>) $ GRHS (unLoc $2) $4 }
sigdecl :: { Located (OrdList (LHsDecl RdrName)) }
:
-- See Note [Declaration/signature overlap] for why we need infixexp here
infixexp '::' sigtypedoc
{% do s <- checkValSig $1 $3
; return (LL $ unitOL (LL $ SigD s)) }
| var ',' sig_vars '::' sigtypedoc
{ LL $ toOL [ LL $ SigD (TypeSig ($1 : unLoc $3) $5) ] }
| infix prec ops { LL $ toOL [ LL $ SigD (FixSig (FixitySig n (Fixity $2 (unLoc $1))))
| n <- unLoc $3 ] }
| '{-# INLINE' activation qvar '#-}'
{ LL $ unitOL (LL $ SigD (InlineSig $3 (mkInlinePragma (getINLINE $1) $2))) }
| '{-# SPECIALISE' activation qvar '::' sigtypes1 '#-}'
{ let inl_prag = mkInlinePragma (EmptyInlineSpec, FunLike) $2
in LL $ toOL [ LL $ SigD (SpecSig $3 t inl_prag)
| t <- $5] }
| '{-# SPECIALISE_INLINE' activation qvar '::' sigtypes1 '#-}'
{ LL $ toOL [ LL $ SigD (SpecSig $3 t (mkInlinePragma (getSPEC_INLINE $1) $2))
| t <- $5] }
| '{-# SPECIALISE' 'instance' inst_type '#-}'
{ LL $ unitOL (LL $ SigD (SpecInstSig $3)) }
-----------------------------------------------------------------------------
-- Expressions
quasiquote :: { Located (HsQuasiQuote RdrName) }
: TH_QUASIQUOTE { let { loc = getLoc $1
; ITquasiQuote (quoter, quote, quoteSpan) = unLoc $1
; quoterId = mkUnqual varName quoter }
in L1 (mkHsQuasiQuote quoterId (RealSrcSpan quoteSpan) quote) }
exp :: { LHsExpr RdrName }
: infixexp '::' sigtype { LL $ ExprWithTySig $1 $3 }
| infixexp '-<' exp { LL $ HsArrApp $1 $3 placeHolderType HsFirstOrderApp True }
| infixexp '>-' exp { LL $ HsArrApp $3 $1 placeHolderType HsFirstOrderApp False }
| infixexp '-<<' exp { LL $ HsArrApp $1 $3 placeHolderType HsHigherOrderApp True }
| infixexp '>>-' exp { LL $ HsArrApp $3 $1 placeHolderType HsHigherOrderApp False}
| infixexp { $1 }
infixexp :: { LHsExpr RdrName }
: exp10 { $1 }
| infixexp qop exp10 { LL (OpApp $1 $2 (panic "fixity") $3) }
exp10 :: { LHsExpr RdrName }
: '\\' apat apats opt_asig '->' exp
{ LL $ HsLam (mkMatchGroup [LL $ Match ($2:$3) $4
(unguardedGRHSs $6)
]) }
| 'let' binds 'in' exp { LL $ HsLet (unLoc $2) $4 }
| 'if' exp optSemi 'then' exp optSemi 'else' exp
{% checkDoAndIfThenElse $2 $3 $5 $6 $8 >>
return (LL $ mkHsIf $2 $5 $8) }
| 'case' exp 'of' altslist { LL $ HsCase $2 (mkMatchGroup (unLoc $4)) }
| '-' fexp { LL $ NegApp $2 noSyntaxExpr }
| 'do' stmtlist { L (comb2 $1 $2) (mkHsDo DoExpr (unLoc $2)) }
| 'mdo' stmtlist { L (comb2 $1 $2) (mkHsDo MDoExpr (unLoc $2)) }
| scc_annot exp { LL $ if opt_SccProfilingOn
then HsSCC (unLoc $1) $2
else HsPar $2 }
| hpc_annot exp { LL $ if opt_Hpc
then HsTickPragma (unLoc $1) $2
else HsPar $2 }
| 'proc' aexp '->' exp
{% checkPattern $2 >>= \ p ->
return (LL $ HsProc p (LL $ HsCmdTop $4 []
placeHolderType undefined)) }
-- TODO: is LL right here?
| '{-# CORE' STRING '#-}' exp { LL $ HsCoreAnn (getSTRING $2) $4 }
-- hdaume: core annotation
| fexp { $1 }
optSemi :: { Bool }
: ';' { True }
| {- empty -} { False }
scc_annot :: { Located FastString }
: '_scc_' STRING {% (addWarning Opt_WarnWarningsDeprecations (getLoc $1) (text "_scc_ is deprecated; use an SCC pragma instead")) >>= \_ ->
( do scc <- getSCC $2; return $ LL scc ) }
| '{-# SCC' STRING '#-}' {% do scc <- getSCC $2; return $ LL scc }
| '{-# SCC' VARID '#-}' { LL (getVARID $2) }
hpc_annot :: { Located (FastString,(Int,Int),(Int,Int)) }
: '{-# GENERATED' STRING INTEGER ':' INTEGER '-' INTEGER ':' INTEGER '#-}'
{ LL $ (getSTRING $2
,( fromInteger $ getINTEGER $3
, fromInteger $ getINTEGER $5
)
,( fromInteger $ getINTEGER $7
, fromInteger $ getINTEGER $9
)
)
}
fexp :: { LHsExpr RdrName }
: fexp aexp { LL $ HsApp $1 $2 }
| aexp { $1 }
aexp :: { LHsExpr RdrName }
: qvar '@' aexp { LL $ EAsPat $1 $3 }
| '~' aexp { LL $ ELazyPat $2 }
| aexp1 { $1 }
aexp1 :: { LHsExpr RdrName }
: aexp1 '{' fbinds '}' {% do { r <- mkRecConstrOrUpdate $1 (comb2 $2 $4) $3
; checkRecordSyntax (LL r) }}
| aexp2 { $1 }
aexp2 :: { LHsExpr RdrName }
: ipvar { L1 (HsIPVar $! unLoc $1) }
| qcname { L1 (HsVar $! unLoc $1) }
| literal { L1 (HsLit $! unLoc $1) }
-- This will enable overloaded strings permanently. Normally the renamer turns HsString
-- into HsOverLit when -foverloaded-strings is on.
-- | STRING { sL (getLoc $1) (HsOverLit $! mkHsIsString (getSTRING $1) placeHolderType) }
| INTEGER { sL (getLoc $1) (HsOverLit $! mkHsIntegral (getINTEGER $1) placeHolderType) }
| RATIONAL { sL (getLoc $1) (HsOverLit $! mkHsFractional (getRATIONAL $1) placeHolderType) }
-- N.B.: sections get parsed by these next two productions.
-- This allows you to write, e.g., '(+ 3, 4 -)', which isn't
-- correct Haskell (you'd have to write '((+ 3), (4 -))')
-- but the less cluttered version fell out of having texps.
| '(' texp ')' { LL (HsPar $2) }
| '(' tup_exprs ')' { LL (ExplicitTuple $2 Boxed) }
| '(#' texp '#)' { LL (ExplicitTuple [Present $2] Unboxed) }
| '(#' tup_exprs '#)' { LL (ExplicitTuple $2 Unboxed) }
| '[' list ']' { LL (unLoc $2) }
| '[:' parr ':]' { LL (unLoc $2) }
| '_' { L1 EWildPat }
-- Template Haskell Extension
| TH_ID_SPLICE { L1 $ HsSpliceE (mkHsSplice
(L1 $ HsVar (mkUnqual varName
(getTH_ID_SPLICE $1)))) }
| '$(' exp ')' { LL $ HsSpliceE (mkHsSplice $2) }
| SIMPLEQUOTE qvar { LL $ HsBracket (VarBr True (unLoc $2)) }
| SIMPLEQUOTE qcon { LL $ HsBracket (VarBr True (unLoc $2)) }
| TH_TY_QUOTE tyvar { LL $ HsBracket (VarBr False (unLoc $2)) }
| TH_TY_QUOTE gtycon { LL $ HsBracket (VarBr False (unLoc $2)) }
| '[|' exp '|]' { LL $ HsBracket (ExpBr $2) }
| '[t|' ctype '|]' { LL $ HsBracket (TypBr $2) }
| '[p|' infixexp '|]' {% checkPattern $2 >>= \p ->
return (LL $ HsBracket (PatBr p)) }
| '[d|' cvtopbody '|]' { LL $ HsBracket (DecBrL $2) }
| quasiquote { L1 (HsQuasiQuoteE (unLoc $1)) }
-- arrow notation extension
| '(|' aexp2 cmdargs '|)' { LL $ HsArrForm $2 Nothing (reverse $3) }
cmdargs :: { [LHsCmdTop RdrName] }
: cmdargs acmd { $2 : $1 }
| {- empty -} { [] }
acmd :: { LHsCmdTop RdrName }
: aexp2 { L1 $ HsCmdTop $1 [] placeHolderType undefined }
cvtopbody :: { [LHsDecl RdrName] }
: '{' cvtopdecls0 '}' { $2 }
| vocurly cvtopdecls0 close { $2 }
cvtopdecls0 :: { [LHsDecl RdrName] }
: {- empty -} { [] }
| cvtopdecls { $1 }
-----------------------------------------------------------------------------
-- Tuple expressions
-- "texp" is short for tuple expressions:
-- things that can appear unparenthesized as long as they're
-- inside parens or delimitted by commas
texp :: { LHsExpr RdrName }
: exp { $1 }
-- Note [Parsing sections]
-- ~~~~~~~~~~~~~~~~~~~~~~~
-- We include left and right sections here, which isn't
-- technically right according to the Haskell standard.
-- For example (3 +, True) isn't legal.
-- However, we want to parse bang patterns like
-- (!x, !y)
-- and it's convenient to do so here as a section
-- Then when converting expr to pattern we unravel it again
-- Meanwhile, the renamer checks that real sections appear
-- inside parens.
| infixexp qop { LL $ SectionL $1 $2 }
| qopm infixexp { LL $ SectionR $1 $2 }
-- View patterns get parenthesized above
| exp '->' texp { LL $ EViewPat $1 $3 }
-- Always at least one comma
tup_exprs :: { [HsTupArg RdrName] }
: texp commas_tup_tail { Present $1 : $2 }
| commas tup_tail { replicate $1 missingTupArg ++ $2 }
-- Always starts with commas; always follows an expr
commas_tup_tail :: { [HsTupArg RdrName] }
commas_tup_tail : commas tup_tail { replicate ($1-1) missingTupArg ++ $2 }
-- Always follows a comma
tup_tail :: { [HsTupArg RdrName] }
: texp commas_tup_tail { Present $1 : $2 }
| texp { [Present $1] }
| {- empty -} { [missingTupArg] }
-----------------------------------------------------------------------------
-- List expressions
-- The rules below are little bit contorted to keep lexps left-recursive while
-- avoiding another shift/reduce-conflict.
list :: { LHsExpr RdrName }
: texp { L1 $ ExplicitList placeHolderType [$1] }
| lexps { L1 $ ExplicitList placeHolderType (reverse (unLoc $1)) }
| texp '..' { LL $ ArithSeq noPostTcExpr (From $1) }
| texp ',' exp '..' { LL $ ArithSeq noPostTcExpr (FromThen $1 $3) }
| texp '..' exp { LL $ ArithSeq noPostTcExpr (FromTo $1 $3) }
| texp ',' exp '..' exp { LL $ ArithSeq noPostTcExpr (FromThenTo $1 $3 $5) }
| texp '|' flattenedpquals
{% checkMonadComp >>= \ ctxt ->
return (sL (comb2 $1 $>) $
mkHsComp ctxt (unLoc $3) $1) }
lexps :: { Located [LHsExpr RdrName] }
: lexps ',' texp { LL (((:) $! $3) $! unLoc $1) }
| texp ',' texp { LL [$3,$1] }
-----------------------------------------------------------------------------
-- List Comprehensions
flattenedpquals :: { Located [LStmt RdrName] }
: pquals { case (unLoc $1) of
[qs] -> L1 qs
-- We just had one thing in our "parallel" list so
-- we simply return that thing directly
qss -> L1 [L1 $ ParStmt [(qs, undefined) | qs <- qss] noSyntaxExpr noSyntaxExpr noSyntaxExpr]
-- We actually found some actual parallel lists so
-- we wrap them into as a ParStmt
}
pquals :: { Located [[LStmt RdrName]] }
: squals '|' pquals { L (getLoc $2) (reverse (unLoc $1) : unLoc $3) }
| squals { L (getLoc $1) [reverse (unLoc $1)] }
squals :: { Located [LStmt RdrName] } -- In reverse order, because the last
-- one can "grab" the earlier ones
: squals ',' transformqual { LL [L (getLoc $3) ((unLoc $3) (reverse (unLoc $1)))] }
| squals ',' qual { LL ($3 : unLoc $1) }
| transformqual { LL [L (getLoc $1) ((unLoc $1) [])] }
| qual { L1 [$1] }
-- | transformquals1 ',' '{|' pquals '|}' { LL ($4 : unLoc $1) }
-- | '{|' pquals '|}' { L1 [$2] }
-- It is possible to enable bracketing (associating) qualifier lists
-- by uncommenting the lines with {| |} above. Due to a lack of
-- consensus on the syntax, this feature is not being used until we
-- get user demand.
transformqual :: { Located ([LStmt RdrName] -> Stmt RdrName) }
-- Function is applied to a list of stmts *in order*
: 'then' exp { LL $ \ss -> (mkTransformStmt ss $2) }
| 'then' exp 'by' exp { LL $ \ss -> (mkTransformByStmt ss $2 $4) }
| 'then' 'group' 'using' exp { LL $ \ss -> (mkGroupUsingStmt ss $4) }
| 'then' 'group' 'by' exp 'using' exp { LL $ \ss -> (mkGroupByUsingStmt ss $4 $6) }
-- Note that 'group' is a special_id, which means that you can enable
-- TransformListComp while still using Data.List.group. However, this
-- introduces a shift/reduce conflict. Happy chooses to resolve the conflict
-- in by choosing the "group by" variant, which is what we want.
-----------------------------------------------------------------------------
-- Parallel array expressions
-- The rules below are little bit contorted; see the list case for details.
-- Note that, in contrast to lists, we only have finite arithmetic sequences.
-- Moreover, we allow explicit arrays with no element (represented by the nil
-- constructor in the list case).
parr :: { LHsExpr RdrName }
: { noLoc (ExplicitPArr placeHolderType []) }
| texp { L1 $ ExplicitPArr placeHolderType [$1] }
| lexps { L1 $ ExplicitPArr placeHolderType
(reverse (unLoc $1)) }
| texp '..' exp { LL $ PArrSeq noPostTcExpr (FromTo $1 $3) }
| texp ',' exp '..' exp { LL $ PArrSeq noPostTcExpr (FromThenTo $1 $3 $5) }
| texp '|' flattenedpquals { LL $ mkHsComp PArrComp (unLoc $3) $1 }
-- We are reusing `lexps' and `flattenedpquals' from the list case.
-----------------------------------------------------------------------------
-- Guards
guardquals :: { Located [LStmt RdrName] }
: guardquals1 { L (getLoc $1) (reverse (unLoc $1)) }
guardquals1 :: { Located [LStmt RdrName] }
: guardquals1 ',' qual { LL ($3 : unLoc $1) }
| qual { L1 [$1] }
-----------------------------------------------------------------------------
-- Case alternatives
altslist :: { Located [LMatch RdrName] }
: '{' alts '}' { LL (reverse (unLoc $2)) }
| vocurly alts close { L (getLoc $2) (reverse (unLoc $2)) }
alts :: { Located [LMatch RdrName] }
: alts1 { L1 (unLoc $1) }
| ';' alts { LL (unLoc $2) }
alts1 :: { Located [LMatch RdrName] }
: alts1 ';' alt { LL ($3 : unLoc $1) }
| alts1 ';' { LL (unLoc $1) }
| alt { L1 [$1] }
alt :: { LMatch RdrName }
: pat opt_sig alt_rhs { LL (Match [$1] $2 (unLoc $3)) }
alt_rhs :: { Located (GRHSs RdrName) }
: ralt wherebinds { LL (GRHSs (unLoc $1) (unLoc $2)) }
ralt :: { Located [LGRHS RdrName] }
: '->' exp { LL (unguardedRHS $2) }
| gdpats { L1 (reverse (unLoc $1)) }
gdpats :: { Located [LGRHS RdrName] }
: gdpats gdpat { LL ($2 : unLoc $1) }
| gdpat { L1 [$1] }
gdpat :: { LGRHS RdrName }
: '|' guardquals '->' exp { sL (comb2 $1 $>) $ GRHS (unLoc $2) $4 }
-- 'pat' recognises a pattern, including one with a bang at the top
-- e.g. "!x" or "!(x,y)" or "C a b" etc
-- Bangs inside are parsed as infix operator applications, so that
-- we parse them right when bang-patterns are off
pat :: { LPat RdrName }
pat : exp {% checkPattern $1 }
| '!' aexp {% checkPattern (LL (SectionR (L1 (HsVar bang_RDR)) $2)) }
apat :: { LPat RdrName }
apat : aexp {% checkPattern $1 }
| '!' aexp {% checkPattern (LL (SectionR (L1 (HsVar bang_RDR)) $2)) }
apats :: { [LPat RdrName] }
: apat apats { $1 : $2 }
| {- empty -} { [] }
-----------------------------------------------------------------------------
-- Statement sequences
stmtlist :: { Located [LStmt RdrName] }
: '{' stmts '}' { LL (unLoc $2) }
| vocurly stmts close { $2 }
-- do { ;; s ; s ; ; s ;; }
-- The last Stmt should be an expression, but that's hard to enforce
-- here, because we need too much lookahead if we see do { e ; }
-- So we use ExprStmts throughout, and switch the last one over
-- in ParseUtils.checkDo instead
stmts :: { Located [LStmt RdrName] }
: stmt stmts_help { LL ($1 : unLoc $2) }
| ';' stmts { LL (unLoc $2) }
| {- empty -} { noLoc [] }
stmts_help :: { Located [LStmt RdrName] } -- might be empty
: ';' stmts { LL (unLoc $2) }
| {- empty -} { noLoc [] }
-- For typing stmts at the GHCi prompt, where
-- the input may consist of just comments.
maybe_stmt :: { Maybe (LStmt RdrName) }
: stmt { Just $1 }
| {- nothing -} { Nothing }
stmt :: { LStmt RdrName }
: qual { $1 }
| 'rec' stmtlist { LL $ mkRecStmt (unLoc $2) }
qual :: { LStmt RdrName }
: pat '<-' exp { LL $ mkBindStmt $1 $3 }
| exp { L1 $ mkExprStmt $1 }
| 'let' binds { LL $ LetStmt (unLoc $2) }
-----------------------------------------------------------------------------
-- Record Field Update/Construction
fbinds :: { ([HsRecField RdrName (LHsExpr RdrName)], Bool) }
: fbinds1 { $1 }
| {- empty -} { ([], False) }
fbinds1 :: { ([HsRecField RdrName (LHsExpr RdrName)], Bool) }
: fbind ',' fbinds1 { case $3 of (flds, dd) -> ($1 : flds, dd) }
| fbind { ([$1], False) }
| '..' { ([], True) }
fbind :: { HsRecField RdrName (LHsExpr RdrName) }
: qvar '=' exp { HsRecField $1 $3 False }
| qvar { HsRecField $1 placeHolderPunRhs True }
-- In the punning case, use a place-holder
-- The renamer fills in the final value
-----------------------------------------------------------------------------
-- Implicit Parameter Bindings
dbinds :: { Located [LIPBind RdrName] }
: dbinds ';' dbind { let { this = $3; rest = unLoc $1 }
in rest `seq` this `seq` LL (this : rest) }
| dbinds ';' { LL (unLoc $1) }
| dbind { let this = $1 in this `seq` L1 [this] }
-- | {- empty -} { [] }
dbind :: { LIPBind RdrName }
dbind : ipvar '=' exp { LL (IPBind (unLoc $1) $3) }
ipvar :: { Located (IPName RdrName) }
: IPDUPVARID { L1 (IPName (mkUnqual varName (getIPDUPVARID $1))) }
-----------------------------------------------------------------------------
-- Warnings and deprecations
namelist :: { Located [RdrName] }
namelist : name_var { L1 [unLoc $1] }
| name_var ',' namelist { LL (unLoc $1 : unLoc $3) }
name_var :: { Located RdrName }
name_var : var { $1 }
| con { $1 }
-----------------------------------------
-- Data constructors
qcon :: { Located RdrName }
: qconid { $1 }
| '(' qconsym ')' { LL (unLoc $2) }
| sysdcon { L1 $ nameRdrName (dataConName (unLoc $1)) }
-- The case of '[:' ':]' is part of the production `parr'
con :: { Located RdrName }
: conid { $1 }
| '(' consym ')' { LL (unLoc $2) }
| sysdcon { L1 $ nameRdrName (dataConName (unLoc $1)) }
con_list :: { Located [Located RdrName] }
con_list : con { L1 [$1] }
| con ',' con_list { LL ($1 : unLoc $3) }
sysdcon :: { Located DataCon } -- Wired in data constructors
: '(' ')' { LL unitDataCon }
| '(' commas ')' { LL $ tupleCon BoxedTuple ($2 + 1) }
| '(#' '#)' { LL $ unboxedUnitDataCon }
| '(#' commas '#)' { LL $ tupleCon UnboxedTuple ($2 + 1) }
| '[' ']' { LL nilDataCon }
conop :: { Located RdrName }
: consym { $1 }
| '`' conid '`' { LL (unLoc $2) }
qconop :: { Located RdrName }
: qconsym { $1 }
| '`' qconid '`' { LL (unLoc $2) }
----------------------------------------------------------------------------
-- Type constructors
-- See Note [Unit tuples] in HsTypes for the distinction
-- between gtycon and ntgtycon
gtycon :: { Located RdrName } -- A "general" qualified tycon, including unit tuples
: ntgtycon { $1 }
| '(' ')' { LL $ getRdrName unitTyCon }
| '(#' '#)' { LL $ getRdrName unboxedUnitTyCon }
ntgtycon :: { Located RdrName } -- A "general" qualified tycon, excluding unit tuples
: oqtycon { $1 }
| '(' commas ')' { LL $ getRdrName (tupleTyCon BoxedTuple ($2 + 1)) }
| '(#' commas '#)' { LL $ getRdrName (tupleTyCon UnboxedTuple ($2 + 1)) }
| '(' '->' ')' { LL $ getRdrName funTyCon }
| '[' ']' { LL $ listTyCon_RDR }
| '[:' ':]' { LL $ parrTyCon_RDR }
| '(' '~#' ')' { LL $ getRdrName eqPrimTyCon }
oqtycon :: { Located RdrName } -- An "ordinary" qualified tycon;
-- These can appear in export lists
: qtycon { $1 }
| '(' qtyconsym ')' { LL (unLoc $2) }
| '(' '~' ')' { LL $ eqTyCon_RDR }
qtyconop :: { Located RdrName } -- Qualified or unqualified
: qtyconsym { $1 }
| '`' qtycon '`' { LL (unLoc $2) }
qtycon :: { Located RdrName } -- Qualified or unqualified
: QCONID { L1 $! mkQual tcClsName (getQCONID $1) }
| PREFIXQCONSYM { L1 $! mkQual tcClsName (getPREFIXQCONSYM $1) }
| tycon { $1 }
tycon :: { Located RdrName } -- Unqualified
: CONID { L1 $! mkUnqual tcClsName (getCONID $1) }
qtyconsym :: { Located RdrName }
: QCONSYM { L1 $! mkQual tcClsName (getQCONSYM $1) }
| tyconsym { $1 }
tyconsym :: { Located RdrName }
: CONSYM { L1 $! mkUnqual tcClsName (getCONSYM $1) }
-----------------------------------------------------------------------------
-- Operators
op :: { Located RdrName } -- used in infix decls
: varop { $1 }
| conop { $1 }
varop :: { Located RdrName }
: varsym { $1 }
| '`' varid '`' { LL (unLoc $2) }
qop :: { LHsExpr RdrName } -- used in sections
: qvarop { L1 $ HsVar (unLoc $1) }
| qconop { L1 $ HsVar (unLoc $1) }
qopm :: { LHsExpr RdrName } -- used in sections
: qvaropm { L1 $ HsVar (unLoc $1) }
| qconop { L1 $ HsVar (unLoc $1) }
qvarop :: { Located RdrName }
: qvarsym { $1 }
| '`' qvarid '`' { LL (unLoc $2) }
qvaropm :: { Located RdrName }
: qvarsym_no_minus { $1 }
| '`' qvarid '`' { LL (unLoc $2) }
-----------------------------------------------------------------------------
-- Type variables
tyvar :: { Located RdrName }
tyvar : tyvarid { $1 }
| '(' tyvarsym ')' { LL (unLoc $2) }
tyvarop :: { Located RdrName }
tyvarop : '`' tyvarid '`' { LL (unLoc $2) }
| tyvarsym { $1 }
| '.' {% parseErrorSDoc (getLoc $1)
(vcat [ptext (sLit "Illegal symbol '.' in type"),
ptext (sLit "Perhaps you intended -XRankNTypes or similar flag"),
ptext (sLit "to enable explicit-forall syntax: forall <tvs>. <type>")])
}
tyvarid :: { Located RdrName }
: VARID { L1 $! mkUnqual tvName (getVARID $1) }
| special_id { L1 $! mkUnqual tvName (unLoc $1) }
| 'unsafe' { L1 $! mkUnqual tvName (fsLit "unsafe") }
| 'safe' { L1 $! mkUnqual tvName (fsLit "safe") }
| 'interruptible' { L1 $! mkUnqual tvName (fsLit "interruptible") }
tyvarsym :: { Located RdrName }
-- Does not include "!", because that is used for strictness marks
-- or ".", because that separates the quantified type vars from the rest
-- or "*", because that's used for kinds
tyvarsym : VARSYM { L1 $! mkUnqual tvName (getVARSYM $1) }
-----------------------------------------------------------------------------
-- Variables
var :: { Located RdrName }
: varid { $1 }
| '(' varsym ')' { LL (unLoc $2) }
qvar :: { Located RdrName }
: qvarid { $1 }
| '(' varsym ')' { LL (unLoc $2) }
| '(' qvarsym1 ')' { LL (unLoc $2) }
-- We've inlined qvarsym here so that the decision about
-- whether it's a qvar or a var can be postponed until
-- *after* we see the close paren.
qvarid :: { Located RdrName }
: varid { $1 }
| QVARID { L1 $! mkQual varName (getQVARID $1) }
| PREFIXQVARSYM { L1 $! mkQual varName (getPREFIXQVARSYM $1) }
varid :: { Located RdrName }
: VARID { L1 $! mkUnqual varName (getVARID $1) }
| special_id { L1 $! mkUnqual varName (unLoc $1) }
| 'unsafe' { L1 $! mkUnqual varName (fsLit "unsafe") }
| 'safe' { L1 $! mkUnqual varName (fsLit "safe") }
| 'interruptible' { L1 $! mkUnqual varName (fsLit "interruptible") }
| 'forall' { L1 $! mkUnqual varName (fsLit "forall") }
| 'family' { L1 $! mkUnqual varName (fsLit "family") }
qvarsym :: { Located RdrName }
: varsym { $1 }
| qvarsym1 { $1 }
qvarsym_no_minus :: { Located RdrName }
: varsym_no_minus { $1 }
| qvarsym1 { $1 }
qvarsym1 :: { Located RdrName }
qvarsym1 : QVARSYM { L1 $ mkQual varName (getQVARSYM $1) }
varsym :: { Located RdrName }
: varsym_no_minus { $1 }
| '-' { L1 $ mkUnqual varName (fsLit "-") }
varsym_no_minus :: { Located RdrName } -- varsym not including '-'
: VARSYM { L1 $ mkUnqual varName (getVARSYM $1) }
| special_sym { L1 $ mkUnqual varName (unLoc $1) }
-- These special_ids are treated as keywords in various places,
-- but as ordinary ids elsewhere. 'special_id' collects all these
-- except 'unsafe', 'interruptible', 'forall', and 'family' whose treatment differs
-- depending on context
special_id :: { Located FastString }
special_id
: 'as' { L1 (fsLit "as") }
| 'qualified' { L1 (fsLit "qualified") }
| 'hiding' { L1 (fsLit "hiding") }
| 'export' { L1 (fsLit "export") }
| 'label' { L1 (fsLit "label") }
| 'dynamic' { L1 (fsLit "dynamic") }
| 'stdcall' { L1 (fsLit "stdcall") }
| 'ccall' { L1 (fsLit "ccall") }
| 'capi' { L1 (fsLit "capi") }
| 'prim' { L1 (fsLit "prim") }
| 'group' { L1 (fsLit "group") }
special_sym :: { Located FastString }
special_sym : '!' { L1 (fsLit "!") }
| '.' { L1 (fsLit ".") }
| '*' { L1 (fsLit "*") }
-----------------------------------------------------------------------------
-- Data constructors
qconid :: { Located RdrName } -- Qualified or unqualified
: conid { $1 }
| QCONID { L1 $! mkQual dataName (getQCONID $1) }
| PREFIXQCONSYM { L1 $! mkQual dataName (getPREFIXQCONSYM $1) }
conid :: { Located RdrName }
: CONID { L1 $ mkUnqual dataName (getCONID $1) }
qconsym :: { Located RdrName } -- Qualified or unqualified
: consym { $1 }
| QCONSYM { L1 $ mkQual dataName (getQCONSYM $1) }
consym :: { Located RdrName }
: CONSYM { L1 $ mkUnqual dataName (getCONSYM $1) }
-- ':' means only list cons
| ':' { L1 $ consDataCon_RDR }
-----------------------------------------------------------------------------
-- Literals
literal :: { Located HsLit }
: CHAR { L1 $ HsChar $ getCHAR $1 }
| STRING { L1 $ HsString $ getSTRING $1 }
| PRIMINTEGER { L1 $ HsIntPrim $ getPRIMINTEGER $1 }
| PRIMWORD { L1 $ HsWordPrim $ getPRIMWORD $1 }
| PRIMCHAR { L1 $ HsCharPrim $ getPRIMCHAR $1 }
| PRIMSTRING { L1 $ HsStringPrim $ getPRIMSTRING $1 }
| PRIMFLOAT { L1 $ HsFloatPrim $ getPRIMFLOAT $1 }
| PRIMDOUBLE { L1 $ HsDoublePrim $ getPRIMDOUBLE $1 }
-----------------------------------------------------------------------------
-- Layout
close :: { () }
: vccurly { () } -- context popped in lexer.
| error {% popContext }
-----------------------------------------------------------------------------
-- Miscellaneous (mostly renamings)
modid :: { Located ModuleName }
: CONID { L1 $ mkModuleNameFS (getCONID $1) }
| QCONID { L1 $ let (mod,c) = getQCONID $1 in
mkModuleNameFS
(mkFastString
(unpackFS mod ++ '.':unpackFS c))
}
commas :: { Int }
: commas ',' { $1 + 1 }
| ',' { 1 }
-----------------------------------------------------------------------------
-- Documentation comments
docnext :: { LHsDocString }
: DOCNEXT {% return (L1 (HsDocString (mkFastString (getDOCNEXT $1)))) }
docprev :: { LHsDocString }
: DOCPREV {% return (L1 (HsDocString (mkFastString (getDOCPREV $1)))) }
docnamed :: { Located (String, HsDocString) }
: DOCNAMED {%
let string = getDOCNAMED $1
(name, rest) = break isSpace string
in return (L1 (name, HsDocString (mkFastString rest))) }
docsection :: { Located (Int, HsDocString) }
: DOCSECTION {% let (n, doc) = getDOCSECTION $1 in
return (L1 (n, HsDocString (mkFastString doc))) }
moduleheader :: { Maybe LHsDocString }
: DOCNEXT {% let string = getDOCNEXT $1 in
return (Just (L1 (HsDocString (mkFastString string)))) }
maybe_docprev :: { Maybe LHsDocString }
: docprev { Just $1 }
| {- empty -} { Nothing }
maybe_docnext :: { Maybe LHsDocString }
: docnext { Just $1 }
| {- empty -} { Nothing }
{
happyError :: P a
happyError = srcParseFail
getVARID (L _ (ITvarid x)) = x
getCONID (L _ (ITconid x)) = x
getVARSYM (L _ (ITvarsym x)) = x
getCONSYM (L _ (ITconsym x)) = x
getQVARID (L _ (ITqvarid x)) = x
getQCONID (L _ (ITqconid x)) = x
getQVARSYM (L _ (ITqvarsym x)) = x
getQCONSYM (L _ (ITqconsym x)) = x
getPREFIXQVARSYM (L _ (ITprefixqvarsym x)) = x
getPREFIXQCONSYM (L _ (ITprefixqconsym x)) = x
getIPDUPVARID (L _ (ITdupipvarid x)) = x
getCHAR (L _ (ITchar x)) = x
getSTRING (L _ (ITstring x)) = x
getINTEGER (L _ (ITinteger x)) = x
getRATIONAL (L _ (ITrational x)) = x
getPRIMCHAR (L _ (ITprimchar x)) = x
getPRIMSTRING (L _ (ITprimstring x)) = x
getPRIMINTEGER (L _ (ITprimint x)) = x
getPRIMWORD (L _ (ITprimword x)) = x
getPRIMFLOAT (L _ (ITprimfloat x)) = x
getPRIMDOUBLE (L _ (ITprimdouble x)) = x
getTH_ID_SPLICE (L _ (ITidEscape x)) = x
getINLINE (L _ (ITinline_prag inl conl)) = (inl,conl)
getSPEC_INLINE (L _ (ITspec_inline_prag True)) = (Inline, FunLike)
getSPEC_INLINE (L _ (ITspec_inline_prag False)) = (NoInline,FunLike)
getDOCNEXT (L _ (ITdocCommentNext x)) = x
getDOCPREV (L _ (ITdocCommentPrev x)) = x
getDOCNAMED (L _ (ITdocCommentNamed x)) = x
getDOCSECTION (L _ (ITdocSection n x)) = (n, x)
getSCC :: Located Token -> P FastString
getSCC lt = do let s = getSTRING lt
err = "Spaces are not allowed in SCCs"
-- We probably actually want to be more restrictive than this
if ' ' `elem` unpackFS s
then failSpanMsgP (getLoc lt) (text err)
else return s
-- Utilities for combining source spans
comb2 :: Located a -> Located b -> SrcSpan
comb2 a b = a `seq` b `seq` combineLocs a b
comb3 :: Located a -> Located b -> Located c -> SrcSpan
comb3 a b c = a `seq` b `seq` c `seq`
combineSrcSpans (getLoc a) (combineSrcSpans (getLoc b) (getLoc c))
comb4 :: Located a -> Located b -> Located c -> Located d -> SrcSpan
comb4 a b c d = a `seq` b `seq` c `seq` d `seq`
(combineSrcSpans (getLoc a) $ combineSrcSpans (getLoc b) $
combineSrcSpans (getLoc c) (getLoc d))
-- strict constructor version:
{-# INLINE sL #-}
sL :: SrcSpan -> a -> Located a
sL span a = span `seq` a `seq` L span a
-- Make a source location for the file. We're a bit lazy here and just
-- make a point SrcSpan at line 1, column 0. Strictly speaking we should
-- try to find the span of the whole file (ToDo).
fileSrcSpan :: P SrcSpan
fileSrcSpan = do
l <- getSrcLoc;
let loc = mkSrcLoc (srcLocFile l) 1 1;
return (mkSrcSpan loc loc)
}
|