1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
|
--
-- (c) The University of Glasgow 2002-2006
--
-- Functions over HsSyn specialised to RdrName.
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE MagicHash #-}
module RdrHsSyn (
mkHsOpApp,
mkHsIntegral, mkHsFractional, mkHsIsString,
mkHsDo, mkSpliceDecl,
mkRoleAnnotDecl,
mkClassDecl,
mkTyData, mkDataFamInst,
mkTySynonym, mkTyFamInstEqn,
mkTyFamInst,
mkFamDecl, mkLHsSigType,
splitCon, mkInlinePragma,
mkPatSynMatchGroup,
mkRecConstrOrUpdate, -- HsExp -> [HsFieldUpdate] -> P HsExp
mkTyClD, mkInstD,
mkRdrRecordCon, mkRdrRecordUpd,
setRdrNameSpace,
cvBindGroup,
cvBindsAndSigs,
cvTopDecls,
placeHolderPunRhs,
-- Stuff to do with Foreign declarations
mkImport,
parseCImport,
mkExport,
mkExtName, -- RdrName -> CLabelString
mkGadtDecl, -- [Located RdrName] -> LHsType RdrName -> ConDecl RdrName
mkConDeclH98,
mkATDefault,
-- Bunch of functions in the parser monad for
-- checking and constructing values
checkBlockArguments,
checkPrecP, -- Int -> P Int
checkContext, -- HsType -> P HsContext
checkInfixConstr,
checkPattern, -- HsExp -> P HsPat
bang_RDR,
checkPatterns, -- SrcLoc -> [HsExp] -> P [HsPat]
checkMonadComp, -- P (HsStmtContext RdrName)
checkCommand, -- LHsExpr RdrName -> P (LHsCmd RdrName)
checkValDef, -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl
checkValSigLhs,
checkDoAndIfThenElse,
checkRecordSyntax,
checkEmptyGADTs,
parseErrorSDoc, hintBangPat,
splitTilde, splitTildeApps,
-- Help with processing exports
ImpExpSubSpec(..),
ImpExpQcSpec(..),
mkModuleImpExp,
mkTypeImpExp,
mkImpExpSubSpec,
checkImportSpec,
SumOrTuple (..), mkSumOrTuple
) where
import GhcPrelude
import HsSyn -- Lots of it
import Class ( FunDep )
import TyCon ( TyCon, isTupleTyCon, tyConSingleDataCon_maybe )
import DataCon ( DataCon, dataConTyCon )
import ConLike ( ConLike(..) )
import CoAxiom ( Role, fsFromRole )
import RdrName
import Name
import BasicTypes
import TcEvidence ( idHsWrapper )
import Lexer
import Lexeme ( isLexCon )
import Type ( TyThing(..) )
import TysWiredIn ( cTupleTyConName, tupleTyCon, tupleDataCon,
nilDataConName, nilDataConKey,
listTyConName, listTyConKey,
starKindTyConName, unicodeStarKindTyConName )
import ForeignCall
import PrelNames ( forall_tv_RDR, eqTyCon_RDR, allNameStrings )
import SrcLoc
import Unique ( hasKey )
import OrdList ( OrdList, fromOL )
import Bag ( emptyBag, consBag )
import Outputable
import FastString
import Maybes
import Util
import ApiAnnotation
import Data.List
import qualified GHC.LanguageExtensions as LangExt
import MonadUtils
import Control.Monad
import Text.ParserCombinators.ReadP as ReadP
import Data.Char
import Data.Data ( dataTypeOf, fromConstr, dataTypeConstrs )
#include "HsVersions.h"
{- **********************************************************************
Construction functions for Rdr stuff
********************************************************************* -}
-- | mkClassDecl builds a RdrClassDecl, filling in the names for tycon and
-- datacon by deriving them from the name of the class. We fill in the names
-- for the tycon and datacon corresponding to the class, by deriving them
-- from the name of the class itself. This saves recording the names in the
-- interface file (which would be equally good).
-- Similarly for mkConDecl, mkClassOpSig and default-method names.
-- *** See Note [The Naming story] in HsDecls ****
mkTyClD :: LTyClDecl n -> LHsDecl n
mkTyClD (L loc d) = L loc (TyClD d)
mkInstD :: LInstDecl n -> LHsDecl n
mkInstD (L loc d) = L loc (InstD d)
mkClassDecl :: SrcSpan
-> Located (Maybe (LHsContext GhcPs), LHsType GhcPs)
-> Located (a,[Located (FunDep (Located RdrName))])
-> OrdList (LHsDecl GhcPs)
-> P (LTyClDecl GhcPs)
mkClassDecl loc (L _ (mcxt, tycl_hdr)) fds where_cls
= do { (binds, sigs, ats, at_insts, _, docs) <- cvBindsAndSigs where_cls
; let cxt = fromMaybe (noLoc []) mcxt
; (cls, tparams, fixity, ann) <- checkTyClHdr True tycl_hdr
; mapM_ (\a -> a loc) ann -- Add any API Annotations to the top SrcSpan
; tyvars <- checkTyVarsP (text "class") whereDots cls tparams
; at_defs <- mapM (eitherToP . mkATDefault) at_insts
; return (L loc (ClassDecl { tcdCtxt = cxt, tcdLName = cls, tcdTyVars = tyvars
, tcdFixity = fixity
, tcdFDs = snd (unLoc fds)
, tcdSigs = mkClassOpSigs sigs
, tcdMeths = binds
, tcdATs = ats, tcdATDefs = at_defs, tcdDocs = docs
, tcdFVs = placeHolderNames })) }
mkATDefault :: LTyFamInstDecl GhcPs
-> Either (SrcSpan, SDoc) (LTyFamDefltEqn GhcPs)
-- Take a type-family instance declaration and turn it into
-- a type-family default equation for a class declaration
-- We parse things as the former and use this function to convert to the latter
--
-- We use the Either monad because this also called
-- from Convert.hs
mkATDefault (L loc (TyFamInstDecl { tfid_eqn = HsIB { hsib_body = e }}))
| FamEqn { feqn_tycon = tc, feqn_pats = pats, feqn_fixity = fixity
, feqn_rhs = rhs } <- e
= do { tvs <- checkTyVars (text "default") equalsDots tc pats
; return (L loc (FamEqn { feqn_tycon = tc
, feqn_pats = tvs
, feqn_fixity = fixity
, feqn_rhs = rhs })) }
mkTyData :: SrcSpan
-> NewOrData
-> Maybe (Located CType)
-> Located (Maybe (LHsContext GhcPs), LHsType GhcPs)
-> Maybe (LHsKind GhcPs)
-> [LConDecl GhcPs]
-> HsDeriving GhcPs
-> P (LTyClDecl GhcPs)
mkTyData loc new_or_data cType (L _ (mcxt, tycl_hdr)) ksig data_cons maybe_deriv
= do { (tc, tparams, fixity, ann) <- checkTyClHdr False tycl_hdr
; mapM_ (\a -> a loc) ann -- Add any API Annotations to the top SrcSpan
; tyvars <- checkTyVarsP (ppr new_or_data) equalsDots tc tparams
; defn <- mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv
; return (L loc (DataDecl { tcdLName = tc, tcdTyVars = tyvars,
tcdFixity = fixity,
tcdDataDefn = defn,
tcdDataCusk = placeHolder,
tcdFVs = placeHolderNames })) }
mkDataDefn :: NewOrData
-> Maybe (Located CType)
-> Maybe (LHsContext GhcPs)
-> Maybe (LHsKind GhcPs)
-> [LConDecl GhcPs]
-> HsDeriving GhcPs
-> P (HsDataDefn GhcPs)
mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv
= do { checkDatatypeContext mcxt
; let cxt = fromMaybe (noLoc []) mcxt
; return (HsDataDefn { dd_ND = new_or_data, dd_cType = cType
, dd_ctxt = cxt
, dd_cons = data_cons
, dd_kindSig = ksig
, dd_derivs = maybe_deriv }) }
mkTySynonym :: SrcSpan
-> LHsType GhcPs -- LHS
-> LHsType GhcPs -- RHS
-> P (LTyClDecl GhcPs)
mkTySynonym loc lhs rhs
= do { (tc, tparams, fixity, ann) <- checkTyClHdr False lhs
; mapM_ (\a -> a loc) ann -- Add any API Annotations to the top SrcSpan
; tyvars <- checkTyVarsP (text "type") equalsDots tc tparams
; return (L loc (SynDecl { tcdLName = tc, tcdTyVars = tyvars
, tcdFixity = fixity
, tcdRhs = rhs, tcdFVs = placeHolderNames })) }
mkTyFamInstEqn :: LHsType GhcPs
-> LHsType GhcPs
-> P (TyFamInstEqn GhcPs,[AddAnn])
mkTyFamInstEqn lhs rhs
= do { (tc, tparams, fixity, ann) <- checkTyClHdr False lhs
; return (mkHsImplicitBndrs
(FamEqn { feqn_tycon = tc
, feqn_pats = tparams
, feqn_fixity = fixity
, feqn_rhs = rhs }),
ann) }
mkDataFamInst :: SrcSpan
-> NewOrData
-> Maybe (Located CType)
-> Located (Maybe (LHsContext GhcPs), LHsType GhcPs)
-> Maybe (LHsKind GhcPs)
-> [LConDecl GhcPs]
-> HsDeriving GhcPs
-> P (LInstDecl GhcPs)
mkDataFamInst loc new_or_data cType (L _ (mcxt, tycl_hdr)) ksig data_cons maybe_deriv
= do { (tc, tparams, fixity, ann) <- checkTyClHdr False tycl_hdr
; mapM_ (\a -> a loc) ann -- Add any API Annotations to the top SrcSpan
; defn <- mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv
; return (L loc (DataFamInstD (DataFamInstDecl (mkHsImplicitBndrs
(FamEqn { feqn_tycon = tc
, feqn_pats = tparams
, feqn_fixity = fixity
, feqn_rhs = defn }))))) }
mkTyFamInst :: SrcSpan
-> TyFamInstEqn GhcPs
-> P (LInstDecl GhcPs)
mkTyFamInst loc eqn
= return (L loc (TyFamInstD (TyFamInstDecl eqn)))
mkFamDecl :: SrcSpan
-> FamilyInfo GhcPs
-> LHsType GhcPs -- LHS
-> Located (FamilyResultSig GhcPs) -- Optional result signature
-> Maybe (LInjectivityAnn GhcPs) -- Injectivity annotation
-> P (LTyClDecl GhcPs)
mkFamDecl loc info lhs ksig injAnn
= do { (tc, tparams, fixity, ann) <- checkTyClHdr False lhs
; mapM_ (\a -> a loc) ann -- Add any API Annotations to the top SrcSpan
; tyvars <- checkTyVarsP (ppr info) equals_or_where tc tparams
; return (L loc (FamDecl (FamilyDecl{ fdInfo = info, fdLName = tc
, fdTyVars = tyvars
, fdFixity = fixity
, fdResultSig = ksig
, fdInjectivityAnn = injAnn }))) }
where
equals_or_where = case info of
DataFamily -> empty
OpenTypeFamily -> empty
ClosedTypeFamily {} -> whereDots
mkSpliceDecl :: LHsExpr GhcPs -> HsDecl GhcPs
-- If the user wrote
-- [pads| ... ] then return a QuasiQuoteD
-- $(e) then return a SpliceD
-- but if she wrote, say,
-- f x then behave as if she'd written $(f x)
-- ie a SpliceD
--
-- Typed splices are not allowed at the top level, thus we do not represent them
-- as spliced declaration. See #10945
mkSpliceDecl lexpr@(L loc expr)
| HsSpliceE _ splice@(HsUntypedSplice {}) <- expr
= SpliceD (SpliceDecl (L loc splice) ExplicitSplice)
| HsSpliceE _ splice@(HsQuasiQuote {}) <- expr
= SpliceD (SpliceDecl (L loc splice) ExplicitSplice)
| otherwise
= SpliceD (SpliceDecl (L loc (mkUntypedSplice NoParens lexpr)) ImplicitSplice)
mkRoleAnnotDecl :: SrcSpan
-> Located RdrName -- type being annotated
-> [Located (Maybe FastString)] -- roles
-> P (LRoleAnnotDecl GhcPs)
mkRoleAnnotDecl loc tycon roles
= do { roles' <- mapM parse_role roles
; return $ L loc $ RoleAnnotDecl tycon roles' }
where
role_data_type = dataTypeOf (undefined :: Role)
all_roles = map fromConstr $ dataTypeConstrs role_data_type
possible_roles = [(fsFromRole role, role) | role <- all_roles]
parse_role (L loc_role Nothing) = return $ L loc_role Nothing
parse_role (L loc_role (Just role))
= case lookup role possible_roles of
Just found_role -> return $ L loc_role $ Just found_role
Nothing ->
let nearby = fuzzyLookup (unpackFS role) (mapFst unpackFS possible_roles) in
parseErrorSDoc loc_role
(text "Illegal role name" <+> quotes (ppr role) $$
suggestions nearby)
suggestions [] = empty
suggestions [r] = text "Perhaps you meant" <+> quotes (ppr r)
-- will this last case ever happen??
suggestions list = hang (text "Perhaps you meant one of these:")
2 (pprWithCommas (quotes . ppr) list)
{- **********************************************************************
#cvBinds-etc# Converting to @HsBinds@, etc.
********************************************************************* -}
-- | Function definitions are restructured here. Each is assumed to be recursive
-- initially, and non recursive definitions are discovered by the dependency
-- analyser.
-- | Groups together bindings for a single function
cvTopDecls :: OrdList (LHsDecl GhcPs) -> [LHsDecl GhcPs]
cvTopDecls decls = go (fromOL decls)
where
go :: [LHsDecl GhcPs] -> [LHsDecl GhcPs]
go [] = []
go (L l (ValD b) : ds) = L l' (ValD b') : go ds'
where (L l' b', ds') = getMonoBind (L l b) ds
go (d : ds) = d : go ds
-- Declaration list may only contain value bindings and signatures.
cvBindGroup :: OrdList (LHsDecl GhcPs) -> P (HsValBinds GhcPs)
cvBindGroup binding
= do { (mbs, sigs, fam_ds, tfam_insts, dfam_insts, _) <- cvBindsAndSigs binding
; ASSERT( null fam_ds && null tfam_insts && null dfam_insts)
return $ ValBinds noExt mbs sigs }
cvBindsAndSigs :: OrdList (LHsDecl GhcPs)
-> P (LHsBinds GhcPs, [LSig GhcPs], [LFamilyDecl GhcPs]
, [LTyFamInstDecl GhcPs], [LDataFamInstDecl GhcPs], [LDocDecl])
-- Input decls contain just value bindings and signatures
-- and in case of class or instance declarations also
-- associated type declarations. They might also contain Haddock comments.
cvBindsAndSigs fb = go (fromOL fb)
where
go [] = return (emptyBag, [], [], [], [], [])
go (L l (ValD b) : ds)
= do { (bs, ss, ts, tfis, dfis, docs) <- go ds'
; return (b' `consBag` bs, ss, ts, tfis, dfis, docs) }
where
(b', ds') = getMonoBind (L l b) ds
go (L l decl : ds)
= do { (bs, ss, ts, tfis, dfis, docs) <- go ds
; case decl of
SigD s
-> return (bs, L l s : ss, ts, tfis, dfis, docs)
TyClD (FamDecl t)
-> return (bs, ss, L l t : ts, tfis, dfis, docs)
InstD (TyFamInstD { tfid_inst = tfi })
-> return (bs, ss, ts, L l tfi : tfis, dfis, docs)
InstD (DataFamInstD { dfid_inst = dfi })
-> return (bs, ss, ts, tfis, L l dfi : dfis, docs)
DocD d
-> return (bs, ss, ts, tfis, dfis, L l d : docs)
SpliceD d
-> parseErrorSDoc l $
hang (text "Declaration splices are allowed only" <+>
text "at the top level:")
2 (ppr d)
_ -> pprPanic "cvBindsAndSigs" (ppr decl) }
-----------------------------------------------------------------------------
-- Group function bindings into equation groups
getMonoBind :: LHsBind GhcPs -> [LHsDecl GhcPs]
-> (LHsBind GhcPs, [LHsDecl GhcPs])
-- Suppose (b',ds') = getMonoBind b ds
-- ds is a list of parsed bindings
-- b is a MonoBinds that has just been read off the front
-- Then b' is the result of grouping more equations from ds that
-- belong with b into a single MonoBinds, and ds' is the depleted
-- list of parsed bindings.
--
-- All Haddock comments between equations inside the group are
-- discarded.
--
-- No AndMonoBinds or EmptyMonoBinds here; just single equations
getMonoBind (L loc1 (FunBind { fun_id = fun_id1@(L _ f1),
fun_matches
= MG { mg_alts = L _ mtchs1 } })) binds
| has_args mtchs1
= go mtchs1 loc1 binds []
where
go mtchs loc
(L loc2 (ValD (FunBind { fun_id = L _ f2,
fun_matches
= MG { mg_alts = L _ mtchs2 } })) : binds) _
| f1 == f2 = go (mtchs2 ++ mtchs)
(combineSrcSpans loc loc2) binds []
go mtchs loc (doc_decl@(L loc2 (DocD _)) : binds) doc_decls
= let doc_decls' = doc_decl : doc_decls
in go mtchs (combineSrcSpans loc loc2) binds doc_decls'
go mtchs loc binds doc_decls
= ( L loc (makeFunBind fun_id1 (reverse mtchs))
, (reverse doc_decls) ++ binds)
-- Reverse the final matches, to get it back in the right order
-- Do the same thing with the trailing doc comments
getMonoBind bind binds = (bind, binds)
has_args :: [LMatch GhcPs (LHsExpr GhcPs)] -> Bool
has_args [] = panic "RdrHsSyn:has_args"
has_args ((L _ (Match { m_pats = args })) : _) = not (null args)
-- Don't group together FunBinds if they have
-- no arguments. This is necessary now that variable bindings
-- with no arguments are now treated as FunBinds rather
-- than pattern bindings (tests/rename/should_fail/rnfail002).
{- **********************************************************************
#PrefixToHS-utils# Utilities for conversion
********************************************************************* -}
{- Note [Parsing data constructors is hard]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We parse the RHS of the constructor declaration
data T = C t1 t2
as a btype_no_ops (treating C as a type constructor) and then convert C to be
a data constructor. Reason: it might continue like this:
data T = C t1 t2 :% D Int
in which case C really /would/ be a type constructor. We can't resolve this
ambiguity till we come across the constructor oprerator :% (or not, more usually)
So the plan is:
* Parse the data constructor declration as a type (actually btype_no_ops)
* Use 'splitCon' to rejig it into the data constructor, the args, and possibly
extract a docstring for the constructor
* In doing so, we use 'tyConToDataCon' to convert the RdrName for
the data con, which has been parsed as a tycon, back to a datacon.
This is more than just adjusting the name space; for operators we
need to check that it begins with a colon. E.g.
data T = (+++)
will parse ok (since tycons can be operators), but we should reject
it (Trac #12051).
-}
splitCon :: LHsType GhcPs
-> P ( Located RdrName -- constructor name
, HsConDeclDetails GhcPs -- constructor field information
, Maybe LHsDocString -- docstring to go on the constructor
)
-- See Note [Parsing data constructors is hard]
-- This gets given a "type" that should look like
-- C Int Bool
-- or C { x::Int, y::Bool }
-- and returns the pieces
splitCon ty
= split apps' []
where
-- This is used somewhere where HsAppsTy is not used
unrollApps (L _ (HsAppTy _ t u)) = u : unrollApps t
unrollApps t = [t]
apps = unrollApps ty
oneDoc = [ () | L _ (HsDocTy{}) <- apps ] `lengthIs` 1
-- the trailing doc, if any, can be extracted first
(apps', trailing_doc)
= case apps of
L _ (HsDocTy _ t ds) : ts | oneDoc -> (t : ts, Just ds)
ts -> (ts, Nothing)
-- A comment on the constructor is handled a bit differently - it doesn't
-- remain an 'HsDocTy', but gets lifted out and returned as the third
-- element of the tuple.
split [ L _ (HsDocTy _ con con_doc) ] ts = do
(data_con, con_details, con_doc') <- split [con] ts
return (data_con, con_details, con_doc' `mplus` Just con_doc)
split [ L l (HsTyVar _ _ (L _ tc)) ] ts = do
data_con <- tyConToDataCon l tc
return (data_con, mk_rest ts, trailing_doc)
split [ L l (HsTupleTy _ HsBoxedOrConstraintTuple ts) ] []
= return ( L l (getRdrName (tupleDataCon Boxed (length ts)))
, PrefixCon ts
, trailing_doc
)
split [ L l _ ] _ = parseErrorSDoc l (text msg <+> ppr ty)
where msg = "Cannot parse data constructor in a data/newtype declaration:"
split (u : us) ts = split us (u : ts)
split _ _ = panic "RdrHsSyn:splitCon"
mk_rest [L _ (HsDocTy _ t@(L _ HsRecTy{}) _)] = mk_rest [t]
mk_rest [L l (HsRecTy _ flds)] = RecCon (L l flds)
mk_rest ts = PrefixCon ts
tyConToDataCon :: SrcSpan -> RdrName -> P (Located RdrName)
-- See Note [Parsing data constructors is hard]
-- Data constructor RHSs are parsed as types
tyConToDataCon loc tc
| isTcOcc occ
, isLexCon (occNameFS occ)
= return (L loc (setRdrNameSpace tc srcDataName))
| otherwise
= parseErrorSDoc loc (msg $$ extra)
where
occ = rdrNameOcc tc
msg = text "Not a data constructor:" <+> quotes (ppr tc)
extra | tc == forall_tv_RDR
= text "Perhaps you intended to use ExistentialQuantification"
| otherwise = empty
-- | Split a type to extract the trailing doc string (if there is one) from a
-- type produced by the 'btype_no_ops' production.
splitDocTy :: LHsType GhcPs -> (LHsType GhcPs, Maybe LHsDocString)
splitDocTy (L l (HsAppTy x t1 t2)) = (L l (HsAppTy x t1 t2'), ds)
where ~(t2', ds) = splitDocTy t2
splitDocTy (L _ (HsDocTy _ ty ds)) = (ty, Just ds)
splitDocTy ty = (ty, Nothing)
-- | Given a type that is a field to an infix data constructor, try to split
-- off a trailing docstring on the type, and check that there are no other
-- docstrings.
checkInfixConstr :: LHsType GhcPs -> P (LHsType GhcPs, Maybe LHsDocString)
checkInfixConstr ty = checkNoDocs msg ty' *> pure (ty', doc_string)
where (ty', doc_string) = splitDocTy ty
msg = text "infix constructor field"
mkPatSynMatchGroup :: Located RdrName
-> Located (OrdList (LHsDecl GhcPs))
-> P (MatchGroup GhcPs (LHsExpr GhcPs))
mkPatSynMatchGroup (L loc patsyn_name) (L _ decls) =
do { matches <- mapM fromDecl (fromOL decls)
; when (null matches) (wrongNumberErr loc)
; return $ mkMatchGroup FromSource matches }
where
fromDecl (L loc decl@(ValD (PatBind pat@(L _ (ConPatIn ln@(L _ name) details)) rhs _ _ _))) =
do { unless (name == patsyn_name) $
wrongNameBindingErr loc decl
; match <- case details of
PrefixCon pats -> return $ Match { m_ctxt = ctxt, m_pats = pats
, m_grhss = rhs }
where
ctxt = FunRhs { mc_fun = ln, mc_fixity = Prefix, mc_strictness = NoSrcStrict }
InfixCon p1 p2 -> return $ Match { m_ctxt = ctxt, m_pats = [p1, p2]
, m_grhss = rhs }
where
ctxt = FunRhs { mc_fun = ln, mc_fixity = Infix, mc_strictness = NoSrcStrict }
RecCon{} -> recordPatSynErr loc pat
; return $ L loc match }
fromDecl (L loc decl) = extraDeclErr loc decl
extraDeclErr loc decl =
parseErrorSDoc loc $
text "pattern synonym 'where' clause must contain a single binding:" $$
ppr decl
wrongNameBindingErr loc decl =
parseErrorSDoc loc $
text "pattern synonym 'where' clause must bind the pattern synonym's name" <+>
quotes (ppr patsyn_name) $$ ppr decl
wrongNumberErr loc =
parseErrorSDoc loc $
text "pattern synonym 'where' clause cannot be empty" $$
text "In the pattern synonym declaration for: " <+> ppr (patsyn_name)
recordPatSynErr :: SrcSpan -> LPat GhcPs -> P a
recordPatSynErr loc pat =
parseErrorSDoc loc $
text "record syntax not supported for pattern synonym declarations:" $$
ppr pat
mkConDeclH98 :: Located RdrName -> Maybe [LHsTyVarBndr GhcPs]
-> Maybe (LHsContext GhcPs) -> HsConDeclDetails GhcPs
-> ConDecl GhcPs
mkConDeclH98 name mb_forall mb_cxt args
= ConDeclH98 { con_name = name
, con_forall = isJust mb_forall
, con_ex_tvs = mb_forall `orElse` []
, con_mb_cxt = mb_cxt
, con_args = args
, con_doc = Nothing }
mkGadtDecl :: [Located RdrName]
-> LHsType GhcPs -- Always a HsForAllTy
-> ConDecl GhcPs
mkGadtDecl names ty
= ConDeclGADT { con_names = names
, con_forall = isLHsForAllTy ty
, con_qvars = mkHsQTvs tvs
, con_mb_cxt = mcxt
, con_args = args
, con_res_ty = res_ty
, con_doc = Nothing }
where
(tvs, rho) = splitLHsForAllTy ty
(mcxt, tau) = split_rho rho
split_rho (L _ (HsQualTy { hst_ctxt = cxt, hst_body = tau }))
= (Just cxt, tau)
split_rho (L _ (HsParTy _ ty)) = split_rho ty
split_rho tau = (Nothing, tau)
(args, res_ty) = split_tau tau
-- See Note [GADT abstract syntax] in HsDecls
split_tau (L _ (HsFunTy _ (L loc (HsRecTy _ rf)) res_ty))
= (RecCon (L loc rf), res_ty)
split_tau (L _ (HsParTy _ ty)) = split_tau ty
split_tau tau = (PrefixCon [], tau)
setRdrNameSpace :: RdrName -> NameSpace -> RdrName
-- ^ This rather gruesome function is used mainly by the parser.
-- When parsing:
--
-- > data T a = T | T1 Int
--
-- we parse the data constructors as /types/ because of parser ambiguities,
-- so then we need to change the /type constr/ to a /data constr/
--
-- The exact-name case /can/ occur when parsing:
--
-- > data [] a = [] | a : [a]
--
-- For the exact-name case we return an original name.
setRdrNameSpace (Unqual occ) ns = Unqual (setOccNameSpace ns occ)
setRdrNameSpace (Qual m occ) ns = Qual m (setOccNameSpace ns occ)
setRdrNameSpace (Orig m occ) ns = Orig m (setOccNameSpace ns occ)
setRdrNameSpace (Exact n) ns
| Just thing <- wiredInNameTyThing_maybe n
= setWiredInNameSpace thing ns
-- Preserve Exact Names for wired-in things,
-- notably tuples and lists
| isExternalName n
= Orig (nameModule n) occ
| otherwise -- This can happen when quoting and then
-- splicing a fixity declaration for a type
= Exact (mkSystemNameAt (nameUnique n) occ (nameSrcSpan n))
where
occ = setOccNameSpace ns (nameOccName n)
setWiredInNameSpace :: TyThing -> NameSpace -> RdrName
setWiredInNameSpace (ATyCon tc) ns
| isDataConNameSpace ns
= ty_con_data_con tc
| isTcClsNameSpace ns
= Exact (getName tc) -- No-op
setWiredInNameSpace (AConLike (RealDataCon dc)) ns
| isTcClsNameSpace ns
= data_con_ty_con dc
| isDataConNameSpace ns
= Exact (getName dc) -- No-op
setWiredInNameSpace thing ns
= pprPanic "setWiredinNameSpace" (pprNameSpace ns <+> ppr thing)
ty_con_data_con :: TyCon -> RdrName
ty_con_data_con tc
| isTupleTyCon tc
, Just dc <- tyConSingleDataCon_maybe tc
= Exact (getName dc)
| tc `hasKey` listTyConKey
= Exact nilDataConName
| otherwise -- See Note [setRdrNameSpace for wired-in names]
= Unqual (setOccNameSpace srcDataName (getOccName tc))
data_con_ty_con :: DataCon -> RdrName
data_con_ty_con dc
| let tc = dataConTyCon dc
, isTupleTyCon tc
= Exact (getName tc)
| dc `hasKey` nilDataConKey
= Exact listTyConName
| otherwise -- See Note [setRdrNameSpace for wired-in names]
= Unqual (setOccNameSpace tcClsName (getOccName dc))
{- Note [setRdrNameSpace for wired-in names]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In GHC.Types, which declares (:), we have
infixr 5 :
The ambiguity about which ":" is meant is resolved by parsing it as a
data constructor, but then using dataTcOccs to try the type constructor too;
and that in turn calls setRdrNameSpace to change the name-space of ":" to
tcClsName. There isn't a corresponding ":" type constructor, but it's painful
to make setRdrNameSpace partial, so we just make an Unqual name instead. It
really doesn't matter!
-}
checkTyVarsP :: SDoc -> SDoc -> Located RdrName -> [LHsType GhcPs]
-> P (LHsQTyVars GhcPs)
-- Same as checkTyVars, but in the P monad
checkTyVarsP pp_what equals_or_where tc tparms
= eitherToP $ checkTyVars pp_what equals_or_where tc tparms
eitherToP :: Either (SrcSpan, SDoc) a -> P a
-- Adapts the Either monad to the P monad
eitherToP (Left (loc, doc)) = parseErrorSDoc loc doc
eitherToP (Right thing) = return thing
checkTyVars :: SDoc -> SDoc -> Located RdrName -> [LHsType GhcPs]
-> Either (SrcSpan, SDoc) (LHsQTyVars GhcPs)
-- Check whether the given list of type parameters are all type variables
-- (possibly with a kind signature)
-- We use the Either monad because it's also called (via mkATDefault) from
-- Convert.hs
checkTyVars pp_what equals_or_where tc tparms
= do { tvs <- mapM chk tparms
; return (mkHsQTvs tvs) }
where
chk (L _ (HsParTy _ ty)) = chk ty
-- Check that the name space is correct!
chk (L l (HsKindSig _ (L lv (HsTyVar _ _ (L _ tv))) k))
| isRdrTyVar tv = return (L l (KindedTyVar PlaceHolder (L lv tv) k))
chk (L l (HsTyVar _ _ (L ltv tv)))
| isRdrTyVar tv = return (L l (UserTyVar PlaceHolder (L ltv tv)))
chk t@(L loc _)
= Left (loc,
vcat [ text "Unexpected type" <+> quotes (ppr t)
, text "In the" <+> pp_what <+> ptext (sLit "declaration for") <+> quotes (ppr tc)
, vcat[ (text "A" <+> pp_what <+> ptext (sLit "declaration should have form"))
, nest 2 (pp_what <+> ppr tc
<+> hsep (map text (takeList tparms allNameStrings))
<+> equals_or_where) ] ])
whereDots, equalsDots :: SDoc
-- Second argument to checkTyVars
whereDots = text "where ..."
equalsDots = text "= ..."
checkDatatypeContext :: Maybe (LHsContext GhcPs) -> P ()
checkDatatypeContext Nothing = return ()
checkDatatypeContext (Just (L loc c))
= do allowed <- extension datatypeContextsEnabled
unless allowed $
parseErrorSDoc loc
(text "Illegal datatype context (use DatatypeContexts):" <+>
pprHsContext c)
checkRecordSyntax :: Outputable a => Located a -> P (Located a)
checkRecordSyntax lr@(L loc r)
= do allowed <- extension traditionalRecordSyntaxEnabled
if allowed
then return lr
else parseErrorSDoc loc
(text "Illegal record syntax (use TraditionalRecordSyntax):" <+>
ppr r)
-- | Check if the gadt_constrlist is empty. Only raise parse error for
-- `data T where` to avoid affecting existing error message, see #8258.
checkEmptyGADTs :: Located ([AddAnn], [LConDecl GhcPs])
-> P (Located ([AddAnn], [LConDecl GhcPs]))
checkEmptyGADTs gadts@(L span (_, [])) -- Empty GADT declaration.
= do opts <- fmap options getPState
if LangExt.GADTSyntax `extopt` opts -- GADTs implies GADTSyntax
then return gadts
else parseErrorSDoc span $ vcat
[ text "Illegal keyword 'where' in data declaration"
, text "Perhaps you intended to use GADTs or a similar language"
, text "extension to enable syntax: data T where"
]
checkEmptyGADTs gadts = return gadts -- Ordinary GADT declaration.
checkTyClHdr :: Bool -- True <=> class header
-- False <=> type header
-> LHsType GhcPs
-> P (Located RdrName, -- the head symbol (type or class name)
[LHsType GhcPs], -- parameters of head symbol
LexicalFixity, -- the declaration is in infix format
[AddAnn]) -- API Annotation for HsParTy when stripping parens
-- Well-formedness check and decomposition of type and class heads.
-- Decomposes T ty1 .. tyn into (T, [ty1, ..., tyn])
-- Int :*: Bool into (:*:, [Int, Bool])
-- returning the pieces
checkTyClHdr is_cls ty
= goL ty [] [] Prefix
where
goL (L l ty) acc ann fix = go l ty acc ann fix
go l (HsTyVar _ _ (L _ tc)) acc ann fix
| isRdrTc tc = return (L l tc, acc, fix, ann)
go _ (HsOpTy _ t1 ltc@(L _ tc) t2) acc ann _fix
| isRdrTc tc = return (ltc, t1:t2:acc, Infix, ann)
go l (HsParTy _ ty) acc ann fix = goL ty acc (ann ++mkParensApiAnn l) fix
go _ (HsAppTy _ t1 t2) acc ann fix = goL t1 (t2:acc) ann fix
go _ (HsAppsTy _ ts) acc ann _fix
| Just (head, args, fixity) <- getAppsTyHead_maybe ts
= goL head (args ++ acc) ann fixity
go _ (HsAppsTy _ [L _ (HsAppInfix _ (L loc star))]) [] ann fix
| isStar star
= return (L loc (nameRdrName starKindTyConName), [], fix, ann)
| isUniStar star
= return (L loc (nameRdrName unicodeStarKindTyConName), [], fix, ann)
go l (HsTupleTy _ HsBoxedOrConstraintTuple ts) [] ann fix
= return (L l (nameRdrName tup_name), ts, fix, ann)
where
arity = length ts
tup_name | is_cls = cTupleTyConName arity
| otherwise = getName (tupleTyCon Boxed arity)
-- See Note [Unit tuples] in HsTypes (TODO: is this still relevant?)
go l _ _ _ _
= parseErrorSDoc l (text "Malformed head of type or class declaration:"
<+> ppr ty)
-- | Yield a parse error if we have a function applied directly to a do block
-- etc. and BlockArguments is not enabled.
checkBlockArguments :: LHsExpr GhcPs -> P ()
checkBlockArguments expr = case unLoc expr of
HsDo _ DoExpr _ -> check "do block"
HsDo _ MDoExpr _ -> check "mdo block"
HsLam {} -> check "lambda expression"
HsCase {} -> check "case expression"
HsLamCase {} -> check "lambda-case expression"
HsLet {} -> check "let expression"
HsIf {} -> check "if expression"
HsProc {} -> check "proc expression"
_ -> return ()
where
check element = do
pState <- getPState
unless (extopt LangExt.BlockArguments (options pState)) $
parseErrorSDoc (getLoc expr) $
text "Unexpected " <> text element <> text " in function application:"
$$ nest 4 (ppr expr)
$$ text "You could write it with parentheses"
$$ text "Or perhaps you meant to enable BlockArguments?"
-- | Validate the context constraints and break up a context into a list
-- of predicates.
--
-- @
-- (Eq a, Ord b) --> [Eq a, Ord b]
-- Eq a --> [Eq a]
-- (Eq a) --> [Eq a]
-- (((Eq a))) --> [Eq a]
-- @
checkContext :: LHsType GhcPs -> P ([AddAnn],LHsContext GhcPs)
checkContext (L l orig_t)
= check [] (L l orig_t)
where
check anns (L lp (HsTupleTy _ HsBoxedOrConstraintTuple ts))
-- (Eq a, Ord b) shows up as a tuple type. Only boxed tuples can
-- be used as context constraints.
= return (anns ++ mkParensApiAnn lp,L l ts) -- Ditto ()
-- don't let HsAppsTy get in the way
check anns (L _ (HsAppsTy _ [L _ (HsAppPrefix _ ty)]))
= check anns ty
check anns (L lp1 (HsParTy _ ty))
-- to be sure HsParTy doesn't get into the way
= check anns' ty
where anns' = if l == lp1 then anns
else (anns ++ mkParensApiAnn lp1)
-- no need for anns, returning original
check _anns t = checkNoDocs msg t *> return ([],L l [L l orig_t])
msg = text "data constructor context"
-- | Check recursively if there are any 'HsDocTy's in the given type.
-- This only works on a subset of types produced by 'btype_no_ops'
checkNoDocs :: SDoc -> LHsType GhcPs -> P ()
checkNoDocs msg ty = go ty
where
go (L _ (HsAppTy _ t1 t2)) = go t1 *> go t2
go (L l (HsDocTy _ t ds)) = parseErrorSDoc l $ hsep
[ text "Unexpected haddock", quotes (ppr ds)
, text "on", msg, quotes (ppr t) ]
go _ = pure ()
-- -------------------------------------------------------------------------
-- Checking Patterns.
-- We parse patterns as expressions and check for valid patterns below,
-- converting the expression into a pattern at the same time.
checkPattern :: SDoc -> LHsExpr GhcPs -> P (LPat GhcPs)
checkPattern msg e = checkLPat msg e
checkPatterns :: SDoc -> [LHsExpr GhcPs] -> P [LPat GhcPs]
checkPatterns msg es = mapM (checkPattern msg) es
checkLPat :: SDoc -> LHsExpr GhcPs -> P (LPat GhcPs)
checkLPat msg e@(L l _) = checkPat msg l e []
checkPat :: SDoc -> SrcSpan -> LHsExpr GhcPs -> [LPat GhcPs]
-> P (LPat GhcPs)
checkPat _ loc (L l e@(HsVar _ (L _ c))) args
| isRdrDataCon c = return (L loc (ConPatIn (L l c) (PrefixCon args)))
| not (null args) && patIsRec c =
patFail (text "Perhaps you intended to use RecursiveDo") l e
checkPat msg loc e args -- OK to let this happen even if bang-patterns
-- are not enabled, because there is no valid
-- non-bang-pattern parse of (C ! e)
| Just (e', args') <- splitBang e
= do { args'' <- checkPatterns msg args'
; checkPat msg loc e' (args'' ++ args) }
checkPat msg loc (L _ (HsApp _ f e)) args
= do p <- checkLPat msg e
checkPat msg loc f (p : args)
checkPat msg loc (L _ e) []
= do p <- checkAPat msg loc e
return (L loc p)
checkPat msg loc e _
= patFail msg loc (unLoc e)
checkAPat :: SDoc -> SrcSpan -> HsExpr GhcPs -> P (Pat GhcPs)
checkAPat msg loc e0 = do
pState <- getPState
let opts = options pState
case e0 of
EWildPat _ -> return (WildPat noExt)
HsVar _ x -> return (VarPat noExt x)
HsLit _ (HsStringPrim _ _) -- (#13260)
-> parseErrorSDoc loc (text "Illegal unboxed string literal in pattern:" $$ ppr e0)
HsLit _ l -> return (LitPat noExt l)
-- Overloaded numeric patterns (e.g. f 0 x = x)
-- Negation is recorded separately, so that the literal is zero or +ve
-- NB. Negative *primitive* literals are already handled by the lexer
HsOverLit _ pos_lit -> return (mkNPat (L loc pos_lit) Nothing)
NegApp _ (L l (HsOverLit _ pos_lit)) _
-> return (mkNPat (L l pos_lit) (Just noSyntaxExpr))
SectionR _ (L lb (HsVar _ (L _ bang))) e -- (! x)
| bang == bang_RDR
-> do { hintBangPat loc e0
; e' <- checkLPat msg e
; addAnnotation loc AnnBang lb
; return (BangPat noExt e') }
ELazyPat _ e -> checkLPat msg e >>= (return . (LazyPat noExt))
EAsPat _ n e -> checkLPat msg e >>= (return . (AsPat noExt) n)
-- view pattern is well-formed if the pattern is
EViewPat _ expr patE -> checkLPat msg patE >>=
(return . (\p -> ViewPat noExt expr p))
ExprWithTySig t e -> do e <- checkLPat msg e
return (SigPat t e)
-- n+k patterns
OpApp _ (L nloc (HsVar _ (L _ n))) (L _ (HsVar _ (L _ plus)))
(L lloc (HsOverLit _ lit@(OverLit {ol_val = HsIntegral {}})))
| extopt LangExt.NPlusKPatterns opts && (plus == plus_RDR)
-> return (mkNPlusKPat (L nloc n) (L lloc lit))
OpApp _ l (L cl (HsVar _ (L _ c))) r
| isDataOcc (rdrNameOcc c) -> do
l <- checkLPat msg l
r <- checkLPat msg r
return (ConPatIn (L cl c) (InfixCon l r))
OpApp {} -> patFail msg loc e0
HsPar _ e -> checkLPat msg e >>= (return . (ParPat noExt))
ExplicitList _ _ es -> do ps <- mapM (checkLPat msg) es
return (ListPat noExt ps placeHolderType Nothing)
ExplicitPArr _ es -> do ps <- mapM (checkLPat msg) es
return (PArrPat noExt ps)
ExplicitTuple _ es b
| all tupArgPresent es -> do ps <- mapM (checkLPat msg)
[e | L _ (Present _ e) <- es]
return (TuplePat noExt ps b)
| otherwise -> parseErrorSDoc loc (text "Illegal tuple section in pattern:" $$ ppr e0)
ExplicitSum _ alt arity expr -> do
p <- checkLPat msg expr
return (SumPat noExt p alt arity)
RecordCon { rcon_con_name = c, rcon_flds = HsRecFields fs dd }
-> do fs <- mapM (checkPatField msg) fs
return (ConPatIn c (RecCon (HsRecFields fs dd)))
HsSpliceE _ s | not (isTypedSplice s)
-> return (SplicePat noExt s)
_ -> patFail msg loc e0
placeHolderPunRhs :: LHsExpr GhcPs
-- The RHS of a punned record field will be filled in by the renamer
-- It's better not to make it an error, in case we want to print it when debugging
placeHolderPunRhs = noLoc (HsVar noExt (noLoc pun_RDR))
plus_RDR, bang_RDR, pun_RDR :: RdrName
plus_RDR = mkUnqual varName (fsLit "+") -- Hack
bang_RDR = mkUnqual varName (fsLit "!") -- Hack
pun_RDR = mkUnqual varName (fsLit "pun-right-hand-side")
checkPatField :: SDoc -> LHsRecField GhcPs (LHsExpr GhcPs)
-> P (LHsRecField GhcPs (LPat GhcPs))
checkPatField msg (L l fld) = do p <- checkLPat msg (hsRecFieldArg fld)
return (L l (fld { hsRecFieldArg = p }))
patFail :: SDoc -> SrcSpan -> HsExpr GhcPs -> P a
patFail msg loc e = parseErrorSDoc loc err
where err = text "Parse error in pattern:" <+> ppr e
$$ msg
patIsRec :: RdrName -> Bool
patIsRec e = e == mkUnqual varName (fsLit "rec")
---------------------------------------------------------------------------
-- Check Equation Syntax
checkValDef :: SDoc
-> SrcStrictness
-> LHsExpr GhcPs
-> Maybe (LHsType GhcPs)
-> Located (a,GRHSs GhcPs (LHsExpr GhcPs))
-> P ([AddAnn],HsBind GhcPs)
checkValDef msg _strictness lhs (Just sig) grhss
-- x :: ty = rhs parses as a *pattern* binding
= checkPatBind msg (L (combineLocs lhs sig)
(ExprWithTySig (mkLHsSigWcType sig) lhs)) grhss
checkValDef msg strictness lhs Nothing g@(L l (_,grhss))
= do { mb_fun <- isFunLhs lhs
; case mb_fun of
Just (fun, is_infix, pats, ann) ->
checkFunBind msg strictness ann (getLoc lhs)
fun is_infix pats (L l grhss)
Nothing -> checkPatBind msg lhs g }
checkFunBind :: SDoc
-> SrcStrictness
-> [AddAnn]
-> SrcSpan
-> Located RdrName
-> LexicalFixity
-> [LHsExpr GhcPs]
-> Located (GRHSs GhcPs (LHsExpr GhcPs))
-> P ([AddAnn],HsBind GhcPs)
checkFunBind msg strictness ann lhs_loc fun is_infix pats (L rhs_span grhss)
= do ps <- checkPatterns msg pats
let match_span = combineSrcSpans lhs_loc rhs_span
-- Add back the annotations stripped from any HsPar values in the lhs
-- mapM_ (\a -> a match_span) ann
return (ann, makeFunBind fun
[L match_span (Match { m_ctxt = FunRhs { mc_fun = fun
, mc_fixity = is_infix
, mc_strictness = strictness }
, m_pats = ps
, m_grhss = grhss })])
-- The span of the match covers the entire equation.
-- That isn't quite right, but it'll do for now.
makeFunBind :: Located RdrName -> [LMatch GhcPs (LHsExpr GhcPs)]
-> HsBind GhcPs
-- Like HsUtils.mkFunBind, but we need to be able to set the fixity too
makeFunBind fn ms
= FunBind { fun_id = fn,
fun_matches = mkMatchGroup FromSource ms,
fun_co_fn = idHsWrapper,
bind_fvs = placeHolderNames,
fun_tick = [] }
checkPatBind :: SDoc
-> LHsExpr GhcPs
-> Located (a,GRHSs GhcPs (LHsExpr GhcPs))
-> P ([AddAnn],HsBind GhcPs)
checkPatBind msg lhs (L _ (_,grhss))
= do { lhs <- checkPattern msg lhs
; return ([],PatBind lhs grhss placeHolderType placeHolderNames
([],[])) }
checkValSigLhs :: LHsExpr GhcPs -> P (Located RdrName)
checkValSigLhs (L _ (HsVar _ lrdr@(L _ v)))
| isUnqual v
, not (isDataOcc (rdrNameOcc v))
= return lrdr
checkValSigLhs lhs@(L l _)
= parseErrorSDoc l ((text "Invalid type signature:" <+>
ppr lhs <+> text ":: ...")
$$ text hint)
where
hint | foreign_RDR `looks_like` lhs
= "Perhaps you meant to use ForeignFunctionInterface?"
| default_RDR `looks_like` lhs
= "Perhaps you meant to use DefaultSignatures?"
| pattern_RDR `looks_like` lhs
= "Perhaps you meant to use PatternSynonyms?"
| otherwise
= "Should be of form <variable> :: <type>"
-- A common error is to forget the ForeignFunctionInterface flag
-- so check for that, and suggest. cf Trac #3805
-- Sadly 'foreign import' still barfs 'parse error' because 'import' is a keyword
looks_like s (L _ (HsVar _ (L _ v))) = v == s
looks_like s (L _ (HsApp _ lhs _)) = looks_like s lhs
looks_like _ _ = False
foreign_RDR = mkUnqual varName (fsLit "foreign")
default_RDR = mkUnqual varName (fsLit "default")
pattern_RDR = mkUnqual varName (fsLit "pattern")
checkDoAndIfThenElse :: LHsExpr GhcPs
-> Bool
-> LHsExpr GhcPs
-> Bool
-> LHsExpr GhcPs
-> P ()
checkDoAndIfThenElse guardExpr semiThen thenExpr semiElse elseExpr
| semiThen || semiElse
= do pState <- getPState
unless (extopt LangExt.DoAndIfThenElse (options pState)) $ do
parseErrorSDoc (combineLocs guardExpr elseExpr)
(text "Unexpected semi-colons in conditional:"
$$ nest 4 expr
$$ text "Perhaps you meant to use DoAndIfThenElse?")
| otherwise = return ()
where pprOptSemi True = semi
pprOptSemi False = empty
expr = text "if" <+> ppr guardExpr <> pprOptSemi semiThen <+>
text "then" <+> ppr thenExpr <> pprOptSemi semiElse <+>
text "else" <+> ppr elseExpr
-- The parser left-associates, so there should
-- not be any OpApps inside the e's
splitBang :: LHsExpr GhcPs -> Maybe (LHsExpr GhcPs, [LHsExpr GhcPs])
-- Splits (f ! g a b) into (f, [(! g), a, b])
splitBang (L _ (OpApp _ l_arg bang@(L _ (HsVar _ (L _ op))) r_arg))
| op == bang_RDR = Just (l_arg, L l' (SectionR noExt bang arg1) : argns)
where
l' = combineLocs bang arg1
(arg1,argns) = split_bang r_arg []
split_bang (L _ (HsApp _ f e)) es = split_bang f (e:es)
split_bang e es = (e,es)
splitBang _ = Nothing
isFunLhs :: LHsExpr GhcPs
-> P (Maybe (Located RdrName, LexicalFixity, [LHsExpr GhcPs],[AddAnn]))
-- A variable binding is parsed as a FunBind.
-- Just (fun, is_infix, arg_pats) if e is a function LHS
--
-- The whole LHS is parsed as a single expression.
-- Any infix operators on the LHS will parse left-associatively
-- E.g. f !x y !z
-- will parse (rather strangely) as
-- (f ! x y) ! z
-- It's up to isFunLhs to sort out the mess
--
-- a .!. !b
isFunLhs e = go e [] []
where
go (L loc (HsVar _ (L _ f))) es ann
| not (isRdrDataCon f) = return (Just (L loc f, Prefix, es, ann))
go (L _ (HsApp _ f e)) es ann = go f (e:es) ann
go (L l (HsPar _ e)) es@(_:_) ann = go e es (ann ++ mkParensApiAnn l)
-- Things of the form `!x` are also FunBinds
-- See Note [FunBind vs PatBind]
go (L _ (SectionR _ (L _ (HsVar _ (L _ bang))) (L l (HsVar _ (L _ var)))))
[] ann
| bang == bang_RDR
, not (isRdrDataCon var) = return (Just (L l var, Prefix, [], ann))
-- For infix function defns, there should be only one infix *function*
-- (though there may be infix *datacons* involved too). So we don't
-- need fixity info to figure out which function is being defined.
-- a `K1` b `op` c `K2` d
-- must parse as
-- (a `K1` b) `op` (c `K2` d)
-- The renamer checks later that the precedences would yield such a parse.
--
-- There is a complication to deal with bang patterns.
--
-- ToDo: what about this?
-- x + 1 `op` y = ...
go e@(L loc (OpApp _ l (L loc' (HsVar _ (L _ op))) r)) es ann
| Just (e',es') <- splitBang e
= do { bang_on <- extension bangPatEnabled
; if bang_on then go e' (es' ++ es) ann
else return (Just (L loc' op, Infix, (l:r:es), ann)) }
-- No bangs; behave just like the next case
| not (isRdrDataCon op) -- We have found the function!
= return (Just (L loc' op, Infix, (l:r:es), ann))
| otherwise -- Infix data con; keep going
= do { mb_l <- go l es ann
; case mb_l of
Just (op', Infix, j : k : es', ann')
-> return (Just (op', Infix, j : op_app : es', ann'))
where
op_app = L loc (OpApp noExt k
(L loc' (HsVar noExt (L loc' op))) r)
_ -> return Nothing }
go _ _ _ = return Nothing
-- | Transform btype_no_ops with strict_mark's into HsEqTy's
-- (((~a) ~b) c) ~d ==> ((~a) ~ (b c)) ~ d
splitTilde :: LHsType GhcPs -> P (LHsType GhcPs)
splitTilde t = go t
where go (L loc (HsAppTy _ t1 t2))
| L lo (HsBangTy _ (HsSrcBang NoSourceText NoSrcUnpack SrcLazy) t2')
<- t2
= do
moveAnnotations lo loc
t1' <- go t1
return (L loc (HsEqTy noExt t1' t2'))
| otherwise
= do
t1' <- go t1
case t1' of
(L lo (HsEqTy _ tl tr)) -> do
let lr = combineLocs tr t2
moveAnnotations lo loc
return (L loc (HsEqTy noExt tl
(L lr (HsAppTy noExt tr t2))))
t -> do
return (L loc (HsAppTy noExt t t2))
go t = return t
-- | Transform tyapps with strict_marks into uses of twiddle
-- [~a, ~b, c, ~d] ==> (~a) ~ b c ~ d
splitTildeApps :: [LHsAppType GhcPs] -> P [LHsAppType GhcPs]
splitTildeApps [] = return []
splitTildeApps (t : rest) = do
rest' <- concatMapM go rest
return (t : rest')
where go (L l (HsAppPrefix _
(L loc (HsBangTy noExt
(HsSrcBang NoSourceText NoSrcUnpack SrcLazy)
ty))))
= addAnnotation l AnnTilde tilde_loc >>
return
[L tilde_loc (HsAppInfix noExt (L tilde_loc eqTyCon_RDR)),
L l (HsAppPrefix noExt ty)]
-- NOTE: no annotation is attached to an HsAppPrefix, so the
-- surrounding SrcSpan is not critical
where
tilde_loc = srcSpanFirstCharacter loc
go t = return [t]
---------------------------------------------------------------------------
-- Check for monad comprehensions
--
-- If the flag MonadComprehensions is set, return a `MonadComp' context,
-- otherwise use the usual `ListComp' context
checkMonadComp :: P (HsStmtContext Name)
checkMonadComp = do
pState <- getPState
return $ if extopt LangExt.MonadComprehensions (options pState)
then MonadComp
else ListComp
-- -------------------------------------------------------------------------
-- Checking arrow syntax.
-- We parse arrow syntax as expressions and check for valid syntax below,
-- converting the expression into a pattern at the same time.
checkCommand :: LHsExpr GhcPs -> P (LHsCmd GhcPs)
checkCommand lc = locMap checkCmd lc
locMap :: (SrcSpan -> a -> P b) -> Located a -> P (Located b)
locMap f (L l a) = f l a >>= (\b -> return $ L l b)
checkCmd :: SrcSpan -> HsExpr GhcPs -> P (HsCmd GhcPs)
checkCmd _ (HsArrApp _ e1 e2 haat b) =
return $ HsCmdArrApp noExt e1 e2 haat b
checkCmd _ (HsArrForm _ e mf args) =
return $ HsCmdArrForm noExt e Prefix mf args
checkCmd _ (HsApp _ e1 e2) =
checkCommand e1 >>= (\c -> return $ HsCmdApp noExt c e2)
checkCmd _ (HsLam _ mg) =
checkCmdMatchGroup mg >>= (\mg' -> return $ HsCmdLam noExt mg')
checkCmd _ (HsPar _ e) =
checkCommand e >>= (\c -> return $ HsCmdPar noExt c)
checkCmd _ (HsCase _ e mg) =
checkCmdMatchGroup mg >>= (\mg' -> return $ HsCmdCase noExt e mg')
checkCmd _ (HsIf _ cf ep et ee) = do
pt <- checkCommand et
pe <- checkCommand ee
return $ HsCmdIf noExt cf ep pt pe
checkCmd _ (HsLet _ lb e) =
checkCommand e >>= (\c -> return $ HsCmdLet noExt lb c)
checkCmd _ (HsDo _ DoExpr (L l stmts)) =
mapM checkCmdLStmt stmts >>=
(\ss -> return $ HsCmdDo noExt (L l ss) )
checkCmd _ (OpApp _ eLeft op eRight) = do
-- OpApp becomes a HsCmdArrForm with a (Just fixity) in it
c1 <- checkCommand eLeft
c2 <- checkCommand eRight
let arg1 = L (getLoc c1) $ HsCmdTop noExt c1
arg2 = L (getLoc c2) $ HsCmdTop noExt c2
return $ HsCmdArrForm noExt op Infix Nothing [arg1, arg2]
checkCmd l e = cmdFail l e
checkCmdLStmt :: ExprLStmt GhcPs -> P (CmdLStmt GhcPs)
checkCmdLStmt = locMap checkCmdStmt
checkCmdStmt :: SrcSpan -> ExprStmt GhcPs -> P (CmdStmt GhcPs)
checkCmdStmt _ (LastStmt e s r) =
checkCommand e >>= (\c -> return $ LastStmt c s r)
checkCmdStmt _ (BindStmt pat e b f t) =
checkCommand e >>= (\c -> return $ BindStmt pat c b f t)
checkCmdStmt _ (BodyStmt e t g ty) =
checkCommand e >>= (\c -> return $ BodyStmt c t g ty)
checkCmdStmt _ (LetStmt bnds) = return $ LetStmt bnds
checkCmdStmt _ stmt@(RecStmt { recS_stmts = stmts }) = do
ss <- mapM checkCmdLStmt stmts
return $ stmt { recS_stmts = ss }
checkCmdStmt l stmt = cmdStmtFail l stmt
checkCmdMatchGroup :: MatchGroup GhcPs (LHsExpr GhcPs)
-> P (MatchGroup GhcPs (LHsCmd GhcPs))
checkCmdMatchGroup mg@(MG { mg_alts = L l ms }) = do
ms' <- mapM (locMap $ const convert) ms
return $ mg { mg_alts = L l ms' }
where convert match@(Match { m_grhss = grhss }) = do
grhss' <- checkCmdGRHSs grhss
return $ match { m_grhss = grhss'}
checkCmdGRHSs :: GRHSs GhcPs (LHsExpr GhcPs) -> P (GRHSs GhcPs (LHsCmd GhcPs))
checkCmdGRHSs (GRHSs grhss binds) = do
grhss' <- mapM checkCmdGRHS grhss
return $ GRHSs grhss' binds
checkCmdGRHS :: LGRHS GhcPs (LHsExpr GhcPs) -> P (LGRHS GhcPs (LHsCmd GhcPs))
checkCmdGRHS = locMap $ const convert
where
convert (GRHS stmts e) = do
c <- checkCommand e
-- cmdStmts <- mapM checkCmdLStmt stmts
return $ GRHS {- cmdStmts -} stmts c
cmdFail :: SrcSpan -> HsExpr GhcPs -> P a
cmdFail loc e = parseErrorSDoc loc (text "Parse error in command:" <+> ppr e)
cmdStmtFail :: SrcSpan -> Stmt GhcPs (LHsExpr GhcPs) -> P a
cmdStmtFail loc e = parseErrorSDoc loc
(text "Parse error in command statement:" <+> ppr e)
---------------------------------------------------------------------------
-- Miscellaneous utilities
checkPrecP :: Located (SourceText,Int) -> P (Located (SourceText,Int))
checkPrecP (L l (src,i))
| 0 <= i && i <= maxPrecedence = return (L l (src,i))
| otherwise
= parseErrorSDoc l (text ("Precedence out of range: " ++ show i))
mkRecConstrOrUpdate
:: LHsExpr GhcPs
-> SrcSpan
-> ([LHsRecField GhcPs (LHsExpr GhcPs)], Bool)
-> P (HsExpr GhcPs)
mkRecConstrOrUpdate (L l (HsVar _ (L _ c))) _ (fs,dd)
| isRdrDataCon c
= return (mkRdrRecordCon (L l c) (mk_rec_fields fs dd))
mkRecConstrOrUpdate exp@(L l _) _ (fs,dd)
| dd = parseErrorSDoc l (text "You cannot use `..' in a record update")
| otherwise = return (mkRdrRecordUpd exp (map (fmap mk_rec_upd_field) fs))
mkRdrRecordUpd :: LHsExpr GhcPs -> [LHsRecUpdField GhcPs] -> HsExpr GhcPs
mkRdrRecordUpd exp flds
= RecordUpd { rupd_ext = noExt
, rupd_expr = exp
, rupd_flds = flds }
mkRdrRecordCon :: Located RdrName -> HsRecordBinds GhcPs -> HsExpr GhcPs
mkRdrRecordCon con flds
= RecordCon { rcon_ext = noExt, rcon_con_name = con, rcon_flds = flds }
mk_rec_fields :: [LHsRecField id arg] -> Bool -> HsRecFields id arg
mk_rec_fields fs False = HsRecFields { rec_flds = fs, rec_dotdot = Nothing }
mk_rec_fields fs True = HsRecFields { rec_flds = fs, rec_dotdot = Just (length fs) }
mk_rec_upd_field :: HsRecField GhcPs (LHsExpr GhcPs) -> HsRecUpdField GhcPs
mk_rec_upd_field (HsRecField (L loc (FieldOcc _ rdr)) arg pun)
= HsRecField (L loc (Unambiguous noExt rdr)) arg pun
mk_rec_upd_field (HsRecField (L _ (XFieldOcc _)) _ _)
= panic "mk_rec_upd_field"
mkInlinePragma :: SourceText -> (InlineSpec, RuleMatchInfo) -> Maybe Activation
-> InlinePragma
-- The (Maybe Activation) is because the user can omit
-- the activation spec (and usually does)
mkInlinePragma src (inl, match_info) mb_act
= InlinePragma { inl_src = src -- Note [Pragma source text] in BasicTypes
, inl_inline = inl
, inl_sat = Nothing
, inl_act = act
, inl_rule = match_info }
where
act = case mb_act of
Just act -> act
Nothing -> -- No phase specified
case inl of
NoInline -> NeverActive
_other -> AlwaysActive
-----------------------------------------------------------------------------
-- utilities for foreign declarations
-- construct a foreign import declaration
--
mkImport :: Located CCallConv
-> Located Safety
-> (Located StringLiteral, Located RdrName, LHsSigType GhcPs)
-> P (HsDecl GhcPs)
mkImport cconv safety (L loc (StringLiteral esrc entity), v, ty) =
case cconv of
L _ CCallConv -> mkCImport
L _ CApiConv -> mkCImport
L _ StdCallConv -> mkCImport
L _ PrimCallConv -> mkOtherImport
L _ JavaScriptCallConv -> mkOtherImport
where
-- Parse a C-like entity string of the following form:
-- "[static] [chname] [&] [cid]" | "dynamic" | "wrapper"
-- If 'cid' is missing, the function name 'v' is used instead as symbol
-- name (cf section 8.5.1 in Haskell 2010 report).
mkCImport = do
let e = unpackFS entity
case parseCImport cconv safety (mkExtName (unLoc v)) e (L loc esrc) of
Nothing -> parseErrorSDoc loc (text "Malformed entity string")
Just importSpec -> returnSpec importSpec
-- currently, all the other import conventions only support a symbol name in
-- the entity string. If it is missing, we use the function name instead.
mkOtherImport = returnSpec importSpec
where
entity' = if nullFS entity
then mkExtName (unLoc v)
else entity
funcTarget = CFunction (StaticTarget esrc entity' Nothing True)
importSpec = CImport cconv safety Nothing funcTarget (L loc esrc)
returnSpec spec = return $ ForD $ ForeignImport
{ fd_name = v
, fd_sig_ty = ty
, fd_co = noForeignImportCoercionYet
, fd_fi = spec
}
-- the string "foo" is ambiguous: either a header or a C identifier. The
-- C identifier case comes first in the alternatives below, so we pick
-- that one.
parseCImport :: Located CCallConv -> Located Safety -> FastString -> String
-> Located SourceText
-> Maybe ForeignImport
parseCImport cconv safety nm str sourceText =
listToMaybe $ map fst $ filter (null.snd) $
readP_to_S parse str
where
parse = do
skipSpaces
r <- choice [
string "dynamic" >> return (mk Nothing (CFunction DynamicTarget)),
string "wrapper" >> return (mk Nothing CWrapper),
do optional (token "static" >> skipSpaces)
((mk Nothing <$> cimp nm) +++
(do h <- munch1 hdr_char
skipSpaces
mk (Just (Header (SourceText h) (mkFastString h)))
<$> cimp nm))
]
skipSpaces
return r
token str = do _ <- string str
toks <- look
case toks of
c : _
| id_char c -> pfail
_ -> return ()
mk h n = CImport cconv safety h n sourceText
hdr_char c = not (isSpace c) -- header files are filenames, which can contain
-- pretty much any char (depending on the platform),
-- so just accept any non-space character
id_first_char c = isAlpha c || c == '_'
id_char c = isAlphaNum c || c == '_'
cimp nm = (ReadP.char '&' >> skipSpaces >> CLabel <$> cid)
+++ (do isFun <- case cconv of
L _ CApiConv ->
option True
(do token "value"
skipSpaces
return False)
_ -> return True
cid' <- cid
return (CFunction (StaticTarget NoSourceText cid'
Nothing isFun)))
where
cid = return nm +++
(do c <- satisfy id_first_char
cs <- many (satisfy id_char)
return (mkFastString (c:cs)))
-- construct a foreign export declaration
--
mkExport :: Located CCallConv
-> (Located StringLiteral, Located RdrName, LHsSigType GhcPs)
-> P (HsDecl GhcPs)
mkExport (L lc cconv) (L le (StringLiteral esrc entity), v, ty)
= return $ ForD $
ForeignExport { fd_name = v, fd_sig_ty = ty
, fd_co = noForeignExportCoercionYet
, fd_fe = CExport (L lc (CExportStatic esrc entity' cconv))
(L le esrc) }
where
entity' | nullFS entity = mkExtName (unLoc v)
| otherwise = entity
-- Supplying the ext_name in a foreign decl is optional; if it
-- isn't there, the Haskell name is assumed. Note that no transformation
-- of the Haskell name is then performed, so if you foreign export (++),
-- it's external name will be "++". Too bad; it's important because we don't
-- want z-encoding (e.g. names with z's in them shouldn't be doubled)
--
mkExtName :: RdrName -> CLabelString
mkExtName rdrNm = mkFastString (occNameString (rdrNameOcc rdrNm))
--------------------------------------------------------------------------------
-- Help with module system imports/exports
data ImpExpSubSpec = ImpExpAbs
| ImpExpAll
| ImpExpList [Located ImpExpQcSpec]
| ImpExpAllWith [Located ImpExpQcSpec]
data ImpExpQcSpec = ImpExpQcName (Located RdrName)
| ImpExpQcType (Located RdrName)
| ImpExpQcWildcard
mkModuleImpExp :: Located ImpExpQcSpec -> ImpExpSubSpec -> P (IE GhcPs)
mkModuleImpExp (L l specname) subs =
case subs of
ImpExpAbs
| isVarNameSpace (rdrNameSpace name)
-> return $ IEVar (L l (ieNameFromSpec specname))
| otherwise -> IEThingAbs . L l <$> nameT
ImpExpAll -> IEThingAll . L l <$> nameT
ImpExpList xs ->
(\newName -> IEThingWith (L l newName) NoIEWildcard (wrapped xs) [])
<$> nameT
ImpExpAllWith xs ->
do allowed <- extension patternSynonymsEnabled
if allowed
then
let withs = map unLoc xs
pos = maybe NoIEWildcard IEWildcard
(findIndex isImpExpQcWildcard withs)
ies = wrapped $ filter (not . isImpExpQcWildcard . unLoc) xs
in (\newName -> IEThingWith (L l newName) pos ies []) <$> nameT
else parseErrorSDoc l
(text "Illegal export form (use PatternSynonyms to enable)")
where
name = ieNameVal specname
nameT =
if isVarNameSpace (rdrNameSpace name)
then parseErrorSDoc l
(text "Expecting a type constructor but found a variable,"
<+> quotes (ppr name) <> text "."
$$ if isSymOcc $ rdrNameOcc name
then text "If" <+> quotes (ppr name) <+> text "is a type constructor"
<+> text "then enable ExplicitNamespaces and use the 'type' keyword."
else empty)
else return $ ieNameFromSpec specname
ieNameVal (ImpExpQcName ln) = unLoc ln
ieNameVal (ImpExpQcType ln) = unLoc ln
ieNameVal (ImpExpQcWildcard) = panic "ieNameVal got wildcard"
ieNameFromSpec (ImpExpQcName ln) = IEName ln
ieNameFromSpec (ImpExpQcType ln) = IEType ln
ieNameFromSpec (ImpExpQcWildcard) = panic "ieName got wildcard"
wrapped = map (\(L l x) -> L l (ieNameFromSpec x))
mkTypeImpExp :: Located RdrName -- TcCls or Var name space
-> P (Located RdrName)
mkTypeImpExp name =
do allowed <- extension explicitNamespacesEnabled
if allowed
then return (fmap (`setRdrNameSpace` tcClsName) name)
else parseErrorSDoc (getLoc name)
(text "Illegal keyword 'type' (use ExplicitNamespaces to enable)")
checkImportSpec :: Located [LIE GhcPs] -> P (Located [LIE GhcPs])
checkImportSpec ie@(L _ specs) =
case [l | (L l (IEThingWith _ (IEWildcard _) _ _)) <- specs] of
[] -> return ie
(l:_) -> importSpecError l
where
importSpecError l =
parseErrorSDoc l
(text "Illegal import form, this syntax can only be used to bundle"
$+$ text "pattern synonyms with types in module exports.")
-- In the correct order
mkImpExpSubSpec :: [Located ImpExpQcSpec] -> P ([AddAnn], ImpExpSubSpec)
mkImpExpSubSpec [] = return ([], ImpExpList [])
mkImpExpSubSpec [L _ ImpExpQcWildcard] =
return ([], ImpExpAll)
mkImpExpSubSpec xs =
if (any (isImpExpQcWildcard . unLoc) xs)
then return $ ([], ImpExpAllWith xs)
else return $ ([], ImpExpList xs)
isImpExpQcWildcard :: ImpExpQcSpec -> Bool
isImpExpQcWildcard ImpExpQcWildcard = True
isImpExpQcWildcard _ = False
-----------------------------------------------------------------------------
-- Misc utils
parseErrorSDoc :: SrcSpan -> SDoc -> P a
parseErrorSDoc span s = failSpanMsgP span s
-- | Hint about bang patterns, assuming @BangPatterns@ is off.
hintBangPat :: SrcSpan -> HsExpr GhcPs -> P ()
hintBangPat span e = do
bang_on <- extension bangPatEnabled
unless bang_on $
parseErrorSDoc span
(text "Illegal bang-pattern (use BangPatterns):" $$ ppr e)
data SumOrTuple
= Sum ConTag Arity (LHsExpr GhcPs)
| Tuple [LHsTupArg GhcPs]
mkSumOrTuple :: Boxity -> SrcSpan -> SumOrTuple -> P (HsExpr GhcPs)
-- Tuple
mkSumOrTuple boxity _ (Tuple es) = return (ExplicitTuple noExt es boxity)
-- Sum
mkSumOrTuple Unboxed _ (Sum alt arity e) =
return (ExplicitSum noExt alt arity e)
mkSumOrTuple Boxed l (Sum alt arity (L _ e)) =
parseErrorSDoc l (hang (text "Boxed sums not supported:") 2 (ppr_boxed_sum alt arity e))
where
ppr_boxed_sum :: ConTag -> Arity -> HsExpr GhcPs -> SDoc
ppr_boxed_sum alt arity e =
text "(" <+> ppr_bars (alt - 1) <+> ppr e <+> ppr_bars (arity - alt) <+> text ")"
ppr_bars n = hsep (replicate n (Outputable.char '|'))
|