summaryrefslogtreecommitdiff
path: root/compiler/parser/RdrHsSyn.hs
blob: b24ba0968ae06ab0f4e7234c27fd228702419716 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
--
--  (c) The University of Glasgow 2002-2006
--

-- Functions over HsSyn specialised to RdrName.

{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}

module RdrHsSyn (
        mkHsOpApp,
        mkHsIntegral, mkHsFractional, mkHsIsString,
        mkHsDo, mkSpliceDecl,
        mkRoleAnnotDecl,
        mkClassDecl,
        mkTyData, mkDataFamInst,
        mkTySynonym, mkTyFamInstEqn,
        mkTyFamInst,
        mkFamDecl,
        splitCon, mkInlinePragma,
        mkPatSynMatchGroup,
        mkRecConstrOrUpdate, -- HsExp -> [HsFieldUpdate] -> P HsExp
        mkTyClD, mkInstD,
        setRdrNameSpace,

        cvBindGroup,
        cvBindsAndSigs,
        cvTopDecls,
        placeHolderPunRhs,

        -- Stuff to do with Foreign declarations
        mkImport,
        parseCImport,
        mkExport,
        mkExtName,           -- RdrName -> CLabelString
        mkGadtDecl,          -- [Located RdrName] -> LHsType RdrName -> ConDecl RdrName
        mkSimpleConDecl,
        mkATDefault,

        -- Bunch of functions in the parser monad for
        -- checking and constructing values
        checkPrecP,           -- Int -> P Int
        checkContext,         -- HsType -> P HsContext
        checkPattern,         -- HsExp -> P HsPat
        bang_RDR,
        checkPatterns,        -- SrcLoc -> [HsExp] -> P [HsPat]
        checkMonadComp,       -- P (HsStmtContext RdrName)
        checkCommand,         -- LHsExpr RdrName -> P (LHsCmd RdrName)
        checkValDef,          -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl
        checkValSig,          -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl
        checkDoAndIfThenElse,
        checkRecordSyntax,
        parseErrorSDoc,
        splitTilde,

        -- Help with processing exports
        ImpExpSubSpec(..),
        mkModuleImpExp,
        mkTypeImpExp,
        mkImpExpSubSpec,
        checkImportSpec

    ) where

import HsSyn            -- Lots of it
import Class            ( FunDep )
import TyCon            ( TyCon, isTupleTyCon, tyConSingleDataCon_maybe )
import DataCon          ( DataCon, dataConTyCon )
import ConLike          ( ConLike(..) )
import CoAxiom          ( Role, fsFromRole )
import RdrName
import Name
import BasicTypes
import TcEvidence       ( idHsWrapper )
import Lexer
import Type             ( TyThing(..) )
import TysWiredIn       ( cTupleTyConName, tupleTyCon, tupleDataCon,
                          nilDataConName, nilDataConKey,
                          listTyConName, listTyConKey )
import ForeignCall
import PrelNames        ( forall_tv_RDR, allNameStrings )
import DynFlags
import SrcLoc
import Unique           ( hasKey )
import OrdList          ( OrdList, fromOL )
import Bag              ( emptyBag, consBag )
import Outputable
import FastString
import Maybes
import Util
import ApiAnnotation
import Data.List

#if __GLASGOW_HASKELL__ < 709
import Control.Applicative ((<$>))
#endif
import Control.Monad

import Text.ParserCombinators.ReadP as ReadP
import Data.Char

import Data.Data       ( dataTypeOf, fromConstr, dataTypeConstrs )

#include "HsVersions.h"


{- **********************************************************************

  Construction functions for Rdr stuff

  ********************************************************************* -}

-- | mkClassDecl builds a RdrClassDecl, filling in the names for tycon and
-- datacon by deriving them from the name of the class.  We fill in the names
-- for the tycon and datacon corresponding to the class, by deriving them
-- from the name of the class itself.  This saves recording the names in the
-- interface file (which would be equally good).

-- Similarly for mkConDecl, mkClassOpSig and default-method names.

--         *** See "THE NAMING STORY" in HsDecls ****

mkTyClD :: LTyClDecl n -> LHsDecl n
mkTyClD (L loc d) = L loc (TyClD d)

mkInstD :: LInstDecl n -> LHsDecl n
mkInstD (L loc d) = L loc (InstD d)

mkClassDecl :: SrcSpan
            -> Located (Maybe (LHsContext RdrName), LHsType RdrName)
            -> Located (a,[Located (FunDep (Located RdrName))])
            -> OrdList (LHsDecl RdrName)
            -> P (LTyClDecl RdrName)

mkClassDecl loc (L _ (mcxt, tycl_hdr)) fds where_cls
  = do { (binds, sigs, ats, at_insts, _, docs) <- cvBindsAndSigs where_cls
       ; let cxt = fromMaybe (noLoc []) mcxt
       ; (cls, tparams,ann) <- checkTyClHdr True tycl_hdr
       ; mapM_ (\a -> a loc) ann -- Add any API Annotations to the top SrcSpan
       ; tyvars <- checkTyVarsP (ptext (sLit "class")) whereDots cls tparams
       ; at_defs <- mapM (eitherToP . mkATDefault) at_insts
       ; return (L loc (ClassDecl { tcdCtxt = cxt, tcdLName = cls, tcdTyVars = tyvars,
                                    tcdFDs = snd (unLoc fds), tcdSigs = sigs,
                                    tcdMeths = binds,
                                    tcdATs = ats, tcdATDefs = at_defs, tcdDocs  = docs,
                                    tcdFVs = placeHolderNames })) }

mkATDefault :: LTyFamInstDecl RdrName
            -> Either (SrcSpan, SDoc) (LTyFamDefltEqn RdrName)
-- Take a type-family instance declaration and turn it into
-- a type-family default equation for a class declaration
-- We parse things as the former and use this function to convert to the latter
--
-- We use the Either monad because this also called
-- from Convert.hs
mkATDefault (L loc (TyFamInstDecl { tfid_eqn = L _ e }))
      | TyFamEqn { tfe_tycon = tc, tfe_pats = pats, tfe_rhs = rhs } <- e
      = do { tvs <- checkTyVars (ptext (sLit "default")) equalsDots tc (hswb_cts pats)
           ; return (L loc (TyFamEqn { tfe_tycon = tc
                                     , tfe_pats = tvs
                                     , tfe_rhs = rhs })) }

mkTyData :: SrcSpan
         -> NewOrData
         -> Maybe (Located CType)
         -> Located (Maybe (LHsContext RdrName), LHsType RdrName)
         -> Maybe (LHsKind RdrName)
         -> [LConDecl RdrName]
         -> Maybe (Located [LHsType RdrName])
         -> P (LTyClDecl RdrName)
mkTyData loc new_or_data cType (L _ (mcxt, tycl_hdr)) ksig data_cons maybe_deriv
  = do { (tc, tparams,ann) <- checkTyClHdr False tycl_hdr
       ; mapM_ (\a -> a loc) ann -- Add any API Annotations to the top SrcSpan
       ; tyvars <- checkTyVarsP (ppr new_or_data) equalsDots tc tparams
       ; defn <- mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv
       ; return (L loc (DataDecl { tcdLName = tc, tcdTyVars = tyvars,
                                   tcdDataDefn = defn,
                                   tcdFVs = placeHolderNames })) }

mkDataDefn :: NewOrData
           -> Maybe (Located CType)
           -> Maybe (LHsContext RdrName)
           -> Maybe (LHsKind RdrName)
           -> [LConDecl RdrName]
           -> Maybe (Located [LHsType RdrName])
           -> P (HsDataDefn RdrName)
mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv
  = do { checkDatatypeContext mcxt
       ; let cxt = fromMaybe (noLoc []) mcxt
       ; return (HsDataDefn { dd_ND = new_or_data, dd_cType = cType
                            , dd_ctxt = cxt
                            , dd_cons = data_cons
                            , dd_kindSig = ksig
                            , dd_derivs = maybe_deriv }) }


mkTySynonym :: SrcSpan
            -> LHsType RdrName  -- LHS
            -> LHsType RdrName  -- RHS
            -> P (LTyClDecl RdrName)
mkTySynonym loc lhs rhs
  = do { (tc, tparams,ann) <- checkTyClHdr False lhs
       ; mapM_ (\a -> a loc) ann -- Add any API Annotations to the top SrcSpan
       ; tyvars <- checkTyVarsP (ptext (sLit "type")) equalsDots tc tparams
       ; return (L loc (SynDecl { tcdLName = tc, tcdTyVars = tyvars
                                , tcdRhs = rhs, tcdFVs = placeHolderNames })) }

mkTyFamInstEqn :: LHsType RdrName
               -> LHsType RdrName
               -> P (TyFamInstEqn RdrName,[AddAnn])
mkTyFamInstEqn lhs rhs
  = do { (tc, tparams, ann) <- checkTyClHdr False lhs
       ; return (TyFamEqn { tfe_tycon = tc
                          , tfe_pats  = mkHsWithBndrs tparams
                          , tfe_rhs   = rhs },
                 ann) }

mkDataFamInst :: SrcSpan
              -> NewOrData
              -> Maybe (Located CType)
              -> Located (Maybe (LHsContext RdrName), LHsType RdrName)
              -> Maybe (LHsKind RdrName)
              -> [LConDecl RdrName]
              -> Maybe (Located [LHsType RdrName])
              -> P (LInstDecl RdrName)
mkDataFamInst loc new_or_data cType (L _ (mcxt, tycl_hdr)) ksig data_cons maybe_deriv
  = do { (tc, tparams,ann) <- checkTyClHdr False tycl_hdr
       ; mapM_ (\a -> a loc) ann -- Add any API Annotations to the top SrcSpan
       ; defn <- mkDataDefn new_or_data cType mcxt ksig data_cons maybe_deriv
       ; return (L loc (DataFamInstD (
                  DataFamInstDecl { dfid_tycon = tc
                                  , dfid_pats = mkHsWithBndrs tparams
                                  , dfid_defn = defn, dfid_fvs = placeHolderNames }))) }

mkTyFamInst :: SrcSpan
            -> LTyFamInstEqn RdrName
            -> P (LInstDecl RdrName)
mkTyFamInst loc eqn
  = return (L loc (TyFamInstD (TyFamInstDecl { tfid_eqn  = eqn
                                             , tfid_fvs  = placeHolderNames })))

mkFamDecl :: SrcSpan
          -> FamilyInfo RdrName
          -> LHsType RdrName                   -- LHS
          -> Located (FamilyResultSig RdrName) -- Optional result signature
          -> Maybe (LInjectivityAnn RdrName)   -- Injectivity annotation
          -> P (LTyClDecl RdrName)
mkFamDecl loc info lhs ksig injAnn
  = do { (tc, tparams, ann) <- checkTyClHdr False lhs
       ; mapM_ (\a -> a loc) ann -- Add any API Annotations to the top SrcSpan
       ; tyvars <- checkTyVarsP (ppr info) equals_or_where tc tparams
       ; return (L loc (FamDecl (FamilyDecl{ fdInfo      = info, fdLName = tc
                                           , fdTyVars    = tyvars
                                           , fdResultSig = ksig
                                           , fdInjectivityAnn = injAnn }))) }
  where
    equals_or_where = case info of
                        DataFamily          -> empty
                        OpenTypeFamily      -> empty
                        ClosedTypeFamily {} -> whereDots

mkSpliceDecl :: LHsExpr RdrName -> HsDecl RdrName
-- If the user wrote
--      [pads| ... ]   then return a QuasiQuoteD
--      $(e)           then return a SpliceD
-- but if she wrote, say,
--      f x            then behave as if she'd written $(f x)
--                     ie a SpliceD
--
-- Typed splices are not allowed at the top level, thus we do not represent them
-- as spliced declaration.  See #10945
mkSpliceDecl lexpr@(L loc expr)
  | HsSpliceE splice@(HsUntypedSplice {}) <- expr
  = SpliceD (SpliceDecl (L loc splice) ExplicitSplice)

  | HsSpliceE splice@(HsQuasiQuote {}) <- expr
  = SpliceD (SpliceDecl (L loc splice) ExplicitSplice)

  | otherwise
  = SpliceD (SpliceDecl (L loc (mkUntypedSplice lexpr)) ImplicitSplice)

mkRoleAnnotDecl :: SrcSpan
                -> Located RdrName                   -- type being annotated
                -> [Located (Maybe FastString)]      -- roles
                -> P (LRoleAnnotDecl RdrName)
mkRoleAnnotDecl loc tycon roles
  = do { roles' <- mapM parse_role roles
       ; return $ L loc $ RoleAnnotDecl tycon roles' }
  where
    role_data_type = dataTypeOf (undefined :: Role)
    all_roles = map fromConstr $ dataTypeConstrs role_data_type
    possible_roles = [(fsFromRole role, role) | role <- all_roles]

    parse_role (L loc_role Nothing) = return $ L loc_role Nothing
    parse_role (L loc_role (Just role))
      = case lookup role possible_roles of
          Just found_role -> return $ L loc_role $ Just found_role
          Nothing         ->
            let nearby = fuzzyLookup (unpackFS role) (mapFst unpackFS possible_roles) in
            parseErrorSDoc loc_role
              (text "Illegal role name" <+> quotes (ppr role) $$
               suggestions nearby)

    suggestions []   = empty
    suggestions [r]  = text "Perhaps you meant" <+> quotes (ppr r)
      -- will this last case ever happen??
    suggestions list = hang (text "Perhaps you meant one of these:")
                       2 (pprWithCommas (quotes . ppr) list)

{- **********************************************************************

  #cvBinds-etc# Converting to @HsBinds@, etc.

  ********************************************************************* -}

-- | Function definitions are restructured here. Each is assumed to be recursive
-- initially, and non recursive definitions are discovered by the dependency
-- analyser.


--  | Groups together bindings for a single function
cvTopDecls :: OrdList (LHsDecl RdrName) -> [LHsDecl RdrName]
cvTopDecls decls = go (fromOL decls)
  where
    go :: [LHsDecl RdrName] -> [LHsDecl RdrName]
    go []                   = []
    go (L l (ValD b) : ds)  = L l' (ValD b') : go ds'
                            where (L l' b', ds') = getMonoBind (L l b) ds
    go (d : ds)             = d : go ds

-- Declaration list may only contain value bindings and signatures.
cvBindGroup :: OrdList (LHsDecl RdrName) -> P (HsValBinds RdrName)
cvBindGroup binding
  = do { (mbs, sigs, fam_ds, tfam_insts, dfam_insts, _) <- cvBindsAndSigs binding
       ; ASSERT( null fam_ds && null tfam_insts && null dfam_insts)
         return $ ValBindsIn mbs sigs }

cvBindsAndSigs :: OrdList (LHsDecl RdrName)
  -> P (LHsBinds RdrName, [LSig RdrName], [LFamilyDecl RdrName]
          , [LTyFamInstDecl RdrName], [LDataFamInstDecl RdrName], [LDocDecl])
-- Input decls contain just value bindings and signatures
-- and in case of class or instance declarations also
-- associated type declarations. They might also contain Haddock comments.
cvBindsAndSigs fb = go (fromOL fb)
  where
    go []              = return (emptyBag, [], [], [], [], [])
    go (L l (ValD b) : ds)
      = do { (bs, ss, ts, tfis, dfis, docs) <- go ds'
           ; return (b' `consBag` bs, ss, ts, tfis, dfis, docs) }
      where
        (b', ds') = getMonoBind (L l b) ds
    go (L l decl : ds)
      = do { (bs, ss, ts, tfis, dfis, docs) <- go ds
           ; case decl of
               SigD s
                 -> return (bs, L l s : ss, ts, tfis, dfis, docs)
               TyClD (FamDecl t)
                 -> return (bs, ss, L l t : ts, tfis, dfis, docs)
               InstD (TyFamInstD { tfid_inst = tfi })
                 -> return (bs, ss, ts, L l tfi : tfis, dfis, docs)
               InstD (DataFamInstD { dfid_inst = dfi })
                 -> return (bs, ss, ts, tfis, L l dfi : dfis, docs)
               DocD d
                 -> return (bs, ss, ts, tfis, dfis, L l d : docs)
               SpliceD d
                 -> parseErrorSDoc l $
                    hang (text "Declaration splices are allowed only" <+>
                          text "at the top level:")
                       2 (ppr d)
               _ -> pprPanic "cvBindsAndSigs" (ppr decl) }

-----------------------------------------------------------------------------
-- Group function bindings into equation groups

getMonoBind :: LHsBind RdrName -> [LHsDecl RdrName]
  -> (LHsBind RdrName, [LHsDecl RdrName])
-- Suppose      (b',ds') = getMonoBind b ds
--      ds is a list of parsed bindings
--      b is a MonoBinds that has just been read off the front

-- Then b' is the result of grouping more equations from ds that
-- belong with b into a single MonoBinds, and ds' is the depleted
-- list of parsed bindings.
--
-- All Haddock comments between equations inside the group are
-- discarded.
--
-- No AndMonoBinds or EmptyMonoBinds here; just single equations

getMonoBind (L loc1 (FunBind { fun_id = fun_id1@(L _ f1), fun_infix = is_infix1,
                               fun_matches = MG { mg_alts = mtchs1 } })) binds
  | has_args mtchs1
  = go is_infix1 mtchs1 loc1 binds []
  where
    go is_infix mtchs loc
       (L loc2 (ValD (FunBind { fun_id = L _ f2, fun_infix = is_infix2,
                                fun_matches = MG { mg_alts = mtchs2 } })) : binds) _
        | f1 == f2 = go (is_infix || is_infix2) (mtchs2 ++ mtchs)
                        (combineSrcSpans loc loc2) binds []
    go is_infix mtchs loc (doc_decl@(L loc2 (DocD _)) : binds) doc_decls
        = let doc_decls' = doc_decl : doc_decls
          in go is_infix mtchs (combineSrcSpans loc loc2) binds doc_decls'
    go is_infix mtchs loc binds doc_decls
        = (L loc (makeFunBind fun_id1 is_infix (reverse mtchs)), (reverse doc_decls) ++ binds)
        -- Reverse the final matches, to get it back in the right order
        -- Do the same thing with the trailing doc comments

getMonoBind bind binds = (bind, binds)

has_args :: [LMatch RdrName (LHsExpr RdrName)] -> Bool
has_args []                           = panic "RdrHsSyn:has_args"
has_args ((L _ (Match _ args _ _)) : _) = not (null args)
        -- Don't group together FunBinds if they have
        -- no arguments.  This is necessary now that variable bindings
        -- with no arguments are now treated as FunBinds rather
        -- than pattern bindings (tests/rename/should_fail/rnfail002).

{- **********************************************************************

  #PrefixToHS-utils# Utilities for conversion

  ********************************************************************* -}

-----------------------------------------------------------------------------
-- splitCon

-- When parsing data declarations, we sometimes inadvertently parse
-- a constructor application as a type (eg. in data T a b = C a b `D` E a b)
-- This function splits up the type application, adds any pending
-- arguments, and converts the type constructor back into a data constructor.

splitCon :: LHsType RdrName
      -> P (Located RdrName, HsConDeclDetails RdrName)
-- This gets given a "type" that should look like
--      C Int Bool
-- or   C { x::Int, y::Bool }
-- and returns the pieces
splitCon ty
 = split ty []
 where
   split (L _ (HsAppTy t u)) ts    = split t (u : ts)
   split (L l (HsTyVar tc))  ts    = do data_con <- tyConToDataCon l tc
                                        return (data_con, mk_rest ts)
   split (L l (HsTupleTy HsBoxedOrConstraintTuple ts)) []
      = return (L l (getRdrName (tupleDataCon Boxed (length ts))), PrefixCon ts)
   split (L l _) _ = parseErrorSDoc l (text "Cannot parse data constructor in a data/newtype declaration:" <+> ppr ty)

   mk_rest [L l (HsRecTy flds)] = RecCon (L l flds)
   mk_rest ts                   = PrefixCon ts

recordPatSynErr :: SrcSpan -> LPat RdrName -> P a
recordPatSynErr loc pat =
    parseErrorSDoc loc $
    text "record syntax not supported for pattern synonym declarations:" $$
    ppr pat

mkPatSynMatchGroup :: Located RdrName
                   -> Located (OrdList (LHsDecl RdrName))
                   -> P (MatchGroup RdrName (LHsExpr RdrName))
mkPatSynMatchGroup (L _ patsyn_name) (L _ decls) =
    do { matches <- mapM fromDecl (fromOL decls)
       ; return $ mkMatchGroup FromSource matches }
  where
    fromDecl (L loc decl@(ValD (PatBind pat@(L _ (ConPatIn (L _ name) details)) rhs _ _ _))) =
        do { unless (name == patsyn_name) $
               wrongNameBindingErr loc decl
           ; match <- case details of
               PrefixCon pats -> return $ Match Nothing pats Nothing rhs
               InfixCon pat1 pat2 ->
                         return $ Match Nothing [pat1, pat2] Nothing rhs
               RecCon{} -> recordPatSynErr loc pat
           ; return $ L loc match }
    fromDecl (L loc decl) = extraDeclErr loc decl

    extraDeclErr loc decl =
        parseErrorSDoc loc $
        text "pattern synonym 'where' clause must contain a single binding:" $$
        ppr decl

    wrongNameBindingErr loc decl =
        parseErrorSDoc loc $
        text "pattern synonym 'where' clause must bind the pattern synonym's name" <+>
        quotes (ppr patsyn_name) $$ ppr decl

mkSimpleConDecl :: Located RdrName -> [LHsTyVarBndr RdrName]
                -> LHsContext RdrName -> HsConDeclDetails RdrName
                -> ConDecl RdrName

mkSimpleConDecl name qvars cxt details
  = ConDecl { con_old_rec  = False
            , con_names    = [name]
            , con_explicit = Explicit
            , con_qvars    = mkHsQTvs qvars
            , con_cxt      = cxt
            , con_details  = details
            , con_res      = ResTyH98
            , con_doc      = Nothing }

mkGadtDecl :: [Located RdrName]
           -> LHsType RdrName     -- Always a HsForAllTy
           -> P ([AddAnn], ConDecl RdrName)
mkGadtDecl names (L l ty) = do
  let
    (anns,ty') = flattenHsForAllTyKeepAnns ty
  gadt <- mkGadtDecl' names (L l ty')
  return (anns,gadt)

mkGadtDecl' :: [Located RdrName]
           -> LHsType RdrName     -- Always a HsForAllTy
           -> P (ConDecl RdrName)

-- We allow C,D :: ty
-- and expand it as if it had been
--    C :: ty; D :: ty
-- (Just like type signatures in general.)
mkGadtDecl' names (L ls (HsForAllTy imp _ qvars cxt tau))
  = return $ mk_gadt_con names
  where
    (details, res_ty)           -- See Note [Sorting out the result type]
      = case tau of
          L _ (HsFunTy (L l (HsRecTy flds)) res_ty)
                                            -> (RecCon (L l flds), res_ty)
          _other                                    -> (PrefixCon [], tau)

    mk_gadt_con names
       = ConDecl { con_old_rec  = False
                 , con_names    = names
                 , con_explicit = imp
                 , con_qvars    = qvars
                 , con_cxt      = cxt
                 , con_details  = details
                 , con_res      = ResTyGADT ls res_ty
                 , con_doc      = Nothing }
mkGadtDecl' _ other_ty = pprPanic "mkGadtDecl" (ppr other_ty)

tyConToDataCon :: SrcSpan -> RdrName -> P (Located RdrName)
tyConToDataCon loc tc
  | isTcOcc (rdrNameOcc tc)
  = return (L loc (setRdrNameSpace tc srcDataName))
  | otherwise
  = parseErrorSDoc loc (msg $$ extra)
  where
    msg = text "Not a data constructor:" <+> quotes (ppr tc)
    extra | tc == forall_tv_RDR
          = text "Perhaps you intended to use ExistentialQuantification"
          | otherwise = empty

setRdrNameSpace :: RdrName -> NameSpace -> RdrName
-- ^ This rather gruesome function is used mainly by the parser.
-- When parsing:
--
-- > data T a = T | T1 Int
--
-- we parse the data constructors as /types/ because of parser ambiguities,
-- so then we need to change the /type constr/ to a /data constr/
--
-- The exact-name case /can/ occur when parsing:
--
-- > data [] a = [] | a : [a]
--
-- For the exact-name case we return an original name.
setRdrNameSpace (Unqual occ) ns = Unqual (setOccNameSpace ns occ)
setRdrNameSpace (Qual m occ) ns = Qual m (setOccNameSpace ns occ)
setRdrNameSpace (Orig m occ) ns = Orig m (setOccNameSpace ns occ)
setRdrNameSpace (Exact n)    ns
  | Just thing <- wiredInNameTyThing_maybe n
  = setWiredInNameSpace thing ns
    -- Preserve Exact Names for wired-in things,
    -- notably tuples and lists

  | isExternalName n
  = Orig (nameModule n) occ

  | otherwise   -- This can happen when quoting and then
                -- splicing a fixity declaration for a type
  = Exact (mkSystemNameAt (nameUnique n) occ (nameSrcSpan n))
  where
    occ = setOccNameSpace ns (nameOccName n)

setWiredInNameSpace :: TyThing -> NameSpace -> RdrName
setWiredInNameSpace (ATyCon tc) ns
  | isDataConNameSpace ns
  = ty_con_data_con tc
  | isTcClsNameSpace ns
  = Exact (getName tc)      -- No-op

setWiredInNameSpace (AConLike (RealDataCon dc)) ns
  | isTcClsNameSpace ns
  = data_con_ty_con dc
  | isDataConNameSpace ns
  = Exact (getName dc)      -- No-op

setWiredInNameSpace thing ns
  = pprPanic "setWiredinNameSpace" (pprNameSpace ns <+> ppr thing)

ty_con_data_con :: TyCon -> RdrName
ty_con_data_con tc
  | isTupleTyCon tc
  , Just dc <- tyConSingleDataCon_maybe tc
  = Exact (getName dc)

  | tc `hasKey` listTyConKey
  = Exact nilDataConName

  | otherwise  -- See Note [setRdrNameSpace for wired-in names]
  = Unqual (setOccNameSpace srcDataName (getOccName tc))

data_con_ty_con :: DataCon -> RdrName
data_con_ty_con dc
  | let tc = dataConTyCon dc
  , isTupleTyCon tc
  = Exact (getName tc)

  | dc `hasKey` nilDataConKey
  = Exact listTyConName

  | otherwise  -- See Note [setRdrNameSpace for wired-in names]
  = Unqual (setOccNameSpace tcClsName (getOccName dc))


{- Note [setRdrNameSpace for wired-in names]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In GHC.Types, which declares (:), we have
  infixr 5 :
The ambiguity about which ":" is meant is resolved by parsing it as a
data constructor, but then using dataTcOccs to try the type constructor too;
and that in turn calls setRdrNameSpace to change the name-space of ":" to
tcClsName.  There isn't a corresponding ":" type constructor, but it's painful
to make setRdrNameSpace partial, so we just make an Unqual name instead. It
really doesn't matter!
-}

-- | Note [Sorting out the result type]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- In a GADT declaration which is not a record, we put the whole constr
-- type into the ResTyGADT for now; the renamer will unravel it once it
-- has sorted out operator fixities. Consider for example
--      C :: a :*: b -> a :*: b -> a :+: b
-- Initially this type will parse as
--       a :*: (b -> (a :*: (b -> (a :+: b))))

-- so it's hard to split up the arguments until we've done the precedence
-- resolution (in the renamer) On the other hand, for a record
--         { x,y :: Int } -> a :*: b
-- there is no doubt.  AND we need to sort records out so that
-- we can bring x,y into scope.  So:
--    * For PrefixCon we keep all the args in the ResTyGADT
--    * For RecCon we do not

checkTyVarsP :: SDoc -> SDoc -> Located RdrName -> [LHsType RdrName] -> P (LHsTyVarBndrs RdrName)
-- Same as checkTyVars, but in the P monad
checkTyVarsP pp_what equals_or_where tc tparms
  = eitherToP $ checkTyVars pp_what equals_or_where tc tparms

eitherToP :: Either (SrcSpan, SDoc) a -> P a
-- Adapts the Either monad to the P monad
eitherToP (Left (loc, doc)) = parseErrorSDoc loc doc
eitherToP (Right thing)     = return thing
checkTyVars :: SDoc -> SDoc -> Located RdrName -> [LHsType RdrName]
            -> Either (SrcSpan, SDoc) (LHsTyVarBndrs RdrName)
-- Check whether the given list of type parameters are all type variables
-- (possibly with a kind signature)
-- We use the Either monad because it's also called (via mkATDefault) from
-- Convert.hs
checkTyVars pp_what equals_or_where tc tparms
  = do { tvs <- mapM chk tparms
       ; return (mkHsQTvs tvs) }
  where

        -- Check that the name space is correct!
    chk (L l (HsKindSig (L lv (HsTyVar tv)) k))
        | isRdrTyVar tv    = return (L l (KindedTyVar (L lv tv) k))
    chk (L l (HsTyVar tv))
        | isRdrTyVar tv    = return (L l (UserTyVar tv))
    chk t@(L loc _)
        = Left (loc,
                vcat [ ptext (sLit "Unexpected type") <+> quotes (ppr t)
                     , ptext (sLit "In the") <+> pp_what <+> ptext (sLit "declaration for") <+> quotes (ppr tc)
                     , vcat[ (ptext (sLit "A") <+> pp_what <+> ptext (sLit "declaration should have form"))
                     , nest 2 (pp_what <+> ppr tc
                                       <+> hsep (map text (takeList tparms allNameStrings))
                                       <+> equals_or_where) ] ])

whereDots, equalsDots :: SDoc
-- Second argument to checkTyVars
whereDots  = ptext (sLit "where ...")
equalsDots = ptext (sLit "= ...")

checkDatatypeContext :: Maybe (LHsContext RdrName) -> P ()
checkDatatypeContext Nothing = return ()
checkDatatypeContext (Just (L loc c))
    = do allowed <- extension datatypeContextsEnabled
         unless allowed $
             parseErrorSDoc loc
                 (text "Illegal datatype context (use DatatypeContexts):" <+>
                  pprHsContext c)

checkRecordSyntax :: Outputable a => Located a -> P (Located a)
checkRecordSyntax lr@(L loc r)
    = do allowed <- extension traditionalRecordSyntaxEnabled
         if allowed
             then return lr
             else parseErrorSDoc loc
                      (text "Illegal record syntax (use TraditionalRecordSyntax):" <+>
                       ppr r)

checkTyClHdr :: Bool               -- True  <=> class header
                                   -- False <=> type header
             -> LHsType RdrName
             -> P (Located RdrName,          -- the head symbol (type or class name)
                   [LHsType RdrName],        -- parameters of head symbol
                   [AddAnn]) -- API Annotation for HsParTy when stripping parens
-- Well-formedness check and decomposition of type and class heads.
-- Decomposes   T ty1 .. tyn   into    (T, [ty1, ..., tyn])
--              Int :*: Bool   into    (:*:, [Int, Bool])
-- returning the pieces
checkTyClHdr is_cls ty
  = goL ty [] []
  where
    goL (L l ty) acc ann = go l ty acc ann

    go l (HsTyVar tc) acc ann
      | isRdrTc tc               = return (L l tc, acc, ann)
    go _ (HsOpTy t1 (_, ltc@(L _ tc)) t2) acc ann
      | isRdrTc tc               = return (ltc, t1:t2:acc, ann)
    go l (HsParTy ty)    acc ann = goL ty acc (ann ++ mkParensApiAnn l)
    go _ (HsAppTy t1 t2) acc ann = goL t1 (t2:acc) ann

    go l (HsTupleTy HsBoxedOrConstraintTuple ts) [] ann
      = return (L l (nameRdrName tup_name), ts, ann)
      where
        arity = length ts
        tup_name | is_cls    = cTupleTyConName arity
                 | otherwise = getName (tupleTyCon Boxed arity)
                 -- See Note [Unit tuples] in HsTypes  (TODO: is this still relevant?)
    go l _  _  _
      = parseErrorSDoc l (text "Malformed head of type or class declaration:"
                          <+> ppr ty)

checkContext :: LHsType RdrName -> P ([AddAnn],LHsContext RdrName)
checkContext (L l orig_t)
  = check [] (L l orig_t)
 where
  check anns (L lp (HsTupleTy _ ts))   -- (Eq a, Ord b) shows up as a tuple type
    = return (anns ++ mkParensApiAnn lp,L l ts)                -- Ditto ()

  check anns (L lp1 (HsParTy ty))-- to be sure HsParTy doesn't get into the way
       = check anns' ty
         where anns' = if l == lp1 then anns
                                   else (anns ++ mkParensApiAnn lp1)

  check _anns _
    = return ([],L l [L l orig_t]) -- no need for anns, returning original

-- -------------------------------------------------------------------------
-- Checking Patterns.

-- We parse patterns as expressions and check for valid patterns below,
-- converting the expression into a pattern at the same time.

checkPattern :: SDoc -> LHsExpr RdrName -> P (LPat RdrName)
checkPattern msg e = checkLPat msg e

checkPatterns :: SDoc -> [LHsExpr RdrName] -> P [LPat RdrName]
checkPatterns msg es = mapM (checkPattern msg) es

checkLPat :: SDoc -> LHsExpr RdrName -> P (LPat RdrName)
checkLPat msg e@(L l _) = checkPat msg l e []

checkPat :: SDoc -> SrcSpan -> LHsExpr RdrName -> [LPat RdrName]
         -> P (LPat RdrName)
checkPat _ loc (L l (HsVar c)) args
  | isRdrDataCon c = return (L loc (ConPatIn (L l c) (PrefixCon args)))
checkPat msg loc e args     -- OK to let this happen even if bang-patterns
                        -- are not enabled, because there is no valid
                        -- non-bang-pattern parse of (C ! e)
  | Just (e', args') <- splitBang e
  = do  { args'' <- checkPatterns msg args'
        ; checkPat msg loc e' (args'' ++ args) }
checkPat msg loc (L _ (HsApp f e)) args
  = do p <- checkLPat msg e
       checkPat msg loc f (p : args)
checkPat msg loc (L _ e) []
  = do p <- checkAPat msg loc e
       return (L loc p)
checkPat msg loc e _
  = patFail msg loc (unLoc e)

checkAPat :: SDoc -> SrcSpan -> HsExpr RdrName -> P (Pat RdrName)
checkAPat msg loc e0 = do
 pState <- getPState
 let dynflags = dflags pState
 case e0 of
   EWildPat -> return (WildPat placeHolderType)
   HsVar x  -> return (VarPat x)
   HsLit l  -> return (LitPat l)

   -- Overloaded numeric patterns (e.g. f 0 x = x)
   -- Negation is recorded separately, so that the literal is zero or +ve
   -- NB. Negative *primitive* literals are already handled by the lexer
   HsOverLit pos_lit          -> return (mkNPat (L loc pos_lit) Nothing)
   NegApp (L l (HsOverLit pos_lit)) _
                        -> return (mkNPat (L l pos_lit) (Just noSyntaxExpr))

   SectionR (L lb (HsVar bang)) e        -- (! x)
        | bang == bang_RDR
        -> do { bang_on <- extension bangPatEnabled
              ; if bang_on then do { e' <- checkLPat msg e
                                   ; addAnnotation loc AnnBang lb
                                   ; return  (BangPat e') }
                else parseErrorSDoc loc (text "Illegal bang-pattern (use BangPatterns):" $$ ppr e0) }

   ELazyPat e         -> checkLPat msg e >>= (return . LazyPat)
   EAsPat n e         -> checkLPat msg e >>= (return . AsPat n)
   -- view pattern is well-formed if the pattern is
   EViewPat expr patE  -> checkLPat msg patE >>=
                            (return . (\p -> ViewPat expr p placeHolderType))
   ExprWithTySig e t _ -> do e <- checkLPat msg e
                             -- Pattern signatures are parsed as sigtypes,
                             -- but they aren't explicit forall points.  Hence
                             -- we have to remove the implicit forall here.
                             let t' = case t of
                                        L _ (HsForAllTy Implicit _ _
                                             (L _ []) ty) -> ty
                                        other -> other
                             return (SigPatIn e (mkHsWithBndrs t'))

   -- n+k patterns
   OpApp (L nloc (HsVar n)) (L _ (HsVar plus)) _
         (L lloc (HsOverLit lit@(OverLit {ol_val = HsIntegral {}})))
                      | xopt Opt_NPlusKPatterns dynflags && (plus == plus_RDR)
                      -> return (mkNPlusKPat (L nloc n) (L lloc lit))

   OpApp l op _fix r  -> do l <- checkLPat msg l
                            r <- checkLPat msg r
                            case op of
                               L cl (HsVar c) | isDataOcc (rdrNameOcc c)
                                      -> return (ConPatIn (L cl c) (InfixCon l r))
                               _ -> patFail msg loc e0

   HsPar e            -> checkLPat msg e >>= (return . ParPat)
   ExplicitList _ _ es  -> do ps <- mapM (checkLPat msg) es
                              return (ListPat ps placeHolderType Nothing)
   ExplicitPArr _ es  -> do ps <- mapM (checkLPat msg) es
                            return (PArrPat ps placeHolderType)

   ExplicitTuple es b
     | all tupArgPresent es  -> do ps <- mapM (checkLPat msg)
                                              [e | L _ (Present e) <- es]
                                   return (TuplePat ps b [])
     | otherwise -> parseErrorSDoc loc (text "Illegal tuple section in pattern:" $$ ppr e0)

   RecordCon c _ (HsRecFields fs dd) _
                        -> do fs <- mapM (checkPatField msg) fs
                              return (ConPatIn c (RecCon (HsRecFields fs dd)))
   HsSpliceE s | not (isTypedSplice s)
               -> return (SplicePat s)
   _           -> patFail msg loc e0

placeHolderPunRhs :: LHsExpr RdrName
-- The RHS of a punned record field will be filled in by the renamer
-- It's better not to make it an error, in case we want to print it when debugging
placeHolderPunRhs = noLoc (HsVar pun_RDR)

plus_RDR, bang_RDR, pun_RDR :: RdrName
plus_RDR = mkUnqual varName (fsLit "+") -- Hack
bang_RDR = mkUnqual varName (fsLit "!") -- Hack
pun_RDR  = mkUnqual varName (fsLit "pun-right-hand-side")

checkPatField :: SDoc -> LHsRecField RdrName (LHsExpr RdrName)
              -> P (LHsRecField RdrName (LPat RdrName))
checkPatField msg (L l fld) = do p <- checkLPat msg (hsRecFieldArg fld)
                                 return (L l (fld { hsRecFieldArg = p }))

patFail :: SDoc -> SrcSpan -> HsExpr RdrName -> P a
patFail msg loc e = parseErrorSDoc loc err
    where err = text "Parse error in pattern:" <+> ppr e
             $$ msg


---------------------------------------------------------------------------
-- Check Equation Syntax

checkValDef :: SDoc
            -> LHsExpr RdrName
            -> Maybe (LHsType RdrName)
            -> Located (a,GRHSs RdrName (LHsExpr RdrName))
            -> P ([AddAnn],HsBind RdrName)

checkValDef msg lhs (Just sig) grhss
        -- x :: ty = rhs  parses as a *pattern* binding
  = checkPatBind msg (L (combineLocs lhs sig)
                        (ExprWithTySig lhs sig PlaceHolder)) grhss

checkValDef msg lhs opt_sig g@(L l (_,grhss))
  = do  { mb_fun <- isFunLhs lhs
        ; case mb_fun of
            Just (fun, is_infix, pats, ann) ->
              checkFunBind msg ann (getLoc lhs)
                                           fun is_infix pats opt_sig (L l grhss)
            Nothing -> checkPatBind msg lhs g }

checkFunBind :: SDoc
             -> [AddAnn]
             -> SrcSpan
             -> Located RdrName
             -> Bool
             -> [LHsExpr RdrName]
             -> Maybe (LHsType RdrName)
             -> Located (GRHSs RdrName (LHsExpr RdrName))
             -> P ([AddAnn],HsBind RdrName)
checkFunBind msg ann lhs_loc fun is_infix pats opt_sig (L rhs_span grhss)
  = do  ps <- checkPatterns msg pats
        let match_span = combineSrcSpans lhs_loc rhs_span
        -- Add back the annotations stripped from any HsPar values in the lhs
        -- mapM_ (\a -> a match_span) ann
        return (ann,makeFunBind fun is_infix
                  [L match_span (Match (Just (fun,is_infix)) ps opt_sig grhss)])
        -- The span of the match covers the entire equation.
        -- That isn't quite right, but it'll do for now.

makeFunBind :: Located RdrName -> Bool -> [LMatch RdrName (LHsExpr RdrName)]
            -> HsBind RdrName
-- Like HsUtils.mkFunBind, but we need to be able to set the fixity too
makeFunBind fn is_infix ms
  = FunBind { fun_id = fn, fun_infix = is_infix,
              fun_matches = mkMatchGroup FromSource ms,
              fun_co_fn = idHsWrapper,
              bind_fvs = placeHolderNames,
              fun_tick = [] }

checkPatBind :: SDoc
             -> LHsExpr RdrName
             -> Located (a,GRHSs RdrName (LHsExpr RdrName))
             -> P ([AddAnn],HsBind RdrName)
checkPatBind msg lhs (L _ (_,grhss))
  = do  { lhs <- checkPattern msg lhs
        ; return ([],PatBind lhs grhss placeHolderType placeHolderNames
                    ([],[])) }

checkValSig
        :: LHsExpr RdrName
        -> LHsType RdrName
        -> P (Sig RdrName)
checkValSig (L l (HsVar v)) ty
  | isUnqual v && not (isDataOcc (rdrNameOcc v))
  = return (TypeSig [L l v] ty PlaceHolder)
checkValSig lhs@(L l _) ty
  = parseErrorSDoc l ((text "Invalid type signature:" <+>
                       ppr lhs <+> text "::" <+> ppr ty)
                   $$ text hint)
  where
    hint | foreign_RDR `looks_like` lhs =
           "Perhaps you meant to use ForeignFunctionInterface?"
         | default_RDR `looks_like` lhs =
           "Perhaps you meant to use DefaultSignatures?"
         | pattern_RDR `looks_like` lhs =
           "Perhaps you meant to use PatternSynonyms?"
         | otherwise =
           "Should be of form <variable> :: <type>"
    -- A common error is to forget the ForeignFunctionInterface flag
    -- so check for that, and suggest.  cf Trac #3805
    -- Sadly 'foreign import' still barfs 'parse error' because 'import' is a keyword
    looks_like s (L _ (HsVar v))     = v == s
    looks_like s (L _ (HsApp lhs _)) = looks_like s lhs
    looks_like _ _                   = False

    foreign_RDR = mkUnqual varName (fsLit "foreign")
    default_RDR = mkUnqual varName (fsLit "default")
    pattern_RDR = mkUnqual varName (fsLit "pattern")


checkDoAndIfThenElse :: LHsExpr RdrName
                     -> Bool
                     -> LHsExpr RdrName
                     -> Bool
                     -> LHsExpr RdrName
                     -> P ()
checkDoAndIfThenElse guardExpr semiThen thenExpr semiElse elseExpr
 | semiThen || semiElse
    = do pState <- getPState
         unless (xopt Opt_DoAndIfThenElse (dflags pState)) $ do
             parseErrorSDoc (combineLocs guardExpr elseExpr)
                            (text "Unexpected semi-colons in conditional:"
                          $$ nest 4 expr
                          $$ text "Perhaps you meant to use DoAndIfThenElse?")
 | otherwise            = return ()
    where pprOptSemi True  = semi
          pprOptSemi False = empty
          expr = text "if"   <+> ppr guardExpr <> pprOptSemi semiThen <+>
                 text "then" <+> ppr thenExpr  <> pprOptSemi semiElse <+>
                 text "else" <+> ppr elseExpr


        -- The parser left-associates, so there should
        -- not be any OpApps inside the e's
splitBang :: LHsExpr RdrName -> Maybe (LHsExpr RdrName, [LHsExpr RdrName])
-- Splits (f ! g a b) into (f, [(! g), a, b])
splitBang (L _ (OpApp l_arg bang@(L _ (HsVar op)) _ r_arg))
  | op == bang_RDR = Just (l_arg, L l' (SectionR bang arg1) : argns)
  where
    l' = combineLocs bang arg1
    (arg1,argns) = split_bang r_arg []
    split_bang (L _ (HsApp f e)) es = split_bang f (e:es)
    split_bang e                 es = (e,es)
splitBang _ = Nothing

isFunLhs :: LHsExpr RdrName
         -> P (Maybe (Located RdrName, Bool, [LHsExpr RdrName],[AddAnn]))
-- A variable binding is parsed as a FunBind.
-- Just (fun, is_infix, arg_pats) if e is a function LHS
--
-- The whole LHS is parsed as a single expression.
-- Any infix operators on the LHS will parse left-associatively
-- E.g.         f !x y !z
--      will parse (rather strangely) as
--              (f ! x y) ! z
--      It's up to isFunLhs to sort out the mess
--
-- a .!. !b

isFunLhs e = go e [] []
 where
   go (L loc (HsVar f)) es ann
        | not (isRdrDataCon f)       = return (Just (L loc f, False, es, ann))
   go (L _ (HsApp f e)) es       ann = go f (e:es) ann
   go (L l (HsPar e))   es@(_:_) ann = go e es (ann ++ mkParensApiAnn l)

        -- For infix function defns, there should be only one infix *function*
        -- (though there may be infix *datacons* involved too).  So we don't
        -- need fixity info to figure out which function is being defined.
        --      a `K1` b `op` c `K2` d
        -- must parse as
        --      (a `K1` b) `op` (c `K2` d)
        -- The renamer checks later that the precedences would yield such a parse.
        --
        -- There is a complication to deal with bang patterns.
        --
        -- ToDo: what about this?
        --              x + 1 `op` y = ...

   go e@(L loc (OpApp l (L loc' (HsVar op)) fix r)) es ann
        | Just (e',es') <- splitBang e
        = do { bang_on <- extension bangPatEnabled
             ; if bang_on then go e' (es' ++ es) ann
               else return (Just (L loc' op, True, (l:r:es), ann)) }
                -- No bangs; behave just like the next case
        | not (isRdrDataCon op)         -- We have found the function!
        = return (Just (L loc' op, True, (l:r:es), ann))
        | otherwise                     -- Infix data con; keep going
        = do { mb_l <- go l es ann
             ; case mb_l of
                 Just (op', True, j : k : es', ann')
                    -> return (Just (op', True, j : op_app : es', ann'))
                    where
                      op_app = L loc (OpApp k (L loc' (HsVar op)) fix r)
                 _ -> return Nothing }
   go _ _ _ = return Nothing


-- | Transform btype with strict_mark's into HsEqTy's
-- (((~a) ~b) c) ~d ==> ((~a) ~ (b c)) ~ d
splitTilde :: LHsType RdrName -> LHsType RdrName
splitTilde t = go t
  where go (L loc (HsAppTy t1 t2))
          | L _ (HsBangTy (HsSrcBang Nothing NoSrcUnpack SrcLazy) t2') <- t2
          = L loc (HsEqTy (go t1) t2')
          | otherwise
          = case go t1 of
              (L _ (HsEqTy tl tr)) ->
                L loc (HsEqTy tl (L (combineLocs tr t2) (HsAppTy tr t2)))
              t -> L loc (HsAppTy t t2)

        go t = t

---------------------------------------------------------------------------
-- Check for monad comprehensions
--
-- If the flag MonadComprehensions is set, return a `MonadComp' context,
-- otherwise use the usual `ListComp' context

checkMonadComp :: P (HsStmtContext Name)
checkMonadComp = do
    pState <- getPState
    return $ if xopt Opt_MonadComprehensions (dflags pState)
                then MonadComp
                else ListComp

-- -------------------------------------------------------------------------
-- Checking arrow syntax.

-- We parse arrow syntax as expressions and check for valid syntax below,
-- converting the expression into a pattern at the same time.

checkCommand :: LHsExpr RdrName -> P (LHsCmd RdrName)
checkCommand lc = locMap checkCmd lc

locMap :: (SrcSpan -> a -> P b) -> Located a -> P (Located b)
locMap f (L l a) = f l a >>= (\b -> return $ L l b)

checkCmd :: SrcSpan -> HsExpr RdrName -> P (HsCmd RdrName)
checkCmd _ (HsArrApp e1 e2 ptt haat b) =
    return $ HsCmdArrApp e1 e2 ptt haat b
checkCmd _ (HsArrForm e mf args) =
    return $ HsCmdArrForm e mf args
checkCmd _ (HsApp e1 e2) =
    checkCommand e1 >>= (\c -> return $ HsCmdApp c e2)
checkCmd _ (HsLam mg) =
    checkCmdMatchGroup mg >>= (\mg' -> return $ HsCmdLam mg')
checkCmd _ (HsPar e) =
    checkCommand e >>= (\c -> return $ HsCmdPar c)
checkCmd _ (HsCase e mg) =
    checkCmdMatchGroup mg >>= (\mg' -> return $ HsCmdCase e mg')
checkCmd _ (HsIf cf ep et ee) = do
    pt <- checkCommand et
    pe <- checkCommand ee
    return $ HsCmdIf cf ep pt pe
checkCmd _ (HsLet lb e) =
    checkCommand e >>= (\c -> return $ HsCmdLet lb c)
checkCmd _ (HsDo DoExpr stmts ty) =
    mapM checkCmdLStmt stmts >>= (\ss -> return $ HsCmdDo ss ty)

checkCmd _ (OpApp eLeft op _fixity eRight) = do
    -- OpApp becomes a HsCmdArrForm with a (Just fixity) in it
    c1 <- checkCommand eLeft
    c2 <- checkCommand eRight
    let arg1 = L (getLoc c1) $ HsCmdTop c1 placeHolderType placeHolderType []
        arg2 = L (getLoc c2) $ HsCmdTop c2 placeHolderType placeHolderType []
    return $ HsCmdArrForm op Nothing [arg1, arg2]

checkCmd l e = cmdFail l e

checkCmdLStmt :: ExprLStmt RdrName -> P (CmdLStmt RdrName)
checkCmdLStmt = locMap checkCmdStmt

checkCmdStmt :: SrcSpan -> ExprStmt RdrName -> P (CmdStmt RdrName)
checkCmdStmt _ (LastStmt e s r) =
    checkCommand e >>= (\c -> return $ LastStmt c s r)
checkCmdStmt _ (BindStmt pat e b f) =
    checkCommand e >>= (\c -> return $ BindStmt pat c b f)
checkCmdStmt _ (BodyStmt e t g ty) =
    checkCommand e >>= (\c -> return $ BodyStmt c t g ty)
checkCmdStmt _ (LetStmt bnds) = return $ LetStmt bnds
checkCmdStmt _ stmt@(RecStmt { recS_stmts = stmts }) = do
    ss <- mapM checkCmdLStmt stmts
    return $ stmt { recS_stmts = ss }
checkCmdStmt l stmt = cmdStmtFail l stmt

checkCmdMatchGroup :: MatchGroup RdrName (LHsExpr RdrName) -> P (MatchGroup RdrName (LHsCmd RdrName))
checkCmdMatchGroup mg@(MG { mg_alts = ms }) = do
    ms' <- mapM (locMap $ const convert) ms
    return $ mg { mg_alts = ms' }
    where convert (Match mf pat mty grhss) = do
            grhss' <- checkCmdGRHSs grhss
            return $ Match mf pat mty grhss'

checkCmdGRHSs :: GRHSs RdrName (LHsExpr RdrName) -> P (GRHSs RdrName (LHsCmd RdrName))
checkCmdGRHSs (GRHSs grhss binds) = do
    grhss' <- mapM checkCmdGRHS grhss
    return $ GRHSs grhss' binds

checkCmdGRHS :: LGRHS RdrName (LHsExpr RdrName) -> P (LGRHS RdrName (LHsCmd RdrName))
checkCmdGRHS = locMap $ const convert
  where
    convert (GRHS stmts e) = do
        c <- checkCommand e
--        cmdStmts <- mapM checkCmdLStmt stmts
        return $ GRHS {- cmdStmts -} stmts c


cmdFail :: SrcSpan -> HsExpr RdrName -> P a
cmdFail loc e = parseErrorSDoc loc (text "Parse error in command:" <+> ppr e)
cmdStmtFail :: SrcSpan -> Stmt RdrName (LHsExpr RdrName) -> P a
cmdStmtFail loc e = parseErrorSDoc loc
                    (text "Parse error in command statement:" <+> ppr e)

---------------------------------------------------------------------------
-- Miscellaneous utilities

checkPrecP :: Located Int -> P (Located Int)
checkPrecP (L l i)
 | 0 <= i && i <= maxPrecedence = return (L l i)
 | otherwise
    = parseErrorSDoc l (text ("Precedence out of range: " ++ show i))

mkRecConstrOrUpdate
        :: LHsExpr RdrName
        -> SrcSpan
        -> ([LHsRecField RdrName (LHsExpr RdrName)], Bool)
        -> P (HsExpr RdrName)

mkRecConstrOrUpdate (L l (HsVar c)) _ (fs,dd)
  | isRdrDataCon c
  = return (RecordCon (L l c) noPostTcExpr (mk_rec_fields fs dd) PlaceHolder)
mkRecConstrOrUpdate exp@(L l _) _ (fs,dd)
  | dd        = parseErrorSDoc l (text "You cannot use `..' in a record update")
  | otherwise = return (RecordUpd exp (map (fmap mk_rec_upd_field) fs)
                      PlaceHolder PlaceHolder PlaceHolder PlaceHolder)

mk_rec_fields :: [LHsRecField id arg] -> Bool -> HsRecFields id arg
mk_rec_fields fs False = HsRecFields { rec_flds = fs, rec_dotdot = Nothing }
mk_rec_fields fs True  = HsRecFields { rec_flds = fs, rec_dotdot = Just (length fs) }

mk_rec_upd_field :: HsRecField RdrName (LHsExpr RdrName) -> HsRecUpdField RdrName
mk_rec_upd_field (HsRecField (L loc (FieldOcc rdr _)) arg pun)
  = HsRecField (L loc (Unambiguous rdr PlaceHolder)) arg pun

mkInlinePragma :: String -> (InlineSpec, RuleMatchInfo) -> Maybe Activation
               -> InlinePragma
-- The (Maybe Activation) is because the user can omit
-- the activation spec (and usually does)
mkInlinePragma src (inl, match_info) mb_act
  = InlinePragma { inl_src = src -- Note [Pragma source text] in BasicTypes
                 , inl_inline = inl
                 , inl_sat    = Nothing
                 , inl_act    = act
                 , inl_rule   = match_info }
  where
    act = case mb_act of
            Just act -> act
            Nothing  -> -- No phase specified
                        case inl of
                          NoInline -> NeverActive
                          _other   -> AlwaysActive

-----------------------------------------------------------------------------
-- utilities for foreign declarations

-- construct a foreign import declaration
--
mkImport :: Located CCallConv
         -> Located Safety
         -> (Located StringLiteral, Located RdrName, LHsType RdrName)
         -> P (HsDecl RdrName)
mkImport (L lc cconv) (L ls safety) (L loc (StringLiteral esrc entity), v, ty)
  | cconv == PrimCallConv                      = do
  let funcTarget = CFunction (StaticTarget esrc entity Nothing True)
      importSpec = CImport (L lc PrimCallConv) (L ls safety) Nothing funcTarget
                           (L loc (unpackFS entity))
  return (ForD (ForeignImport v ty noForeignImportCoercionYet importSpec))
  | cconv == JavaScriptCallConv = do
  let funcTarget = CFunction (StaticTarget esrc entity Nothing True)
      importSpec = CImport (L lc JavaScriptCallConv) (L ls safety) Nothing
                           funcTarget (L loc (unpackFS entity))
  return (ForD (ForeignImport v ty noForeignImportCoercionYet importSpec))
  | otherwise = do
    case parseCImport (L lc cconv) (L ls safety) (mkExtName (unLoc v))
                      (unpackFS entity) (L loc (unpackFS entity)) of
      Nothing         -> parseErrorSDoc loc (text "Malformed entity string")
      Just importSpec -> return (ForD (ForeignImport v ty noForeignImportCoercionYet importSpec))

-- the string "foo" is ambigous: either a header or a C identifier.  The
-- C identifier case comes first in the alternatives below, so we pick
-- that one.
parseCImport :: Located CCallConv -> Located Safety -> FastString -> String
             -> Located SourceText
             -> Maybe ForeignImport
parseCImport cconv safety nm str sourceText =
 listToMaybe $ map fst $ filter (null.snd) $
     readP_to_S parse str
 where
   parse = do
       skipSpaces
       r <- choice [
          string "dynamic" >> return (mk Nothing (CFunction DynamicTarget)),
          string "wrapper" >> return (mk Nothing CWrapper),
          do optional (token "static" >> skipSpaces)
             ((mk Nothing <$> cimp nm) +++
              (do h <- munch1 hdr_char
                  skipSpaces
                  mk (Just (Header h (mkFastString h))) <$> cimp nm))
         ]
       skipSpaces
       return r

   token str = do _ <- string str
                  toks <- look
                  case toks of
                      c : _
                       | id_char c -> pfail
                      _            -> return ()

   mk h n = CImport cconv safety h n sourceText

   hdr_char c = not (isSpace c) -- header files are filenames, which can contain
                                -- pretty much any char (depending on the platform),
                                -- so just accept any non-space character
   id_first_char c = isAlpha    c || c == '_'
   id_char       c = isAlphaNum c || c == '_'

   cimp nm = (ReadP.char '&' >> skipSpaces >> CLabel <$> cid)
             +++ (do isFun <- case cconv of
                              L _ CApiConv ->
                                  option True
                                         (do token "value"
                                             skipSpaces
                                             return False)
                              _ -> return True
                     cid' <- cid
                     return (CFunction (StaticTarget (unpackFS cid') cid'
                                        Nothing isFun)))
          where
            cid = return nm +++
                  (do c  <- satisfy id_first_char
                      cs <-  many (satisfy id_char)
                      return (mkFastString (c:cs)))


-- construct a foreign export declaration
--
mkExport :: Located CCallConv
         -> (Located StringLiteral, Located RdrName, LHsType RdrName)
         -> P (HsDecl RdrName)
mkExport (L lc cconv) (L le (StringLiteral esrc entity), v, ty) = do
  return $ ForD (ForeignExport v ty noForeignExportCoercionYet
                 (CExport (L lc (CExportStatic esrc entity' cconv))
                          (L le (unpackFS entity))))
  where
    entity' | nullFS entity = mkExtName (unLoc v)
            | otherwise     = entity

-- Supplying the ext_name in a foreign decl is optional; if it
-- isn't there, the Haskell name is assumed. Note that no transformation
-- of the Haskell name is then performed, so if you foreign export (++),
-- it's external name will be "++". Too bad; it's important because we don't
-- want z-encoding (e.g. names with z's in them shouldn't be doubled)
--
mkExtName :: RdrName -> CLabelString
mkExtName rdrNm = mkFastString (occNameString (rdrNameOcc rdrNm))

--------------------------------------------------------------------------------
-- Help with module system imports/exports

data ImpExpSubSpec = ImpExpAbs
                   | ImpExpAll
                   | ImpExpList [Located RdrName]
                   | ImpExpAllWith [Located (Maybe RdrName)]

mkModuleImpExp :: Located RdrName -> ImpExpSubSpec -> P (IE RdrName)
mkModuleImpExp n@(L l name) subs =
  case subs of
    ImpExpAbs
      | isVarNameSpace (rdrNameSpace name) -> return $ IEVar  n
      | otherwise                          -> return $ IEThingAbs  (L l name)
    ImpExpAll                              -> return $ IEThingAll  (L l name)
    ImpExpList xs                          ->
      return $ IEThingWith (L l name) NoIEWildcard xs []
    ImpExpAllWith xs                       ->
      do allowed <- extension patternSynonymsEnabled
         if allowed
          then
            let withs = map unLoc xs
                pos   = maybe NoIEWildcard IEWildcard
                          (findIndex isNothing withs)
                ies   = [L l n | L l (Just n) <- xs]
            in return (IEThingWith (L l name) pos ies [])
          else parseErrorSDoc l
            (text "Illegal export form (use PatternSynonyms to enable)")

mkTypeImpExp :: Located RdrName   -- TcCls or Var name space
             -> P (Located RdrName)
mkTypeImpExp name =
  do allowed <- extension explicitNamespacesEnabled
     if allowed
       then return (fmap (`setRdrNameSpace` tcClsName) name)
       else parseErrorSDoc (getLoc name)
              (text "Illegal keyword 'type' (use ExplicitNamespaces to enable)")

checkImportSpec :: Located [LIE RdrName] -> P (Located [LIE RdrName])
checkImportSpec ie@(L _ specs) =
    case [l | (L l (IEThingWith _ (IEWildcard _) _ _)) <- specs] of
      [] -> return ie
      (l:_) -> importSpecError l
  where
    importSpecError l =
      parseErrorSDoc l
        (text "Illegal import form, this syntax can only be used to bundle"
        $+$ text "pattern synonyms with types in module exports.")

-- In the correct order
mkImpExpSubSpec :: [Located (Maybe RdrName)] -> P ([AddAnn], ImpExpSubSpec)
mkImpExpSubSpec [] = return ([], ImpExpList [])
mkImpExpSubSpec [L l Nothing] =
  return ([\s -> addAnnotation l AnnDotdot s], ImpExpAll)
mkImpExpSubSpec xs =
  if (any (isNothing . unLoc) xs)
    then return $ ([], ImpExpAllWith xs)
    else return $ ([], ImpExpList ([L l x | L l (Just x) <- xs]))


-----------------------------------------------------------------------------
-- Misc utils

parseErrorSDoc :: SrcSpan -> SDoc -> P a
parseErrorSDoc span s = failSpanMsgP span s