1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[ConFold]{Constant Folder}
Conceptually, constant folding should be parameterized with the kind
of target machine to get identical behaviour during compilation time
and runtime. We cheat a little bit here...
ToDo:
check boundaries before folding, e.g. we can fold the Float addition
(i1 + i2) only if it results in a valid Float.
\begin{code}
{-# OPTIONS -optc-DNON_POSIX_SOURCE #-}
module PrelRules ( primOpRules, builtinRules ) where
#include "HsVersions.h"
import CoreSyn
import MkCore
import Id
import Literal
import PrimOp ( PrimOp(..), tagToEnumKey )
import TysWiredIn
import TysPrim
import TyCon ( tyConDataCons_maybe, isEnumerationTyCon, isNewTyCon )
import DataCon ( dataConTag, dataConTyCon, dataConWorkId, fIRST_TAG )
import CoreUtils ( cheapEqExpr, exprIsHNF )
import CoreUnfold ( exprIsConApp_maybe )
import Type
import OccName ( occNameFS )
import PrelNames
import Maybes ( orElse )
import Name ( Name, nameOccName )
import Outputable
import FastString
import StaticFlags ( opt_SimplExcessPrecision )
import Constants
import BasicTypes
import Data.Bits as Bits
import Data.Int ( Int64 )
import Data.Word ( Word, Word64 )
\end{code}
Note [Constant folding]
~~~~~~~~~~~~~~~~~~~~~~~
primOpRules generates the rewrite rules for each primop
These rules do what is often called "constant folding"
E.g. the rules for +# might say
4 +# 5 = 9
Well, of course you'd need a lot of rules if you did it
like that, so we use a BuiltinRule instead, so that we
can match in any two literal values. So the rule is really
more like
(Lit x) +# (Lit y) = Lit (x+#y)
where the (+#) on the rhs is done at compile time
That is why these rules are built in here. Other rules
which don't need to be built in are in GHC.Base. For
example:
x +# 0 = x
\begin{code}
primOpRules :: PrimOp -> Name -> [CoreRule]
primOpRules op op_name = primop_rule op
where
-- A useful shorthand
one_lit = oneLit op_name
two_lits = twoLits op_name
relop cmp = two_lits (cmpOp (\ord -> ord `cmp` EQ))
-- Cunning. cmpOp compares the values to give an Ordering.
-- It applies its argument to that ordering value to turn
-- the ordering into a boolean value. (`cmp` EQ) is just the job.
-- ToDo: something for integer-shift ops?
-- NotOp
primop_rule TagToEnumOp = mkBasicRule op_name 2 tagToEnumRule
primop_rule DataToTagOp = mkBasicRule op_name 2 dataToTagRule
-- Int operations
primop_rule IntAddOp = two_lits (intOp2 (+))
primop_rule IntSubOp = two_lits (intOp2 (-))
primop_rule IntMulOp = two_lits (intOp2 (*))
primop_rule IntQuotOp = two_lits (intOp2Z quot)
primop_rule IntRemOp = two_lits (intOp2Z rem)
primop_rule IntNegOp = one_lit negOp
primop_rule ISllOp = two_lits (intShiftOp2 Bits.shiftL)
primop_rule ISraOp = two_lits (intShiftOp2 Bits.shiftR)
primop_rule ISrlOp = two_lits (intShiftOp2 shiftRightLogical)
-- Word operations
primop_rule WordAddOp = two_lits (wordOp2 (+))
primop_rule WordSubOp = two_lits (wordOp2 (-))
primop_rule WordMulOp = two_lits (wordOp2 (*))
primop_rule WordQuotOp = two_lits (wordOp2Z quot)
primop_rule WordRemOp = two_lits (wordOp2Z rem)
primop_rule AndOp = two_lits (wordBitOp2 (.&.))
primop_rule OrOp = two_lits (wordBitOp2 (.|.))
primop_rule XorOp = two_lits (wordBitOp2 xor)
primop_rule SllOp = two_lits (wordShiftOp2 Bits.shiftL)
primop_rule SrlOp = two_lits (wordShiftOp2 shiftRightLogical)
-- coercions
primop_rule Word2IntOp = one_lit (litCoerce word2IntLit)
primop_rule Int2WordOp = one_lit (litCoerce int2WordLit)
primop_rule Narrow8IntOp = one_lit (litCoerce narrow8IntLit)
primop_rule Narrow16IntOp = one_lit (litCoerce narrow16IntLit)
primop_rule Narrow32IntOp = one_lit (litCoerce narrow32IntLit)
primop_rule Narrow8WordOp = one_lit (litCoerce narrow8WordLit)
primop_rule Narrow16WordOp = one_lit (litCoerce narrow16WordLit)
primop_rule Narrow32WordOp = one_lit (litCoerce narrow32WordLit)
primop_rule OrdOp = one_lit (litCoerce char2IntLit)
primop_rule ChrOp = one_lit (predLitCoerce litFitsInChar int2CharLit)
primop_rule Float2IntOp = one_lit (litCoerce float2IntLit)
primop_rule Int2FloatOp = one_lit (litCoerce int2FloatLit)
primop_rule Double2IntOp = one_lit (litCoerce double2IntLit)
primop_rule Int2DoubleOp = one_lit (litCoerce int2DoubleLit)
-- SUP: Not sure what the standard says about precision in the following 2 cases
primop_rule Float2DoubleOp = one_lit (litCoerce float2DoubleLit)
primop_rule Double2FloatOp = one_lit (litCoerce double2FloatLit)
-- Float
primop_rule FloatAddOp = two_lits (floatOp2 (+))
primop_rule FloatSubOp = two_lits (floatOp2 (-))
primop_rule FloatMulOp = two_lits (floatOp2 (*))
primop_rule FloatDivOp = two_lits (floatOp2Z (/))
primop_rule FloatNegOp = one_lit negOp
-- Double
primop_rule DoubleAddOp = two_lits (doubleOp2 (+))
primop_rule DoubleSubOp = two_lits (doubleOp2 (-))
primop_rule DoubleMulOp = two_lits (doubleOp2 (*))
primop_rule DoubleDivOp = two_lits (doubleOp2Z (/))
primop_rule DoubleNegOp = one_lit negOp
-- Relational operators
primop_rule IntEqOp = relop (==) ++ litEq op_name True
primop_rule IntNeOp = relop (/=) ++ litEq op_name False
primop_rule CharEqOp = relop (==) ++ litEq op_name True
primop_rule CharNeOp = relop (/=) ++ litEq op_name False
primop_rule IntGtOp = relop (>) ++ boundsCmp op_name Gt
primop_rule IntGeOp = relop (>=) ++ boundsCmp op_name Ge
primop_rule IntLeOp = relop (<=) ++ boundsCmp op_name Le
primop_rule IntLtOp = relop (<) ++ boundsCmp op_name Lt
primop_rule CharGtOp = relop (>) ++ boundsCmp op_name Gt
primop_rule CharGeOp = relop (>=) ++ boundsCmp op_name Ge
primop_rule CharLeOp = relop (<=) ++ boundsCmp op_name Le
primop_rule CharLtOp = relop (<) ++ boundsCmp op_name Lt
primop_rule FloatGtOp = relop (>)
primop_rule FloatGeOp = relop (>=)
primop_rule FloatLeOp = relop (<=)
primop_rule FloatLtOp = relop (<)
primop_rule FloatEqOp = relop (==)
primop_rule FloatNeOp = relop (/=)
primop_rule DoubleGtOp = relop (>)
primop_rule DoubleGeOp = relop (>=)
primop_rule DoubleLeOp = relop (<=)
primop_rule DoubleLtOp = relop (<)
primop_rule DoubleEqOp = relop (==)
primop_rule DoubleNeOp = relop (/=)
primop_rule WordGtOp = relop (>) ++ boundsCmp op_name Gt
primop_rule WordGeOp = relop (>=) ++ boundsCmp op_name Ge
primop_rule WordLeOp = relop (<=) ++ boundsCmp op_name Le
primop_rule WordLtOp = relop (<) ++ boundsCmp op_name Lt
primop_rule WordEqOp = relop (==)
primop_rule WordNeOp = relop (/=)
primop_rule SeqOp = mkBasicRule op_name 4 seqRule
primop_rule SparkOp = mkBasicRule op_name 4 sparkRule
primop_rule _ = []
\end{code}
%************************************************************************
%* *
\subsection{Doing the business}
%* *
%************************************************************************
ToDo: the reason these all return Nothing is because there used to be
the possibility of an argument being a litlit. Litlits are now gone,
so this could be cleaned up.
\begin{code}
--------------------------
litCoerce :: (Literal -> Literal) -> Literal -> Maybe CoreExpr
litCoerce fn lit = Just (Lit (fn lit))
predLitCoerce :: (Literal -> Bool) -> (Literal -> Literal) -> Literal -> Maybe CoreExpr
predLitCoerce p fn lit
| p lit = Just (Lit (fn lit))
| otherwise = Nothing
--------------------------
cmpOp :: (Ordering -> Bool) -> Literal -> Literal -> Maybe CoreExpr
cmpOp cmp l1 l2
= go l1 l2
where
done res | cmp res = Just trueVal
| otherwise = Just falseVal
-- These compares are at different types
go (MachChar i1) (MachChar i2) = done (i1 `compare` i2)
go (MachInt i1) (MachInt i2) = done (i1 `compare` i2)
go (MachInt64 i1) (MachInt64 i2) = done (i1 `compare` i2)
go (MachWord i1) (MachWord i2) = done (i1 `compare` i2)
go (MachWord64 i1) (MachWord64 i2) = done (i1 `compare` i2)
go (MachFloat i1) (MachFloat i2) = done (i1 `compare` i2)
go (MachDouble i1) (MachDouble i2) = done (i1 `compare` i2)
go _ _ = Nothing
--------------------------
negOp :: Literal -> Maybe CoreExpr -- Negate
negOp (MachFloat 0.0) = Nothing -- can't represent -0.0 as a Rational
negOp (MachFloat f) = Just (mkFloatVal (-f))
negOp (MachDouble 0.0) = Nothing
negOp (MachDouble d) = Just (mkDoubleVal (-d))
negOp (MachInt i) = intResult (-i)
negOp _ = Nothing
--------------------------
intOp2 :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr
intOp2 op (MachInt i1) (MachInt i2) = intResult (i1 `op` i2)
intOp2 _ _ _ = Nothing -- Could find LitLit
intOp2Z :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr
-- Like intOp2, but Nothing if i2=0
intOp2Z op (MachInt i1) (MachInt i2)
| i2 /= 0 = intResult (i1 `op` i2)
intOp2Z _ _ _ = Nothing -- LitLit or zero dividend
intShiftOp2 :: (Integer->Int->Integer) -> Literal -> Literal -> Maybe CoreExpr
-- Shifts take an Int; hence second arg of op is Int
intShiftOp2 op (MachInt i1) (MachInt i2) = intResult (i1 `op` fromInteger i2)
intShiftOp2 _ _ _ = Nothing
shiftRightLogical :: Integer -> Int -> Integer
-- Shift right, putting zeros in rather than sign-propagating as Bits.shiftR would do
-- Do this by converting to Word and back. Obviously this won't work for big
-- values, but its ok as we use it here
shiftRightLogical x n = fromIntegral (fromInteger x `shiftR` n :: Word)
--------------------------
wordOp2 :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr
wordOp2 op (MachWord w1) (MachWord w2)
= wordResult (w1 `op` w2)
wordOp2 _ _ _ = Nothing -- Could find LitLit
wordOp2Z :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr
wordOp2Z op (MachWord w1) (MachWord w2)
| w2 /= 0 = wordResult (w1 `op` w2)
wordOp2Z _ _ _ = Nothing -- LitLit or zero dividend
wordBitOp2 :: (Integer->Integer->Integer) -> Literal -> Literal
-> Maybe CoreExpr
wordBitOp2 op (MachWord w1) (MachWord w2)
= wordResult (w1 `op` w2)
wordBitOp2 _ _ _ = Nothing -- Could find LitLit
wordShiftOp2 :: (Integer->Int->Integer) -> Literal -> Literal -> Maybe CoreExpr
-- Shifts take an Int; hence second arg of op is Int
wordShiftOp2 op (MachWord x) (MachInt n)
= wordResult (x `op` fromInteger n)
-- Do the shift at type Integer
wordShiftOp2 _ _ _ = Nothing
--------------------------
floatOp2 :: (Rational -> Rational -> Rational) -> Literal -> Literal
-> Maybe (Expr CoreBndr)
floatOp2 op (MachFloat f1) (MachFloat f2)
= Just (mkFloatVal (f1 `op` f2))
floatOp2 _ _ _ = Nothing
floatOp2Z :: (Rational -> Rational -> Rational) -> Literal -> Literal
-> Maybe (Expr CoreBndr)
floatOp2Z op (MachFloat f1) (MachFloat f2)
| (f1 /= 0 || f2 > 0) -- see Note [negative zero]
&& f2 /= 0 -- avoid NaN and Infinity/-Infinity
= Just (mkFloatVal (f1 `op` f2))
floatOp2Z _ _ _ = Nothing
--------------------------
doubleOp2 :: (Rational -> Rational -> Rational) -> Literal -> Literal
-> Maybe (Expr CoreBndr)
doubleOp2 op (MachDouble f1) (MachDouble f2)
= Just (mkDoubleVal (f1 `op` f2))
doubleOp2 _ _ _ = Nothing
doubleOp2Z :: (Rational -> Rational -> Rational) -> Literal -> Literal
-> Maybe (Expr CoreBndr)
doubleOp2Z op (MachDouble f1) (MachDouble f2)
| (f1 /= 0 || f2 > 0) -- see Note [negative zero]
&& f2 /= 0 -- avoid NaN and Infinity/-Infinity
= Just (mkDoubleVal (f1 `op` f2))
-- Note [negative zero] Avoid (0 / -d), otherwise 0/(-1) reduces to
-- zero, but we might want to preserve the negative zero here which
-- is representable in Float/Double but not in (normalised)
-- Rational. (#3676) Perhaps we should generate (0 :% (-1)) instead?
doubleOp2Z _ _ _ = Nothing
--------------------------
-- This stuff turns
-- n ==# 3#
-- into
-- case n of
-- 3# -> True
-- m -> False
--
-- This is a Good Thing, because it allows case-of case things
-- to happen, and case-default absorption to happen. For
-- example:
--
-- if (n ==# 3#) || (n ==# 4#) then e1 else e2
-- will transform to
-- case n of
-- 3# -> e1
-- 4# -> e1
-- m -> e2
-- (modulo the usual precautions to avoid duplicating e1)
litEq :: Name
-> Bool -- True <=> equality, False <=> inequality
-> [CoreRule]
litEq op_name is_eq
= [BuiltinRule { ru_name = occNameFS (nameOccName op_name)
`appendFS` (fsLit "->case"),
ru_fn = op_name,
ru_nargs = 2, ru_try = rule_fn }]
where
rule_fn _ [Lit lit, expr] = do_lit_eq lit expr
rule_fn _ [expr, Lit lit] = do_lit_eq lit expr
rule_fn _ _ = Nothing
do_lit_eq lit expr
= Just (mkWildCase expr (literalType lit) boolTy
[(DEFAULT, [], val_if_neq),
(LitAlt lit, [], val_if_eq)])
val_if_eq | is_eq = trueVal
| otherwise = falseVal
val_if_neq | is_eq = falseVal
| otherwise = trueVal
-- | Check if there is comparison with minBound or maxBound, that is
-- always true or false. For instance, an Int cannot be smaller than its
-- minBound, so we can replace such comparison with False.
boundsCmp :: Name -> Comparison -> [CoreRule]
boundsCmp op_name op = [ rule ]
where
rule = BuiltinRule
{ ru_name = occNameFS (nameOccName op_name)
`appendFS` (fsLit "min/maxBound")
, ru_fn = op_name
, ru_nargs = 2
, ru_try = rule_fn
}
rule_fn _ [a, b] = mkRuleFn op a b
rule_fn _ _ = Nothing
data Comparison = Gt | Ge | Lt | Le
mkRuleFn :: Comparison -> CoreExpr -> CoreExpr -> Maybe CoreExpr
mkRuleFn Gt (Lit lit) _ | isMinBound lit = Just falseVal
mkRuleFn Le (Lit lit) _ | isMinBound lit = Just trueVal
mkRuleFn Ge _ (Lit lit) | isMinBound lit = Just trueVal
mkRuleFn Lt _ (Lit lit) | isMinBound lit = Just falseVal
mkRuleFn Ge (Lit lit) _ | isMaxBound lit = Just trueVal
mkRuleFn Lt (Lit lit) _ | isMaxBound lit = Just falseVal
mkRuleFn Gt _ (Lit lit) | isMaxBound lit = Just falseVal
mkRuleFn Le _ (Lit lit) | isMaxBound lit = Just trueVal
mkRuleFn _ _ _ = Nothing
isMinBound :: Literal -> Bool
isMinBound (MachChar c) = c == minBound
isMinBound (MachInt i) = i == toInteger (minBound :: Int)
isMinBound (MachInt64 i) = i == toInteger (minBound :: Int64)
isMinBound (MachWord i) = i == toInteger (minBound :: Word)
isMinBound (MachWord64 i) = i == toInteger (minBound :: Word64)
isMinBound _ = False
isMaxBound :: Literal -> Bool
isMaxBound (MachChar c) = c == maxBound
isMaxBound (MachInt i) = i == toInteger (maxBound :: Int)
isMaxBound (MachInt64 i) = i == toInteger (maxBound :: Int64)
isMaxBound (MachWord i) = i == toInteger (maxBound :: Word)
isMaxBound (MachWord64 i) = i == toInteger (maxBound :: Word64)
isMaxBound _ = False
-- Note that we *don't* warn the user about overflow. It's not done at
-- runtime either, and compilation of completely harmless things like
-- ((124076834 :: Word32) + (2147483647 :: Word32))
-- would yield a warning. Instead we simply squash the value into the
-- *target* Int/Word range.
intResult :: Integer -> Maybe CoreExpr
intResult result
= Just (mkIntVal (toInteger (fromInteger result :: TargetInt)))
wordResult :: Integer -> Maybe CoreExpr
wordResult result
= Just (mkWordVal (toInteger (fromInteger result :: TargetWord)))
\end{code}
%************************************************************************
%* *
\subsection{Vaguely generic functions}
%* *
%************************************************************************
\begin{code}
mkBasicRule :: Name -> Int
-> (IdUnfoldingFun -> [CoreExpr] -> Maybe CoreExpr)
-> [CoreRule]
-- Gives the Rule the same name as the primop itself
mkBasicRule op_name n_args rule_fn
= [BuiltinRule { ru_name = occNameFS (nameOccName op_name),
ru_fn = op_name,
ru_nargs = n_args, ru_try = rule_fn }]
oneLit :: Name -> (Literal -> Maybe CoreExpr)
-> [CoreRule]
oneLit op_name test
= mkBasicRule op_name 1 rule_fn
where
rule_fn _ [Lit l1] = test (convFloating l1)
rule_fn _ _ = Nothing
twoLits :: Name -> (Literal -> Literal -> Maybe CoreExpr)
-> [CoreRule]
twoLits op_name test
= mkBasicRule op_name 2 rule_fn
where
rule_fn _ [Lit l1, Lit l2] = test (convFloating l1) (convFloating l2)
rule_fn _ _ = Nothing
-- When excess precision is not requested, cut down the precision of the
-- Rational value to that of Float/Double. We confuse host architecture
-- and target architecture here, but it's convenient (and wrong :-).
convFloating :: Literal -> Literal
convFloating (MachFloat f) | not opt_SimplExcessPrecision =
MachFloat (toRational ((fromRational f) :: Float ))
convFloating (MachDouble d) | not opt_SimplExcessPrecision =
MachDouble (toRational ((fromRational d) :: Double))
convFloating l = l
trueVal, falseVal :: Expr CoreBndr
trueVal = Var trueDataConId
falseVal = Var falseDataConId
ltVal, eqVal, gtVal :: Expr CoreBndr
ltVal = Var ltDataConId
eqVal = Var eqDataConId
gtVal = Var gtDataConId
mkIntVal :: Integer -> Expr CoreBndr
mkIntVal i = Lit (mkMachInt i)
mkWordVal :: Integer -> Expr CoreBndr
mkWordVal w = Lit (mkMachWord w)
mkFloatVal :: Rational -> Expr CoreBndr
mkFloatVal f = Lit (convFloating (MachFloat f))
mkDoubleVal :: Rational -> Expr CoreBndr
mkDoubleVal d = Lit (convFloating (MachDouble d))
\end{code}
%************************************************************************
%* *
\subsection{Special rules for seq, tagToEnum, dataToTag}
%* *
%************************************************************************
Note [tagToEnum#]
~~~~~~~~~~~~~~~~~
Nasty check to ensure that tagToEnum# is applied to a type that is an
enumeration TyCon. Unification may refine the type later, but this
check won't see that, alas. It's crude but it works.
Here's are two cases that should fail
f :: forall a. a
f = tagToEnum# 0 -- Can't do tagToEnum# at a type variable
g :: Int
g = tagToEnum# 0 -- Int is not an enumeration
We used to make this check in the type inference engine, but it's quite
ugly to do so, because the delayed constraint solving means that we don't
really know what's going on until the end. It's very much a corner case
because we don't expect the user to call tagToEnum# at all; we merely
generate calls in derived instances of Enum. So we compromise: a
rewrite rule rewrites a bad instance of tagToEnum# to an error call,
and emits a warning.
\begin{code}
tagToEnumRule :: IdUnfoldingFun -> [Expr CoreBndr] -> Maybe (Expr CoreBndr)
-- If data T a = A | B | C
-- then tag2Enum# (T ty) 2# --> B ty
tagToEnumRule _ [Type ty, Lit (MachInt i)]
| Just (tycon, tc_args) <- splitTyConApp_maybe ty
, isEnumerationTyCon tycon
= case filter correct_tag (tyConDataCons_maybe tycon `orElse` []) of
[] -> Nothing -- Abstract type
(dc:rest) -> ASSERT( null rest )
Just (mkTyApps (Var (dataConWorkId dc)) tc_args)
| otherwise -- See Note [tagToEnum#]
= WARN( True, ptext (sLit "tagToEnum# on non-enumeration type") <+> ppr ty )
Just (mkRuntimeErrorApp rUNTIME_ERROR_ID ty "tagToEnum# on non-enumeration type")
where
correct_tag dc = (dataConTag dc - fIRST_TAG) == tag
tag = fromInteger i
tagToEnumRule _ _ = Nothing
\end{code}
For dataToTag#, we can reduce if either
(a) the argument is a constructor
(b) the argument is a variable whose unfolding is a known constructor
\begin{code}
dataToTagRule :: IdUnfoldingFun -> [Expr CoreBndr] -> Maybe (Arg CoreBndr)
dataToTagRule _ [Type ty1, Var tag_to_enum `App` Type ty2 `App` tag]
| tag_to_enum `hasKey` tagToEnumKey
, ty1 `eqType` ty2
= Just tag -- dataToTag (tagToEnum x) ==> x
dataToTagRule id_unf [_, val_arg]
| Just (dc,_,_) <- exprIsConApp_maybe id_unf val_arg
= ASSERT( not (isNewTyCon (dataConTyCon dc)) )
Just (mkIntVal (toInteger (dataConTag dc - fIRST_TAG)))
dataToTagRule _ _ = Nothing
\end{code}
%************************************************************************
%* *
\subsection{Rules for seq# and spark#}
%* *
%************************************************************************
\begin{code}
-- seq# :: forall a s . a -> State# s -> (# State# s, a #)
seqRule :: IdUnfoldingFun -> [CoreExpr] -> Maybe CoreExpr
seqRule _ [ty_a, Type ty_s, a, s] | exprIsHNF a
= Just (mkConApp (tupleCon Unboxed 2)
[Type (mkStatePrimTy ty_s), ty_a, s, a])
seqRule _ _ = Nothing
-- spark# :: forall a s . a -> State# s -> (# State# s, a #)
sparkRule :: IdUnfoldingFun -> [CoreExpr] -> Maybe CoreExpr
sparkRule = seqRule -- reduce on HNF, just the same
-- XXX perhaps we shouldn't do this, because a spark eliminated by
-- this rule won't be counted as a dud at runtime?
\end{code}
%************************************************************************
%* *
\subsection{Built in rules}
%* *
%************************************************************************
Note [Scoping for Builtin rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When compiling a (base-package) module that defines one of the
functions mentioned in the RHS of a built-in rule, there's a danger
that we'll see
f = ...(eq String x)....
....and lower down...
eqString = ...
Then a rewrite would give
f = ...(eqString x)...
....and lower down...
eqString = ...
and lo, eqString is not in scope. This only really matters when we get to code
generation. With -O we do a GlomBinds step that does a new SCC analysis on the whole
set of bindings, which sorts out the dependency. Without -O we don't do any rule
rewriting so again we are fine.
(This whole thing doesn't show up for non-built-in rules because their dependencies
are explicit.)
\begin{code}
builtinRules :: [CoreRule]
-- Rules for non-primops that can't be expressed using a RULE pragma
builtinRules
= [ BuiltinRule { ru_name = fsLit "AppendLitString", ru_fn = unpackCStringFoldrName,
ru_nargs = 4, ru_try = match_append_lit },
BuiltinRule { ru_name = fsLit "EqString", ru_fn = eqStringName,
ru_nargs = 2, ru_try = match_eq_string },
BuiltinRule { ru_name = fsLit "Inline", ru_fn = inlineIdName,
ru_nargs = 2, ru_try = match_inline },
-- TODO: All the below rules need to handle target platform
-- having a different wordsize than the host platform
rule_Integer_convert "integerToWord" integerToWordName mkWordLitWord,
rule_Integer_convert "integerToInt" integerToIntName mkIntLitInt,
rule_Integer_binop "plusInteger" plusIntegerName (+),
rule_Integer_binop "timesInteger" timesIntegerName (*),
rule_Integer_binop "minusInteger" minusIntegerName (-),
rule_Integer_unop "negateInteger" negateIntegerName negate,
rule_Integer_binop_Bool "eqInteger" eqIntegerName (==),
rule_Integer_binop_Bool "neqInteger" neqIntegerName (/=),
rule_Integer_unop "absInteger" absIntegerName abs,
rule_Integer_unop "signumInteger" signumIntegerName signum,
rule_Integer_binop_Bool "leInteger" leIntegerName (<=),
rule_Integer_binop_Bool "gtInteger" gtIntegerName (>),
rule_Integer_binop_Bool "ltInteger" ltIntegerName (<),
rule_Integer_binop_Bool "geInteger" geIntegerName (>=),
rule_Integer_binop_Ordering "compareInteger" compareIntegerName compare,
-- TODO: divMod/quoteRem/quot/rem rules. Due to the 0 check we
-- need rules for the generic functions, rather than the
-- Integer-specific functions
rule_Integer_binop "gcdInteger" gcdIntegerName gcd,
rule_Integer_binop "lcmInteger" lcmIntegerName lcm,
rule_Integer_binop "andInteger" andIntegerName (.&.),
rule_Integer_binop "orInteger" orIntegerName (.|.),
rule_Integer_binop "xorInteger" xorIntegerName xor,
rule_Integer_unop "complementInteger" complementIntegerName complement,
-- TODO: Likewise, these rules currently don't do anything, due to
-- the sign test in shift's definition
rule_Integer_Int_binop "shiftLInteger" shiftLIntegerName shiftL,
rule_Integer_Int_binop "shiftRInteger" shiftRIntegerName shiftR
]
where rule_Integer_convert str name convert
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_Integer_convert convert }
rule_Integer_unop str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 1,
ru_try = match_Integer_unop op }
rule_Integer_binop str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_binop op }
rule_Integer_Int_binop str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_Int_binop op }
rule_Integer_binop_Bool str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_binop_Bool op }
rule_Integer_binop_Ordering str name op
= BuiltinRule { ru_name = fsLit str, ru_fn = name, ru_nargs = 2,
ru_try = match_Integer_binop_Ordering op }
---------------------------------------------------
-- The rule is this:
-- unpackFoldrCString# "foo" c (unpackFoldrCString# "baz" c n)
-- = unpackFoldrCString# "foobaz" c n
match_append_lit :: IdUnfoldingFun -> [Expr CoreBndr] -> Maybe (Expr CoreBndr)
match_append_lit _ [Type ty1,
Lit (MachStr s1),
c1,
Var unpk `App` Type ty2
`App` Lit (MachStr s2)
`App` c2
`App` n
]
| unpk `hasKey` unpackCStringFoldrIdKey &&
c1 `cheapEqExpr` c2
= ASSERT( ty1 `eqType` ty2 )
Just (Var unpk `App` Type ty1
`App` Lit (MachStr (s1 `appendFS` s2))
`App` c1
`App` n)
match_append_lit _ _ = Nothing
---------------------------------------------------
-- The rule is this:
-- eqString (unpackCString# (Lit s1)) (unpackCString# (Lit s2) = s1==s2
match_eq_string :: IdUnfoldingFun -> [Expr CoreBndr] -> Maybe (Expr CoreBndr)
match_eq_string _ [Var unpk1 `App` Lit (MachStr s1),
Var unpk2 `App` Lit (MachStr s2)]
| unpk1 `hasKey` unpackCStringIdKey,
unpk2 `hasKey` unpackCStringIdKey
= Just (if s1 == s2 then trueVal else falseVal)
match_eq_string _ _ = Nothing
---------------------------------------------------
-- The rule is this:
-- inline f_ty (f a b c) = <f's unfolding> a b c
-- (if f has an unfolding, EVEN if it's a loop breaker)
--
-- It's important to allow the argument to 'inline' to have args itself
-- (a) because its more forgiving to allow the programmer to write
-- inline f a b c
-- or inline (f a b c)
-- (b) because a polymorphic f wll get a type argument that the
-- programmer can't avoid
--
-- Also, don't forget about 'inline's type argument!
match_inline :: IdUnfoldingFun -> [Expr CoreBndr] -> Maybe (Expr CoreBndr)
match_inline _ (Type _ : e : _)
| (Var f, args1) <- collectArgs e,
Just unf <- maybeUnfoldingTemplate (realIdUnfolding f)
-- Ignore the IdUnfoldingFun here!
= Just (mkApps unf args1)
match_inline _ _ = Nothing
-- Integer rules
match_Integer_convert :: Num a
=> (a -> Expr CoreBndr)
-> IdUnfoldingFun
-> [Expr CoreBndr]
-> Maybe (Expr CoreBndr)
match_Integer_convert convert _ [x]
| (Var fx, [Lit (MachInt ix)]) <- collectArgs x,
idName fx == smallIntegerName
= Just (convert (fromIntegral ix))
match_Integer_convert _ _ _ = Nothing
match_Integer_unop :: (Integer -> Integer)
-> IdUnfoldingFun
-> [Expr CoreBndr]
-> Maybe (Expr CoreBndr)
match_Integer_unop unop _ [x]
| (Var fx, [Lit (MachInt ix)]) <- collectArgs x,
idName fx == smallIntegerName,
let iz = unop ix,
iz >= fromIntegral (minBound :: Int),
iz <= fromIntegral (maxBound :: Int)
= Just (Var fx `App` Lit (MachInt iz))
match_Integer_unop _ _ _ = Nothing
match_Integer_binop :: (Integer -> Integer -> Integer)
-> IdUnfoldingFun
-> [Expr CoreBndr]
-> Maybe (Expr CoreBndr)
match_Integer_binop binop _ [x, y]
| (Var fx, [Lit (MachInt ix)]) <- collectArgs x,
(Var fy, [Lit (MachInt iy)]) <- collectArgs y,
idName fx == smallIntegerName,
idName fy == smallIntegerName,
let iz = ix `binop` iy,
iz >= fromIntegral (minBound :: Int),
iz <= fromIntegral (maxBound :: Int)
= Just (Var fx `App` Lit (MachInt iz))
match_Integer_binop _ _ _ = Nothing
match_Integer_Int_binop :: (Integer -> Int -> Integer)
-> IdUnfoldingFun
-> [Expr CoreBndr]
-> Maybe (Expr CoreBndr)
match_Integer_Int_binop binop _ [x, Lit (MachInt iy)]
| (Var fx, [Lit (MachInt ix)]) <- collectArgs x,
idName fx == smallIntegerName,
let iz = ix `binop` fromIntegral iy,
iz >= fromIntegral (minBound :: Int),
iz <= fromIntegral (maxBound :: Int)
= Just (Var fx `App` Lit (MachInt iz))
match_Integer_Int_binop _ _ _ = Nothing
match_Integer_binop_Bool :: (Integer -> Integer -> Bool)
-> IdUnfoldingFun
-> [Expr CoreBndr]
-> Maybe (Expr CoreBndr)
match_Integer_binop_Bool binop _ [x, y]
| (Var fx, [Lit (MachInt ix)]) <- collectArgs x,
(Var fy, [Lit (MachInt iy)]) <- collectArgs y,
idName fx == smallIntegerName,
idName fy == smallIntegerName
= Just (if ix `binop` iy then trueVal else falseVal)
match_Integer_binop_Bool _ _ _ = Nothing
match_Integer_binop_Ordering :: (Integer -> Integer -> Ordering)
-> IdUnfoldingFun
-> [Expr CoreBndr]
-> Maybe (Expr CoreBndr)
match_Integer_binop_Ordering binop _ [x, y]
| (Var fx, [Lit (MachInt ix)]) <- collectArgs x,
(Var fy, [Lit (MachInt iy)]) <- collectArgs y,
idName fx == smallIntegerName,
idName fy == smallIntegerName
= Just $ case ix `binop` iy of
LT -> ltVal
EQ -> eqVal
GT -> gtVal
match_Integer_binop_Ordering _ _ _ = Nothing
\end{code}
|