summaryrefslogtreecommitdiff
path: root/compiler/prelude/PrelRules.lhs
blob: 864c995e71a583f99d14825d8478d974e7844477 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[ConFold]{Constant Folder}

Conceptually, constant folding should be parameterized with the kind
of target machine to get identical behaviour during compilation time
and runtime. We cheat a little bit here...

ToDo:
   check boundaries before folding, e.g. we can fold the Float addition
   (i1 + i2) only if it results	in a valid Float.

\begin{code}

{-# OPTIONS -optc-DNON_POSIX_SOURCE #-}

{-# OPTIONS_GHC -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
--     http://hackage.haskell.org/trac/ghc/wiki/WorkingConventions#Warnings
-- for details

module PrelRules ( primOpRules, builtinRules ) where

#include "HsVersions.h"

import CoreSyn
import Id		( mkWildId, idUnfolding )
import Literal		( Literal(..), mkMachInt, mkMachWord
			, literalType
			, word2IntLit, int2WordLit
			, narrow8IntLit, narrow16IntLit, narrow32IntLit
			, narrow8WordLit, narrow16WordLit, narrow32WordLit
			, char2IntLit, int2CharLit
			, float2IntLit, int2FloatLit, double2IntLit, int2DoubleLit
			, float2DoubleLit, double2FloatLit, litFitsInChar
			)
import PrimOp		( PrimOp(..), tagToEnumKey )
import TysWiredIn	( boolTy, trueDataConId, falseDataConId )
import TyCon		( tyConDataCons_maybe, isEnumerationTyCon, isNewTyCon )
import DataCon		( dataConTag, dataConTyCon, dataConWorkId, fIRST_TAG )
import CoreUtils	( cheapEqExpr, exprIsConApp_maybe )
import Type		( tyConAppTyCon, coreEqType )
import OccName		( occNameFS )
import PrelNames	( unpackCStringFoldrName, unpackCStringFoldrIdKey, hasKey,
			  eqStringName, unpackCStringIdKey, inlineIdName )
import Maybes		( orElse )
import Name		( Name, nameOccName )
import Outputable
import FastString
import StaticFlags      ( opt_SimplExcessPrecision )
import Data.Bits as Bits
import Data.Word	( Word )
\end{code}


Note [Constant folding]
~~~~~~~~~~~~~~~~~~~~~~~
primOpRules generates the rewrite rules for each primop
These rules do what is often called "constant folding"
E.g. the rules for +# might say
	     4 +# 5 = 9
Well, of course you'd need a lot of rules if you did it 
like that, so we use a BuiltinRule instead, so that we
can match in any two literal values.  So the rule is really
more like
	     (Lit 4) +# (Lit y) = Lit (x+#y)
where the (+#) on the rhs is done at compile time

That is why these rules are built in here.  Other rules
which don't need to be built in are in GHC.Base. For 
example:
	x +# 0 = x


\begin{code}
primOpRules :: PrimOp -> Name -> [CoreRule]
primOpRules op op_name = primop_rule op
  where
	-- A useful shorthand
    one_lit   = oneLit  op_name
    two_lits  = twoLits op_name
    relop cmp = two_lits (cmpOp (\ord -> ord `cmp` EQ))
	-- Cunning.  cmpOp compares the values to give an Ordering.
	-- It applies its argument to that ordering value to turn
	-- the ordering into a boolean value.  (`cmp` EQ) is just the job.

    -- ToDo:	something for integer-shift ops?
    --		NotOp

    primop_rule TagToEnumOp = mkBasicRule op_name 2 tagToEnumRule
    primop_rule DataToTagOp = mkBasicRule op_name 2 dataToTagRule

	-- Int operations
    primop_rule IntAddOp    = two_lits (intOp2     (+))
    primop_rule IntSubOp    = two_lits (intOp2     (-))
    primop_rule IntMulOp    = two_lits (intOp2     (*))
    primop_rule IntQuotOp   = two_lits (intOp2Z    quot)
    primop_rule IntRemOp    = two_lits (intOp2Z    rem)
    primop_rule IntNegOp    = one_lit  negOp
    primop_rule ISllOp      = two_lits (intShiftOp2 Bits.shiftL)
    primop_rule ISraOp      = two_lits (intShiftOp2 Bits.shiftR)
    primop_rule ISrlOp      = two_lits (intShiftOp2 shiftRightLogical)

	-- Word operations
    primop_rule WordAddOp   = two_lits (wordOp2    (+))
    primop_rule WordSubOp   = two_lits (wordOp2    (-))
    primop_rule WordMulOp   = two_lits (wordOp2    (*))
    primop_rule WordQuotOp  = two_lits (wordOp2Z   quot)
    primop_rule WordRemOp   = two_lits (wordOp2Z   rem)
    primop_rule AndOp       = two_lits (wordBitOp2 (.&.))
    primop_rule OrOp        = two_lits (wordBitOp2 (.|.))
    primop_rule XorOp       = two_lits (wordBitOp2 xor)
    primop_rule SllOp       = two_lits (wordShiftOp2 Bits.shiftL)
    primop_rule SrlOp       = two_lits (wordShiftOp2 shiftRightLogical)

	-- coercions
    primop_rule Word2IntOp 	= one_lit (litCoerce word2IntLit)
    primop_rule Int2WordOp 	= one_lit (litCoerce int2WordLit)
    primop_rule Narrow8IntOp 	= one_lit (litCoerce narrow8IntLit)
    primop_rule Narrow16IntOp 	= one_lit (litCoerce narrow16IntLit)
    primop_rule Narrow32IntOp 	= one_lit (litCoerce narrow32IntLit)
    primop_rule Narrow8WordOp 	= one_lit (litCoerce narrow8WordLit)
    primop_rule Narrow16WordOp 	= one_lit (litCoerce narrow16WordLit)
    primop_rule Narrow32WordOp 	= one_lit (litCoerce narrow32WordLit)
    primop_rule OrdOp   	= one_lit (litCoerce char2IntLit)
    primop_rule ChrOp    	= one_lit (predLitCoerce litFitsInChar int2CharLit)
    primop_rule Float2IntOp	= one_lit (litCoerce float2IntLit)
    primop_rule Int2FloatOp	= one_lit (litCoerce int2FloatLit)
    primop_rule Double2IntOp	= one_lit (litCoerce double2IntLit)
    primop_rule Int2DoubleOp	= one_lit (litCoerce int2DoubleLit)
	-- SUP: Not sure what the standard says about precision in the following 2 cases
    primop_rule Float2DoubleOp 	= one_lit (litCoerce float2DoubleLit)
    primop_rule Double2FloatOp 	= one_lit (litCoerce double2FloatLit)

	-- Float
    primop_rule FloatAddOp   = two_lits (floatOp2  (+))
    primop_rule FloatSubOp   = two_lits (floatOp2  (-))
    primop_rule FloatMulOp   = two_lits (floatOp2  (*))
    primop_rule FloatDivOp   = two_lits (floatOp2Z (/))
    primop_rule FloatNegOp   = one_lit  negOp

	-- Double
    primop_rule DoubleAddOp   = two_lits (doubleOp2  (+))
    primop_rule DoubleSubOp   = two_lits (doubleOp2  (-))
    primop_rule DoubleMulOp   = two_lits (doubleOp2  (*))
    primop_rule DoubleDivOp   = two_lits (doubleOp2Z (/))
    primop_rule DoubleNegOp   = one_lit  negOp

	-- Relational operators
    primop_rule IntEqOp  = relop (==) ++ litEq op_name True
    primop_rule IntNeOp  = relop (/=) ++ litEq op_name False
    primop_rule CharEqOp = relop (==) ++ litEq op_name True
    primop_rule CharNeOp = relop (/=) ++ litEq op_name False

    primop_rule IntGtOp		= relop (>)
    primop_rule IntGeOp		= relop (>=)
    primop_rule IntLeOp		= relop (<=)
    primop_rule IntLtOp		= relop (<)

    primop_rule CharGtOp	= relop (>)
    primop_rule CharGeOp	= relop (>=)
    primop_rule CharLeOp	= relop (<=)
    primop_rule CharLtOp	= relop (<)

    primop_rule FloatGtOp	= relop (>)
    primop_rule FloatGeOp	= relop (>=)
    primop_rule FloatLeOp	= relop (<=)
    primop_rule FloatLtOp	= relop (<)
    primop_rule FloatEqOp	= relop (==)
    primop_rule FloatNeOp	= relop (/=)

    primop_rule DoubleGtOp	= relop (>)
    primop_rule DoubleGeOp	= relop (>=)
    primop_rule DoubleLeOp	= relop (<=)
    primop_rule DoubleLtOp	= relop (<)
    primop_rule DoubleEqOp	= relop (==)
    primop_rule DoubleNeOp	= relop (/=)

    primop_rule WordGtOp	= relop (>)
    primop_rule WordGeOp	= relop (>=)
    primop_rule WordLeOp	= relop (<=)
    primop_rule WordLtOp	= relop (<)
    primop_rule WordEqOp	= relop (==)
    primop_rule WordNeOp	= relop (/=)

    primop_rule other		= []


\end{code}

%************************************************************************
%*									*
\subsection{Doing the business}
%*									*
%************************************************************************

ToDo: the reason these all return Nothing is because there used to be
the possibility of an argument being a litlit.  Litlits are now gone,
so this could be cleaned up.

\begin{code}
--------------------------
litCoerce :: (Literal -> Literal) -> Literal -> Maybe CoreExpr
litCoerce fn lit = Just (Lit (fn lit))

predLitCoerce :: (Literal -> Bool) -> (Literal -> Literal) -> Literal -> Maybe CoreExpr
predLitCoerce p fn lit
   | p lit     = Just (Lit (fn lit))
   | otherwise = Nothing

--------------------------
cmpOp :: (Ordering -> Bool) -> Literal -> Literal -> Maybe CoreExpr
cmpOp cmp l1 l2
  = go l1 l2
  where
    done res | cmp res   = Just trueVal
	     | otherwise = Just falseVal

	-- These compares are at different types
    go (MachChar i1)   (MachChar i2)   = done (i1 `compare` i2)
    go (MachInt i1)    (MachInt i2)    = done (i1 `compare` i2)
    go (MachInt64 i1)  (MachInt64 i2)  = done (i1 `compare` i2)
    go (MachWord i1)   (MachWord i2)   = done (i1 `compare` i2)
    go (MachWord64 i1) (MachWord64 i2) = done (i1 `compare` i2)
    go (MachFloat i1)  (MachFloat i2)  = done (i1 `compare` i2)
    go (MachDouble i1) (MachDouble i2) = done (i1 `compare` i2)
    go l1	       l2	       = Nothing

--------------------------

negOp :: Literal -> Maybe CoreExpr	-- Negate
negOp (MachFloat 0.0)  = Nothing  -- can't represent -0.0 as a Rational
negOp (MachFloat f)    = Just (mkFloatVal (-f))
negOp (MachDouble 0.0) = Nothing
negOp (MachDouble d)   = Just (mkDoubleVal (-d))
negOp (MachInt i)      = intResult (-i)
negOp l		       = Nothing

--------------------------
intOp2 :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr
intOp2 op (MachInt i1) (MachInt i2) = intResult (i1 `op` i2)
intOp2 op l1	       l2	    = Nothing		-- Could find LitLit

intOp2Z :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr
-- Like intOp2, but Nothing if i2=0
intOp2Z op (MachInt i1) (MachInt i2)
  | i2 /= 0 = intResult (i1 `op` i2)
intOp2Z op l1 l2 = Nothing		-- LitLit or zero dividend

intShiftOp2 :: (Integer->Int->Integer) -> Literal -> Literal -> Maybe CoreExpr
	-- Shifts take an Int; hence second arg of op is Int
intShiftOp2 op (MachInt i1) (MachInt i2) = intResult (i1 `op` fromInteger i2)
intShiftOp2 op l1           l2           = Nothing 

shiftRightLogical :: Integer -> Int -> Integer
-- Shift right, putting zeros in rather than sign-propagating as Bits.shiftR would do
-- Do this by converting to Word and back.  Obviously this won't work for big 
-- values, but its ok as we use it here
shiftRightLogical x n = fromIntegral (fromInteger x `shiftR` n :: Word)


--------------------------
wordOp2 :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr
wordOp2 op (MachWord w1) (MachWord w2)
  = wordResult (w1 `op` w2)
wordOp2 op l1 l2 = Nothing		-- Could find LitLit

wordOp2Z :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr
wordOp2Z op (MachWord w1) (MachWord w2)
  | w2 /= 0 = wordResult (w1 `op` w2)
wordOp2Z op l1 l2 = Nothing	-- LitLit or zero dividend

wordBitOp2 op l1@(MachWord w1) l2@(MachWord w2)
  = wordResult (w1 `op` w2)
wordBitOp2 op l1 l2 = Nothing		-- Could find LitLit

wordShiftOp2 :: (Integer->Int->Integer) -> Literal -> Literal -> Maybe CoreExpr
	-- Shifts take an Int; hence second arg of op is Int
wordShiftOp2 op (MachWord x) (MachInt n) 
  = wordResult (x `op` fromInteger n)
	-- Do the shift at type Integer
wordShiftOp2 op l1 l2 = Nothing	

--------------------------
floatOp2  op (MachFloat f1) (MachFloat f2)
  = Just (mkFloatVal (f1 `op` f2))
floatOp2  op l1 l2 = Nothing

floatOp2Z op (MachFloat f1) (MachFloat f2)
  | f2 /= 0   = Just (mkFloatVal (f1 `op` f2))
floatOp2Z op l1 l2 = Nothing

--------------------------
doubleOp2  op (MachDouble f1) (MachDouble f2)
  = Just (mkDoubleVal (f1 `op` f2))
doubleOp2 op l1 l2 = Nothing

doubleOp2Z op (MachDouble f1) (MachDouble f2)
  | f2 /= 0   = Just (mkDoubleVal (f1 `op` f2))
doubleOp2Z op l1 l2 = Nothing


--------------------------
	-- This stuff turns
	--	n ==# 3#
	-- into
	--	case n of
	--	  3# -> True
	--	  m  -> False
	--
	-- This is a Good Thing, because it allows case-of case things
	-- to happen, and case-default absorption to happen.  For
	-- example:
	--
	--	if (n ==# 3#) || (n ==# 4#) then e1 else e2
	-- will transform to
	--	case n of
	--	  3# -> e1
	--	  4# -> e1
	--	  m  -> e2
	-- (modulo the usual precautions to avoid duplicating e1)

litEq :: Name 
      -> Bool		-- True <=> equality, False <=> inequality
      -> [CoreRule]
litEq op_name is_eq
  = [BuiltinRule { ru_name = occNameFS (nameOccName op_name) 
				`appendFS` FSLIT("->case"),
		   ru_fn = op_name, 
		   ru_nargs = 2, ru_try = rule_fn }]
  where
    rule_fn [Lit lit, expr] = do_lit_eq lit expr
    rule_fn [expr, Lit lit] = do_lit_eq lit expr
    rule_fn other	    = Nothing
    
    do_lit_eq lit expr
      = Just (Case expr (mkWildId (literalType lit)) boolTy
		    [(DEFAULT,    [], val_if_neq),
		     (LitAlt lit, [], val_if_eq)])
    val_if_eq  | is_eq     = trueVal
   	       | otherwise = falseVal
    val_if_neq | is_eq     = falseVal
	       | otherwise = trueVal

-- Note that we *don't* warn the user about overflow. It's not done at
-- runtime either, and compilation of completely harmless things like
--    ((124076834 :: Word32) + (2147483647 :: Word32))
-- would yield a warning. Instead we simply squash the value into the
-- Int range, but not in a way suitable for cross-compiling... :-(
intResult :: Integer -> Maybe CoreExpr
intResult result
  = Just (mkIntVal (toInteger (fromInteger result :: Int)))

wordResult :: Integer -> Maybe CoreExpr
wordResult result
  = Just (mkWordVal (toInteger (fromInteger result :: Word)))
\end{code}


%************************************************************************
%*									*
\subsection{Vaguely generic functions
%*									*
%************************************************************************

\begin{code}
mkBasicRule :: Name -> Int -> ([CoreExpr] -> Maybe CoreExpr) -> [CoreRule]
-- Gives the Rule the same name as the primop itself
mkBasicRule op_name n_args rule_fn
  = [BuiltinRule { ru_name = occNameFS (nameOccName op_name),
		   ru_fn = op_name, 
		   ru_nargs = n_args, ru_try = rule_fn }]

oneLit :: Name -> (Literal -> Maybe CoreExpr)
       -> [CoreRule]
oneLit op_name test
  = mkBasicRule op_name 1 rule_fn
  where
    rule_fn [Lit l1] = test (convFloating l1)
    rule_fn _        = Nothing

twoLits :: Name -> (Literal -> Literal -> Maybe CoreExpr)
	-> [CoreRule]
twoLits op_name test 
  = mkBasicRule op_name 2 rule_fn
  where
    rule_fn [Lit l1, Lit l2] = test (convFloating l1) (convFloating l2)
    rule_fn _                = Nothing

-- When excess precision is not requested, cut down the precision of the
-- Rational value to that of Float/Double. We confuse host architecture
-- and target architecture here, but it's convenient (and wrong :-).
convFloating :: Literal -> Literal
convFloating (MachFloat  f) | not opt_SimplExcessPrecision =
   MachFloat  (toRational ((fromRational f) :: Float ))
convFloating (MachDouble d) | not opt_SimplExcessPrecision =
   MachDouble (toRational ((fromRational d) :: Double))
convFloating l = l

trueVal       = Var trueDataConId
falseVal      = Var falseDataConId
mkIntVal    i = Lit (mkMachInt  i)
mkWordVal   w = Lit (mkMachWord w)
mkFloatVal  f = Lit (convFloating (MachFloat  f))
mkDoubleVal d = Lit (convFloating (MachDouble d))
\end{code}

						
%************************************************************************
%*									*
\subsection{Special rules for seq, tagToEnum, dataToTag}
%*									*
%************************************************************************

\begin{code}
tagToEnumRule [Type ty, Lit (MachInt i)]
  = ASSERT( isEnumerationTyCon tycon ) 
    case filter correct_tag (tyConDataCons_maybe tycon `orElse` []) of


	[]	  -> Nothing	-- Abstract type
	(dc:rest) -> ASSERT( null rest )
		     Just (Var (dataConWorkId dc))
  where 
    correct_tag dc = (dataConTag dc - fIRST_TAG) == tag
    tag   = fromInteger i
    tycon = tyConAppTyCon ty

tagToEnumRule other = Nothing
\end{code}

For dataToTag#, we can reduce if either 
	
	(a) the argument is a constructor
	(b) the argument is a variable whose unfolding is a known constructor

\begin{code}
dataToTagRule [Type ty1, Var tag_to_enum `App` Type ty2 `App` tag]
  | tag_to_enum `hasKey` tagToEnumKey
  , ty1 `coreEqType` ty2
  = Just tag	-- dataToTag (tagToEnum x)   ==>   x

dataToTagRule [_, val_arg]
  | Just (dc,_) <- exprIsConApp_maybe val_arg
  = ASSERT( not (isNewTyCon (dataConTyCon dc)) )
    Just (mkIntVal (toInteger (dataConTag dc - fIRST_TAG)))

dataToTagRule other = Nothing
\end{code}

%************************************************************************
%*									*
\subsection{Built in rules}
%*									*
%************************************************************************

Note [Scoping for Builtin rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When compiling a (base-package) module that defines one of the
functions mentioned in the RHS of a built-in rule, there's a danger
that we'll see

	f = ...(eq String x)....

	....and lower down...

	eqString = ...

Then a rewrite would give

	f = ...(eqString x)...
	....and lower down...
	eqString = ...

and lo, eqString is not in scope.  This only really matters when we get to code
generation.  With -O we do a GlomBinds step that does a new SCC analysis on the whole
set of bindings, which sorts out the dependency.  Without -O we don't do any rule
rewriting so again we are fine.

(This whole thing doesn't show up for non-built-in rules because their dependencies
are explicit.)


\begin{code}
builtinRules :: [CoreRule]
-- Rules for non-primops that can't be expressed using a RULE pragma
builtinRules
  = [ BuiltinRule { ru_name = FSLIT("AppendLitString"), ru_fn = unpackCStringFoldrName,
		    ru_nargs = 4, ru_try = match_append_lit },
      BuiltinRule { ru_name = FSLIT("EqString"), ru_fn = eqStringName,
		    ru_nargs = 2, ru_try = match_eq_string },
      BuiltinRule { ru_name = FSLIT("Inline"), ru_fn = inlineIdName,
		    ru_nargs = 2, ru_try = match_inline }
    ]


---------------------------------------------------
-- The rule is this:
-- 	unpackFoldrCString# "foo" c (unpackFoldrCString# "baz" c n)  =  unpackFoldrCString# "foobaz" c n

match_append_lit [Type ty1,
		   Lit (MachStr s1),
		   c1,
		   Var unpk `App` Type ty2 
		  	    `App` Lit (MachStr s2)
		  	    `App` c2
		  	    `App` n
		  ]
  | unpk `hasKey` unpackCStringFoldrIdKey && 
    c1 `cheapEqExpr` c2
  = ASSERT( ty1 `coreEqType` ty2 )
    Just (Var unpk `App` Type ty1
		   `App` Lit (MachStr (s1 `appendFS` s2))
		   `App` c1
		   `App` n)

match_append_lit other = Nothing

---------------------------------------------------
-- The rule is this:
-- 	eqString (unpackCString# (Lit s1)) (unpackCString# (Lit s2) = s1==s2

match_eq_string [Var unpk1 `App` Lit (MachStr s1),
		 Var unpk2 `App` Lit (MachStr s2)]
  | unpk1 `hasKey` unpackCStringIdKey,
    unpk2 `hasKey` unpackCStringIdKey
  = Just (if s1 == s2 then trueVal else falseVal)

match_eq_string other = Nothing


---------------------------------------------------
-- The rule is this:
--	inline f_ty (f a b c) = <f's unfolding> a b c
-- (if f has an unfolding)
--
-- It's important to allow the argument to 'inline' to have args itself
-- (a) because its more forgiving to allow the programmer to write
--	 inline f a b c
--   or  inline (f a b c)
-- (b) because a polymorphic f wll get a type argument that the 
--     programmer can't avoid
--
-- Also, don't forget about 'inline's type argument!
match_inline (Type _ : e : _)
  | (Var f, args1) <- collectArgs e,
    Just unf <- maybeUnfoldingTemplate (idUnfolding f)
  = Just (mkApps unf args1)

match_inline other = Nothing
\end{code}