1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[PrimOp]{Primitive operations (machine-level)}
-}
{-# LANGUAGE CPP #-}
module PrimOp (
PrimOp(..), PrimOpVecCat(..), allThePrimOps,
primOpType, primOpSig,
primOpTag, maxPrimOpTag, primOpOcc,
tagToEnumKey,
primOpOutOfLine, primOpCodeSize,
primOpOkForSpeculation, primOpOkForSideEffects,
primOpIsCheap, primOpFixity,
getPrimOpResultInfo, PrimOpResultInfo(..),
PrimCall(..)
) where
#include "HsVersions.h"
import TysPrim
import TysWiredIn
import CmmType
import Demand
import Var ( TyVar )
import OccName ( OccName, pprOccName, mkVarOccFS )
import TyCon ( TyCon, isPrimTyCon, tyConPrimRep, PrimRep(..) )
import Type ( Type, mkForAllTys, mkFunTy, mkFunTys, tyConAppTyCon,
typePrimRep )
import BasicTypes ( Arity, Fixity(..), FixityDirection(..), TupleSort(..) )
import ForeignCall ( CLabelString )
import Unique ( Unique, mkPrimOpIdUnique )
import Outputable
import FastTypes
import FastString
import Module ( PackageKey )
{-
************************************************************************
* *
\subsection[PrimOp-datatype]{Datatype for @PrimOp@ (an enumeration)}
* *
************************************************************************
These are in \tr{state-interface.verb} order.
-}
-- supplies:
-- data PrimOp = ...
#include "primop-data-decl.hs-incl"
-- Used for the Ord instance
primOpTag :: PrimOp -> Int
primOpTag op = iBox (tagOf_PrimOp op)
-- supplies
-- tagOf_PrimOp :: PrimOp -> FastInt
#include "primop-tag.hs-incl"
tagOf_PrimOp _ = error "tagOf_PrimOp: unknown primop"
instance Eq PrimOp where
op1 == op2 = tagOf_PrimOp op1 ==# tagOf_PrimOp op2
instance Ord PrimOp where
op1 < op2 = tagOf_PrimOp op1 <# tagOf_PrimOp op2
op1 <= op2 = tagOf_PrimOp op1 <=# tagOf_PrimOp op2
op1 >= op2 = tagOf_PrimOp op1 >=# tagOf_PrimOp op2
op1 > op2 = tagOf_PrimOp op1 ># tagOf_PrimOp op2
op1 `compare` op2 | op1 < op2 = LT
| op1 == op2 = EQ
| otherwise = GT
instance Outputable PrimOp where
ppr op = pprPrimOp op
data PrimOpVecCat = IntVec
| WordVec
| FloatVec
-- An @Enum@-derived list would be better; meanwhile... (ToDo)
allThePrimOps :: [PrimOp]
allThePrimOps =
#include "primop-list.hs-incl"
tagToEnumKey :: Unique
tagToEnumKey = mkPrimOpIdUnique (primOpTag TagToEnumOp)
{-
************************************************************************
* *
\subsection[PrimOp-info]{The essential info about each @PrimOp@}
* *
************************************************************************
The @String@ in the @PrimOpInfos@ is the ``base name'' by which the user may
refer to the primitive operation. The conventional \tr{#}-for-
unboxed ops is added on later.
The reason for the funny characters in the names is so we do not
interfere with the programmer's Haskell name spaces.
We use @PrimKinds@ for the ``type'' information, because they're
(slightly) more convenient to use than @TyCons@.
-}
data PrimOpInfo
= Dyadic OccName -- string :: T -> T -> T
Type
| Monadic OccName -- string :: T -> T
Type
| Compare OccName -- string :: T -> T -> Int#
Type
| GenPrimOp OccName -- string :: \/a1..an . T1 -> .. -> Tk -> T
[TyVar]
[Type]
Type
mkDyadic, mkMonadic, mkCompare :: FastString -> Type -> PrimOpInfo
mkDyadic str ty = Dyadic (mkVarOccFS str) ty
mkMonadic str ty = Monadic (mkVarOccFS str) ty
mkCompare str ty = Compare (mkVarOccFS str) ty
mkGenPrimOp :: FastString -> [TyVar] -> [Type] -> Type -> PrimOpInfo
mkGenPrimOp str tvs tys ty = GenPrimOp (mkVarOccFS str) tvs tys ty
{-
************************************************************************
* *
\subsubsection{Strictness}
* *
************************************************************************
Not all primops are strict!
-}
primOpStrictness :: PrimOp -> Arity -> StrictSig
-- See Demand.StrictnessInfo for discussion of what the results
-- The arity should be the arity of the primop; that's why
-- this function isn't exported.
#include "primop-strictness.hs-incl"
{-
************************************************************************
* *
\subsubsection{Fixity}
* *
************************************************************************
-}
primOpFixity :: PrimOp -> Maybe Fixity
#include "primop-fixity.hs-incl"
{-
************************************************************************
* *
\subsubsection[PrimOp-comparison]{PrimOpInfo basic comparison ops}
* *
************************************************************************
@primOpInfo@ gives all essential information (from which everything
else, notably a type, can be constructed) for each @PrimOp@.
-}
primOpInfo :: PrimOp -> PrimOpInfo
#include "primop-primop-info.hs-incl"
primOpInfo _ = error "primOpInfo: unknown primop"
{-
Here are a load of comments from the old primOp info:
A @Word#@ is an unsigned @Int#@.
@decodeFloat#@ is given w/ Integer-stuff (it's similar).
@decodeDouble#@ is given w/ Integer-stuff (it's similar).
Decoding of floating-point numbers is sorta Integer-related. Encoding
is done with plain ccalls now (see PrelNumExtra.hs).
A @Weak@ Pointer is created by the @mkWeak#@ primitive:
mkWeak# :: k -> v -> f -> State# RealWorld
-> (# State# RealWorld, Weak# v #)
In practice, you'll use the higher-level
data Weak v = Weak# v
mkWeak :: k -> v -> IO () -> IO (Weak v)
The following operation dereferences a weak pointer. The weak pointer
may have been finalized, so the operation returns a result code which
must be inspected before looking at the dereferenced value.
deRefWeak# :: Weak# v -> State# RealWorld ->
(# State# RealWorld, v, Int# #)
Only look at v if the Int# returned is /= 0 !!
The higher-level op is
deRefWeak :: Weak v -> IO (Maybe v)
Weak pointers can be finalized early by using the finalize# operation:
finalizeWeak# :: Weak# v -> State# RealWorld ->
(# State# RealWorld, Int#, IO () #)
The Int# returned is either
0 if the weak pointer has already been finalized, or it has no
finalizer (the third component is then invalid).
1 if the weak pointer is still alive, with the finalizer returned
as the third component.
A {\em stable name/pointer} is an index into a table of stable name
entries. Since the garbage collector is told about stable pointers,
it is safe to pass a stable pointer to external systems such as C
routines.
\begin{verbatim}
makeStablePtr# :: a -> State# RealWorld -> (# State# RealWorld, StablePtr# a #)
freeStablePtr :: StablePtr# a -> State# RealWorld -> State# RealWorld
deRefStablePtr# :: StablePtr# a -> State# RealWorld -> (# State# RealWorld, a #)
eqStablePtr# :: StablePtr# a -> StablePtr# a -> Int#
\end{verbatim}
It may seem a bit surprising that @makeStablePtr#@ is a @IO@
operation since it doesn't (directly) involve IO operations. The
reason is that if some optimisation pass decided to duplicate calls to
@makeStablePtr#@ and we only pass one of the stable pointers over, a
massive space leak can result. Putting it into the IO monad
prevents this. (Another reason for putting them in a monad is to
ensure correct sequencing wrt the side-effecting @freeStablePtr@
operation.)
An important property of stable pointers is that if you call
makeStablePtr# twice on the same object you get the same stable
pointer back.
Note that we can implement @freeStablePtr#@ using @_ccall_@ (and,
besides, it's not likely to be used from Haskell) so it's not a
primop.
Question: Why @RealWorld@ - won't any instance of @_ST@ do the job? [ADR]
Stable Names
~~~~~~~~~~~~
A stable name is like a stable pointer, but with three important differences:
(a) You can't deRef one to get back to the original object.
(b) You can convert one to an Int.
(c) You don't need to 'freeStableName'
The existence of a stable name doesn't guarantee to keep the object it
points to alive (unlike a stable pointer), hence (a).
Invariants:
(a) makeStableName always returns the same value for a given
object (same as stable pointers).
(b) if two stable names are equal, it implies that the objects
from which they were created were the same.
(c) stableNameToInt always returns the same Int for a given
stable name.
These primops are pretty weird.
dataToTag# :: a -> Int (arg must be an evaluated data type)
tagToEnum# :: Int -> a (result type must be an enumerated type)
The constraints aren't currently checked by the front end, but the
code generator will fall over if they aren't satisfied.
************************************************************************
* *
Which PrimOps are out-of-line
* *
************************************************************************
Some PrimOps need to be called out-of-line because they either need to
perform a heap check or they block.
-}
primOpOutOfLine :: PrimOp -> Bool
#include "primop-out-of-line.hs-incl"
{-
************************************************************************
* *
Failure and side effects
* *
************************************************************************
Note [PrimOp can_fail and has_side_effects]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Both can_fail and has_side_effects mean that the primop has
some effect that is not captured entirely by its result value.
---------- has_side_effects ---------------------
A primop "has_side_effects" if it has some *write* effect, visible
elsewhere
- writing to the world (I/O)
- writing to a mutable data structure (writeIORef)
- throwing a synchronous Haskell exception
Often such primops have a type like
State -> input -> (State, output)
so the state token guarantees ordering. In general we rely *only* on
data dependencies of the state token to enforce write-effect ordering
* NB1: if you inline unsafePerformIO, you may end up with
side-effecting ops whose 'state' output is discarded.
And programmers may do that by hand; see Trac #9390.
That is why we (conservatively) do not discard write-effecting
primops even if both their state and result is discarded.
* NB2: We consider primops, such as raiseIO#, that can raise a
(Haskell) synchronous exception to "have_side_effects" but not
"can_fail". We must be careful about not discarding such things;
see the paper "A semantics for imprecise exceptions".
* NB3: *Read* effects (like reading an IORef) don't count here,
because it doesn't matter if we don't do them, or do them more than
once. *Sequencing* is maintained by the data dependency of the state
token.
---------- can_fail ----------------------------
A primop "can_fail" if it can fail with an *unchecked* exception on
some elements of its input domain. Main examples:
division (fails on zero demoninator)
array indexing (fails if the index is out of bounds)
An "unchecked exception" is one that is an outright error, (not
turned into a Haskell exception,) such as seg-fault or
divide-by-zero error. Such can_fail primops are ALWAYS surrounded
with a test that checks for the bad cases, but we need to be
very careful about code motion that might move it out of
the scope of the test.
Note [Transformations affected by can_fail and has_side_effects]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The can_fail and has_side_effects properties have the following effect
on program transformations. Summary table is followed by details.
can_fail has_side_effects
Discard NO NO
Float in YES YES
Float out NO NO
Duplicate YES NO
* Discarding. case (a `op` b) of _ -> rhs ===> rhs
You should not discard a has_side_effects primop; e.g.
case (writeIntArray# a i v s of (# _, _ #) -> True
Arguably you should be able to discard this, since the
returned stat token is not used, but that relies on NEVER
inlining unsafePerformIO, and programmers sometimes write
this kind of stuff by hand (Trac #9390). So we (conservatively)
never discard a has_side_effects primop.
However, it's fine to discard a can_fail primop. For example
case (indexIntArray# a i) of _ -> True
We can discard indexIntArray#; it has can_fail, but not
has_side_effects; see Trac #5658 which was all about this.
Notice that indexIntArray# is (in a more general handling of
effects) read effect, but we don't care about that here, and
treat read effects as *not* has_side_effects.
Similarly (a `/#` b) can be discarded. It can seg-fault or
cause a hardware exception, but not a synchronous Haskell
exception.
Synchronous Haskell exceptions, e.g. from raiseIO#, are treated
as has_side_effects and hence are not discarded.
* Float in. You can float a can_fail or has_side_effects primop
*inwards*, but not inside a lambda (see Duplication below).
* Float out. You must not float a can_fail primop *outwards* lest
you escape the dynamic scope of the test. Example:
case d ># 0# of
True -> case x /# d of r -> r +# 1
False -> 0
Here we must not float the case outwards to give
case x/# d of r ->
case d ># 0# of
True -> r +# 1
False -> 0
Nor can you float out a has_side_effects primop. For example:
if blah then case writeMutVar# v True s0 of (# s1 #) -> s1
else s0
Notice that s0 is mentioned in both branches of the 'if', but
only one of these two will actually be consumed. But if we
float out to
case writeMutVar# v True s0 of (# s1 #) ->
if blah then s1 else s0
the writeMutVar will be performed in both branches, which is
utterly wrong.
* Duplication. You cannot duplicate a has_side_effect primop. You
might wonder how this can occur given the state token threading, but
just look at Control.Monad.ST.Lazy.Imp.strictToLazy! We get
something like this
p = case readMutVar# s v of
(# s', r #) -> (S# s', r)
s' = case p of (s', r) -> s'
r = case p of (s', r) -> r
(All these bindings are boxed.) If we inline p at its two call
sites, we get a catastrophe: because the read is performed once when
s' is demanded, and once when 'r' is demanded, which may be much
later. Utterly wrong. Trac #3207 is real example of this happening.
However, it's fine to duplicate a can_fail primop. That is really
the only difference between can_fail and has_side_effects.
Note [Implementation: how can_fail/has_side_effects affect transformations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
How do we ensure that that floating/duplication/discarding are done right
in the simplifier?
Two main predicates on primpops test these flags:
primOpOkForSideEffects <=> not has_side_effects
primOpOkForSpeculation <=> not (has_side_effects || can_fail)
* The "no-float-out" thing is achieved by ensuring that we never
let-bind a can_fail or has_side_effects primop. The RHS of a
let-binding (which can float in and out freely) satisfies
exprOkForSpeculation; this is the let/app invariant. And
exprOkForSpeculation is false of can_fail and has_side_effects.
* So can_fail and has_side_effects primops will appear only as the
scrutinees of cases, and that's why the FloatIn pass is capable
of floating case bindings inwards.
* The no-duplicate thing is done via primOpIsCheap, by making
has_side_effects things (very very very) not-cheap!
-}
primOpHasSideEffects :: PrimOp -> Bool
#include "primop-has-side-effects.hs-incl"
primOpCanFail :: PrimOp -> Bool
#include "primop-can-fail.hs-incl"
primOpOkForSpeculation :: PrimOp -> Bool
-- See Note [PrimOp can_fail and has_side_effects]
-- See comments with CoreUtils.exprOkForSpeculation
-- primOpOkForSpeculation => primOpOkForSideEffects
primOpOkForSpeculation op
= primOpOkForSideEffects op
&& not (primOpOutOfLine op || primOpCanFail op)
-- I think the "out of line" test is because out of line things can
-- be expensive (eg sine, cosine), and so we may not want to speculate them
primOpOkForSideEffects :: PrimOp -> Bool
primOpOkForSideEffects op
= not (primOpHasSideEffects op)
{-
Note [primOpIsCheap]
~~~~~~~~~~~~~~~~~~~~
@primOpIsCheap@, as used in \tr{SimplUtils.hs}. For now (HACK
WARNING), we just borrow some other predicates for a
what-should-be-good-enough test. "Cheap" means willing to call it more
than once, and/or push it inside a lambda. The latter could change the
behaviour of 'seq' for primops that can fail, so we don't treat them as cheap.
-}
primOpIsCheap :: PrimOp -> Bool
-- See Note [PrimOp can_fail and has_side_effects]
primOpIsCheap op = primOpOkForSpeculation op
-- In March 2001, we changed this to
-- primOpIsCheap op = False
-- thereby making *no* primops seem cheap. But this killed eta
-- expansion on case (x ==# y) of True -> \s -> ...
-- which is bad. In particular a loop like
-- doLoop n = loop 0
-- where
-- loop i | i == n = return ()
-- | otherwise = bar i >> loop (i+1)
-- allocated a closure every time round because it doesn't eta expand.
--
-- The problem that originally gave rise to the change was
-- let x = a +# b *# c in x +# x
-- were we don't want to inline x. But primopIsCheap doesn't control
-- that (it's exprIsDupable that does) so the problem doesn't occur
-- even if primOpIsCheap sometimes says 'True'.
{-
************************************************************************
* *
PrimOp code size
* *
************************************************************************
primOpCodeSize
~~~~~~~~~~~~~~
Gives an indication of the code size of a primop, for the purposes of
calculating unfolding sizes; see CoreUnfold.sizeExpr.
-}
primOpCodeSize :: PrimOp -> Int
#include "primop-code-size.hs-incl"
primOpCodeSizeDefault :: Int
primOpCodeSizeDefault = 1
-- CoreUnfold.primOpSize already takes into account primOpOutOfLine
-- and adds some further costs for the args in that case.
primOpCodeSizeForeignCall :: Int
primOpCodeSizeForeignCall = 4
{-
************************************************************************
* *
PrimOp types
* *
************************************************************************
-}
primOpType :: PrimOp -> Type -- you may want to use primOpSig instead
primOpType op
= case primOpInfo op of
Dyadic _occ ty -> dyadic_fun_ty ty
Monadic _occ ty -> monadic_fun_ty ty
Compare _occ ty -> compare_fun_ty ty
GenPrimOp _occ tyvars arg_tys res_ty ->
mkForAllTys tyvars (mkFunTys arg_tys res_ty)
primOpOcc :: PrimOp -> OccName
primOpOcc op = case primOpInfo op of
Dyadic occ _ -> occ
Monadic occ _ -> occ
Compare occ _ -> occ
GenPrimOp occ _ _ _ -> occ
-- primOpSig is like primOpType but gives the result split apart:
-- (type variables, argument types, result type)
-- It also gives arity, strictness info
primOpSig :: PrimOp -> ([TyVar], [Type], Type, Arity, StrictSig)
primOpSig op
= (tyvars, arg_tys, res_ty, arity, primOpStrictness op arity)
where
arity = length arg_tys
(tyvars, arg_tys, res_ty)
= case (primOpInfo op) of
Monadic _occ ty -> ([], [ty], ty )
Dyadic _occ ty -> ([], [ty,ty], ty )
Compare _occ ty -> ([], [ty,ty], intPrimTy)
GenPrimOp _occ tyvars arg_tys res_ty -> (tyvars, arg_tys, res_ty )
data PrimOpResultInfo
= ReturnsPrim PrimRep
| ReturnsAlg TyCon
-- Some PrimOps need not return a manifest primitive or algebraic value
-- (i.e. they might return a polymorphic value). These PrimOps *must*
-- be out of line, or the code generator won't work.
getPrimOpResultInfo :: PrimOp -> PrimOpResultInfo
getPrimOpResultInfo op
= case (primOpInfo op) of
Dyadic _ ty -> ReturnsPrim (typePrimRep ty)
Monadic _ ty -> ReturnsPrim (typePrimRep ty)
Compare _ _ -> ReturnsPrim (tyConPrimRep intPrimTyCon)
GenPrimOp _ _ _ ty | isPrimTyCon tc -> ReturnsPrim (tyConPrimRep tc)
| otherwise -> ReturnsAlg tc
where
tc = tyConAppTyCon ty
-- All primops return a tycon-app result
-- The tycon can be an unboxed tuple, though, which
-- gives rise to a ReturnAlg
{-
We do not currently make use of whether primops are commutable.
We used to try to move constants to the right hand side for strength
reduction.
-}
{-
commutableOp :: PrimOp -> Bool
#include "primop-commutable.hs-incl"
-}
-- Utils:
dyadic_fun_ty, monadic_fun_ty, compare_fun_ty :: Type -> Type
dyadic_fun_ty ty = mkFunTys [ty, ty] ty
monadic_fun_ty ty = mkFunTy ty ty
compare_fun_ty ty = mkFunTys [ty, ty] intPrimTy
-- Output stuff:
pprPrimOp :: PrimOp -> SDoc
pprPrimOp other_op = pprOccName (primOpOcc other_op)
{-
************************************************************************
* *
\subsubsection[PrimCall]{User-imported primitive calls}
* *
************************************************************************
-}
data PrimCall = PrimCall CLabelString PackageKey
instance Outputable PrimCall where
ppr (PrimCall lbl pkgId)
= text "__primcall" <+> ppr pkgId <+> ppr lbl
|