1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[PrimOp]{Primitive operations (machine-level)}
\begin{code}
{-# OPTIONS_GHC -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/WorkingConventions#Warnings
-- for details
module PrimOp (
PrimOp(..), allThePrimOps,
primOpType, primOpSig,
primOpTag, maxPrimOpTag, primOpOcc,
tagToEnumKey,
primOpOutOfLine, primOpNeedsWrapper,
primOpOkForSpeculation, primOpIsCheap, primOpIsDupable,
getPrimOpResultInfo, PrimOpResultInfo(..)
) where
#include "HsVersions.h"
import TysPrim
import TysWiredIn
import NewDemand
import Var ( TyVar )
import OccName ( OccName, pprOccName, mkVarOccFS )
import TyCon ( TyCon, isPrimTyCon, tyConPrimRep, PrimRep(..) )
import Type ( Type, mkForAllTys, mkFunTy, mkFunTys, tyConAppTyCon,
typePrimRep )
import BasicTypes ( Arity, Boxity(..) )
import Unique ( Unique, mkPrimOpIdUnique )
import Outputable
import FastTypes
\end{code}
%************************************************************************
%* *
\subsection[PrimOp-datatype]{Datatype for @PrimOp@ (an enumeration)}
%* *
%************************************************************************
These are in \tr{state-interface.verb} order.
\begin{code}
-- supplies:
-- data PrimOp = ...
#include "primop-data-decl.hs-incl"
\end{code}
Used for the Ord instance
\begin{code}
primOpTag :: PrimOp -> Int
primOpTag op = iBox (tagOf_PrimOp op)
-- supplies
-- tagOf_PrimOp :: PrimOp -> FastInt
#include "primop-tag.hs-incl"
instance Eq PrimOp where
op1 == op2 = tagOf_PrimOp op1 ==# tagOf_PrimOp op2
instance Ord PrimOp where
op1 < op2 = tagOf_PrimOp op1 <# tagOf_PrimOp op2
op1 <= op2 = tagOf_PrimOp op1 <=# tagOf_PrimOp op2
op1 >= op2 = tagOf_PrimOp op1 >=# tagOf_PrimOp op2
op1 > op2 = tagOf_PrimOp op1 ># tagOf_PrimOp op2
op1 `compare` op2 | op1 < op2 = LT
| op1 == op2 = EQ
| otherwise = GT
instance Outputable PrimOp where
ppr op = pprPrimOp op
instance Show PrimOp where
showsPrec p op = showsPrecSDoc p (pprPrimOp op)
\end{code}
An @Enum@-derived list would be better; meanwhile... (ToDo)
\begin{code}
allThePrimOps :: [PrimOp]
allThePrimOps =
#include "primop-list.hs-incl"
\end{code}
\begin{code}
tagToEnumKey :: Unique
tagToEnumKey = mkPrimOpIdUnique (primOpTag TagToEnumOp)
\end{code}
%************************************************************************
%* *
\subsection[PrimOp-info]{The essential info about each @PrimOp@}
%* *
%************************************************************************
The @String@ in the @PrimOpInfos@ is the ``base name'' by which the user may
refer to the primitive operation. The conventional \tr{#}-for-
unboxed ops is added on later.
The reason for the funny characters in the names is so we do not
interfere with the programmer's Haskell name spaces.
We use @PrimKinds@ for the ``type'' information, because they're
(slightly) more convenient to use than @TyCons@.
\begin{code}
data PrimOpInfo
= Dyadic OccName -- string :: T -> T -> T
Type
| Monadic OccName -- string :: T -> T
Type
| Compare OccName -- string :: T -> T -> Bool
Type
| GenPrimOp OccName -- string :: \/a1..an . T1 -> .. -> Tk -> T
[TyVar]
[Type]
Type
mkDyadic str ty = Dyadic (mkVarOccFS str) ty
mkMonadic str ty = Monadic (mkVarOccFS str) ty
mkCompare str ty = Compare (mkVarOccFS str) ty
mkGenPrimOp str tvs tys ty = GenPrimOp (mkVarOccFS str) tvs tys ty
\end{code}
%************************************************************************
%* *
\subsubsection{Strictness}
%* *
%************************************************************************
Not all primops are strict!
\begin{code}
primOpStrictness :: PrimOp -> Arity -> StrictSig
-- See Demand.StrictnessInfo for discussion of what the results
-- The arity should be the arity of the primop; that's why
-- this function isn't exported.
#include "primop-strictness.hs-incl"
\end{code}
%************************************************************************
%* *
\subsubsection[PrimOp-comparison]{PrimOpInfo basic comparison ops}
%* *
%************************************************************************
@primOpInfo@ gives all essential information (from which everything
else, notably a type, can be constructed) for each @PrimOp@.
\begin{code}
primOpInfo :: PrimOp -> PrimOpInfo
#include "primop-primop-info.hs-incl"
\end{code}
Here are a load of comments from the old primOp info:
A @Word#@ is an unsigned @Int#@.
@decodeFloat#@ is given w/ Integer-stuff (it's similar).
@decodeDouble#@ is given w/ Integer-stuff (it's similar).
Decoding of floating-point numbers is sorta Integer-related. Encoding
is done with plain ccalls now (see PrelNumExtra.lhs).
A @Weak@ Pointer is created by the @mkWeak#@ primitive:
mkWeak# :: k -> v -> f -> State# RealWorld
-> (# State# RealWorld, Weak# v #)
In practice, you'll use the higher-level
data Weak v = Weak# v
mkWeak :: k -> v -> IO () -> IO (Weak v)
The following operation dereferences a weak pointer. The weak pointer
may have been finalized, so the operation returns a result code which
must be inspected before looking at the dereferenced value.
deRefWeak# :: Weak# v -> State# RealWorld ->
(# State# RealWorld, v, Int# #)
Only look at v if the Int# returned is /= 0 !!
The higher-level op is
deRefWeak :: Weak v -> IO (Maybe v)
Weak pointers can be finalized early by using the finalize# operation:
finalizeWeak# :: Weak# v -> State# RealWorld ->
(# State# RealWorld, Int#, IO () #)
The Int# returned is either
0 if the weak pointer has already been finalized, or it has no
finalizer (the third component is then invalid).
1 if the weak pointer is still alive, with the finalizer returned
as the third component.
A {\em stable name/pointer} is an index into a table of stable name
entries. Since the garbage collector is told about stable pointers,
it is safe to pass a stable pointer to external systems such as C
routines.
\begin{verbatim}
makeStablePtr# :: a -> State# RealWorld -> (# State# RealWorld, StablePtr# a #)
freeStablePtr :: StablePtr# a -> State# RealWorld -> State# RealWorld
deRefStablePtr# :: StablePtr# a -> State# RealWorld -> (# State# RealWorld, a #)
eqStablePtr# :: StablePtr# a -> StablePtr# a -> Int#
\end{verbatim}
It may seem a bit surprising that @makeStablePtr#@ is a @IO@
operation since it doesn't (directly) involve IO operations. The
reason is that if some optimisation pass decided to duplicate calls to
@makeStablePtr#@ and we only pass one of the stable pointers over, a
massive space leak can result. Putting it into the IO monad
prevents this. (Another reason for putting them in a monad is to
ensure correct sequencing wrt the side-effecting @freeStablePtr@
operation.)
An important property of stable pointers is that if you call
makeStablePtr# twice on the same object you get the same stable
pointer back.
Note that we can implement @freeStablePtr#@ using @_ccall_@ (and,
besides, it's not likely to be used from Haskell) so it's not a
primop.
Question: Why @RealWorld@ - won't any instance of @_ST@ do the job? [ADR]
Stable Names
~~~~~~~~~~~~
A stable name is like a stable pointer, but with three important differences:
(a) You can't deRef one to get back to the original object.
(b) You can convert one to an Int.
(c) You don't need to 'freeStableName'
The existence of a stable name doesn't guarantee to keep the object it
points to alive (unlike a stable pointer), hence (a).
Invariants:
(a) makeStableName always returns the same value for a given
object (same as stable pointers).
(b) if two stable names are equal, it implies that the objects
from which they were created were the same.
(c) stableNameToInt always returns the same Int for a given
stable name.
-- HWL: The first 4 Int# in all par... annotations denote:
-- name, granularity info, size of result, degree of parallelism
-- Same structure as _seq_ i.e. returns Int#
-- KSW: v, the second arg in parAt# and parAtForNow#, is used only to determine
-- `the processor containing the expression v'; it is not evaluated
These primops are pretty wierd.
dataToTag# :: a -> Int (arg must be an evaluated data type)
tagToEnum# :: Int -> a (result type must be an enumerated type)
The constraints aren't currently checked by the front end, but the
code generator will fall over if they aren't satisfied.
\begin{code}
#ifdef DEBUG
primOpInfo op = pprPanic "primOpInfo:" (ppr op)
#endif
\end{code}
%************************************************************************
%* *
\subsubsection[PrimOp-ool]{Which PrimOps are out-of-line}
%* *
%************************************************************************
Some PrimOps need to be called out-of-line because they either need to
perform a heap check or they block.
\begin{code}
primOpOutOfLine :: PrimOp -> Bool
#include "primop-out-of-line.hs-incl"
\end{code}
primOpOkForSpeculation
~~~~~~~~~~~~~~~~~~~~~~
Sometimes we may choose to execute a PrimOp even though it isn't
certain that its result will be required; ie execute them
``speculatively''. The same thing as ``cheap eagerness.'' Usually
this is OK, because PrimOps are usually cheap, but it isn't OK for
(a)~expensive PrimOps and (b)~PrimOps which can fail.
PrimOps that have side effects also should not be executed speculatively.
Ok-for-speculation also means that it's ok *not* to execute the
primop. For example
case op a b of
r -> 3
Here the result is not used, so we can discard the primop. Anything
that has side effects mustn't be dicarded in this way, of course!
See also @primOpIsCheap@ (below).
\begin{code}
primOpOkForSpeculation :: PrimOp -> Bool
-- See comments with CoreUtils.exprOkForSpeculation
primOpOkForSpeculation op
= not (primOpHasSideEffects op || primOpOutOfLine op || primOpCanFail op)
\end{code}
primOpIsCheap
~~~~~~~~~~~~~
@primOpIsCheap@, as used in \tr{SimplUtils.lhs}. For now (HACK
WARNING), we just borrow some other predicates for a
what-should-be-good-enough test. "Cheap" means willing to call it more
than once, and/or push it inside a lambda. The latter could change the
behaviour of 'seq' for primops that can fail, so we don't treat them as cheap.
\begin{code}
primOpIsCheap :: PrimOp -> Bool
primOpIsCheap op = primOpOkForSpeculation op
-- In March 2001, we changed this to
-- primOpIsCheap op = False
-- thereby making *no* primops seem cheap. But this killed eta
-- expansion on case (x ==# y) of True -> \s -> ...
-- which is bad. In particular a loop like
-- doLoop n = loop 0
-- where
-- loop i | i == n = return ()
-- | otherwise = bar i >> loop (i+1)
-- allocated a closure every time round because it doesn't eta expand.
--
-- The problem that originally gave rise to the change was
-- let x = a +# b *# c in x +# x
-- were we don't want to inline x. But primopIsCheap doesn't control
-- that (it's exprIsDupable that does) so the problem doesn't occur
-- even if primOpIsCheap sometimes says 'True'.
\end{code}
primOpIsDupable
~~~~~~~~~~~~~~~
primOpIsDupable means that the use of the primop is small enough to
duplicate into different case branches. See CoreUtils.exprIsDupable.
\begin{code}
primOpIsDupable :: PrimOp -> Bool
-- See comments with CoreUtils.exprIsDupable
-- We say it's dupable it isn't implemented by a C call with a wrapper
primOpIsDupable op = not (primOpNeedsWrapper op)
\end{code}
\begin{code}
primOpCanFail :: PrimOp -> Bool
#include "primop-can-fail.hs-incl"
\end{code}
And some primops have side-effects and so, for example, must not be
duplicated.
\begin{code}
primOpHasSideEffects :: PrimOp -> Bool
#include "primop-has-side-effects.hs-incl"
\end{code}
Inline primitive operations that perform calls need wrappers to save
any live variables that are stored in caller-saves registers.
\begin{code}
primOpNeedsWrapper :: PrimOp -> Bool
#include "primop-needs-wrapper.hs-incl"
\end{code}
\begin{code}
primOpType :: PrimOp -> Type -- you may want to use primOpSig instead
primOpType op
= case (primOpInfo op) of
Dyadic occ ty -> dyadic_fun_ty ty
Monadic occ ty -> monadic_fun_ty ty
Compare occ ty -> compare_fun_ty ty
GenPrimOp occ tyvars arg_tys res_ty ->
mkForAllTys tyvars (mkFunTys arg_tys res_ty)
primOpOcc :: PrimOp -> OccName
primOpOcc op = case (primOpInfo op) of
Dyadic occ _ -> occ
Monadic occ _ -> occ
Compare occ _ -> occ
GenPrimOp occ _ _ _ -> occ
-- primOpSig is like primOpType but gives the result split apart:
-- (type variables, argument types, result type)
-- It also gives arity, strictness info
primOpSig :: PrimOp -> ([TyVar], [Type], Type, Arity, StrictSig)
primOpSig op
= (tyvars, arg_tys, res_ty, arity, primOpStrictness op arity)
where
arity = length arg_tys
(tyvars, arg_tys, res_ty)
= case (primOpInfo op) of
Monadic occ ty -> ([], [ty], ty )
Dyadic occ ty -> ([], [ty,ty], ty )
Compare occ ty -> ([], [ty,ty], boolTy)
GenPrimOp occ tyvars arg_tys res_ty
-> (tyvars, arg_tys, res_ty)
\end{code}
\begin{code}
data PrimOpResultInfo
= ReturnsPrim PrimRep
| ReturnsAlg TyCon
-- Some PrimOps need not return a manifest primitive or algebraic value
-- (i.e. they might return a polymorphic value). These PrimOps *must*
-- be out of line, or the code generator won't work.
getPrimOpResultInfo :: PrimOp -> PrimOpResultInfo
getPrimOpResultInfo op
= case (primOpInfo op) of
Dyadic _ ty -> ReturnsPrim (typePrimRep ty)
Monadic _ ty -> ReturnsPrim (typePrimRep ty)
Compare _ ty -> ReturnsAlg boolTyCon
GenPrimOp _ _ _ ty | isPrimTyCon tc -> ReturnsPrim (tyConPrimRep tc)
| otherwise -> ReturnsAlg tc
where
tc = tyConAppTyCon ty
-- All primops return a tycon-app result
-- The tycon can be an unboxed tuple, though, which
-- gives rise to a ReturnAlg
\end{code}
The commutable ops are those for which we will try to move constants
to the right hand side for strength reduction.
\begin{code}
commutableOp :: PrimOp -> Bool
#include "primop-commutable.hs-incl"
\end{code}
Utils:
\begin{code}
dyadic_fun_ty ty = mkFunTys [ty, ty] ty
monadic_fun_ty ty = mkFunTy ty ty
compare_fun_ty ty = mkFunTys [ty, ty] boolTy
\end{code}
Output stuff:
\begin{code}
pprPrimOp :: PrimOp -> SDoc
pprPrimOp other_op = pprOccName (primOpOcc other_op)
\end{code}
|