1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
|
{-
(c) The AQUA Project, Glasgow University, 1994-1998
\section[TysPrim]{Wired-in knowledge about primitive types}
-}
{-# LANGUAGE CPP #-}
-- | This module defines TyCons that can't be expressed in Haskell.
-- They are all, therefore, wired-in TyCons. C.f module TysWiredIn
module TysPrim(
mkPrimTyConName, -- For implicit parameters in TysWiredIn only
mkTemplateKindVars, mkTemplateTyVars, mkTemplateTyVarsFrom,
mkTemplateKiTyVars,
mkTemplateTyConBinders, mkTemplateKindTyConBinders,
mkTemplateAnonTyConBinders,
alphaTyVars, alphaTyVar, betaTyVar, gammaTyVar, deltaTyVar,
alphaTys, alphaTy, betaTy, gammaTy, deltaTy,
runtimeRep1TyVar, runtimeRep2TyVar, runtimeRep1Ty, runtimeRep2Ty,
openAlphaTy, openBetaTy, openAlphaTyVar, openBetaTyVar,
-- Kind constructors...
tYPETyCon, tYPETyConName,
-- Kinds
tYPE, primRepToRuntimeRep,
funTyCon, funTyConName,
primTyCons,
charPrimTyCon, charPrimTy, charPrimTyConName,
intPrimTyCon, intPrimTy, intPrimTyConName,
wordPrimTyCon, wordPrimTy, wordPrimTyConName,
addrPrimTyCon, addrPrimTy, addrPrimTyConName,
floatPrimTyCon, floatPrimTy, floatPrimTyConName,
doublePrimTyCon, doublePrimTy, doublePrimTyConName,
voidPrimTyCon, voidPrimTy,
statePrimTyCon, mkStatePrimTy,
realWorldTyCon, realWorldTy, realWorldStatePrimTy,
proxyPrimTyCon, mkProxyPrimTy,
arrayPrimTyCon, mkArrayPrimTy,
byteArrayPrimTyCon, byteArrayPrimTy,
arrayArrayPrimTyCon, mkArrayArrayPrimTy,
smallArrayPrimTyCon, mkSmallArrayPrimTy,
mutableArrayPrimTyCon, mkMutableArrayPrimTy,
mutableByteArrayPrimTyCon, mkMutableByteArrayPrimTy,
mutableArrayArrayPrimTyCon, mkMutableArrayArrayPrimTy,
smallMutableArrayPrimTyCon, mkSmallMutableArrayPrimTy,
mutVarPrimTyCon, mkMutVarPrimTy,
mVarPrimTyCon, mkMVarPrimTy,
tVarPrimTyCon, mkTVarPrimTy,
stablePtrPrimTyCon, mkStablePtrPrimTy,
stableNamePrimTyCon, mkStableNamePrimTy,
compactPrimTyCon, compactPrimTy,
bcoPrimTyCon, bcoPrimTy,
weakPrimTyCon, mkWeakPrimTy,
threadIdPrimTyCon, threadIdPrimTy,
int32PrimTyCon, int32PrimTy,
word32PrimTyCon, word32PrimTy,
int64PrimTyCon, int64PrimTy,
word64PrimTyCon, word64PrimTy,
eqPrimTyCon, -- ty1 ~# ty2
eqReprPrimTyCon, -- ty1 ~R# ty2 (at role Representational)
eqPhantPrimTyCon, -- ty1 ~P# ty2 (at role Phantom)
-- * SIMD
#include "primop-vector-tys-exports.hs-incl"
) where
#include "HsVersions.h"
import GhcPrelude
import {-# SOURCE #-} TysWiredIn
( runtimeRepTy, unboxedTupleKind, liftedTypeKind
, vecRepDataConTyCon, tupleRepDataConTyCon
, liftedRepDataConTy, unliftedRepDataConTy, intRepDataConTy
, wordRepDataConTy, int64RepDataConTy, word64RepDataConTy, addrRepDataConTy
, floatRepDataConTy, doubleRepDataConTy
, vec2DataConTy, vec4DataConTy, vec8DataConTy, vec16DataConTy, vec32DataConTy
, vec64DataConTy
, int8ElemRepDataConTy, int16ElemRepDataConTy, int32ElemRepDataConTy
, int64ElemRepDataConTy, word8ElemRepDataConTy, word16ElemRepDataConTy
, word32ElemRepDataConTy, word64ElemRepDataConTy, floatElemRepDataConTy
, doubleElemRepDataConTy
, mkPromotedListTy )
import Var ( TyVar, TyVarBndr(TvBndr), mkTyVar )
import Name
import TyCon
import SrcLoc
import Unique
import PrelNames
import FastString
import Outputable
import TyCoRep -- Doesn't need special access, but this is easier to avoid
-- import loops which show up if you import Type instead
import Data.Char
{-
************************************************************************
* *
\subsection{Primitive type constructors}
* *
************************************************************************
-}
primTyCons :: [TyCon]
primTyCons
= [ addrPrimTyCon
, arrayPrimTyCon
, byteArrayPrimTyCon
, arrayArrayPrimTyCon
, smallArrayPrimTyCon
, charPrimTyCon
, doublePrimTyCon
, floatPrimTyCon
, intPrimTyCon
, int32PrimTyCon
, int64PrimTyCon
, bcoPrimTyCon
, weakPrimTyCon
, mutableArrayPrimTyCon
, mutableByteArrayPrimTyCon
, mutableArrayArrayPrimTyCon
, smallMutableArrayPrimTyCon
, mVarPrimTyCon
, tVarPrimTyCon
, mutVarPrimTyCon
, realWorldTyCon
, stablePtrPrimTyCon
, stableNamePrimTyCon
, compactPrimTyCon
, statePrimTyCon
, voidPrimTyCon
, proxyPrimTyCon
, threadIdPrimTyCon
, wordPrimTyCon
, word32PrimTyCon
, word64PrimTyCon
, eqPrimTyCon
, eqReprPrimTyCon
, eqPhantPrimTyCon
, tYPETyCon
#include "primop-vector-tycons.hs-incl"
]
mkPrimTc :: FastString -> Unique -> TyCon -> Name
mkPrimTc fs unique tycon
= mkWiredInName gHC_PRIM (mkTcOccFS fs)
unique
(ATyCon tycon) -- Relevant TyCon
UserSyntax
mkBuiltInPrimTc :: FastString -> Unique -> TyCon -> Name
mkBuiltInPrimTc fs unique tycon
= mkWiredInName gHC_PRIM (mkTcOccFS fs)
unique
(ATyCon tycon) -- Relevant TyCon
BuiltInSyntax
charPrimTyConName, intPrimTyConName, int32PrimTyConName, int64PrimTyConName, wordPrimTyConName, word32PrimTyConName, word64PrimTyConName, addrPrimTyConName, floatPrimTyConName, doublePrimTyConName, statePrimTyConName, proxyPrimTyConName, realWorldTyConName, arrayPrimTyConName, arrayArrayPrimTyConName, smallArrayPrimTyConName, byteArrayPrimTyConName, mutableArrayPrimTyConName, mutableByteArrayPrimTyConName, mutableArrayArrayPrimTyConName, smallMutableArrayPrimTyConName, mutVarPrimTyConName, mVarPrimTyConName, tVarPrimTyConName, stablePtrPrimTyConName, stableNamePrimTyConName, compactPrimTyConName, bcoPrimTyConName, weakPrimTyConName, threadIdPrimTyConName, eqPrimTyConName, eqReprPrimTyConName, eqPhantPrimTyConName, voidPrimTyConName :: Name
charPrimTyConName = mkPrimTc (fsLit "Char#") charPrimTyConKey charPrimTyCon
intPrimTyConName = mkPrimTc (fsLit "Int#") intPrimTyConKey intPrimTyCon
int32PrimTyConName = mkPrimTc (fsLit "Int32#") int32PrimTyConKey int32PrimTyCon
int64PrimTyConName = mkPrimTc (fsLit "Int64#") int64PrimTyConKey int64PrimTyCon
wordPrimTyConName = mkPrimTc (fsLit "Word#") wordPrimTyConKey wordPrimTyCon
word32PrimTyConName = mkPrimTc (fsLit "Word32#") word32PrimTyConKey word32PrimTyCon
word64PrimTyConName = mkPrimTc (fsLit "Word64#") word64PrimTyConKey word64PrimTyCon
addrPrimTyConName = mkPrimTc (fsLit "Addr#") addrPrimTyConKey addrPrimTyCon
floatPrimTyConName = mkPrimTc (fsLit "Float#") floatPrimTyConKey floatPrimTyCon
doublePrimTyConName = mkPrimTc (fsLit "Double#") doublePrimTyConKey doublePrimTyCon
statePrimTyConName = mkPrimTc (fsLit "State#") statePrimTyConKey statePrimTyCon
voidPrimTyConName = mkPrimTc (fsLit "Void#") voidPrimTyConKey voidPrimTyCon
proxyPrimTyConName = mkPrimTc (fsLit "Proxy#") proxyPrimTyConKey proxyPrimTyCon
eqPrimTyConName = mkPrimTc (fsLit "~#") eqPrimTyConKey eqPrimTyCon
eqReprPrimTyConName = mkBuiltInPrimTc (fsLit "~R#") eqReprPrimTyConKey eqReprPrimTyCon
eqPhantPrimTyConName = mkBuiltInPrimTc (fsLit "~P#") eqPhantPrimTyConKey eqPhantPrimTyCon
realWorldTyConName = mkPrimTc (fsLit "RealWorld") realWorldTyConKey realWorldTyCon
arrayPrimTyConName = mkPrimTc (fsLit "Array#") arrayPrimTyConKey arrayPrimTyCon
byteArrayPrimTyConName = mkPrimTc (fsLit "ByteArray#") byteArrayPrimTyConKey byteArrayPrimTyCon
arrayArrayPrimTyConName = mkPrimTc (fsLit "ArrayArray#") arrayArrayPrimTyConKey arrayArrayPrimTyCon
smallArrayPrimTyConName = mkPrimTc (fsLit "SmallArray#") smallArrayPrimTyConKey smallArrayPrimTyCon
mutableArrayPrimTyConName = mkPrimTc (fsLit "MutableArray#") mutableArrayPrimTyConKey mutableArrayPrimTyCon
mutableByteArrayPrimTyConName = mkPrimTc (fsLit "MutableByteArray#") mutableByteArrayPrimTyConKey mutableByteArrayPrimTyCon
mutableArrayArrayPrimTyConName= mkPrimTc (fsLit "MutableArrayArray#") mutableArrayArrayPrimTyConKey mutableArrayArrayPrimTyCon
smallMutableArrayPrimTyConName= mkPrimTc (fsLit "SmallMutableArray#") smallMutableArrayPrimTyConKey smallMutableArrayPrimTyCon
mutVarPrimTyConName = mkPrimTc (fsLit "MutVar#") mutVarPrimTyConKey mutVarPrimTyCon
mVarPrimTyConName = mkPrimTc (fsLit "MVar#") mVarPrimTyConKey mVarPrimTyCon
tVarPrimTyConName = mkPrimTc (fsLit "TVar#") tVarPrimTyConKey tVarPrimTyCon
stablePtrPrimTyConName = mkPrimTc (fsLit "StablePtr#") stablePtrPrimTyConKey stablePtrPrimTyCon
stableNamePrimTyConName = mkPrimTc (fsLit "StableName#") stableNamePrimTyConKey stableNamePrimTyCon
compactPrimTyConName = mkPrimTc (fsLit "Compact#") compactPrimTyConKey compactPrimTyCon
bcoPrimTyConName = mkPrimTc (fsLit "BCO#") bcoPrimTyConKey bcoPrimTyCon
weakPrimTyConName = mkPrimTc (fsLit "Weak#") weakPrimTyConKey weakPrimTyCon
threadIdPrimTyConName = mkPrimTc (fsLit "ThreadId#") threadIdPrimTyConKey threadIdPrimTyCon
{-
************************************************************************
* *
\subsection{Support code}
* *
************************************************************************
alphaTyVars is a list of type variables for use in templates:
["a", "b", ..., "z", "t1", "t2", ... ]
-}
mkTemplateKindVars :: [Kind] -> [TyVar]
-- k0 with unique (mkAlphaTyVarUnique 0)
-- k1 with unique (mkAlphaTyVarUnique 1)
-- ... etc
mkTemplateKindVars kinds
= [ mkTyVar name kind
| (kind, u) <- kinds `zip` [0..]
, let occ = mkTyVarOccFS (mkFastString ('k' : show u))
name = mkInternalName (mkAlphaTyVarUnique u) occ noSrcSpan
]
mkTemplateTyVarsFrom :: Int -> [Kind] -> [TyVar]
-- a with unique (mkAlphaTyVarUnique n)
-- b with unique (mkAlphaTyVarUnique n+1)
-- ... etc
-- Typically called as
-- mkTemplateTyVarsFrom (length kv_bndrs) kinds
-- where kv_bndrs are the kind-level binders of a TyCon
mkTemplateTyVarsFrom n kinds
= [ mkTyVar name kind
| (kind, index) <- zip kinds [0..],
let ch_ord = index + ord 'a'
name_str | ch_ord <= ord 'z' = [chr ch_ord]
| otherwise = 't':show index
uniq = mkAlphaTyVarUnique (index + n)
name = mkInternalName uniq occ noSrcSpan
occ = mkTyVarOccFS (mkFastString name_str)
]
mkTemplateTyVars :: [Kind] -> [TyVar]
mkTemplateTyVars = mkTemplateTyVarsFrom 1
mkTemplateTyConBinders
:: [Kind] -- [k1, .., kn] Kinds of kind-forall'd vars
-> ([Kind] -> [Kind]) -- Arg is [kv1:k1, ..., kvn:kn]
-- same length as first arg
-- Result is anon arg kinds
-> [TyConBinder]
mkTemplateTyConBinders kind_var_kinds mk_anon_arg_kinds
= kv_bndrs ++ tv_bndrs
where
kv_bndrs = mkTemplateKindTyConBinders kind_var_kinds
anon_kinds = mk_anon_arg_kinds (mkTyVarTys (binderVars kv_bndrs))
tv_bndrs = mkTemplateAnonTyConBindersFrom (length kv_bndrs) anon_kinds
mkTemplateKiTyVars
:: [Kind] -- [k1, .., kn] Kinds of kind-forall'd vars
-> ([Kind] -> [Kind]) -- Arg is [kv1:k1, ..., kvn:kn]
-- same length as first arg
-- Result is anon arg kinds [ak1, .., akm]
-> [TyVar] -- [kv1:k1, ..., kvn:kn, av1:ak1, ..., avm:akm]
-- Example: if you want the tyvars for
-- forall (r:RuntimeRep) (a:TYPE r) (b:*). blah
-- call mkTemplateKiTyVars [RuntimeRep] (\[r]. [TYPE r, *)
mkTemplateKiTyVars kind_var_kinds mk_arg_kinds
= kv_bndrs ++ tv_bndrs
where
kv_bndrs = mkTemplateKindVars kind_var_kinds
anon_kinds = mk_arg_kinds (mkTyVarTys kv_bndrs)
tv_bndrs = mkTemplateTyVarsFrom (length kv_bndrs) anon_kinds
mkTemplateKindTyConBinders :: [Kind] -> [TyConBinder]
-- Makes named, Specified binders
mkTemplateKindTyConBinders kinds = [mkNamedTyConBinder Specified tv | tv <- mkTemplateKindVars kinds]
mkTemplateAnonTyConBinders :: [Kind] -> [TyConBinder]
mkTemplateAnonTyConBinders kinds = map mkAnonTyConBinder (mkTemplateTyVars kinds)
mkTemplateAnonTyConBindersFrom :: Int -> [Kind] -> [TyConBinder]
mkTemplateAnonTyConBindersFrom n kinds = map mkAnonTyConBinder (mkTemplateTyVarsFrom n kinds)
alphaTyVars :: [TyVar]
alphaTyVars = mkTemplateTyVars $ repeat liftedTypeKind
alphaTyVar, betaTyVar, gammaTyVar, deltaTyVar :: TyVar
(alphaTyVar:betaTyVar:gammaTyVar:deltaTyVar:_) = alphaTyVars
alphaTys :: [Type]
alphaTys = mkTyVarTys alphaTyVars
alphaTy, betaTy, gammaTy, deltaTy :: Type
(alphaTy:betaTy:gammaTy:deltaTy:_) = alphaTys
runtimeRep1TyVar, runtimeRep2TyVar :: TyVar
(runtimeRep1TyVar : runtimeRep2TyVar : _)
= drop 16 (mkTemplateTyVars (repeat runtimeRepTy)) -- selects 'q','r'
runtimeRep1Ty, runtimeRep2Ty :: Type
runtimeRep1Ty = mkTyVarTy runtimeRep1TyVar
runtimeRep2Ty = mkTyVarTy runtimeRep2TyVar
openAlphaTyVar, openBetaTyVar :: TyVar
[openAlphaTyVar,openBetaTyVar]
= mkTemplateTyVars [tYPE runtimeRep1Ty, tYPE runtimeRep2Ty]
openAlphaTy, openBetaTy :: Type
openAlphaTy = mkTyVarTy openAlphaTyVar
openBetaTy = mkTyVarTy openBetaTyVar
{-
************************************************************************
* *
FunTyCon
* *
************************************************************************
-}
funTyConName :: Name
funTyConName = mkPrimTyConName (fsLit "(->)") funTyConKey funTyCon
-- | The @(->)@ type constructor.
--
-- @
-- (->) :: forall (rep1 :: RuntimeRep) (rep2 :: RuntimeRep).
-- TYPE rep1 -> TYPE rep2 -> *
-- @
funTyCon :: TyCon
funTyCon = mkFunTyCon funTyConName tc_bndrs tc_rep_nm
where
tc_bndrs = [ TvBndr runtimeRep1TyVar (NamedTCB Inferred)
, TvBndr runtimeRep2TyVar (NamedTCB Inferred)
]
++ mkTemplateAnonTyConBinders [ tYPE runtimeRep1Ty
, tYPE runtimeRep2Ty
]
tc_rep_nm = mkPrelTyConRepName funTyConName
{-
************************************************************************
* *
Kinds
* *
************************************************************************
Note [TYPE and RuntimeRep]
~~~~~~~~~~~~~~~~~~~~~~~~~~
All types that classify values have a kind of the form (TYPE rr), where
data RuntimeRep -- Defined in ghc-prim:GHC.Types
= LiftedRep
| UnliftedRep
| IntRep
| FloatRep
.. etc ..
rr :: RuntimeRep
TYPE :: RuntimeRep -> TYPE 'LiftedRep -- Built in
So for example:
Int :: TYPE 'LiftedRep
Array# Int :: TYPE 'UnliftedRep
Int# :: TYPE 'IntRep
Float# :: TYPE 'FloatRep
Maybe :: TYPE 'LiftedRep -> TYPE 'LiftedRep
(# , #) :: TYPE r1 -> TYPE r2 -> TYPE (TupleRep [r1, r2])
We abbreviate '*' specially:
type * = TYPE 'LiftedRep
The 'rr' parameter tells us how the value is represented at runime.
Generally speaking, you can't be polymorphic in 'rr'. E.g
f :: forall (rr:RuntimeRep) (a:TYPE rr). a -> [a]
f = /\(rr:RuntimeRep) (a:rr) \(a:rr). ...
This is no good: we could not generate code code for 'f', because the
calling convention for 'f' varies depending on whether the argument is
a a Int, Int#, or Float#. (You could imagine generating specialised
code, one for each instantiation of 'rr', but we don't do that.)
Certain functions CAN be runtime-rep-polymorphic, because the code
generator never has to manipulate a value of type 'a :: TYPE rr'.
* error :: forall (rr:RuntimeRep) (a:TYPE rr). String -> a
Code generator never has to manipulate the return value.
* unsafeCoerce#, defined in MkId.unsafeCoerceId:
Always inlined to be a no-op
unsafeCoerce# :: forall (r1 :: RuntimeRep) (r2 :: RuntimeRep)
(a :: TYPE r1) (b :: TYPE r2).
a -> b
* Unboxed tuples, and unboxed sums, defined in TysWiredIn
Always inlined, and hence specialised to the call site
(#,#) :: forall (r1 :: RuntimeRep) (r2 :: RuntimeRep)
(a :: TYPE r1) (b :: TYPE r2).
a -> b -> TYPE ('TupleRep '[r1, r2])
Note [PrimRep and kindPrimRep]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As part of its source code, in TyCon, GHC has
data PrimRep = LiftedRep | UnliftedRep | IntRep | FloatRep | ...etc...
Notice that
* RuntimeRep is part of the syntax tree of the program being compiled
(defined in a library: ghc-prim:GHC.Types)
* PrimRep is part of GHC's source code.
(defined in TyCon)
We need to get from one to the other; that is what kindPrimRep does.
Suppose we have a value
(v :: t) where (t :: k)
Given this kind
k = TyConApp "TYPE" [rep]
GHC needs to be able to figure out how 'v' is represented at runtime.
It expects 'rep' to be form
TyConApp rr_dc args
where 'rr_dc' is a promoteed data constructor from RuntimeRep. So
now we need to go from 'dc' to the corresponding PrimRep. We store this
PrimRep in the promoted data constructor itself: see TyCon.promDcRepInfo.
-}
tYPETyCon :: TyCon
tYPETyConName :: Name
tYPETyCon = mkKindTyCon tYPETyConName
(mkTemplateAnonTyConBinders [runtimeRepTy])
liftedTypeKind
[Nominal]
(mkPrelTyConRepName tYPETyConName)
--------------------------
-- ... and now their names
-- If you edit these, you may need to update the GHC formalism
-- See Note [GHC Formalism] in coreSyn/CoreLint.hs
tYPETyConName = mkPrimTyConName (fsLit "TYPE") tYPETyConKey tYPETyCon
mkPrimTyConName :: FastString -> Unique -> TyCon -> Name
mkPrimTyConName = mkPrimTcName BuiltInSyntax
-- All of the super kinds and kinds are defined in Prim,
-- and use BuiltInSyntax, because they are never in scope in the source
mkPrimTcName :: BuiltInSyntax -> FastString -> Unique -> TyCon -> Name
mkPrimTcName built_in_syntax occ key tycon
= mkWiredInName gHC_PRIM (mkTcOccFS occ) key (ATyCon tycon) built_in_syntax
-----------------------------
-- | Given a RuntimeRep, applies TYPE to it.
-- see Note [TYPE and RuntimeRep]
tYPE :: Type -> Type
tYPE rr = TyConApp tYPETyCon [rr]
{-
************************************************************************
* *
\subsection[TysPrim-basic]{Basic primitive types (@Char#@, @Int#@, etc.)}
* *
************************************************************************
-}
-- only used herein
pcPrimTyCon :: Name -> [Role] -> PrimRep -> TyCon
pcPrimTyCon name roles rep
= mkPrimTyCon name binders result_kind roles
where
binders = mkTemplateAnonTyConBinders (map (const liftedTypeKind) roles)
result_kind = tYPE (primRepToRuntimeRep rep)
-- | Convert a 'PrimRep' to a 'Type' of kind RuntimeRep
-- Defined here to avoid (more) module loops
primRepToRuntimeRep :: PrimRep -> Type
primRepToRuntimeRep rep = case rep of
VoidRep -> TyConApp tupleRepDataConTyCon [mkPromotedListTy runtimeRepTy []]
LiftedRep -> liftedRepDataConTy
UnliftedRep -> unliftedRepDataConTy
IntRep -> intRepDataConTy
WordRep -> wordRepDataConTy
Int64Rep -> int64RepDataConTy
Word64Rep -> word64RepDataConTy
AddrRep -> addrRepDataConTy
FloatRep -> floatRepDataConTy
DoubleRep -> doubleRepDataConTy
VecRep n elem -> TyConApp vecRepDataConTyCon [n', elem']
where
n' = case n of
2 -> vec2DataConTy
4 -> vec4DataConTy
8 -> vec8DataConTy
16 -> vec16DataConTy
32 -> vec32DataConTy
64 -> vec64DataConTy
_ -> pprPanic "Disallowed VecCount" (ppr n)
elem' = case elem of
Int8ElemRep -> int8ElemRepDataConTy
Int16ElemRep -> int16ElemRepDataConTy
Int32ElemRep -> int32ElemRepDataConTy
Int64ElemRep -> int64ElemRepDataConTy
Word8ElemRep -> word8ElemRepDataConTy
Word16ElemRep -> word16ElemRepDataConTy
Word32ElemRep -> word32ElemRepDataConTy
Word64ElemRep -> word64ElemRepDataConTy
FloatElemRep -> floatElemRepDataConTy
DoubleElemRep -> doubleElemRepDataConTy
pcPrimTyCon0 :: Name -> PrimRep -> TyCon
pcPrimTyCon0 name rep
= pcPrimTyCon name [] rep
charPrimTy :: Type
charPrimTy = mkTyConTy charPrimTyCon
charPrimTyCon :: TyCon
charPrimTyCon = pcPrimTyCon0 charPrimTyConName WordRep
intPrimTy :: Type
intPrimTy = mkTyConTy intPrimTyCon
intPrimTyCon :: TyCon
intPrimTyCon = pcPrimTyCon0 intPrimTyConName IntRep
int32PrimTy :: Type
int32PrimTy = mkTyConTy int32PrimTyCon
int32PrimTyCon :: TyCon
int32PrimTyCon = pcPrimTyCon0 int32PrimTyConName IntRep
int64PrimTy :: Type
int64PrimTy = mkTyConTy int64PrimTyCon
int64PrimTyCon :: TyCon
int64PrimTyCon = pcPrimTyCon0 int64PrimTyConName Int64Rep
wordPrimTy :: Type
wordPrimTy = mkTyConTy wordPrimTyCon
wordPrimTyCon :: TyCon
wordPrimTyCon = pcPrimTyCon0 wordPrimTyConName WordRep
word32PrimTy :: Type
word32PrimTy = mkTyConTy word32PrimTyCon
word32PrimTyCon :: TyCon
word32PrimTyCon = pcPrimTyCon0 word32PrimTyConName WordRep
word64PrimTy :: Type
word64PrimTy = mkTyConTy word64PrimTyCon
word64PrimTyCon :: TyCon
word64PrimTyCon = pcPrimTyCon0 word64PrimTyConName Word64Rep
addrPrimTy :: Type
addrPrimTy = mkTyConTy addrPrimTyCon
addrPrimTyCon :: TyCon
addrPrimTyCon = pcPrimTyCon0 addrPrimTyConName AddrRep
floatPrimTy :: Type
floatPrimTy = mkTyConTy floatPrimTyCon
floatPrimTyCon :: TyCon
floatPrimTyCon = pcPrimTyCon0 floatPrimTyConName FloatRep
doublePrimTy :: Type
doublePrimTy = mkTyConTy doublePrimTyCon
doublePrimTyCon :: TyCon
doublePrimTyCon = pcPrimTyCon0 doublePrimTyConName DoubleRep
{-
************************************************************************
* *
\subsection[TysPrim-state]{The @State#@ type (and @_RealWorld@ types)}
* *
************************************************************************
Note [The equality types story]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GHC sports a veritable menagerie of equality types:
Hetero? Levity Result Role Defining module
------------------------------------------------------------
~# hetero unlifted # nominal GHC.Prim
~~ hetero lifted Constraint nominal GHC.Types
~ homo lifted Constraint nominal Data.Type.Equality
:~: homo lifted * nominal Data.Type.Equality
~R# hetero unlifted # repr GHC.Prim
Coercible homo lifted Constraint repr GHC.Types
Coercion homo lifted * repr Data.Type.Coercion
~P# hetero unlifted phantom GHC.Prim
Recall that "hetero" means the equality can related types of different
kinds. Knowing that (t1 ~# t2) or (t1 ~R# t2) or even that (t1 ~P# t2)
also means that (k1 ~# k2), where (t1 :: k1) and (t2 :: k2).
To produce less confusion for end users, when not dumping and without
-fprint-equality-relations, each of these groups is printed as the bottommost
listed equality. That is, (~#) and (~~) are both rendered as (~) in
error messages, and (~R#) is rendered as Coercible.
Let's take these one at a time:
--------------------------
(~#) :: forall k1 k2. k1 -> k2 -> #
--------------------------
This is The Type Of Equality in GHC. It classifies nominal coercions.
This type is used in the solver for recording equality constraints.
It responds "yes" to Type.isEqPred and classifies as an EqPred in
Type.classifyPredType.
All wanted constraints of this type are built with coercion holes.
(See Note [Coercion holes] in TyCoRep.) But see also
Note [Deferred errors for coercion holes] in TcErrors to see how
equality constraints are deferred.
Within GHC, ~# is called eqPrimTyCon, and it is defined in TysPrim.
--------------------------
(~~) :: forall k1 k2. k1 -> k2 -> Constraint
--------------------------
This is (almost) an ordinary class, defined as if by
class a ~# b => a ~~ b
instance a ~# b => a ~~ b
Here's what's unusual about it:
* We can't actually declare it that way because we don't have syntax for ~#.
And ~# isn't a constraint, so even if we could write it, it wouldn't kind
check.
* Users cannot write instances of it.
* It is "naturally coherent". This means that the solver won't hesitate to
solve a goal of type (a ~~ b) even if there is, say (Int ~~ c) in the
context. (Normally, it waits to learn more, just in case the given
influences what happens next.) This is quite like having
IncoherentInstances enabled.
* It always terminates. That is, in the UndecidableInstances checks, we
don't worry if a (~~) constraint is too big, as we know that solving
equality terminates.
On the other hand, this behaves just like any class w.r.t. eager superclass
unpacking in the solver. So a lifted equality given quickly becomes an unlifted
equality given. This is good, because the solver knows all about unlifted
equalities. There is some special-casing in TcInteract.matchClassInst to
pretend that there is an instance of this class, as we can't write the instance
in Haskell.
Within GHC, ~~ is called heqTyCon, and it is defined in TysWiredIn.
--------------------------
(~) :: forall k. k -> k -> Constraint
--------------------------
This is defined in Data.Type.Equality:
class a ~~ b => (a :: k) ~ (b :: k)
instance a ~~ b => a ~ b
This is even more so an ordinary class than (~~), with the following exceptions:
* Users cannot write instances of it.
* It is "naturally coherent". (See (~~).)
* (~) is magical syntax, as ~ is a reserved symbol. It cannot be exported
or imported.
* It always terminates.
Within GHC, ~ is called eqTyCon, and it is defined in PrelNames. Note that
it is *not* wired in.
--------------------------
(:~:) :: forall k. k -> k -> *
--------------------------
This is a perfectly ordinary GADT, wrapping (~). It is not defined within
GHC at all.
--------------------------
(~R#) :: forall k1 k2. k1 -> k2 -> #
--------------------------
The is the representational analogue of ~#. This is the type of representational
equalities that the solver works on. All wanted constraints of this type are
built with coercion holes.
Within GHC, ~R# is called eqReprPrimTyCon, and it is defined in TysPrim.
--------------------------
Coercible :: forall k. k -> k -> Constraint
--------------------------
This is quite like (~~) in the way it's defined and treated within GHC, but
it's homogeneous. Homogeneity helps with type inference (as GHC can solve one
kind from the other) and, in my (Richard's) estimation, will be more intuitive
for users.
An alternative design included HCoercible (like (~~)) and Coercible (like (~)).
One annoyance was that we want `coerce :: Coercible a b => a -> b`, and
we need the type of coerce to be fully wired-in. So the HCoercible/Coercible
split required that both types be fully wired-in. Instead of doing this,
I just got rid of HCoercible, as I'm not sure who would use it, anyway.
Within GHC, Coercible is called coercibleTyCon, and it is defined in
TysWiredIn.
--------------------------
Coercion :: forall k. k -> k -> *
--------------------------
This is a perfectly ordinary GADT, wrapping Coercible. It is not defined
within GHC at all.
--------------------------
(~P#) :: forall k1 k2. k1 -> k2 -> #
--------------------------
This is the phantom analogue of ~# and it is barely used at all.
(The solver has no idea about this one.) Here is the motivation:
data Phant a = MkPhant
type role Phant phantom
Phant <Int, Bool>_P :: Phant Int ~P# Phant Bool
We just need to have something to put on that last line. You probably
don't need to worry about it.
Note [The State# TyCon]
~~~~~~~~~~~~~~~~~~~~~~~
State# is the primitive, unlifted type of states. It has one type parameter,
thus
State# RealWorld
or
State# s
where s is a type variable. The only purpose of the type parameter is to
keep different state threads separate. It is represented by nothing at all.
The type parameter to State# is intended to keep separate threads separate.
Even though this parameter is not used in the definition of State#, it is
given role Nominal to enforce its intended use.
-}
mkStatePrimTy :: Type -> Type
mkStatePrimTy ty = TyConApp statePrimTyCon [ty]
statePrimTyCon :: TyCon -- See Note [The State# TyCon]
statePrimTyCon = pcPrimTyCon statePrimTyConName [Nominal] VoidRep
{-
RealWorld is deeply magical. It is *primitive*, but it is not
*unlifted* (hence ptrArg). We never manipulate values of type
RealWorld; it's only used in the type system, to parameterise State#.
-}
realWorldTyCon :: TyCon
realWorldTyCon = mkLiftedPrimTyCon realWorldTyConName [] liftedTypeKind []
realWorldTy :: Type
realWorldTy = mkTyConTy realWorldTyCon
realWorldStatePrimTy :: Type
realWorldStatePrimTy = mkStatePrimTy realWorldTy -- State# RealWorld
-- Note: the ``state-pairing'' types are not truly primitive,
-- so they are defined in \tr{TysWiredIn.hs}, not here.
voidPrimTy :: Type
voidPrimTy = TyConApp voidPrimTyCon []
voidPrimTyCon :: TyCon
voidPrimTyCon = pcPrimTyCon voidPrimTyConName [] VoidRep
mkProxyPrimTy :: Type -> Type -> Type
mkProxyPrimTy k ty = TyConApp proxyPrimTyCon [k, ty]
proxyPrimTyCon :: TyCon
proxyPrimTyCon = mkPrimTyCon proxyPrimTyConName binders res_kind [Nominal,Nominal]
where
-- Kind: forall k. k -> Void#
binders = mkTemplateTyConBinders [liftedTypeKind] (\ks-> ks)
res_kind = unboxedTupleKind []
{- *********************************************************************
* *
Primitive equality constraints
See Note [The equality types story]
* *
********************************************************************* -}
eqPrimTyCon :: TyCon -- The representation type for equality predicates
-- See Note [The equality types story]
eqPrimTyCon = mkPrimTyCon eqPrimTyConName binders res_kind roles
where
-- Kind :: forall k1 k2. k1 -> k2 -> Void#
binders = mkTemplateTyConBinders [liftedTypeKind, liftedTypeKind] (\ks -> ks)
res_kind = unboxedTupleKind []
roles = [Nominal, Nominal, Nominal, Nominal]
-- like eqPrimTyCon, but the type for *Representational* coercions
-- this should only ever appear as the type of a covar. Its role is
-- interpreted in coercionRole
eqReprPrimTyCon :: TyCon -- See Note [The equality types story]
eqReprPrimTyCon = mkPrimTyCon eqReprPrimTyConName binders res_kind roles
where
-- Kind :: forall k1 k2. k1 -> k2 -> Void#
binders = mkTemplateTyConBinders [liftedTypeKind, liftedTypeKind] (\ks -> ks)
res_kind = unboxedTupleKind []
roles = [Nominal, Nominal, Representational, Representational]
-- like eqPrimTyCon, but the type for *Phantom* coercions.
-- This is only used to make higher-order equalities. Nothing
-- should ever actually have this type!
eqPhantPrimTyCon :: TyCon
eqPhantPrimTyCon = mkPrimTyCon eqPhantPrimTyConName binders res_kind roles
where
-- Kind :: forall k1 k2. k1 -> k2 -> Void#
binders = mkTemplateTyConBinders [liftedTypeKind, liftedTypeKind] (\ks -> ks)
res_kind = unboxedTupleKind []
roles = [Nominal, Nominal, Phantom, Phantom]
{- *********************************************************************
* *
The primitive array types
* *
********************************************************************* -}
arrayPrimTyCon, mutableArrayPrimTyCon, mutableByteArrayPrimTyCon,
byteArrayPrimTyCon, arrayArrayPrimTyCon, mutableArrayArrayPrimTyCon,
smallArrayPrimTyCon, smallMutableArrayPrimTyCon :: TyCon
arrayPrimTyCon = pcPrimTyCon arrayPrimTyConName [Representational] UnliftedRep
mutableArrayPrimTyCon = pcPrimTyCon mutableArrayPrimTyConName [Nominal, Representational] UnliftedRep
mutableByteArrayPrimTyCon = pcPrimTyCon mutableByteArrayPrimTyConName [Nominal] UnliftedRep
byteArrayPrimTyCon = pcPrimTyCon0 byteArrayPrimTyConName UnliftedRep
arrayArrayPrimTyCon = pcPrimTyCon0 arrayArrayPrimTyConName UnliftedRep
mutableArrayArrayPrimTyCon = pcPrimTyCon mutableArrayArrayPrimTyConName [Nominal] UnliftedRep
smallArrayPrimTyCon = pcPrimTyCon smallArrayPrimTyConName [Representational] UnliftedRep
smallMutableArrayPrimTyCon = pcPrimTyCon smallMutableArrayPrimTyConName [Nominal, Representational] UnliftedRep
mkArrayPrimTy :: Type -> Type
mkArrayPrimTy elt = TyConApp arrayPrimTyCon [elt]
byteArrayPrimTy :: Type
byteArrayPrimTy = mkTyConTy byteArrayPrimTyCon
mkArrayArrayPrimTy :: Type
mkArrayArrayPrimTy = mkTyConTy arrayArrayPrimTyCon
mkSmallArrayPrimTy :: Type -> Type
mkSmallArrayPrimTy elt = TyConApp smallArrayPrimTyCon [elt]
mkMutableArrayPrimTy :: Type -> Type -> Type
mkMutableArrayPrimTy s elt = TyConApp mutableArrayPrimTyCon [s, elt]
mkMutableByteArrayPrimTy :: Type -> Type
mkMutableByteArrayPrimTy s = TyConApp mutableByteArrayPrimTyCon [s]
mkMutableArrayArrayPrimTy :: Type -> Type
mkMutableArrayArrayPrimTy s = TyConApp mutableArrayArrayPrimTyCon [s]
mkSmallMutableArrayPrimTy :: Type -> Type -> Type
mkSmallMutableArrayPrimTy s elt = TyConApp smallMutableArrayPrimTyCon [s, elt]
{- *********************************************************************
* *
The mutable variable type
* *
********************************************************************* -}
mutVarPrimTyCon :: TyCon
mutVarPrimTyCon = pcPrimTyCon mutVarPrimTyConName [Nominal, Representational] UnliftedRep
mkMutVarPrimTy :: Type -> Type -> Type
mkMutVarPrimTy s elt = TyConApp mutVarPrimTyCon [s, elt]
{-
************************************************************************
* *
\subsection[TysPrim-synch-var]{The synchronizing variable type}
* *
************************************************************************
-}
mVarPrimTyCon :: TyCon
mVarPrimTyCon = pcPrimTyCon mVarPrimTyConName [Nominal, Representational] UnliftedRep
mkMVarPrimTy :: Type -> Type -> Type
mkMVarPrimTy s elt = TyConApp mVarPrimTyCon [s, elt]
{-
************************************************************************
* *
\subsection[TysPrim-stm-var]{The transactional variable type}
* *
************************************************************************
-}
tVarPrimTyCon :: TyCon
tVarPrimTyCon = pcPrimTyCon tVarPrimTyConName [Nominal, Representational] UnliftedRep
mkTVarPrimTy :: Type -> Type -> Type
mkTVarPrimTy s elt = TyConApp tVarPrimTyCon [s, elt]
{-
************************************************************************
* *
\subsection[TysPrim-stable-ptrs]{The stable-pointer type}
* *
************************************************************************
-}
stablePtrPrimTyCon :: TyCon
stablePtrPrimTyCon = pcPrimTyCon stablePtrPrimTyConName [Representational] AddrRep
mkStablePtrPrimTy :: Type -> Type
mkStablePtrPrimTy ty = TyConApp stablePtrPrimTyCon [ty]
{-
************************************************************************
* *
\subsection[TysPrim-stable-names]{The stable-name type}
* *
************************************************************************
-}
stableNamePrimTyCon :: TyCon
stableNamePrimTyCon = pcPrimTyCon stableNamePrimTyConName [Representational] UnliftedRep
mkStableNamePrimTy :: Type -> Type
mkStableNamePrimTy ty = TyConApp stableNamePrimTyCon [ty]
{-
************************************************************************
* *
\subsection[TysPrim-compact-nfdata]{The Compact NFData (CNF) type}
* *
************************************************************************
-}
compactPrimTyCon :: TyCon
compactPrimTyCon = pcPrimTyCon0 compactPrimTyConName UnliftedRep
compactPrimTy :: Type
compactPrimTy = mkTyConTy compactPrimTyCon
{-
************************************************************************
* *
\subsection[TysPrim-BCOs]{The ``bytecode object'' type}
* *
************************************************************************
-}
bcoPrimTy :: Type
bcoPrimTy = mkTyConTy bcoPrimTyCon
bcoPrimTyCon :: TyCon
bcoPrimTyCon = pcPrimTyCon0 bcoPrimTyConName UnliftedRep
{-
************************************************************************
* *
\subsection[TysPrim-Weak]{The ``weak pointer'' type}
* *
************************************************************************
-}
weakPrimTyCon :: TyCon
weakPrimTyCon = pcPrimTyCon weakPrimTyConName [Representational] UnliftedRep
mkWeakPrimTy :: Type -> Type
mkWeakPrimTy v = TyConApp weakPrimTyCon [v]
{-
************************************************************************
* *
\subsection[TysPrim-thread-ids]{The ``thread id'' type}
* *
************************************************************************
A thread id is represented by a pointer to the TSO itself, to ensure
that they are always unique and we can always find the TSO for a given
thread id. However, this has the unfortunate consequence that a
ThreadId# for a given thread is treated as a root by the garbage
collector and can keep TSOs around for too long.
Hence the programmer API for thread manipulation uses a weak pointer
to the thread id internally.
-}
threadIdPrimTy :: Type
threadIdPrimTy = mkTyConTy threadIdPrimTyCon
threadIdPrimTyCon :: TyCon
threadIdPrimTyCon = pcPrimTyCon0 threadIdPrimTyConName UnliftedRep
{-
************************************************************************
* *
\subsection{SIMD vector types}
* *
************************************************************************
-}
#include "primop-vector-tys.hs-incl"
|