1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
|
{-
(c) The GRASP Project, Glasgow University, 1994-1998
\section[TysWiredIn]{Wired-in knowledge about {\em non-primitive} types}
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE OverloadedStrings #-}
-- | This module is about types that can be defined in Haskell, but which
-- must be wired into the compiler nonetheless. C.f module TysPrim
module TysWiredIn (
-- * Helper functions defined here
mkWiredInTyConName, -- This is used in TcTypeNats to define the
-- built-in functions for evaluation.
mkWiredInIdName, -- used in MkId
mkFunKind, mkForAllKind,
-- * All wired in things
wiredInTyCons, isBuiltInOcc_maybe,
-- * Bool
boolTy, boolTyCon, boolTyCon_RDR, boolTyConName,
trueDataCon, trueDataConId, true_RDR,
falseDataCon, falseDataConId, false_RDR,
promotedFalseDataCon, promotedTrueDataCon,
-- * Ordering
orderingTyCon,
ordLTDataCon, ordLTDataConId,
ordEQDataCon, ordEQDataConId,
ordGTDataCon, ordGTDataConId,
promotedLTDataCon, promotedEQDataCon, promotedGTDataCon,
-- * Boxing primitive types
boxingDataCon_maybe,
-- * Char
charTyCon, charDataCon, charTyCon_RDR,
charTy, stringTy, charTyConName,
-- * Double
doubleTyCon, doubleDataCon, doubleTy, doubleTyConName,
-- * Float
floatTyCon, floatDataCon, floatTy, floatTyConName,
-- * Int
intTyCon, intDataCon, intTyCon_RDR, intDataCon_RDR, intTyConName,
intTy,
-- * Word
wordTyCon, wordDataCon, wordTyConName, wordTy,
-- * Word8
word8TyCon, word8DataCon, word8TyConName, word8Ty,
-- * List
listTyCon, listTyCon_RDR, listTyConName, listTyConKey,
nilDataCon, nilDataConName, nilDataConKey,
consDataCon_RDR, consDataCon, consDataConName,
promotedNilDataCon, promotedConsDataCon,
mkListTy, mkPromotedListTy,
-- * Maybe
maybeTyCon, maybeTyConName,
nothingDataCon, nothingDataConName, promotedNothingDataCon,
justDataCon, justDataConName, promotedJustDataCon,
-- * Tuples
mkTupleTy, mkBoxedTupleTy,
tupleTyCon, tupleDataCon, tupleTyConName,
promotedTupleDataCon,
unitTyCon, unitDataCon, unitDataConId, unitTy, unitTyConKey,
pairTyCon,
unboxedUnitTyCon, unboxedUnitDataCon,
unboxedTupleKind, unboxedSumKind,
-- ** Constraint tuples
cTupleTyConName, cTupleTyConNames, isCTupleTyConName,
cTupleTyConNameArity_maybe,
cTupleDataConName, cTupleDataConNames,
-- * Any
anyTyCon, anyTy, anyTypeOfKind,
-- * Sums
mkSumTy, sumTyCon, sumDataCon,
-- * Kinds
typeNatKindCon, typeNatKind, typeSymbolKindCon, typeSymbolKind,
isLiftedTypeKindTyConName, liftedTypeKind, constraintKind,
liftedTypeKindTyCon, constraintKindTyCon,
liftedTypeKindTyConName,
-- * Equality predicates
heqTyCon, heqTyConName, heqClass, heqDataCon,
eqTyCon, eqTyConName, eqClass, eqDataCon, eqTyCon_RDR,
coercibleTyCon, coercibleTyConName, coercibleDataCon, coercibleClass,
-- * RuntimeRep and friends
runtimeRepTyCon, vecCountTyCon, vecElemTyCon,
runtimeRepTy, liftedRepTy, liftedRepDataCon, liftedRepDataConTyCon,
vecRepDataConTyCon, tupleRepDataConTyCon, sumRepDataConTyCon,
liftedRepDataConTy, unliftedRepDataConTy, intRepDataConTy,
wordRepDataConTy, int64RepDataConTy, word64RepDataConTy, addrRepDataConTy,
floatRepDataConTy, doubleRepDataConTy,
vec2DataConTy, vec4DataConTy, vec8DataConTy, vec16DataConTy, vec32DataConTy,
vec64DataConTy,
int8ElemRepDataConTy, int16ElemRepDataConTy, int32ElemRepDataConTy,
int64ElemRepDataConTy, word8ElemRepDataConTy, word16ElemRepDataConTy,
word32ElemRepDataConTy, word64ElemRepDataConTy, floatElemRepDataConTy,
doubleElemRepDataConTy
) where
#include "HsVersions.h"
#include "MachDeps.h"
import GhcPrelude
import {-# SOURCE #-} MkId( mkDataConWorkId, mkDictSelId )
-- friends:
import PrelNames
import TysPrim
import {-# SOURCE #-} KnownUniques
-- others:
import CoAxiom
import Id
import Constants ( mAX_TUPLE_SIZE, mAX_CTUPLE_SIZE, mAX_SUM_SIZE )
import Module ( Module )
import Type
import RepType
import DataCon
import {-# SOURCE #-} ConLike
import TyCon
import Class ( Class, mkClass )
import RdrName
import Name
import NameEnv ( NameEnv, mkNameEnv, lookupNameEnv, lookupNameEnv_NF )
import NameSet ( NameSet, mkNameSet, elemNameSet )
import BasicTypes ( Arity, Boxity(..), TupleSort(..), ConTagZ,
SourceText(..) )
import ForeignCall
import SrcLoc ( noSrcSpan )
import Unique
import Data.Array
import FastString
import Outputable
import Util
import BooleanFormula ( mkAnd )
import qualified Data.ByteString.Char8 as BS
import Data.List ( elemIndex )
alpha_tyvar :: [TyVar]
alpha_tyvar = [alphaTyVar]
alpha_ty :: [Type]
alpha_ty = [alphaTy]
{-
Note [Wiring in RuntimeRep]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The RuntimeRep type (and friends) in GHC.Types has a bunch of constructors,
making it a pain to wire in. To ease the pain somewhat, we use lists of
the different bits, like Uniques, Names, DataCons. These lists must be
kept in sync with each other. The rule is this: use the order as declared
in GHC.Types. All places where such lists exist should contain a reference
to this Note, so a search for this Note's name should find all the lists.
************************************************************************
* *
\subsection{Wired in type constructors}
* *
************************************************************************
If you change which things are wired in, make sure you change their
names in PrelNames, so they use wTcQual, wDataQual, etc
-}
-- This list is used only to define PrelInfo.wiredInThings. That in turn
-- is used to initialise the name environment carried around by the renamer.
-- This means that if we look up the name of a TyCon (or its implicit binders)
-- that occurs in this list that name will be assigned the wired-in key we
-- define here.
--
-- Because of their infinite nature, this list excludes tuples, Any and implicit
-- parameter TyCons (see Note [Built-in syntax and the OrigNameCache]).
--
-- See also Note [Known-key names]
wiredInTyCons :: [TyCon]
wiredInTyCons = [ -- Units are not treated like other tuples, because then
-- are defined in GHC.Base, and there's only a few of them. We
-- put them in wiredInTyCons so that they will pre-populate
-- the name cache, so the parser in isBuiltInOcc_maybe doesn't
-- need to look out for them.
unitTyCon
, unboxedUnitTyCon
, anyTyCon
, boolTyCon
, charTyCon
, doubleTyCon
, floatTyCon
, intTyCon
, wordTyCon
, word8TyCon
, listTyCon
, maybeTyCon
, heqTyCon
, eqTyCon
, coercibleTyCon
, typeNatKindCon
, typeSymbolKindCon
, runtimeRepTyCon
, vecCountTyCon
, vecElemTyCon
, constraintKindTyCon
, liftedTypeKindTyCon
]
mkWiredInTyConName :: BuiltInSyntax -> Module -> FastString -> Unique -> TyCon -> Name
mkWiredInTyConName built_in modu fs unique tycon
= mkWiredInName modu (mkTcOccFS fs) unique
(ATyCon tycon) -- Relevant TyCon
built_in
mkWiredInDataConName :: BuiltInSyntax -> Module -> FastString -> Unique -> DataCon -> Name
mkWiredInDataConName built_in modu fs unique datacon
= mkWiredInName modu (mkDataOccFS fs) unique
(AConLike (RealDataCon datacon)) -- Relevant DataCon
built_in
mkWiredInIdName :: Module -> FastString -> Unique -> Id -> Name
mkWiredInIdName mod fs uniq id
= mkWiredInName mod (mkOccNameFS Name.varName fs) uniq (AnId id) UserSyntax
-- See Note [Kind-changing of (~) and Coercible]
-- in libraries/ghc-prim/GHC/Types.hs
eqTyConName, eqDataConName, eqSCSelIdName :: Name
eqTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "~") eqTyConKey eqTyCon
eqDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "Eq#") eqDataConKey eqDataCon
eqSCSelIdName = mkWiredInIdName gHC_TYPES (fsLit "eq_sel") eqSCSelIdKey eqSCSelId
eqTyCon_RDR :: RdrName
eqTyCon_RDR = nameRdrName eqTyConName
-- See Note [Kind-changing of (~) and Coercible]
-- in libraries/ghc-prim/GHC/Types.hs
heqTyConName, heqDataConName, heqSCSelIdName :: Name
heqTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "~~") heqTyConKey heqTyCon
heqDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "HEq#") heqDataConKey heqDataCon
heqSCSelIdName = mkWiredInIdName gHC_TYPES (fsLit "heq_sel") heqSCSelIdKey heqSCSelId
-- See Note [Kind-changing of (~) and Coercible] in libraries/ghc-prim/GHC/Types.hs
coercibleTyConName, coercibleDataConName, coercibleSCSelIdName :: Name
coercibleTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Coercible") coercibleTyConKey coercibleTyCon
coercibleDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "MkCoercible") coercibleDataConKey coercibleDataCon
coercibleSCSelIdName = mkWiredInIdName gHC_TYPES (fsLit "coercible_sel") coercibleSCSelIdKey coercibleSCSelId
charTyConName, charDataConName, intTyConName, intDataConName :: Name
charTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Char") charTyConKey charTyCon
charDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "C#") charDataConKey charDataCon
intTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Int") intTyConKey intTyCon
intDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "I#") intDataConKey intDataCon
boolTyConName, falseDataConName, trueDataConName :: Name
boolTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Bool") boolTyConKey boolTyCon
falseDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "False") falseDataConKey falseDataCon
trueDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "True") trueDataConKey trueDataCon
listTyConName, nilDataConName, consDataConName :: Name
listTyConName = mkWiredInTyConName BuiltInSyntax gHC_TYPES (fsLit "[]") listTyConKey listTyCon
nilDataConName = mkWiredInDataConName BuiltInSyntax gHC_TYPES (fsLit "[]") nilDataConKey nilDataCon
consDataConName = mkWiredInDataConName BuiltInSyntax gHC_TYPES (fsLit ":") consDataConKey consDataCon
maybeTyConName, nothingDataConName, justDataConName :: Name
maybeTyConName = mkWiredInTyConName UserSyntax gHC_MAYBE (fsLit "Maybe")
maybeTyConKey maybeTyCon
nothingDataConName = mkWiredInDataConName UserSyntax gHC_MAYBE (fsLit "Nothing")
nothingDataConKey nothingDataCon
justDataConName = mkWiredInDataConName UserSyntax gHC_MAYBE (fsLit "Just")
justDataConKey justDataCon
wordTyConName, wordDataConName, word8TyConName, word8DataConName :: Name
wordTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Word") wordTyConKey wordTyCon
wordDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "W#") wordDataConKey wordDataCon
word8TyConName = mkWiredInTyConName UserSyntax gHC_WORD (fsLit "Word8") word8TyConKey word8TyCon
word8DataConName = mkWiredInDataConName UserSyntax gHC_WORD (fsLit "W8#") word8DataConKey word8DataCon
floatTyConName, floatDataConName, doubleTyConName, doubleDataConName :: Name
floatTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Float") floatTyConKey floatTyCon
floatDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "F#") floatDataConKey floatDataCon
doubleTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Double") doubleTyConKey doubleTyCon
doubleDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "D#") doubleDataConKey doubleDataCon
-- Any
{-
Note [Any types]
~~~~~~~~~~~~~~~~
The type constructor Any,
type family Any :: k where { }
It has these properties:
* Note that 'Any' is kind polymorphic since in some program we may
need to use Any to fill in a type variable of some kind other than *
(see #959 for examples). Its kind is thus `forall k. k``.
* It is defined in module GHC.Types, and exported so that it is
available to users. For this reason it's treated like any other
wired-in type:
- has a fixed unique, anyTyConKey,
- lives in the global name cache
* It is a *closed* type family, with no instances. This means that
if ty :: '(k1, k2) we add a given coercion
g :: ty ~ (Fst ty, Snd ty)
If Any was a *data* type, then we'd get inconsistency because 'ty'
could be (Any '(k1,k2)) and then we'd have an equality with Any on
one side and '(,) on the other. See also #9097 and #9636.
* When instantiated at a lifted type it is inhabited by at least one value,
namely bottom
* You can safely coerce any /lifted/ type to Any, and back with unsafeCoerce.
* It does not claim to be a *data* type, and that's important for
the code generator, because the code gen may *enter* a data value
but never enters a function value.
* It is wired-in so we can easily refer to it where we don't have a name
environment (e.g. see Rules.matchRule for one example)
* If (Any k) is the type of a value, it must be a /lifted/ value. So
if we have (Any @(TYPE rr)) then rr must be 'LiftedRep. See
Note [TYPE and RuntimeRep] in TysPrim. This is a convenient
invariant, and makes isUnliftedTyCon well-defined; otherwise what
would (isUnliftedTyCon Any) be?
It's used to instantiate un-constrained type variables after type checking. For
example, 'length' has type
length :: forall a. [a] -> Int
and the list datacon for the empty list has type
[] :: forall a. [a]
In order to compose these two terms as @length []@ a type
application is required, but there is no constraint on the
choice. In this situation GHC uses 'Any',
> length (Any *) ([] (Any *))
Above, we print kinds explicitly, as if with --fprint-explicit-kinds.
The Any tycon used to be quite magic, but we have since been able to
implement it merely with an empty kind polymorphic type family. See #10886 for a
bit of history.
-}
anyTyConName :: Name
anyTyConName =
mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Any") anyTyConKey anyTyCon
anyTyCon :: TyCon
anyTyCon = mkFamilyTyCon anyTyConName binders res_kind Nothing
(ClosedSynFamilyTyCon Nothing)
Nothing
NotInjective
where
binders@[kv] = mkTemplateKindTyConBinders [liftedTypeKind]
res_kind = mkTyVarTy (binderVar kv)
anyTy :: Type
anyTy = mkTyConTy anyTyCon
anyTypeOfKind :: Kind -> Type
anyTypeOfKind kind = mkTyConApp anyTyCon [kind]
-- Kinds
typeNatKindConName, typeSymbolKindConName :: Name
typeNatKindConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Nat") typeNatKindConNameKey typeNatKindCon
typeSymbolKindConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Symbol") typeSymbolKindConNameKey typeSymbolKindCon
constraintKindTyConName :: Name
constraintKindTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Constraint") constraintKindTyConKey constraintKindTyCon
liftedTypeKindTyConName :: Name
liftedTypeKindTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Type") liftedTypeKindTyConKey liftedTypeKindTyCon
runtimeRepTyConName, vecRepDataConName, tupleRepDataConName, sumRepDataConName :: Name
runtimeRepTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "RuntimeRep") runtimeRepTyConKey runtimeRepTyCon
vecRepDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "VecRep") vecRepDataConKey vecRepDataCon
tupleRepDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "TupleRep") tupleRepDataConKey tupleRepDataCon
sumRepDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "SumRep") sumRepDataConKey sumRepDataCon
-- See Note [Wiring in RuntimeRep]
runtimeRepSimpleDataConNames :: [Name]
runtimeRepSimpleDataConNames
= zipWith3Lazy mk_special_dc_name
[ fsLit "LiftedRep", fsLit "UnliftedRep"
, fsLit "IntRep"
, fsLit "WordRep", fsLit "Int64Rep", fsLit "Word64Rep"
, fsLit "AddrRep", fsLit "FloatRep", fsLit "DoubleRep" ]
runtimeRepSimpleDataConKeys
runtimeRepSimpleDataCons
vecCountTyConName :: Name
vecCountTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "VecCount") vecCountTyConKey vecCountTyCon
-- See Note [Wiring in RuntimeRep]
vecCountDataConNames :: [Name]
vecCountDataConNames = zipWith3Lazy mk_special_dc_name
[ fsLit "Vec2", fsLit "Vec4", fsLit "Vec8"
, fsLit "Vec16", fsLit "Vec32", fsLit "Vec64" ]
vecCountDataConKeys
vecCountDataCons
vecElemTyConName :: Name
vecElemTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "VecElem") vecElemTyConKey vecElemTyCon
-- See Note [Wiring in RuntimeRep]
vecElemDataConNames :: [Name]
vecElemDataConNames = zipWith3Lazy mk_special_dc_name
[ fsLit "Int8ElemRep", fsLit "Int16ElemRep", fsLit "Int32ElemRep"
, fsLit "Int64ElemRep", fsLit "Word8ElemRep", fsLit "Word16ElemRep"
, fsLit "Word32ElemRep", fsLit "Word64ElemRep"
, fsLit "FloatElemRep", fsLit "DoubleElemRep" ]
vecElemDataConKeys
vecElemDataCons
mk_special_dc_name :: FastString -> Unique -> DataCon -> Name
mk_special_dc_name fs u dc = mkWiredInDataConName UserSyntax gHC_TYPES fs u dc
boolTyCon_RDR, false_RDR, true_RDR, intTyCon_RDR, charTyCon_RDR,
intDataCon_RDR, listTyCon_RDR, consDataCon_RDR :: RdrName
boolTyCon_RDR = nameRdrName boolTyConName
false_RDR = nameRdrName falseDataConName
true_RDR = nameRdrName trueDataConName
intTyCon_RDR = nameRdrName intTyConName
charTyCon_RDR = nameRdrName charTyConName
intDataCon_RDR = nameRdrName intDataConName
listTyCon_RDR = nameRdrName listTyConName
consDataCon_RDR = nameRdrName consDataConName
{-
************************************************************************
* *
\subsection{mkWiredInTyCon}
* *
************************************************************************
-}
-- This function assumes that the types it creates have all parameters at
-- Representational role, and that there is no kind polymorphism.
pcTyCon :: Name -> Maybe CType -> [TyVar] -> [DataCon] -> TyCon
pcTyCon name cType tyvars cons
= mkAlgTyCon name
(mkAnonTyConBinders tyvars)
liftedTypeKind
(map (const Representational) tyvars)
cType
[] -- No stupid theta
(mkDataTyConRhs cons)
(VanillaAlgTyCon (mkPrelTyConRepName name))
False -- Not in GADT syntax
pcDataCon :: Name -> [TyVar] -> [Type] -> TyCon -> DataCon
pcDataCon n univs = pcDataConWithFixity False n univs
[] -- no ex_tvs
univs -- the univs are precisely the user-written tyvars
pcDataConWithFixity :: Bool -- ^ declared infix?
-> Name -- ^ datacon name
-> [TyVar] -- ^ univ tyvars
-> [TyCoVar] -- ^ ex tycovars
-> [TyCoVar] -- ^ user-written tycovars
-> [Type] -- ^ args
-> TyCon
-> DataCon
pcDataConWithFixity infx n = pcDataConWithFixity' infx n (dataConWorkerUnique (nameUnique n))
NoRRI
-- The Name's unique is the first of two free uniques;
-- the first is used for the datacon itself,
-- the second is used for the "worker name"
--
-- To support this the mkPreludeDataConUnique function "allocates"
-- one DataCon unique per pair of Ints.
pcDataConWithFixity' :: Bool -> Name -> Unique -> RuntimeRepInfo
-> [TyVar] -> [TyCoVar] -> [TyCoVar]
-> [Type] -> TyCon -> DataCon
-- The Name should be in the DataName name space; it's the name
-- of the DataCon itself.
pcDataConWithFixity' declared_infix dc_name wrk_key rri
tyvars ex_tyvars user_tyvars arg_tys tycon
= data_con
where
tag_map = mkTyConTagMap tycon
-- This constructs the constructor Name to ConTag map once per
-- constructor, which is quadratic. It's OK here, because it's
-- only called for wired in data types that don't have a lot of
-- constructors. It's also likely that GHC will lift tag_map, since
-- we call pcDataConWithFixity' with static TyCons in the same module.
-- See Note [Constructor tag allocation] and #14657
data_con = mkDataCon dc_name declared_infix prom_info
(map (const no_bang) arg_tys)
[] -- No labelled fields
tyvars ex_tyvars
(mkTyCoVarBinders Specified user_tyvars)
[] -- No equality spec
[] -- No theta
arg_tys (mkTyConApp tycon (mkTyVarTys tyvars))
rri
tycon
(lookupNameEnv_NF tag_map dc_name)
[] -- No stupid theta
(mkDataConWorkId wrk_name data_con)
NoDataConRep -- Wired-in types are too simple to need wrappers
no_bang = HsSrcBang NoSourceText NoSrcUnpack NoSrcStrict
wrk_name = mkDataConWorkerName data_con wrk_key
prom_info = mkPrelTyConRepName dc_name
mkDataConWorkerName :: DataCon -> Unique -> Name
mkDataConWorkerName data_con wrk_key =
mkWiredInName modu wrk_occ wrk_key
(AnId (dataConWorkId data_con)) UserSyntax
where
modu = ASSERT( isExternalName dc_name )
nameModule dc_name
dc_name = dataConName data_con
dc_occ = nameOccName dc_name
wrk_occ = mkDataConWorkerOcc dc_occ
-- used for RuntimeRep and friends
pcSpecialDataCon :: Name -> [Type] -> TyCon -> RuntimeRepInfo -> DataCon
pcSpecialDataCon dc_name arg_tys tycon rri
= pcDataConWithFixity' False dc_name (dataConWorkerUnique (nameUnique dc_name)) rri
[] [] [] arg_tys tycon
{-
************************************************************************
* *
Kinds
* *
************************************************************************
-}
typeNatKindCon, typeSymbolKindCon :: TyCon
-- data Nat
-- data Symbol
typeNatKindCon = pcTyCon typeNatKindConName Nothing [] []
typeSymbolKindCon = pcTyCon typeSymbolKindConName Nothing [] []
typeNatKind, typeSymbolKind :: Kind
typeNatKind = mkTyConTy typeNatKindCon
typeSymbolKind = mkTyConTy typeSymbolKindCon
constraintKindTyCon :: TyCon
constraintKindTyCon = pcTyCon constraintKindTyConName Nothing [] []
liftedTypeKind, constraintKind :: Kind
liftedTypeKind = tYPE liftedRepTy
constraintKind = mkTyConApp constraintKindTyCon []
-- mkFunKind and mkForAllKind are defined here
-- solely so that TyCon can use them via a SOURCE import
mkFunKind :: Kind -> Kind -> Kind
mkFunKind = mkFunTy
mkForAllKind :: TyCoVar -> ArgFlag -> Kind -> Kind
mkForAllKind = mkForAllTy
{-
************************************************************************
* *
Stuff for dealing with tuples
* *
************************************************************************
Note [How tuples work] See also Note [Known-key names] in PrelNames
~~~~~~~~~~~~~~~~~~~~~~
* There are three families of tuple TyCons and corresponding
DataCons, expressed by the type BasicTypes.TupleSort:
data TupleSort = BoxedTuple | UnboxedTuple | ConstraintTuple
* All three families are AlgTyCons, whose AlgTyConRhs is TupleTyCon
* BoxedTuples
- A wired-in type
- Data type declarations in GHC.Tuple
- The data constructors really have an info table
* UnboxedTuples
- A wired-in type
- Have a pretend DataCon, defined in GHC.Prim,
but no actual declaration and no info table
* ConstraintTuples
- Are known-key rather than wired-in. Reason: it's awkward to
have all the superclass selectors wired-in.
- Declared as classes in GHC.Classes, e.g.
class (c1,c2) => (c1,c2)
- Given constraints: the superclasses automatically become available
- Wanted constraints: there is a built-in instance
instance (c1,c2) => (c1,c2)
See TcInteract.matchCTuple
- Currently just go up to 62; beyond that
you have to use manual nesting
- Their OccNames look like (%,,,%), so they can easily be
distinguished from term tuples. But (following Haskell) we
pretty-print saturated constraint tuples with round parens;
see BasicTypes.tupleParens.
* In quite a lot of places things are restrcted just to
BoxedTuple/UnboxedTuple, and then we used BasicTypes.Boxity to distinguish
E.g. tupleTyCon has a Boxity argument
* When looking up an OccName in the original-name cache
(IfaceEnv.lookupOrigNameCache), we spot the tuple OccName to make sure
we get the right wired-in name. This guy can't tell the difference
between BoxedTuple and ConstraintTuple (same OccName!), so tuples
are not serialised into interface files using OccNames at all.
* Serialization to interface files works via the usual mechanism for known-key
things: instead of serializing the OccName we just serialize the key. During
deserialization we lookup the Name associated with the unique with the logic
in KnownUniques. See Note [Symbol table representation of names] for details.
Note [One-tuples]
~~~~~~~~~~~~~~~~~
GHC supports both boxed and unboxed one-tuples:
- Unboxed one-tuples are sometimes useful when returning a
single value after CPR analysis
- A boxed one-tuple is used by DsUtils.mkSelectorBinds, when
there is just one binder
Basically it keeps everythig uniform.
However the /naming/ of the type/data constructors for one-tuples is a
bit odd:
3-tuples: (,,) (,,)#
2-tuples: (,) (,)#
1-tuples: ??
0-tuples: () ()#
Zero-tuples have used up the logical name. So we use 'Unit' and 'Unit#'
for one-tuples. So in ghc-prim:GHC.Tuple we see the declarations:
data () = ()
data Unit a = Unit a
data (a,b) = (a,b)
NB (Feb 16): for /constraint/ one-tuples I have 'Unit%' but no class
decl in GHC.Classes, so I think this part may not work properly. But
it's unused I think.
-}
-- | Built-in syntax isn't "in scope" so these OccNames map to wired-in Names
-- with BuiltInSyntax. However, this should only be necessary while resolving
-- names produced by Template Haskell splices since we take care to encode
-- built-in syntax names specially in interface files. See
-- Note [Symbol table representation of names].
--
-- Moreover, there is no need to include names of things that the user can't
-- write (e.g. type representation bindings like $tc(,,,)).
isBuiltInOcc_maybe :: OccName -> Maybe Name
isBuiltInOcc_maybe occ =
case name of
"[]" -> Just $ choose_ns listTyConName nilDataConName
":" -> Just consDataConName
-- equality tycon
"~" -> Just eqTyConName
-- function tycon
"->" -> Just funTyConName
-- boxed tuple data/tycon
"()" -> Just $ tup_name Boxed 0
_ | Just rest <- "(" `BS.stripPrefix` name
, (commas, rest') <- BS.span (==',') rest
, ")" <- rest'
-> Just $ tup_name Boxed (1+BS.length commas)
-- unboxed tuple data/tycon
"(##)" -> Just $ tup_name Unboxed 0
"Unit#" -> Just $ tup_name Unboxed 1
_ | Just rest <- "(#" `BS.stripPrefix` name
, (commas, rest') <- BS.span (==',') rest
, "#)" <- rest'
-> Just $ tup_name Unboxed (1+BS.length commas)
-- unboxed sum tycon
_ | Just rest <- "(#" `BS.stripPrefix` name
, (pipes, rest') <- BS.span (=='|') rest
, "#)" <- rest'
-> Just $ tyConName $ sumTyCon (1+BS.length pipes)
-- unboxed sum datacon
_ | Just rest <- "(#" `BS.stripPrefix` name
, (pipes1, rest') <- BS.span (=='|') rest
, Just rest'' <- "_" `BS.stripPrefix` rest'
, (pipes2, rest''') <- BS.span (=='|') rest''
, "#)" <- rest'''
-> let arity = BS.length pipes1 + BS.length pipes2 + 1
alt = BS.length pipes1 + 1
in Just $ dataConName $ sumDataCon alt arity
_ -> Nothing
where
name = fastStringToByteString $ occNameFS occ
choose_ns :: Name -> Name -> Name
choose_ns tc dc
| isTcClsNameSpace ns = tc
| isDataConNameSpace ns = dc
| otherwise = pprPanic "tup_name" (ppr occ)
where ns = occNameSpace occ
tup_name boxity arity
= choose_ns (getName (tupleTyCon boxity arity))
(getName (tupleDataCon boxity arity))
mkTupleOcc :: NameSpace -> Boxity -> Arity -> OccName
-- No need to cache these, the caching is done in mk_tuple
mkTupleOcc ns Boxed ar = mkOccName ns (mkBoxedTupleStr ar)
mkTupleOcc ns Unboxed ar = mkOccName ns (mkUnboxedTupleStr ar)
mkCTupleOcc :: NameSpace -> Arity -> OccName
mkCTupleOcc ns ar = mkOccName ns (mkConstraintTupleStr ar)
mkBoxedTupleStr :: Arity -> String
mkBoxedTupleStr 0 = "()"
mkBoxedTupleStr 1 = "Unit" -- See Note [One-tuples]
mkBoxedTupleStr ar = '(' : commas ar ++ ")"
mkUnboxedTupleStr :: Arity -> String
mkUnboxedTupleStr 0 = "(##)"
mkUnboxedTupleStr 1 = "Unit#" -- See Note [One-tuples]
mkUnboxedTupleStr ar = "(#" ++ commas ar ++ "#)"
mkConstraintTupleStr :: Arity -> String
mkConstraintTupleStr 0 = "(%%)"
mkConstraintTupleStr 1 = "Unit%" -- See Note [One-tuples]
mkConstraintTupleStr ar = "(%" ++ commas ar ++ "%)"
commas :: Arity -> String
commas ar = take (ar-1) (repeat ',')
cTupleTyConName :: Arity -> Name
cTupleTyConName arity
= mkExternalName (mkCTupleTyConUnique arity) gHC_CLASSES
(mkCTupleOcc tcName arity) noSrcSpan
cTupleTyConNames :: [Name]
cTupleTyConNames = map cTupleTyConName (0 : [2..mAX_CTUPLE_SIZE])
cTupleTyConNameSet :: NameSet
cTupleTyConNameSet = mkNameSet cTupleTyConNames
isCTupleTyConName :: Name -> Bool
-- Use Type.isCTupleClass where possible
isCTupleTyConName n
= ASSERT2( isExternalName n, ppr n )
nameModule n == gHC_CLASSES
&& n `elemNameSet` cTupleTyConNameSet
-- | If the given name is that of a constraint tuple, return its arity.
-- Note that this is inefficient.
cTupleTyConNameArity_maybe :: Name -> Maybe Arity
cTupleTyConNameArity_maybe n
| not (isCTupleTyConName n) = Nothing
| otherwise = fmap adjustArity (n `elemIndex` cTupleTyConNames)
where
-- Since `cTupleTyConNames` jumps straight from the `0` to the `2`
-- case, we have to adjust accordingly our calculated arity.
adjustArity a = if a > 0 then a + 1 else a
cTupleDataConName :: Arity -> Name
cTupleDataConName arity
= mkExternalName (mkCTupleDataConUnique arity) gHC_CLASSES
(mkCTupleOcc dataName arity) noSrcSpan
cTupleDataConNames :: [Name]
cTupleDataConNames = map cTupleDataConName (0 : [2..mAX_CTUPLE_SIZE])
tupleTyCon :: Boxity -> Arity -> TyCon
tupleTyCon sort i | i > mAX_TUPLE_SIZE = fst (mk_tuple sort i) -- Build one specially
tupleTyCon Boxed i = fst (boxedTupleArr ! i)
tupleTyCon Unboxed i = fst (unboxedTupleArr ! i)
tupleTyConName :: TupleSort -> Arity -> Name
tupleTyConName ConstraintTuple a = cTupleTyConName a
tupleTyConName BoxedTuple a = tyConName (tupleTyCon Boxed a)
tupleTyConName UnboxedTuple a = tyConName (tupleTyCon Unboxed a)
promotedTupleDataCon :: Boxity -> Arity -> TyCon
promotedTupleDataCon boxity i = promoteDataCon (tupleDataCon boxity i)
tupleDataCon :: Boxity -> Arity -> DataCon
tupleDataCon sort i | i > mAX_TUPLE_SIZE = snd (mk_tuple sort i) -- Build one specially
tupleDataCon Boxed i = snd (boxedTupleArr ! i)
tupleDataCon Unboxed i = snd (unboxedTupleArr ! i)
boxedTupleArr, unboxedTupleArr :: Array Int (TyCon,DataCon)
boxedTupleArr = listArray (0,mAX_TUPLE_SIZE) [mk_tuple Boxed i | i <- [0..mAX_TUPLE_SIZE]]
unboxedTupleArr = listArray (0,mAX_TUPLE_SIZE) [mk_tuple Unboxed i | i <- [0..mAX_TUPLE_SIZE]]
-- | Given the TupleRep/SumRep tycon and list of RuntimeReps of the unboxed
-- tuple/sum arguments, produces the return kind of an unboxed tuple/sum type
-- constructor. @unboxedTupleSumKind [IntRep, LiftedRep] --> TYPE (TupleRep/SumRep
-- [IntRep, LiftedRep])@
unboxedTupleSumKind :: TyCon -> [Type] -> Kind
unboxedTupleSumKind tc rr_tys
= tYPE (mkTyConApp tc [mkPromotedListTy runtimeRepTy rr_tys])
-- | Specialization of 'unboxedTupleSumKind' for tuples
unboxedTupleKind :: [Type] -> Kind
unboxedTupleKind = unboxedTupleSumKind tupleRepDataConTyCon
mk_tuple :: Boxity -> Int -> (TyCon,DataCon)
mk_tuple Boxed arity = (tycon, tuple_con)
where
tycon = mkTupleTyCon tc_name tc_binders tc_res_kind tc_arity tuple_con
BoxedTuple flavour
tc_binders = mkTemplateAnonTyConBinders (nOfThem arity liftedTypeKind)
tc_res_kind = liftedTypeKind
tc_arity = arity
flavour = VanillaAlgTyCon (mkPrelTyConRepName tc_name)
dc_tvs = binderVars tc_binders
dc_arg_tys = mkTyVarTys dc_tvs
tuple_con = pcDataCon dc_name dc_tvs dc_arg_tys tycon
boxity = Boxed
modu = gHC_TUPLE
tc_name = mkWiredInName modu (mkTupleOcc tcName boxity arity) tc_uniq
(ATyCon tycon) BuiltInSyntax
dc_name = mkWiredInName modu (mkTupleOcc dataName boxity arity) dc_uniq
(AConLike (RealDataCon tuple_con)) BuiltInSyntax
tc_uniq = mkTupleTyConUnique boxity arity
dc_uniq = mkTupleDataConUnique boxity arity
mk_tuple Unboxed arity = (tycon, tuple_con)
where
tycon = mkTupleTyCon tc_name tc_binders tc_res_kind tc_arity tuple_con
UnboxedTuple flavour
-- See Note [Unboxed tuple RuntimeRep vars] in TyCon
-- Kind: forall (k1:RuntimeRep) (k2:RuntimeRep). TYPE k1 -> TYPE k2 -> #
tc_binders = mkTemplateTyConBinders (nOfThem arity runtimeRepTy)
(\ks -> map tYPE ks)
tc_res_kind = unboxedTupleKind rr_tys
tc_arity = arity * 2
flavour = UnboxedAlgTyCon $ Just (mkPrelTyConRepName tc_name)
dc_tvs = binderVars tc_binders
(rr_tys, dc_arg_tys) = splitAt arity (mkTyVarTys dc_tvs)
tuple_con = pcDataCon dc_name dc_tvs dc_arg_tys tycon
boxity = Unboxed
modu = gHC_PRIM
tc_name = mkWiredInName modu (mkTupleOcc tcName boxity arity) tc_uniq
(ATyCon tycon) BuiltInSyntax
dc_name = mkWiredInName modu (mkTupleOcc dataName boxity arity) dc_uniq
(AConLike (RealDataCon tuple_con)) BuiltInSyntax
tc_uniq = mkTupleTyConUnique boxity arity
dc_uniq = mkTupleDataConUnique boxity arity
unitTyCon :: TyCon
unitTyCon = tupleTyCon Boxed 0
unitTyConKey :: Unique
unitTyConKey = getUnique unitTyCon
unitDataCon :: DataCon
unitDataCon = head (tyConDataCons unitTyCon)
unitDataConId :: Id
unitDataConId = dataConWorkId unitDataCon
pairTyCon :: TyCon
pairTyCon = tupleTyCon Boxed 2
unboxedUnitTyCon :: TyCon
unboxedUnitTyCon = tupleTyCon Unboxed 0
unboxedUnitDataCon :: DataCon
unboxedUnitDataCon = tupleDataCon Unboxed 0
{- *********************************************************************
* *
Unboxed sums
* *
********************************************************************* -}
-- | OccName for n-ary unboxed sum type constructor.
mkSumTyConOcc :: Arity -> OccName
mkSumTyConOcc n = mkOccName tcName str
where
-- No need to cache these, the caching is done in mk_sum
str = '(' : '#' : bars ++ "#)"
bars = replicate (n-1) '|'
-- | OccName for i-th alternative of n-ary unboxed sum data constructor.
mkSumDataConOcc :: ConTag -> Arity -> OccName
mkSumDataConOcc alt n = mkOccName dataName str
where
-- No need to cache these, the caching is done in mk_sum
str = '(' : '#' : bars alt ++ '_' : bars (n - alt - 1) ++ "#)"
bars i = replicate i '|'
-- | Type constructor for n-ary unboxed sum.
sumTyCon :: Arity -> TyCon
sumTyCon arity
| arity > mAX_SUM_SIZE
= fst (mk_sum arity) -- Build one specially
| arity < 2
= panic ("sumTyCon: Arity starts from 2. (arity: " ++ show arity ++ ")")
| otherwise
= fst (unboxedSumArr ! arity)
-- | Data constructor for i-th alternative of a n-ary unboxed sum.
sumDataCon :: ConTag -- Alternative
-> Arity -- Arity
-> DataCon
sumDataCon alt arity
| alt > arity
= panic ("sumDataCon: index out of bounds: alt: "
++ show alt ++ " > arity " ++ show arity)
| alt <= 0
= panic ("sumDataCon: Alts start from 1. (alt: " ++ show alt
++ ", arity: " ++ show arity ++ ")")
| arity < 2
= panic ("sumDataCon: Arity starts from 2. (alt: " ++ show alt
++ ", arity: " ++ show arity ++ ")")
| arity > mAX_SUM_SIZE
= snd (mk_sum arity) ! (alt - 1) -- Build one specially
| otherwise
= snd (unboxedSumArr ! arity) ! (alt - 1)
-- | Cached type and data constructors for sums. The outer array is
-- indexed by the arity of the sum and the inner array is indexed by
-- the alternative.
unboxedSumArr :: Array Int (TyCon, Array Int DataCon)
unboxedSumArr = listArray (2,mAX_SUM_SIZE) [mk_sum i | i <- [2..mAX_SUM_SIZE]]
-- | Specialization of 'unboxedTupleSumKind' for sums
unboxedSumKind :: [Type] -> Kind
unboxedSumKind = unboxedTupleSumKind sumRepDataConTyCon
-- | Create type constructor and data constructors for n-ary unboxed sum.
mk_sum :: Arity -> (TyCon, Array ConTagZ DataCon)
mk_sum arity = (tycon, sum_cons)
where
tycon = mkSumTyCon tc_name tc_binders tc_res_kind (arity * 2) tyvars (elems sum_cons)
(UnboxedAlgTyCon rep_name)
-- Unboxed sums are currently not Typeable due to efficiency concerns. See #13276.
rep_name = Nothing -- Just $ mkPrelTyConRepName tc_name
tc_binders = mkTemplateTyConBinders (nOfThem arity runtimeRepTy)
(\ks -> map tYPE ks)
tyvars = binderVars tc_binders
tc_res_kind = unboxedSumKind rr_tys
(rr_tys, tyvar_tys) = splitAt arity (mkTyVarTys tyvars)
tc_name = mkWiredInName gHC_PRIM (mkSumTyConOcc arity) tc_uniq
(ATyCon tycon) BuiltInSyntax
sum_cons = listArray (0,arity-1) [sum_con i | i <- [0..arity-1]]
sum_con i = let dc = pcDataCon dc_name
tyvars -- univ tyvars
[tyvar_tys !! i] -- arg types
tycon
dc_name = mkWiredInName gHC_PRIM
(mkSumDataConOcc i arity)
(dc_uniq i)
(AConLike (RealDataCon dc))
BuiltInSyntax
in dc
tc_uniq = mkSumTyConUnique arity
dc_uniq i = mkSumDataConUnique i arity
{-
************************************************************************
* *
Equality types and classes
* *
********************************************************************* -}
-- See Note [The equality types story] in TysPrim
-- ((~~) :: forall k1 k2 (a :: k1) (b :: k2). a -> b -> Constraint)
--
-- It's tempting to put functional dependencies on (~~), but it's not
-- necessary because the functional-dependency coverage check looks
-- through superclasses, and (~#) is handled in that check.
eqTyCon, heqTyCon, coercibleTyCon :: TyCon
eqClass, heqClass, coercibleClass :: Class
eqDataCon, heqDataCon, coercibleDataCon :: DataCon
eqSCSelId, heqSCSelId, coercibleSCSelId :: Id
(eqTyCon, eqClass, eqDataCon, eqSCSelId)
= (tycon, klass, datacon, sc_sel_id)
where
tycon = mkClassTyCon eqTyConName binders roles
rhs klass
(mkPrelTyConRepName eqTyConName)
klass = mk_class tycon sc_pred sc_sel_id
datacon = pcDataCon eqDataConName tvs [sc_pred] tycon
-- Kind: forall k. k -> k -> Constraint
binders = mkTemplateTyConBinders [liftedTypeKind] (\[k] -> [k,k])
roles = [Nominal, Nominal, Nominal]
rhs = mkDataTyConRhs [datacon]
tvs@[k,a,b] = binderVars binders
sc_pred = mkTyConApp eqPrimTyCon (mkTyVarTys [k,k,a,b])
sc_sel_id = mkDictSelId eqSCSelIdName klass
(heqTyCon, heqClass, heqDataCon, heqSCSelId)
= (tycon, klass, datacon, sc_sel_id)
where
tycon = mkClassTyCon heqTyConName binders roles
rhs klass
(mkPrelTyConRepName heqTyConName)
klass = mk_class tycon sc_pred sc_sel_id
datacon = pcDataCon heqDataConName tvs [sc_pred] tycon
-- Kind: forall k1 k2. k1 -> k2 -> Constraint
binders = mkTemplateTyConBinders [liftedTypeKind, liftedTypeKind] (\ks -> ks)
roles = [Nominal, Nominal, Nominal, Nominal]
rhs = mkDataTyConRhs [datacon]
tvs = binderVars binders
sc_pred = mkTyConApp eqPrimTyCon (mkTyVarTys tvs)
sc_sel_id = mkDictSelId heqSCSelIdName klass
(coercibleTyCon, coercibleClass, coercibleDataCon, coercibleSCSelId)
= (tycon, klass, datacon, sc_sel_id)
where
tycon = mkClassTyCon coercibleTyConName binders roles
rhs klass
(mkPrelTyConRepName coercibleTyConName)
klass = mk_class tycon sc_pred sc_sel_id
datacon = pcDataCon coercibleDataConName tvs [sc_pred] tycon
-- Kind: forall k. k -> k -> Constraint
binders = mkTemplateTyConBinders [liftedTypeKind] (\[k] -> [k,k])
roles = [Nominal, Representational, Representational]
rhs = mkDataTyConRhs [datacon]
tvs@[k,a,b] = binderVars binders
sc_pred = mkTyConApp eqReprPrimTyCon (mkTyVarTys [k, k, a, b])
sc_sel_id = mkDictSelId coercibleSCSelIdName klass
mk_class :: TyCon -> PredType -> Id -> Class
mk_class tycon sc_pred sc_sel_id
= mkClass (tyConName tycon) (tyConTyVars tycon) [] [sc_pred] [sc_sel_id]
[] [] (mkAnd []) tycon
{- *********************************************************************
* *
Kinds and RuntimeRep
* *
********************************************************************* -}
-- For information about the usage of the following type,
-- see Note [TYPE and RuntimeRep] in module TysPrim
runtimeRepTy :: Type
runtimeRepTy = mkTyConTy runtimeRepTyCon
-- Type synonyms; see Note [TYPE and RuntimeRep] in TysPrim
-- type Type = tYPE 'LiftedRep
liftedTypeKindTyCon :: TyCon
liftedTypeKindTyCon = buildSynTyCon liftedTypeKindTyConName
[] liftedTypeKind []
(tYPE liftedRepTy)
runtimeRepTyCon :: TyCon
runtimeRepTyCon = pcTyCon runtimeRepTyConName Nothing []
(vecRepDataCon : tupleRepDataCon :
sumRepDataCon : runtimeRepSimpleDataCons)
vecRepDataCon :: DataCon
vecRepDataCon = pcSpecialDataCon vecRepDataConName [ mkTyConTy vecCountTyCon
, mkTyConTy vecElemTyCon ]
runtimeRepTyCon
(RuntimeRep prim_rep_fun)
where
prim_rep_fun [count, elem]
| VecCount n <- tyConRuntimeRepInfo (tyConAppTyCon count)
, VecElem e <- tyConRuntimeRepInfo (tyConAppTyCon elem)
= [VecRep n e]
prim_rep_fun args
= pprPanic "vecRepDataCon" (ppr args)
vecRepDataConTyCon :: TyCon
vecRepDataConTyCon = promoteDataCon vecRepDataCon
tupleRepDataCon :: DataCon
tupleRepDataCon = pcSpecialDataCon tupleRepDataConName [ mkListTy runtimeRepTy ]
runtimeRepTyCon (RuntimeRep prim_rep_fun)
where
prim_rep_fun [rr_ty_list]
= concatMap (runtimeRepPrimRep doc) rr_tys
where
rr_tys = extractPromotedList rr_ty_list
doc = text "tupleRepDataCon" <+> ppr rr_tys
prim_rep_fun args
= pprPanic "tupleRepDataCon" (ppr args)
tupleRepDataConTyCon :: TyCon
tupleRepDataConTyCon = promoteDataCon tupleRepDataCon
sumRepDataCon :: DataCon
sumRepDataCon = pcSpecialDataCon sumRepDataConName [ mkListTy runtimeRepTy ]
runtimeRepTyCon (RuntimeRep prim_rep_fun)
where
prim_rep_fun [rr_ty_list]
= map slotPrimRep (ubxSumRepType prim_repss)
where
rr_tys = extractPromotedList rr_ty_list
doc = text "sumRepDataCon" <+> ppr rr_tys
prim_repss = map (runtimeRepPrimRep doc) rr_tys
prim_rep_fun args
= pprPanic "sumRepDataCon" (ppr args)
sumRepDataConTyCon :: TyCon
sumRepDataConTyCon = promoteDataCon sumRepDataCon
-- See Note [Wiring in RuntimeRep]
runtimeRepSimpleDataCons :: [DataCon]
liftedRepDataCon :: DataCon
runtimeRepSimpleDataCons@(liftedRepDataCon : _)
= zipWithLazy mk_runtime_rep_dc
[ LiftedRep, UnliftedRep, IntRep, WordRep, Int64Rep
, Word64Rep, AddrRep, FloatRep, DoubleRep ]
runtimeRepSimpleDataConNames
where
mk_runtime_rep_dc primrep name
= pcSpecialDataCon name [] runtimeRepTyCon (RuntimeRep (\_ -> [primrep]))
-- See Note [Wiring in RuntimeRep]
liftedRepDataConTy, unliftedRepDataConTy,
intRepDataConTy, wordRepDataConTy, int64RepDataConTy,
word64RepDataConTy, addrRepDataConTy, floatRepDataConTy, doubleRepDataConTy :: Type
[liftedRepDataConTy, unliftedRepDataConTy,
intRepDataConTy, wordRepDataConTy, int64RepDataConTy,
word64RepDataConTy, addrRepDataConTy, floatRepDataConTy, doubleRepDataConTy]
= map (mkTyConTy . promoteDataCon) runtimeRepSimpleDataCons
vecCountTyCon :: TyCon
vecCountTyCon = pcTyCon vecCountTyConName Nothing [] vecCountDataCons
-- See Note [Wiring in RuntimeRep]
vecCountDataCons :: [DataCon]
vecCountDataCons = zipWithLazy mk_vec_count_dc
[ 2, 4, 8, 16, 32, 64 ]
vecCountDataConNames
where
mk_vec_count_dc n name
= pcSpecialDataCon name [] vecCountTyCon (VecCount n)
-- See Note [Wiring in RuntimeRep]
vec2DataConTy, vec4DataConTy, vec8DataConTy, vec16DataConTy, vec32DataConTy,
vec64DataConTy :: Type
[vec2DataConTy, vec4DataConTy, vec8DataConTy, vec16DataConTy, vec32DataConTy,
vec64DataConTy] = map (mkTyConTy . promoteDataCon) vecCountDataCons
vecElemTyCon :: TyCon
vecElemTyCon = pcTyCon vecElemTyConName Nothing [] vecElemDataCons
-- See Note [Wiring in RuntimeRep]
vecElemDataCons :: [DataCon]
vecElemDataCons = zipWithLazy mk_vec_elem_dc
[ Int8ElemRep, Int16ElemRep, Int32ElemRep, Int64ElemRep
, Word8ElemRep, Word16ElemRep, Word32ElemRep, Word64ElemRep
, FloatElemRep, DoubleElemRep ]
vecElemDataConNames
where
mk_vec_elem_dc elem name
= pcSpecialDataCon name [] vecElemTyCon (VecElem elem)
-- See Note [Wiring in RuntimeRep]
int8ElemRepDataConTy, int16ElemRepDataConTy, int32ElemRepDataConTy,
int64ElemRepDataConTy, word8ElemRepDataConTy, word16ElemRepDataConTy,
word32ElemRepDataConTy, word64ElemRepDataConTy, floatElemRepDataConTy,
doubleElemRepDataConTy :: Type
[int8ElemRepDataConTy, int16ElemRepDataConTy, int32ElemRepDataConTy,
int64ElemRepDataConTy, word8ElemRepDataConTy, word16ElemRepDataConTy,
word32ElemRepDataConTy, word64ElemRepDataConTy, floatElemRepDataConTy,
doubleElemRepDataConTy] = map (mkTyConTy . promoteDataCon)
vecElemDataCons
liftedRepDataConTyCon :: TyCon
liftedRepDataConTyCon = promoteDataCon liftedRepDataCon
-- The type ('LiftedRep)
liftedRepTy :: Type
liftedRepTy = mkTyConTy liftedRepDataConTyCon
{- *********************************************************************
* *
The boxed primitive types: Char, Int, etc
* *
********************************************************************* -}
boxingDataCon_maybe :: TyCon -> Maybe DataCon
-- boxingDataCon_maybe Char# = C#
-- boxingDataCon_maybe Int# = I#
-- ... etc ...
-- See Note [Boxing primitive types]
boxingDataCon_maybe tc
= lookupNameEnv boxing_constr_env (tyConName tc)
boxing_constr_env :: NameEnv DataCon
boxing_constr_env
= mkNameEnv [(charPrimTyConName , charDataCon )
,(intPrimTyConName , intDataCon )
,(wordPrimTyConName , wordDataCon )
,(floatPrimTyConName , floatDataCon )
,(doublePrimTyConName, doubleDataCon) ]
{- Note [Boxing primitive types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For a handful of primitive types (Int, Char, Word, Flaot, Double),
we can readily box and an unboxed version (Int#, Char# etc) using
the corresponding data constructor. This is useful in a couple
of places, notably let-floating -}
charTy :: Type
charTy = mkTyConTy charTyCon
charTyCon :: TyCon
charTyCon = pcTyCon charTyConName
(Just (CType NoSourceText Nothing
(NoSourceText,fsLit "HsChar")))
[] [charDataCon]
charDataCon :: DataCon
charDataCon = pcDataCon charDataConName [] [charPrimTy] charTyCon
stringTy :: Type
stringTy = mkListTy charTy -- convenience only
intTy :: Type
intTy = mkTyConTy intTyCon
intTyCon :: TyCon
intTyCon = pcTyCon intTyConName
(Just (CType NoSourceText Nothing (NoSourceText,fsLit "HsInt")))
[] [intDataCon]
intDataCon :: DataCon
intDataCon = pcDataCon intDataConName [] [intPrimTy] intTyCon
wordTy :: Type
wordTy = mkTyConTy wordTyCon
wordTyCon :: TyCon
wordTyCon = pcTyCon wordTyConName
(Just (CType NoSourceText Nothing (NoSourceText, fsLit "HsWord")))
[] [wordDataCon]
wordDataCon :: DataCon
wordDataCon = pcDataCon wordDataConName [] [wordPrimTy] wordTyCon
word8Ty :: Type
word8Ty = mkTyConTy word8TyCon
word8TyCon :: TyCon
word8TyCon = pcTyCon word8TyConName
(Just (CType NoSourceText Nothing
(NoSourceText, fsLit "HsWord8"))) []
[word8DataCon]
word8DataCon :: DataCon
word8DataCon = pcDataCon word8DataConName [] [wordPrimTy] word8TyCon
floatTy :: Type
floatTy = mkTyConTy floatTyCon
floatTyCon :: TyCon
floatTyCon = pcTyCon floatTyConName
(Just (CType NoSourceText Nothing
(NoSourceText, fsLit "HsFloat"))) []
[floatDataCon]
floatDataCon :: DataCon
floatDataCon = pcDataCon floatDataConName [] [floatPrimTy] floatTyCon
doubleTy :: Type
doubleTy = mkTyConTy doubleTyCon
doubleTyCon :: TyCon
doubleTyCon = pcTyCon doubleTyConName
(Just (CType NoSourceText Nothing
(NoSourceText,fsLit "HsDouble"))) []
[doubleDataCon]
doubleDataCon :: DataCon
doubleDataCon = pcDataCon doubleDataConName [] [doublePrimTy] doubleTyCon
{-
************************************************************************
* *
The Bool type
* *
************************************************************************
An ordinary enumeration type, but deeply wired in. There are no
magical operations on @Bool@ (just the regular Prelude code).
{\em BEGIN IDLE SPECULATION BY SIMON}
This is not the only way to encode @Bool@. A more obvious coding makes
@Bool@ just a boxed up version of @Bool#@, like this:
\begin{verbatim}
type Bool# = Int#
data Bool = MkBool Bool#
\end{verbatim}
Unfortunately, this doesn't correspond to what the Report says @Bool@
looks like! Furthermore, we get slightly less efficient code (I
think) with this coding. @gtInt@ would look like this:
\begin{verbatim}
gtInt :: Int -> Int -> Bool
gtInt x y = case x of I# x# ->
case y of I# y# ->
case (gtIntPrim x# y#) of
b# -> MkBool b#
\end{verbatim}
Notice that the result of the @gtIntPrim@ comparison has to be turned
into an integer (here called @b#@), and returned in a @MkBool@ box.
The @if@ expression would compile to this:
\begin{verbatim}
case (gtInt x y) of
MkBool b# -> case b# of { 1# -> e1; 0# -> e2 }
\end{verbatim}
I think this code is a little less efficient than the previous code,
but I'm not certain. At all events, corresponding with the Report is
important. The interesting thing is that the language is expressive
enough to describe more than one alternative; and that a type doesn't
necessarily need to be a straightforwardly boxed version of its
primitive counterpart.
{\em END IDLE SPECULATION BY SIMON}
-}
boolTy :: Type
boolTy = mkTyConTy boolTyCon
boolTyCon :: TyCon
boolTyCon = pcTyCon boolTyConName
(Just (CType NoSourceText Nothing
(NoSourceText, fsLit "HsBool")))
[] [falseDataCon, trueDataCon]
falseDataCon, trueDataCon :: DataCon
falseDataCon = pcDataCon falseDataConName [] [] boolTyCon
trueDataCon = pcDataCon trueDataConName [] [] boolTyCon
falseDataConId, trueDataConId :: Id
falseDataConId = dataConWorkId falseDataCon
trueDataConId = dataConWorkId trueDataCon
orderingTyCon :: TyCon
orderingTyCon = pcTyCon orderingTyConName Nothing
[] [ordLTDataCon, ordEQDataCon, ordGTDataCon]
ordLTDataCon, ordEQDataCon, ordGTDataCon :: DataCon
ordLTDataCon = pcDataCon ordLTDataConName [] [] orderingTyCon
ordEQDataCon = pcDataCon ordEQDataConName [] [] orderingTyCon
ordGTDataCon = pcDataCon ordGTDataConName [] [] orderingTyCon
ordLTDataConId, ordEQDataConId, ordGTDataConId :: Id
ordLTDataConId = dataConWorkId ordLTDataCon
ordEQDataConId = dataConWorkId ordEQDataCon
ordGTDataConId = dataConWorkId ordGTDataCon
{-
************************************************************************
* *
The List type
Special syntax, deeply wired in,
but otherwise an ordinary algebraic data type
* *
************************************************************************
data [] a = [] | a : (List a)
-}
mkListTy :: Type -> Type
mkListTy ty = mkTyConApp listTyCon [ty]
listTyCon :: TyCon
listTyCon =
buildAlgTyCon listTyConName alpha_tyvar [Representational]
Nothing []
(mkDataTyConRhs [nilDataCon, consDataCon])
False
(VanillaAlgTyCon $ mkPrelTyConRepName listTyConName)
nilDataCon :: DataCon
nilDataCon = pcDataCon nilDataConName alpha_tyvar [] listTyCon
consDataCon :: DataCon
consDataCon = pcDataConWithFixity True {- Declared infix -}
consDataConName
alpha_tyvar [] alpha_tyvar
[alphaTy, mkTyConApp listTyCon alpha_ty] listTyCon
-- Interesting: polymorphic recursion would help here.
-- We can't use (mkListTy alphaTy) in the defn of consDataCon, else mkListTy
-- gets the over-specific type (Type -> Type)
-- Wired-in type Maybe
maybeTyCon :: TyCon
maybeTyCon = pcTyCon maybeTyConName Nothing alpha_tyvar
[nothingDataCon, justDataCon]
nothingDataCon :: DataCon
nothingDataCon = pcDataCon nothingDataConName alpha_tyvar [] maybeTyCon
justDataCon :: DataCon
justDataCon = pcDataCon justDataConName alpha_tyvar [alphaTy] maybeTyCon
{-
** *********************************************************************
* *
The tuple types
* *
************************************************************************
The tuple types are definitely magic, because they form an infinite
family.
\begin{itemize}
\item
They have a special family of type constructors, of type @TyCon@
These contain the tycon arity, but don't require a Unique.
\item
They have a special family of constructors, of type
@Id@. Again these contain their arity but don't need a Unique.
\item
There should be a magic way of generating the info tables and
entry code for all tuples.
But at the moment we just compile a Haskell source
file\srcloc{lib/prelude/...} containing declarations like:
\begin{verbatim}
data Tuple0 = Tup0
data Tuple2 a b = Tup2 a b
data Tuple3 a b c = Tup3 a b c
data Tuple4 a b c d = Tup4 a b c d
...
\end{verbatim}
The print-names associated with the magic @Id@s for tuple constructors
``just happen'' to be the same as those generated by these
declarations.
\item
The instance environment should have a magic way to know
that each tuple type is an instances of classes @Eq@, @Ix@, @Ord@ and
so on. \ToDo{Not implemented yet.}
\item
There should also be a way to generate the appropriate code for each
of these instances, but (like the info tables and entry code) it is
done by enumeration\srcloc{lib/prelude/InTup?.hs}.
\end{itemize}
-}
-- | Make a tuple type. The list of types should /not/ include any
-- RuntimeRep specifications.
mkTupleTy :: Boxity -> [Type] -> Type
-- Special case for *boxed* 1-tuples, which are represented by the type itself
mkTupleTy Boxed [ty] = ty
mkTupleTy Boxed tys = mkTyConApp (tupleTyCon Boxed (length tys)) tys
mkTupleTy Unboxed tys = mkTyConApp (tupleTyCon Unboxed (length tys))
(map getRuntimeRep tys ++ tys)
-- | Build the type of a small tuple that holds the specified type of thing
mkBoxedTupleTy :: [Type] -> Type
mkBoxedTupleTy tys = mkTupleTy Boxed tys
unitTy :: Type
unitTy = mkTupleTy Boxed []
{- *********************************************************************
* *
The sum types
* *
************************************************************************
-}
mkSumTy :: [Type] -> Type
mkSumTy tys = mkTyConApp (sumTyCon (length tys))
(map getRuntimeRep tys ++ tys)
-- Promoted Booleans
promotedFalseDataCon, promotedTrueDataCon :: TyCon
promotedTrueDataCon = promoteDataCon trueDataCon
promotedFalseDataCon = promoteDataCon falseDataCon
-- Promoted Maybe
promotedNothingDataCon, promotedJustDataCon :: TyCon
promotedNothingDataCon = promoteDataCon nothingDataCon
promotedJustDataCon = promoteDataCon justDataCon
-- Promoted Ordering
promotedLTDataCon
, promotedEQDataCon
, promotedGTDataCon
:: TyCon
promotedLTDataCon = promoteDataCon ordLTDataCon
promotedEQDataCon = promoteDataCon ordEQDataCon
promotedGTDataCon = promoteDataCon ordGTDataCon
-- Promoted List
promotedConsDataCon, promotedNilDataCon :: TyCon
promotedConsDataCon = promoteDataCon consDataCon
promotedNilDataCon = promoteDataCon nilDataCon
-- | Make a *promoted* list.
mkPromotedListTy :: Kind -- ^ of the elements of the list
-> [Type] -- ^ elements
-> Type
mkPromotedListTy k tys
= foldr cons nil tys
where
cons :: Type -- element
-> Type -- list
-> Type
cons elt list = mkTyConApp promotedConsDataCon [k, elt, list]
nil :: Type
nil = mkTyConApp promotedNilDataCon [k]
-- | Extract the elements of a promoted list. Panics if the type is not a
-- promoted list
extractPromotedList :: Type -- ^ The promoted list
-> [Type]
extractPromotedList tys = go tys
where
go list_ty
| Just (tc, [_k, t, ts]) <- splitTyConApp_maybe list_ty
= ASSERT( tc `hasKey` consDataConKey )
t : go ts
| Just (tc, [_k]) <- splitTyConApp_maybe list_ty
= ASSERT( tc `hasKey` nilDataConKey )
[]
| otherwise
= pprPanic "extractPromotedList" (ppr tys)
|