summaryrefslogtreecommitdiff
path: root/compiler/prelude/primops.txt.pp
blob: 69a12745fb286af83ef5e1763abaf81bd7cae90a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
-----------------------------------------------------------------------
-- 
-- (c) 2010 The University of Glasgow
--
-- Primitive Operations and Types
--
-- For more information on PrimOps, see
--   http://hackage.haskell.org/trac/ghc/wiki/Commentary/PrimOps
--
-----------------------------------------------------------------------

-- This file is processed by the utility program genprimopcode to produce
-- a number of include files within the compiler and optionally to produce
-- human-readable documentation.
--
-- It should first be preprocessed.
--
-- Information on how PrimOps are implemented and the steps necessary to
-- add a new one can be found in the Commentary:
--
--  http://hackage.haskell.org/trac/ghc/wiki/Commentary/PrimOps

-- This file is divided into named sections, each containing or more
-- primop entries. Section headers have the format:
--
--	section "section-name" {description}
--
-- This information is used solely when producing documentation; it is
-- otherwise ignored.  The description is optional.
--
-- The format of each primop entry is as follows:
--
--	primop internal-name "name-in-program-text" type category {description} attributes

-- The default attribute values which apply if you don't specify
-- other ones.  Attribute values can be True, False, or arbitrary
-- text between curly brackets.  This is a kludge to enable 
-- processors of this file to easily get hold of simple info
-- (eg, out_of_line), whilst avoiding parsing complex expressions
-- needed for strictness info.

defaults
   has_side_effects = False
   out_of_line      = False
   commutable       = False
   needs_wrapper    = False
   can_fail         = False
   strictness       = { \ arity -> mkStrictSig (mkTopDmdType (replicate arity lazyDmd) TopRes) }

-- Currently, documentation is produced using latex, so contents of
-- description fields should be legal latex. Descriptions can contain
-- matched pairs of embedded curly brackets.

#include "MachDeps.h"

-- We need platform defines (tests for mingw32 below).  However, we only
-- test the TARGET platform, which doesn't vary between stages, so the
-- stage1 platform defines are fine:
#include "../stage1/ghc_boot_platform.h"

section "The word size story."
	{Haskell98 specifies that signed integers (type {\tt Int})
	 must contain at least 30 bits. GHC always implements {\tt
	 Int} using the primitive type {\tt Int\#}, whose size equals
	 the {\tt MachDeps.h} constant {\tt WORD\_SIZE\_IN\_BITS}.
	 This is normally set based on the {\tt config.h} parameter
	 {\tt SIZEOF\_HSWORD}, i.e., 32 bits on 32-bit machines, 64
	 bits on 64-bit machines.  However, it can also be explicitly
	 set to a smaller number, e.g., 31 bits, to allow the
	 possibility of using tag bits. Currently GHC itself has only
	 32-bit and 64-bit variants, but 30 or 31-bit code can be
	 exported as an external core file for use in other back ends.

	 GHC also implements a primitive unsigned integer type {\tt
	 Word\#} which always has the same number of bits as {\tt
	 Int\#}.
	
	 In addition, GHC supports families of explicit-sized integers
	 and words at 8, 16, 32, and 64 bits, with the usual
	 arithmetic operations, comparisons, and a range of
	 conversions.  The 8-bit and 16-bit sizes are always
	 represented as {\tt Int\#} and {\tt Word\#}, and the
	 operations implemented in terms of the the primops on these
	 types, with suitable range restrictions on the results (using
	 the {\tt narrow$n$Int\#} and {\tt narrow$n$Word\#} families
	 of primops.  The 32-bit sizes are represented using {\tt
	 Int\#} and {\tt Word\#} when {\tt WORD\_SIZE\_IN\_BITS}
	 $\geq$ 32; otherwise, these are represented using distinct
	 primitive types {\tt Int32\#} and {\tt Word32\#}. These (when
	 needed) have a complete set of corresponding operations;
	 however, nearly all of these are implemented as external C
	 functions rather than as primops.  Exactly the same story
	 applies to the 64-bit sizes.  All of these details are hidden
	 under the {\tt PrelInt} and {\tt PrelWord} modules, which use
	 {\tt \#if}-defs to invoke the appropriate types and
	 operators.

	 Word size also matters for the families of primops for
	 indexing/reading/writing fixed-size quantities at offsets
	 from an array base, address, or foreign pointer.  Here, a
	 slightly different approach is taken.  The names of these
	 primops are fixed, but their {\it types} vary according to
	 the value of {\tt WORD\_SIZE\_IN\_BITS}. For example, if word
	 size is at least 32 bits then an operator like
	 \texttt{indexInt32Array\#} has type {\tt ByteArray\# -> Int\#
	 -> Int\#}; otherwise it has type {\tt ByteArray\# -> Int\# ->
	 Int32\#}.  This approach confines the necessary {\tt
	 \#if}-defs to this file; no conditional compilation is needed
	 in the files that expose these primops.

	 Finally, there are strongly deprecated primops for coercing
         between {\tt Addr\#}, the primitive type of machine
         addresses, and {\tt Int\#}.  These are pretty bogus anyway,
         but will work on existing 32-bit and 64-bit GHC targets; they
         are completely bogus when tag bits are used in {\tt Int\#},
         so are not available in this case.  }
	
-- Define synonyms for indexing ops. 

#if WORD_SIZE_IN_BITS < 32 
#define INT32 Int32#
#define WORD32 Word32#
#else
#define INT32 Int#
#define WORD32 Word#
#endif

#if WORD_SIZE_IN_BITS < 64
#define INT64 Int64#
#define WORD64 Word64#
#else
#define INT64 Int#
#define WORD64 Word#
#endif

------------------------------------------------------------------------
section "Char#" 
	{Operations on 31-bit characters.}
------------------------------------------------------------------------

primtype Char#

primop   CharGtOp  "gtChar#"   Compare   Char# -> Char# -> Bool
primop   CharGeOp  "geChar#"   Compare   Char# -> Char# -> Bool

primop   CharEqOp  "eqChar#"   Compare
   Char# -> Char# -> Bool
   with commutable = True

primop   CharNeOp  "neChar#"   Compare
   Char# -> Char# -> Bool
   with commutable = True

primop   CharLtOp  "ltChar#"   Compare   Char# -> Char# -> Bool
primop   CharLeOp  "leChar#"   Compare   Char# -> Char# -> Bool

primop   OrdOp   "ord#"  GenPrimOp   Char# -> Int#

------------------------------------------------------------------------
section "Int#"
	{Operations on native-size integers (30+ bits).}
------------------------------------------------------------------------

primtype Int#

primop   IntAddOp    "+#"    Dyadic
   Int# -> Int# -> Int#
   with commutable = True

primop   IntSubOp    "-#"    Dyadic   Int# -> Int# -> Int#

primop   IntMulOp    "*#" 
   Dyadic   Int# -> Int# -> Int#
   {Low word of signed integer multiply.}
   with commutable = True

primop   IntMulMayOfloOp  "mulIntMayOflo#" 
   Dyadic   Int# -> Int# -> Int#
   {Return non-zero if there is any possibility that the upper word of a
    signed integer multiply might contain useful information.  Return
    zero only if you are completely sure that no overflow can occur.
    On a 32-bit platform, the recommmended implementation is to do a 
    32 x 32 -> 64 signed multiply, and subtract result[63:32] from
    (result[31] >>signed 31).  If this is zero, meaning that the 
    upper word is merely a sign extension of the lower one, no
    overflow can occur.

    On a 64-bit platform it is not always possible to 
    acquire the top 64 bits of the result.  Therefore, a recommended 
    implementation is to take the absolute value of both operands, and 
    return 0 iff bits[63:31] of them are zero, since that means that their 
    magnitudes fit within 31 bits, so the magnitude of the product must fit 
    into 62 bits.

    If in doubt, return non-zero, but do make an effort to create the
    correct answer for small args, since otherwise the performance of
    \texttt{(*) :: Integer -> Integer -> Integer} will be poor.
   }
   with commutable = True

primop   IntQuotOp    "quotInt#"    Dyadic
   Int# -> Int# -> Int#
   {Rounds towards zero.}
   with can_fail = True

primop   IntRemOp    "remInt#"    Dyadic
   Int# -> Int# -> Int#
   {Satisfies \texttt{(quotInt\# x y) *\# y +\# (remInt\# x y) == x}.}
   with can_fail = True

primop   IntNegOp    "negateInt#"    Monadic   Int# -> Int#
primop   IntAddCOp   "addIntC#"    GenPrimOp   Int# -> Int# -> (# Int#, Int# #)
	 {Add with carry.  First member of result is (wrapped) sum; 
          second member is 0 iff no overflow occured.}
primop   IntSubCOp   "subIntC#"    GenPrimOp   Int# -> Int# -> (# Int#, Int# #)
	 {Subtract with carry.  First member of result is (wrapped) difference; 
          second member is 0 iff no overflow occured.}

primop   IntGtOp  ">#"   Compare   Int# -> Int# -> Bool
primop   IntGeOp  ">=#"   Compare   Int# -> Int# -> Bool

primop   IntEqOp  "==#"   Compare
   Int# -> Int# -> Bool
   with commutable = True

primop   IntNeOp  "/=#"   Compare
   Int# -> Int# -> Bool
   with commutable = True

primop   IntLtOp  "<#"   Compare   Int# -> Int# -> Bool
primop   IntLeOp  "<=#"   Compare   Int# -> Int# -> Bool

primop   ChrOp   "chr#"   GenPrimOp   Int# -> Char#

primop   Int2WordOp "int2Word#" GenPrimOp Int# -> Word#
primop   Int2FloatOp   "int2Float#"      GenPrimOp  Int# -> Float#
primop   Int2DoubleOp   "int2Double#"          GenPrimOp  Int# -> Double#

primop   ISllOp   "uncheckedIShiftL#" GenPrimOp  Int# -> Int# -> Int#
	 {Shift left.  Result undefined if shift amount is not
          in the range 0 to word size - 1 inclusive.}
primop   ISraOp   "uncheckedIShiftRA#" GenPrimOp Int# -> Int# -> Int#
	 {Shift right arithmetic.  Result undefined if shift amount is not
          in the range 0 to word size - 1 inclusive.}
primop   ISrlOp   "uncheckedIShiftRL#" GenPrimOp Int# -> Int# -> Int#
	 {Shift right logical.  Result undefined if shift amount is not
          in the range 0 to word size - 1 inclusive.}

------------------------------------------------------------------------
section "Word#"
	{Operations on native-sized unsigned words (30+ bits).}
------------------------------------------------------------------------

primtype Word#

primop   WordAddOp   "plusWord#"   Dyadic   Word# -> Word# -> Word#
   with commutable = True

primop   WordSubOp   "minusWord#"   Dyadic   Word# -> Word# -> Word#

primop   WordMulOp   "timesWord#"   Dyadic   Word# -> Word# -> Word#
   with commutable = True

primop   WordQuotOp   "quotWord#"   Dyadic   Word# -> Word# -> Word#
   with can_fail = True

primop   WordRemOp   "remWord#"   Dyadic   Word# -> Word# -> Word#
   with can_fail = True

primop   AndOp   "and#"   Dyadic   Word# -> Word# -> Word#
   with commutable = True

primop   OrOp   "or#"   Dyadic   Word# -> Word# -> Word#
   with commutable = True

primop   XorOp   "xor#"   Dyadic   Word# -> Word# -> Word#
   with commutable = True

primop   NotOp   "not#"   Monadic   Word# -> Word#

primop   SllOp   "uncheckedShiftL#"   GenPrimOp   Word# -> Int# -> Word#
	 {Shift left logical.   Result undefined if shift amount is not
          in the range 0 to word size - 1 inclusive.}
primop   SrlOp   "uncheckedShiftRL#"   GenPrimOp   Word# -> Int# -> Word#
	 {Shift right logical.   Result undefined if shift  amount is not
          in the range 0 to word size - 1 inclusive.}

primop   Word2IntOp   "word2Int#"   GenPrimOp   Word# -> Int#

primop   WordGtOp   "gtWord#"   Compare   Word# -> Word# -> Bool
primop   WordGeOp   "geWord#"   Compare   Word# -> Word# -> Bool
primop   WordEqOp   "eqWord#"   Compare   Word# -> Word# -> Bool
primop   WordNeOp   "neWord#"   Compare   Word# -> Word# -> Bool
primop   WordLtOp   "ltWord#"   Compare   Word# -> Word# -> Bool
primop   WordLeOp   "leWord#"   Compare   Word# -> Word# -> Bool

------------------------------------------------------------------------
section "Narrowings" 
	{Explicit narrowing of native-sized ints or words.}
------------------------------------------------------------------------

primop   Narrow8IntOp      "narrow8Int#"      Monadic   Int# -> Int#
primop   Narrow16IntOp     "narrow16Int#"     Monadic   Int# -> Int#
primop   Narrow32IntOp     "narrow32Int#"     Monadic   Int# -> Int#
primop   Narrow8WordOp     "narrow8Word#"     Monadic   Word# -> Word#
primop   Narrow16WordOp    "narrow16Word#"    Monadic   Word# -> Word#
primop   Narrow32WordOp    "narrow32Word#"    Monadic   Word# -> Word#


#if WORD_SIZE_IN_BITS < 32
------------------------------------------------------------------------
section "Int32#"
	{Operations on 32-bit integers ({\tt Int32\#}).  This type is only used
         if plain {\tt Int\#} has less than 32 bits.  In any case, the operations
	 are not primops; they are implemented (if needed) as ccalls instead.}
------------------------------------------------------------------------

primtype Int32#

------------------------------------------------------------------------
section "Word32#"
	{Operations on 32-bit unsigned words. This type is only used 
	 if plain {\tt Word\#} has less than 32 bits. In any case, the operations
	 are not primops; they are implemented (if needed) as ccalls instead.}
------------------------------------------------------------------------

primtype Word32#

#endif 


#if WORD_SIZE_IN_BITS < 64
------------------------------------------------------------------------
section "Int64#"
	{Operations on 64-bit unsigned words. This type is only used 
	 if plain {\tt Int\#} has less than 64 bits. In any case, the operations
	 are not primops; they are implemented (if needed) as ccalls instead.}
------------------------------------------------------------------------

primtype Int64#

------------------------------------------------------------------------
section "Word64#"
	{Operations on 64-bit unsigned words. This type is only used 
	 if plain {\tt Word\#} has less than 64 bits. In any case, the operations
	 are not primops; they are implemented (if needed) as ccalls instead.}
------------------------------------------------------------------------

primtype Word64#

#endif

------------------------------------------------------------------------
section "Double#"
	{Operations on double-precision (64 bit) floating-point numbers.}
------------------------------------------------------------------------

primtype Double#

primop   DoubleGtOp ">##"   Compare   Double# -> Double# -> Bool
primop   DoubleGeOp ">=##"   Compare   Double# -> Double# -> Bool

primop DoubleEqOp "==##"   Compare
   Double# -> Double# -> Bool
   with commutable = True

primop DoubleNeOp "/=##"   Compare
   Double# -> Double# -> Bool
   with commutable = True

primop   DoubleLtOp "<##"   Compare   Double# -> Double# -> Bool
primop   DoubleLeOp "<=##"   Compare   Double# -> Double# -> Bool

primop   DoubleAddOp   "+##"   Dyadic
   Double# -> Double# -> Double#
   with commutable = True

primop   DoubleSubOp   "-##"   Dyadic   Double# -> Double# -> Double#

primop   DoubleMulOp   "*##"   Dyadic
   Double# -> Double# -> Double#
   with commutable = True

primop   DoubleDivOp   "/##"   Dyadic
   Double# -> Double# -> Double#
   with can_fail = True

primop   DoubleNegOp   "negateDouble#"  Monadic   Double# -> Double#

primop   Double2IntOp   "double2Int#"          GenPrimOp  Double# -> Int#
   {Truncates a {\tt Double#} value to the nearest {\tt Int#}.
    Results are undefined if the truncation if truncation yields
    a value outside the range of {\tt Int#}.}

primop   Double2FloatOp   "double2Float#" GenPrimOp Double# -> Float#

primop   DoubleExpOp   "expDouble#"      Monadic
   Double# -> Double#
   with needs_wrapper = True

primop   DoubleLogOp   "logDouble#"      Monadic         
   Double# -> Double#
   with
   needs_wrapper = True
   can_fail = True

primop   DoubleSqrtOp   "sqrtDouble#"      Monadic  
   Double# -> Double#
   with needs_wrapper = True

primop   DoubleSinOp   "sinDouble#"      Monadic          
   Double# -> Double#
   with needs_wrapper = True

primop   DoubleCosOp   "cosDouble#"      Monadic          
   Double# -> Double#
   with needs_wrapper = True

primop   DoubleTanOp   "tanDouble#"      Monadic          
   Double# -> Double#
   with needs_wrapper = True

primop   DoubleAsinOp   "asinDouble#"      Monadic 
   Double# -> Double#
   with
   needs_wrapper = True
   can_fail = True

primop   DoubleAcosOp   "acosDouble#"      Monadic  
   Double# -> Double#
   with
   needs_wrapper = True
   can_fail = True

primop   DoubleAtanOp   "atanDouble#"      Monadic  
   Double# -> Double#
   with
   needs_wrapper = True

primop   DoubleSinhOp   "sinhDouble#"      Monadic  
   Double# -> Double#
   with needs_wrapper = True

primop   DoubleCoshOp   "coshDouble#"      Monadic  
   Double# -> Double#
   with needs_wrapper = True

primop   DoubleTanhOp   "tanhDouble#"      Monadic  
   Double# -> Double#
   with needs_wrapper = True

primop   DoublePowerOp   "**##" Dyadic  
   Double# -> Double# -> Double#
   {Exponentiation.}
   with needs_wrapper = True

primop   DoubleDecode_2IntOp   "decodeDouble_2Int#" GenPrimOp    
   Double# -> (# Int#, Word#, Word#, Int# #)
   {Convert to integer.
    First component of the result is -1 or 1, indicating the sign of the
    mantissa. The next two are the high and low 32 bits of the mantissa
    respectively, and the last is the exponent.}
   with out_of_line = True

------------------------------------------------------------------------
section "Float#" 
	{Operations on single-precision (32-bit) floating-point numbers.}
------------------------------------------------------------------------

primtype Float#

primop   FloatGtOp  "gtFloat#"   Compare   Float# -> Float# -> Bool
primop   FloatGeOp  "geFloat#"   Compare   Float# -> Float# -> Bool

primop   FloatEqOp  "eqFloat#"   Compare
   Float# -> Float# -> Bool
   with commutable = True

primop   FloatNeOp  "neFloat#"   Compare
   Float# -> Float# -> Bool
   with commutable = True

primop   FloatLtOp  "ltFloat#"   Compare   Float# -> Float# -> Bool
primop   FloatLeOp  "leFloat#"   Compare   Float# -> Float# -> Bool

primop   FloatAddOp   "plusFloat#"      Dyadic            
   Float# -> Float# -> Float#
   with commutable = True

primop   FloatSubOp   "minusFloat#"      Dyadic      Float# -> Float# -> Float#

primop   FloatMulOp   "timesFloat#"      Dyadic    
   Float# -> Float# -> Float#
   with commutable = True

primop   FloatDivOp   "divideFloat#"      Dyadic  
   Float# -> Float# -> Float#
   with can_fail = True

primop   FloatNegOp   "negateFloat#"      Monadic    Float# -> Float#

primop   Float2IntOp   "float2Int#"      GenPrimOp  Float# -> Int#
   {Truncates a {\tt Float#} value to the nearest {\tt Int#}.
    Results are undefined if the truncation if truncation yields
    a value outside the range of {\tt Int#}.}

primop   FloatExpOp   "expFloat#"      Monadic          
   Float# -> Float#
   with needs_wrapper = True

primop   FloatLogOp   "logFloat#"      Monadic          
   Float# -> Float#
   with needs_wrapper = True
        can_fail = True

primop   FloatSqrtOp   "sqrtFloat#"      Monadic          
   Float# -> Float#
   with needs_wrapper = True

primop   FloatSinOp   "sinFloat#"      Monadic          
   Float# -> Float#
   with needs_wrapper = True

primop   FloatCosOp   "cosFloat#"      Monadic          
   Float# -> Float#
   with needs_wrapper = True

primop   FloatTanOp   "tanFloat#"      Monadic          
   Float# -> Float#
   with needs_wrapper = True

primop   FloatAsinOp   "asinFloat#"      Monadic          
   Float# -> Float#
   with needs_wrapper = True
        can_fail = True

primop   FloatAcosOp   "acosFloat#"      Monadic          
   Float# -> Float#
   with needs_wrapper = True
        can_fail = True

primop   FloatAtanOp   "atanFloat#"      Monadic          
   Float# -> Float#
   with needs_wrapper = True

primop   FloatSinhOp   "sinhFloat#"      Monadic          
   Float# -> Float#
   with needs_wrapper = True

primop   FloatCoshOp   "coshFloat#"      Monadic          
   Float# -> Float#
   with needs_wrapper = True

primop   FloatTanhOp   "tanhFloat#"      Monadic          
   Float# -> Float#
   with needs_wrapper = True

primop   FloatPowerOp   "powerFloat#"      Dyadic   
   Float# -> Float# -> Float#
   with needs_wrapper = True

primop   Float2DoubleOp   "float2Double#" GenPrimOp  Float# -> Double#

primop   FloatDecode_IntOp   "decodeFloat_Int#" GenPrimOp
   Float# -> (# Int#, Int# #)
   {Convert to integers.
    First {\tt Int\#} in result is the mantissa; second is the exponent.}
   with out_of_line = True

------------------------------------------------------------------------
section "Arrays"
	{Operations on {\tt Array\#}.}
------------------------------------------------------------------------

primtype Array# a

primtype MutableArray# s a

primop  NewArrayOp "newArray#" GenPrimOp
   Int# -> a -> State# s -> (# State# s, MutableArray# s a #)
   {Create a new mutable array with the specified number of elements,
    in the specified state thread,
    with each element containing the specified initial value.}
   with
   out_of_line = True
   has_side_effects = True

primop  SameMutableArrayOp "sameMutableArray#" GenPrimOp
   MutableArray# s a -> MutableArray# s a -> Bool

primop  ReadArrayOp "readArray#" GenPrimOp
   MutableArray# s a -> Int# -> State# s -> (# State# s, a #)
   {Read from specified index of mutable array. Result is not yet evaluated.}
   with
   has_side_effects = True

primop  WriteArrayOp "writeArray#" GenPrimOp
   MutableArray# s a -> Int# -> a -> State# s -> State# s
   {Write to specified index of mutable array.}
   with
   has_side_effects = True

primop  SizeofArrayOp "sizeofArray#" GenPrimOp
   Array# a -> Int#
   {Return the number of elements in the array.}

primop  SizeofMutableArrayOp "sizeofMutableArray#" GenPrimOp
   MutableArray# s a -> Int#
   {Return the number of elements in the array.}

primop  IndexArrayOp "indexArray#" GenPrimOp
   Array# a -> Int# -> (# a #)
   {Read from specified index of immutable array. Result is packaged into
    an unboxed singleton; the result itself is not yet evaluated.}

primop  UnsafeFreezeArrayOp "unsafeFreezeArray#" GenPrimOp
   MutableArray# s a -> State# s -> (# State# s, Array# a #)
   {Make a mutable array immutable, without copying.}
   with
   has_side_effects = True

primop  UnsafeThawArrayOp  "unsafeThawArray#" GenPrimOp
   Array# a -> State# s -> (# State# s, MutableArray# s a #)
   {Make an immutable array mutable, without copying.}
   with
   out_of_line = True
   has_side_effects = True

primop  CopyArrayOp "copyArray#" GenPrimOp
  Array# a -> Int# -> MutableArray# s a -> Int# -> Int# -> State# s -> State# s
  {Copy a range of the Array# to the specified region in the MutableArray#.
   Both arrays must fully contain the specified ranges, but this is not checked.
   The two arrays must not be the same array in different states, but this is not checked either.}
  with
  has_side_effects = True

primop  CopyMutableArrayOp "copyMutableArray#" GenPrimOp
  MutableArray# s a -> Int# -> MutableArray# s a -> Int# -> Int# -> State# s -> State# s
  {Copy a range of the first MutableArray# to the specified region in the second MutableArray#.
   Both arrays must fully contain the specified ranges, but this is not checked.}
  with
  has_side_effects = True

primop  CloneArrayOp "cloneArray#" GenPrimOp
  Array# a -> Int# -> Int# -> Array# a
  {Return a newly allocated Array# with the specified subrange of the provided Array#. 
   The provided Array# should contain the full subrange specified by the two Int#s, but this is not checked.}
  with
  has_side_effects = True

primop  CloneMutableArrayOp "cloneMutableArray#" GenPrimOp
  MutableArray# s a -> Int# -> Int# -> State# s -> (# State# s, MutableArray# s a #)
  {Return a newly allocated Array# with the specified subrange of the provided Array#.
   The provided MutableArray# should contain the full subrange specified by the two Int#s, but this is not checked.}
  with
  has_side_effects = True

primop  FreezeArrayOp "freezeArray#" GenPrimOp
  MutableArray# s a -> Int# -> Int# -> State# s -> (# State# s, Array# a #)
  {Return a newly allocated Array# with the specified subrange of the provided MutableArray#.
   The provided MutableArray# should contain the full subrange specified by the two Int#s, but this is not checked.}
  with
  has_side_effects = True

primop  ThawArrayOp "thawArray#" GenPrimOp
  Array# a -> Int# -> Int# -> State# s -> (# State# s, MutableArray# s a #)
  {Return a newly allocated Array# with the specified subrange of the provided MutableArray#.
   The provided Array# should contain the full subrange specified by the two Int#s, but this is not checked.}
  with
  has_side_effects = True

------------------------------------------------------------------------
section "Byte Arrays"
	{Operations on {\tt ByteArray\#}. A {\tt ByteArray\#} is a just a region of
         raw memory in the garbage-collected heap, which is not
         scanned for pointers. It carries its own size (in bytes).
         There are
         three sets of operations for accessing byte array contents:
         index for reading from immutable byte arrays, and read/write
         for mutable byte arrays.  Each set contains operations for a
         range of useful primitive data types.  Each operation takes
         an offset measured in terms of the size fo the primitive type
         being read or written.}

------------------------------------------------------------------------

primtype ByteArray#

primtype MutableByteArray# s

primop  NewByteArrayOp_Char "newByteArray#" GenPrimOp
   Int# -> State# s -> (# State# s, MutableByteArray# s #)
   {Create a new mutable byte array of specified size (in bytes), in
    the specified state thread.}
   with out_of_line = True
        has_side_effects = True

primop  NewPinnedByteArrayOp_Char "newPinnedByteArray#" GenPrimOp
   Int# -> State# s -> (# State# s, MutableByteArray# s #)
   {Create a mutable byte array that the GC guarantees not to move.}
   with out_of_line = True
        has_side_effects = True

primop  NewAlignedPinnedByteArrayOp_Char "newAlignedPinnedByteArray#" GenPrimOp
   Int# -> Int# -> State# s -> (# State# s, MutableByteArray# s #)
   {Create a mutable byte array, aligned by the specified amount, that the GC guarantees not to move.}
   with out_of_line = True
        has_side_effects = True

primop  ByteArrayContents_Char "byteArrayContents#" GenPrimOp
   ByteArray# -> Addr#
   {Intended for use with pinned arrays; otherwise very unsafe!}

primop  SameMutableByteArrayOp "sameMutableByteArray#" GenPrimOp
   MutableByteArray# s -> MutableByteArray# s -> Bool

primop  UnsafeFreezeByteArrayOp "unsafeFreezeByteArray#" GenPrimOp
   MutableByteArray# s -> State# s -> (# State# s, ByteArray# #)
   {Make a mutable byte array immutable, without copying.}
   with
   has_side_effects = True

primop  SizeofByteArrayOp "sizeofByteArray#" GenPrimOp  
   ByteArray# -> Int#
   {Return the size of the array in bytes.}

primop  SizeofMutableByteArrayOp "sizeofMutableByteArray#" GenPrimOp
   MutableByteArray# s -> Int#
   {Return the size of the array in bytes.}

primop IndexByteArrayOp_Char "indexCharArray#" GenPrimOp
   ByteArray# -> Int# -> Char#
   {Read 8-bit character; offset in bytes.}

primop IndexByteArrayOp_WideChar "indexWideCharArray#" GenPrimOp
   ByteArray# -> Int# -> Char#
   {Read 31-bit character; offset in 4-byte words.}

primop IndexByteArrayOp_Int "indexIntArray#" GenPrimOp
   ByteArray# -> Int# -> Int#

primop IndexByteArrayOp_Word "indexWordArray#" GenPrimOp
   ByteArray# -> Int# -> Word#

primop IndexByteArrayOp_Addr "indexAddrArray#" GenPrimOp
   ByteArray# -> Int# -> Addr#

primop IndexByteArrayOp_Float "indexFloatArray#" GenPrimOp
   ByteArray# -> Int# -> Float#

primop IndexByteArrayOp_Double "indexDoubleArray#" GenPrimOp
   ByteArray# -> Int# -> Double#

primop IndexByteArrayOp_StablePtr "indexStablePtrArray#" GenPrimOp
   ByteArray# -> Int# -> StablePtr# a

primop IndexByteArrayOp_Int8 "indexInt8Array#" GenPrimOp
   ByteArray# -> Int# -> Int#

primop IndexByteArrayOp_Int16 "indexInt16Array#" GenPrimOp
   ByteArray# -> Int# -> Int#

primop IndexByteArrayOp_Int32 "indexInt32Array#" GenPrimOp
   ByteArray# -> Int# -> INT32

primop IndexByteArrayOp_Int64 "indexInt64Array#" GenPrimOp
   ByteArray# -> Int# -> INT64

primop IndexByteArrayOp_Word8 "indexWord8Array#" GenPrimOp
   ByteArray# -> Int# -> Word#

primop IndexByteArrayOp_Word16 "indexWord16Array#" GenPrimOp
   ByteArray# -> Int# -> Word#

primop IndexByteArrayOp_Word32 "indexWord32Array#" GenPrimOp
   ByteArray# -> Int# -> WORD32

primop IndexByteArrayOp_Word64 "indexWord64Array#" GenPrimOp
   ByteArray# -> Int# -> WORD64

primop  ReadByteArrayOp_Char "readCharArray#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, Char# #)
   {Read 8-bit character; offset in bytes.}
   with has_side_effects = True

primop  ReadByteArrayOp_WideChar "readWideCharArray#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, Char# #)
   {Read 31-bit character; offset in 4-byte words.}
   with has_side_effects = True

primop  ReadByteArrayOp_Int "readIntArray#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, Int# #)
   with has_side_effects = True

primop  ReadByteArrayOp_Word "readWordArray#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, Word# #)
   with has_side_effects = True

primop  ReadByteArrayOp_Addr "readAddrArray#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, Addr# #)
   with has_side_effects = True

primop  ReadByteArrayOp_Float "readFloatArray#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, Float# #)
   with has_side_effects = True

primop  ReadByteArrayOp_Double "readDoubleArray#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, Double# #)
   with has_side_effects = True

primop  ReadByteArrayOp_StablePtr "readStablePtrArray#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, StablePtr# a #)
   with has_side_effects = True

primop  ReadByteArrayOp_Int8 "readInt8Array#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, Int# #)
   with has_side_effects = True

primop  ReadByteArrayOp_Int16 "readInt16Array#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, Int# #)
   with has_side_effects = True

primop  ReadByteArrayOp_Int32 "readInt32Array#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, INT32 #)
   with has_side_effects = True

primop  ReadByteArrayOp_Int64 "readInt64Array#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, INT64 #)
   with has_side_effects = True

primop  ReadByteArrayOp_Word8 "readWord8Array#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, Word# #)
   with has_side_effects = True

primop  ReadByteArrayOp_Word16 "readWord16Array#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, Word# #)
   with has_side_effects = True

primop  ReadByteArrayOp_Word32 "readWord32Array#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, WORD32 #)
   with has_side_effects = True

primop  ReadByteArrayOp_Word64 "readWord64Array#" GenPrimOp
   MutableByteArray# s -> Int# -> State# s -> (# State# s, WORD64 #)
   with has_side_effects = True

primop  WriteByteArrayOp_Char "writeCharArray#" GenPrimOp
   MutableByteArray# s -> Int# -> Char# -> State# s -> State# s
   {Write 8-bit character; offset in bytes.}
   with has_side_effects = True

primop  WriteByteArrayOp_WideChar "writeWideCharArray#" GenPrimOp
   MutableByteArray# s -> Int# -> Char# -> State# s -> State# s
   {Write 31-bit character; offset in 4-byte words.}
   with has_side_effects = True

primop  WriteByteArrayOp_Int "writeIntArray#" GenPrimOp
   MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
   with has_side_effects = True

primop  WriteByteArrayOp_Word "writeWordArray#" GenPrimOp
   MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
   with has_side_effects = True

primop  WriteByteArrayOp_Addr "writeAddrArray#" GenPrimOp
   MutableByteArray# s -> Int# -> Addr# -> State# s -> State# s
   with has_side_effects = True

primop  WriteByteArrayOp_Float "writeFloatArray#" GenPrimOp
   MutableByteArray# s -> Int# -> Float# -> State# s -> State# s
   with has_side_effects = True

primop  WriteByteArrayOp_Double "writeDoubleArray#" GenPrimOp
   MutableByteArray# s -> Int# -> Double# -> State# s -> State# s
   with has_side_effects = True

primop  WriteByteArrayOp_StablePtr "writeStablePtrArray#" GenPrimOp
   MutableByteArray# s -> Int# -> StablePtr# a -> State# s -> State# s
   with has_side_effects = True

primop  WriteByteArrayOp_Int8 "writeInt8Array#" GenPrimOp
   MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
   with has_side_effects = True

primop  WriteByteArrayOp_Int16 "writeInt16Array#" GenPrimOp
   MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
   with has_side_effects = True

primop  WriteByteArrayOp_Int32 "writeInt32Array#" GenPrimOp
   MutableByteArray# s -> Int# -> INT32 -> State# s -> State# s
   with has_side_effects = True

primop  WriteByteArrayOp_Int64 "writeInt64Array#" GenPrimOp
   MutableByteArray# s -> Int# -> INT64 -> State# s -> State# s
   with has_side_effects = True

primop  WriteByteArrayOp_Word8 "writeWord8Array#" GenPrimOp
   MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
   with has_side_effects = True

primop  WriteByteArrayOp_Word16 "writeWord16Array#" GenPrimOp
   MutableByteArray# s -> Int# -> Word# -> State# s -> State# s
   with has_side_effects = True

primop  WriteByteArrayOp_Word32 "writeWord32Array#" GenPrimOp
   MutableByteArray# s -> Int# -> WORD32 -> State# s -> State# s
   with has_side_effects = True

primop  WriteByteArrayOp_Word64 "writeWord64Array#" GenPrimOp
   MutableByteArray# s -> Int# -> WORD64 -> State# s -> State# s
   with has_side_effects = True

------------------------------------------------------------------------
section "Addr#"
------------------------------------------------------------------------

primtype Addr#
	{ An arbitrary machine address assumed to point outside
	 the garbage-collected heap. }

pseudoop "nullAddr#" Addr#
	{ The null address. }

primop	 AddrAddOp "plusAddr#" GenPrimOp Addr# -> Int# -> Addr#
primop	 AddrSubOp "minusAddr#" GenPrimOp Addr# -> Addr# -> Int#
	 {Result is meaningless if two {\tt Addr\#}s are so far apart that their
	 difference doesn't fit in an {\tt Int\#}.}
primop	 AddrRemOp "remAddr#" GenPrimOp Addr# -> Int# -> Int#
	 {Return the remainder when the {\tt Addr\#} arg, treated like an {\tt Int\#},
	  is divided by the {\tt Int\#} arg.}
#if (WORD_SIZE_IN_BITS == 32 || WORD_SIZE_IN_BITS == 64)
primop   Addr2IntOp  "addr2Int#"     GenPrimOp   Addr# -> Int#
	{Coerce directly from address to int. Strongly deprecated.}
primop   Int2AddrOp   "int2Addr#"    GenPrimOp  Int# -> Addr#
	{Coerce directly from int to address. Strongly deprecated.}
#endif

primop   AddrGtOp  "gtAddr#"   Compare   Addr# -> Addr# -> Bool
primop   AddrGeOp  "geAddr#"   Compare   Addr# -> Addr# -> Bool
primop   AddrEqOp  "eqAddr#"   Compare   Addr# -> Addr# -> Bool
primop   AddrNeOp  "neAddr#"   Compare   Addr# -> Addr# -> Bool
primop   AddrLtOp  "ltAddr#"   Compare   Addr# -> Addr# -> Bool
primop   AddrLeOp  "leAddr#"   Compare   Addr# -> Addr# -> Bool

primop IndexOffAddrOp_Char "indexCharOffAddr#" GenPrimOp
   Addr# -> Int# -> Char#
   {Reads 8-bit character; offset in bytes.}

primop IndexOffAddrOp_WideChar "indexWideCharOffAddr#" GenPrimOp
   Addr# -> Int# -> Char#
   {Reads 31-bit character; offset in 4-byte words.}

primop IndexOffAddrOp_Int "indexIntOffAddr#" GenPrimOp
   Addr# -> Int# -> Int#

primop IndexOffAddrOp_Word "indexWordOffAddr#" GenPrimOp
   Addr# -> Int# -> Word#

primop IndexOffAddrOp_Addr "indexAddrOffAddr#" GenPrimOp
   Addr# -> Int# -> Addr#

primop IndexOffAddrOp_Float "indexFloatOffAddr#" GenPrimOp
   Addr# -> Int# -> Float#

primop IndexOffAddrOp_Double "indexDoubleOffAddr#" GenPrimOp
   Addr# -> Int# -> Double#

primop IndexOffAddrOp_StablePtr "indexStablePtrOffAddr#" GenPrimOp
   Addr# -> Int# -> StablePtr# a

primop IndexOffAddrOp_Int8 "indexInt8OffAddr#" GenPrimOp
   Addr# -> Int# -> Int#

primop IndexOffAddrOp_Int16 "indexInt16OffAddr#" GenPrimOp
   Addr# -> Int# -> Int#

primop IndexOffAddrOp_Int32 "indexInt32OffAddr#" GenPrimOp
   Addr# -> Int# -> INT32

primop IndexOffAddrOp_Int64 "indexInt64OffAddr#" GenPrimOp
   Addr# -> Int# -> INT64

primop IndexOffAddrOp_Word8 "indexWord8OffAddr#" GenPrimOp
   Addr# -> Int# -> Word#

primop IndexOffAddrOp_Word16 "indexWord16OffAddr#" GenPrimOp
   Addr# -> Int# -> Word#

primop IndexOffAddrOp_Word32 "indexWord32OffAddr#" GenPrimOp
   Addr# -> Int# -> WORD32

primop IndexOffAddrOp_Word64 "indexWord64OffAddr#" GenPrimOp
   Addr# -> Int# -> WORD64

primop ReadOffAddrOp_Char "readCharOffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, Char# #)
   {Reads 8-bit character; offset in bytes.}
   with has_side_effects = True

primop ReadOffAddrOp_WideChar "readWideCharOffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, Char# #)
   {Reads 31-bit character; offset in 4-byte words.}
   with has_side_effects = True

primop ReadOffAddrOp_Int "readIntOffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, Int# #)
   with has_side_effects = True

primop ReadOffAddrOp_Word "readWordOffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, Word# #)
   with has_side_effects = True

primop ReadOffAddrOp_Addr "readAddrOffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, Addr# #)
   with has_side_effects = True

primop ReadOffAddrOp_Float "readFloatOffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, Float# #)
   with has_side_effects = True

primop ReadOffAddrOp_Double "readDoubleOffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, Double# #)
   with has_side_effects = True

primop ReadOffAddrOp_StablePtr "readStablePtrOffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, StablePtr# a #)
   with has_side_effects = True

primop ReadOffAddrOp_Int8 "readInt8OffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, Int# #)
   with has_side_effects = True

primop ReadOffAddrOp_Int16 "readInt16OffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, Int# #)
   with has_side_effects = True

primop ReadOffAddrOp_Int32 "readInt32OffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, INT32 #)
   with has_side_effects = True

primop ReadOffAddrOp_Int64 "readInt64OffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, INT64 #)
   with has_side_effects = True

primop ReadOffAddrOp_Word8 "readWord8OffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, Word# #)
   with has_side_effects = True

primop ReadOffAddrOp_Word16 "readWord16OffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, Word# #)
   with has_side_effects = True

primop ReadOffAddrOp_Word32 "readWord32OffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, WORD32 #)
   with has_side_effects = True

primop ReadOffAddrOp_Word64 "readWord64OffAddr#" GenPrimOp
   Addr# -> Int# -> State# s -> (# State# s, WORD64 #)
   with has_side_effects = True


primop  WriteOffAddrOp_Char "writeCharOffAddr#" GenPrimOp
   Addr# -> Int# -> Char# -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_WideChar "writeWideCharOffAddr#" GenPrimOp
   Addr# -> Int# -> Char# -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_Int "writeIntOffAddr#" GenPrimOp
   Addr# -> Int# -> Int# -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_Word "writeWordOffAddr#" GenPrimOp
   Addr# -> Int# -> Word# -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_Addr "writeAddrOffAddr#" GenPrimOp
   Addr# -> Int# -> Addr# -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_Float "writeFloatOffAddr#" GenPrimOp
   Addr# -> Int# -> Float# -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_Double "writeDoubleOffAddr#" GenPrimOp
   Addr# -> Int# -> Double# -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_StablePtr "writeStablePtrOffAddr#" GenPrimOp
   Addr# -> Int# -> StablePtr# a -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_Int8 "writeInt8OffAddr#" GenPrimOp
   Addr# -> Int# -> Int# -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_Int16 "writeInt16OffAddr#" GenPrimOp
   Addr# -> Int# -> Int# -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_Int32 "writeInt32OffAddr#" GenPrimOp
   Addr# -> Int# -> INT32 -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_Int64 "writeInt64OffAddr#" GenPrimOp
   Addr# -> Int# -> INT64 -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_Word8 "writeWord8OffAddr#" GenPrimOp
   Addr# -> Int# -> Word# -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_Word16 "writeWord16OffAddr#" GenPrimOp
   Addr# -> Int# -> Word# -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_Word32 "writeWord32OffAddr#" GenPrimOp
   Addr# -> Int# -> WORD32 -> State# s -> State# s
   with has_side_effects = True

primop  WriteOffAddrOp_Word64 "writeWord64OffAddr#" GenPrimOp
   Addr# -> Int# -> WORD64 -> State# s -> State# s
   with has_side_effects = True

------------------------------------------------------------------------
section "Mutable variables"
	{Operations on MutVar\#s.}
------------------------------------------------------------------------

primtype MutVar# s a
	{A {\tt MutVar\#} behaves like a single-element mutable array.}

primop  NewMutVarOp "newMutVar#" GenPrimOp
   a -> State# s -> (# State# s, MutVar# s a #)
   {Create {\tt MutVar\#} with specified initial value in specified state thread.}
   with
   out_of_line = True
   has_side_effects = True

primop  ReadMutVarOp "readMutVar#" GenPrimOp
   MutVar# s a -> State# s -> (# State# s, a #)
   {Read contents of {\tt MutVar\#}. Result is not yet evaluated.}
   with
   has_side_effects = True

primop  WriteMutVarOp "writeMutVar#"  GenPrimOp
   MutVar# s a -> a -> State# s -> State# s
   {Write contents of {\tt MutVar\#}.}
   with
   has_side_effects = True

primop  SameMutVarOp "sameMutVar#" GenPrimOp
   MutVar# s a -> MutVar# s a -> Bool

-- not really the right type, but we don't know about pairs here.  The
-- correct type is
--
--   MutVar# s a -> (a -> (a,b)) -> State# s -> (# State# s, b #)
--
primop  AtomicModifyMutVarOp "atomicModifyMutVar#" GenPrimOp
   MutVar# s a -> (a -> b) -> State# s -> (# State# s, c #)
   with
   out_of_line = True
   has_side_effects = True

primop  CasMutVarOp "casMutVar#" GenPrimOp
  MutVar# s a -> a -> a -> State# s -> (# State# s, Int#, a #)
   with
   out_of_line = True
   has_side_effects = True

------------------------------------------------------------------------
section "Exceptions"
------------------------------------------------------------------------

primop  CatchOp "catch#" GenPrimOp
          (State# RealWorld -> (# State# RealWorld, a #) )
       -> (b -> State# RealWorld -> (# State# RealWorld, a #) ) 
       -> State# RealWorld
       -> (# State# RealWorld, a #)
   with
	-- Catch is actually strict in its first argument
	-- but we don't want to tell the strictness
	-- analyser about that!
        -- might use caught action multiply
   out_of_line = True
   has_side_effects = True

primop  RaiseOp "raise#" GenPrimOp
   a -> b
   with
   strictness  = { \ _arity -> mkStrictSig (mkTopDmdType [lazyDmd] BotRes) }
      -- NB: result is bottom
   out_of_line = True

-- raiseIO# needs to be a primop, because exceptions in the IO monad
-- must be *precise* - we don't want the strictness analyser turning
-- one kind of bottom into another, as it is allowed to do in pure code.
--
-- But we *do* want to know that it returns bottom after 
-- being applied to two arguments

primop  RaiseIOOp "raiseIO#" GenPrimOp
   a -> State# RealWorld -> (# State# RealWorld, b #)
   with
   strictness  = { \ _arity -> mkStrictSig (mkTopDmdType [lazyDmd,lazyDmd] BotRes) }
   out_of_line = True
   has_side_effects = True

primop  MaskAsyncExceptionsOp "maskAsyncExceptions#" GenPrimOp
        (State# RealWorld -> (# State# RealWorld, a #))
     -> (State# RealWorld -> (# State# RealWorld, a #))
   with
   out_of_line = True
   has_side_effects = True

primop  MaskUninterruptibleOp "maskUninterruptible#" GenPrimOp
        (State# RealWorld -> (# State# RealWorld, a #))
     -> (State# RealWorld -> (# State# RealWorld, a #))
   with
   out_of_line = True
   has_side_effects = True

primop  UnmaskAsyncExceptionsOp "unmaskAsyncExceptions#" GenPrimOp
        (State# RealWorld -> (# State# RealWorld, a #))
     -> (State# RealWorld -> (# State# RealWorld, a #))
   with
   out_of_line = True
   has_side_effects = True

primop  MaskStatus "getMaskingState#" GenPrimOp
        State# RealWorld -> (# State# RealWorld, Int# #)
   with
   out_of_line = True
   has_side_effects = True

------------------------------------------------------------------------
section "STM-accessible Mutable Variables"
------------------------------------------------------------------------

primtype TVar# s a

primop	AtomicallyOp "atomically#" GenPrimOp
      (State# RealWorld -> (# State# RealWorld, a #) )
   -> State# RealWorld -> (# State# RealWorld, a #)
   with
   out_of_line = True
   has_side_effects = True

primop  RetryOp "retry#" GenPrimOp
   State# RealWorld -> (# State# RealWorld, a #)
   with 
   out_of_line = True
   has_side_effects = True

primop  CatchRetryOp "catchRetry#" GenPrimOp
      (State# RealWorld -> (# State# RealWorld, a #) )
   -> (State# RealWorld -> (# State# RealWorld, a #) )
   -> (State# RealWorld -> (# State# RealWorld, a #) )
   with 
   out_of_line = True
   has_side_effects = True

primop  CatchSTMOp "catchSTM#" GenPrimOp
      (State# RealWorld -> (# State# RealWorld, a #) )
   -> (b -> State# RealWorld -> (# State# RealWorld, a #) )
   -> (State# RealWorld -> (# State# RealWorld, a #) )
   with 
   out_of_line = True
   has_side_effects = True

primop  Check "check#" GenPrimOp
      (State# RealWorld -> (# State# RealWorld, a #) )
   -> (State# RealWorld -> (# State# RealWorld, () #) )
   with 
   out_of_line = True
   has_side_effects = True

primop	NewTVarOp "newTVar#" GenPrimOp
       a
    -> State# s -> (# State# s, TVar# s a #)
   {Create a new {\tt TVar\#} holding a specified initial value.}
   with
   out_of_line  = True
   has_side_effects = True

primop	ReadTVarOp "readTVar#" GenPrimOp
       TVar# s a
    -> State# s -> (# State# s, a #)
   {Read contents of {\tt TVar\#}.  Result is not yet evaluated.}
   with
   out_of_line	= True
   has_side_effects = True

primop ReadTVarIOOp "readTVarIO#" GenPrimOp
       TVar# s a
    -> State# s -> (# State# s, a #)
   {Read contents of {\tt TVar\#} outside an STM transaction}
   with
   out_of_line	= True
   has_side_effects = True

primop	WriteTVarOp "writeTVar#" GenPrimOp
       TVar# s a
    -> a
    -> State# s -> State# s
   {Write contents of {\tt TVar\#}.}
   with
   out_of_line	    = True
   has_side_effects = True

primop  SameTVarOp "sameTVar#" GenPrimOp
   TVar# s a -> TVar# s a -> Bool


------------------------------------------------------------------------
section "Synchronized Mutable Variables"
	{Operations on {\tt MVar\#}s. }
------------------------------------------------------------------------

primtype MVar# s a
	{ A shared mutable variable ({\it not} the same as a {\tt MutVar\#}!).
	(Note: in a non-concurrent implementation, {\tt (MVar\# a)} can be
	represented by {\tt (MutVar\# (Maybe a))}.) }

primop  NewMVarOp "newMVar#"  GenPrimOp
   State# s -> (# State# s, MVar# s a #)
   {Create new {\tt MVar\#}; initially empty.}
   with
   out_of_line = True
   has_side_effects = True

primop  TakeMVarOp "takeMVar#" GenPrimOp
   MVar# s a -> State# s -> (# State# s, a #)
   {If {\tt MVar\#} is empty, block until it becomes full.
   Then remove and return its contents, and set it empty.}
   with
   out_of_line      = True
   has_side_effects = True

primop  TryTakeMVarOp "tryTakeMVar#" GenPrimOp
   MVar# s a -> State# s -> (# State# s, Int#, a #)
   {If {\tt MVar\#} is empty, immediately return with integer 0 and value undefined.
   Otherwise, return with integer 1 and contents of {\tt MVar\#}, and set {\tt MVar\#} empty.}
   with
   out_of_line      = True
   has_side_effects = True

primop  PutMVarOp "putMVar#" GenPrimOp
   MVar# s a -> a -> State# s -> State# s
   {If {\tt MVar\#} is full, block until it becomes empty.
   Then store value arg as its new contents.}
   with
   out_of_line      = True
   has_side_effects = True

primop  TryPutMVarOp "tryPutMVar#" GenPrimOp
   MVar# s a -> a -> State# s -> (# State# s, Int# #)
   {If {\tt MVar\#} is full, immediately return with integer 0.
    Otherwise, store value arg as {\tt MVar\#}'s new contents, and return with integer 1.}
   with
   out_of_line      = True
   has_side_effects = True

primop  SameMVarOp "sameMVar#" GenPrimOp
   MVar# s a -> MVar# s a -> Bool

primop  IsEmptyMVarOp "isEmptyMVar#" GenPrimOp
   MVar# s a -> State# s -> (# State# s, Int# #)
   {Return 1 if {\tt MVar\#} is empty; 0 otherwise.}
   with
   out_of_line = True
   has_side_effects = True

------------------------------------------------------------------------
section "Delay/wait operations"
------------------------------------------------------------------------

primop  DelayOp "delay#" GenPrimOp
   Int# -> State# s -> State# s
   {Sleep specified number of microseconds.}
   with
   needs_wrapper    = True
   has_side_effects = True
   out_of_line      = True

primop  WaitReadOp "waitRead#" GenPrimOp
   Int# -> State# s -> State# s
   {Block until input is available on specified file descriptor.}
   with
   needs_wrapper    = True
   has_side_effects = True
   out_of_line      = True

primop  WaitWriteOp "waitWrite#" GenPrimOp
   Int# -> State# s -> State# s
   {Block until output is possible on specified file descriptor.}
   with
   needs_wrapper    = True
   has_side_effects = True
   out_of_line      = True

#ifdef mingw32_TARGET_OS
primop  AsyncReadOp "asyncRead#" GenPrimOp
   Int# -> Int# -> Int# -> Addr# -> State# RealWorld-> (# State# RealWorld, Int#, Int# #)
   {Asynchronously read bytes from specified file descriptor.}
   with
   needs_wrapper    = True
   has_side_effects = True
   out_of_line      = True

primop  AsyncWriteOp "asyncWrite#" GenPrimOp
   Int# -> Int# -> Int# -> Addr# -> State# RealWorld-> (# State# RealWorld, Int#, Int# #)
   {Asynchronously write bytes from specified file descriptor.}
   with
   needs_wrapper    = True
   has_side_effects = True
   out_of_line      = True

primop  AsyncDoProcOp "asyncDoProc#" GenPrimOp
   Addr# -> Addr# -> State# RealWorld-> (# State# RealWorld, Int#, Int# #)
   {Asynchronously perform procedure (first arg), passing it 2nd arg.}
   with
   needs_wrapper    = True
   has_side_effects = True
   out_of_line      = True

#endif

------------------------------------------------------------------------
section "Concurrency primitives"
------------------------------------------------------------------------

primtype State# s
	{ {\tt State\#} is the primitive, unlifted type of states.  It has
	one type parameter, thus {\tt State\# RealWorld}, or {\tt State\# s},
	where s is a type variable. The only purpose of the type parameter
	is to keep different state threads separate.  It is represented by
	nothing at all. }

primtype RealWorld
	{ {\tt RealWorld} is deeply magical.  It is {\it primitive}, but it is not
	{\it unlifted} (hence {\tt ptrArg}).  We never manipulate values of type
	{\tt RealWorld}; it's only used in the type system, to parameterise {\tt State\#}. }

primtype ThreadId#
	{(In a non-concurrent implementation, this can be a singleton
	type, whose (unique) value is returned by {\tt myThreadId\#}.  The 
	other operations can be omitted.)}

primop  ForkOp "fork#" GenPrimOp
   a -> State# RealWorld -> (# State# RealWorld, ThreadId# #)
   with
   has_side_effects = True
   out_of_line      = True

primop  ForkOnOp "forkOn#" GenPrimOp
   Int# -> a -> State# RealWorld -> (# State# RealWorld, ThreadId# #)
   with
   has_side_effects = True
   out_of_line      = True

primop  KillThreadOp "killThread#"  GenPrimOp
   ThreadId# -> a -> State# RealWorld -> State# RealWorld
   with
   has_side_effects = True
   out_of_line      = True

primop  YieldOp "yield#" GenPrimOp
   State# RealWorld -> State# RealWorld
   with
   has_side_effects = True
   out_of_line      = True

primop  MyThreadIdOp "myThreadId#" GenPrimOp
   State# RealWorld -> (# State# RealWorld, ThreadId# #)
   with
   out_of_line = True
   has_side_effects = True

primop LabelThreadOp "labelThread#" GenPrimOp
   ThreadId# -> Addr# -> State# RealWorld -> State# RealWorld
   with
   has_side_effects = True
   out_of_line      = True
   
primop  IsCurrentThreadBoundOp "isCurrentThreadBound#" GenPrimOp
   State# RealWorld -> (# State# RealWorld, Int# #)
   with
   out_of_line = True
   has_side_effects = True

primop  NoDuplicateOp "noDuplicate#" GenPrimOp
   State# RealWorld -> State# RealWorld
   with
   out_of_line = True
   has_side_effects = True

primop  ThreadStatusOp "threadStatus#" GenPrimOp
   ThreadId# -> State# RealWorld -> (# State# RealWorld, Int#, Int#, Int# #)
   with
   out_of_line = True
   has_side_effects = True

------------------------------------------------------------------------
section "Weak pointers"
------------------------------------------------------------------------

primtype Weak# b

-- note that tyvar "o" denotes openAlphaTyVar

primop  MkWeakOp "mkWeak#" GenPrimOp
   o -> b -> c -> State# RealWorld -> (# State# RealWorld, Weak# b #)
   with
   has_side_effects = True
   out_of_line      = True

primop  MkWeakForeignEnvOp "mkWeakForeignEnv#" GenPrimOp
   o -> b -> Addr# -> Addr# -> Int# -> Addr# -> State# RealWorld -> (# State# RealWorld, Weak# b #)
   with
   has_side_effects = True
   out_of_line      = True

primop  DeRefWeakOp "deRefWeak#" GenPrimOp
   Weak# a -> State# RealWorld -> (# State# RealWorld, Int#, a #)
   with
   has_side_effects = True
   out_of_line      = True

primop  FinalizeWeakOp "finalizeWeak#" GenPrimOp
   Weak# a -> State# RealWorld -> (# State# RealWorld, Int#, 
              (State# RealWorld -> (# State# RealWorld, () #)) #)
   with
   has_side_effects = True
   out_of_line      = True

primop TouchOp "touch#" GenPrimOp
   o -> State# RealWorld -> State# RealWorld
   with
   has_side_effects = True

------------------------------------------------------------------------
section "Stable pointers and names"
------------------------------------------------------------------------

primtype StablePtr# a

primtype StableName# a

primop  MakeStablePtrOp "makeStablePtr#" GenPrimOp
   a -> State# RealWorld -> (# State# RealWorld, StablePtr# a #)
   with
   has_side_effects = True
   out_of_line      = True

primop  DeRefStablePtrOp "deRefStablePtr#" GenPrimOp
   StablePtr# a -> State# RealWorld -> (# State# RealWorld, a #)
   with
   needs_wrapper    = True
   has_side_effects = True
   out_of_line      = True

primop  EqStablePtrOp "eqStablePtr#" GenPrimOp
   StablePtr# a -> StablePtr# a -> Int#
   with
   has_side_effects = True

primop  MakeStableNameOp "makeStableName#" GenPrimOp
   a -> State# RealWorld -> (# State# RealWorld, StableName# a #)
   with
   needs_wrapper    = True
   has_side_effects = True
   out_of_line      = True

primop  EqStableNameOp "eqStableName#" GenPrimOp
   StableName# a -> StableName# a -> Int#

primop  StableNameToIntOp "stableNameToInt#" GenPrimOp
   StableName# a -> Int#

------------------------------------------------------------------------
section "Unsafe pointer equality"
--  (#1 Bad Guy: Alistair Reid :)   
------------------------------------------------------------------------

primop  ReallyUnsafePtrEqualityOp "reallyUnsafePtrEquality#" GenPrimOp
   a -> a -> Int#

------------------------------------------------------------------------
section "Parallelism"
------------------------------------------------------------------------

primop  ParOp "par#" GenPrimOp
   a -> Int#
   with
      -- Note that Par is lazy to avoid that the sparked thing
      -- gets evaluted strictly, which it should *not* be
   has_side_effects = True

primop GetSparkOp "getSpark#" GenPrimOp
   State# s -> (# State# s, Int#, a #)
   with
   has_side_effects = True
   out_of_line = True

primop NumSparks "numSparks#" GenPrimOp
   State# s -> (# State# s, Int# #)
   { Returns the number of sparks in the local spark pool. }
   with
   has_side_effects = True
   out_of_line = True

-- HWL: The first 4 Int# in all par... annotations denote:
--   name, granularity info, size of result, degree of parallelism
--      Same  structure as _seq_ i.e. returns Int#
-- KSW: v, the second arg in parAt# and parAtForNow#, is used only to determine
--   `the processor containing the expression v'; it is not evaluated

primop  ParGlobalOp  "parGlobal#"  GenPrimOp
   a -> Int# -> Int# -> Int# -> Int# -> b -> Int#
   with
   has_side_effects = True

primop  ParLocalOp  "parLocal#"  GenPrimOp
   a -> Int# -> Int# -> Int# -> Int# -> b -> Int#
   with
   has_side_effects = True

primop  ParAtOp  "parAt#"  GenPrimOp
   b -> a -> Int# -> Int# -> Int# -> Int# -> c -> Int#
   with
   has_side_effects = True

primop  ParAtAbsOp  "parAtAbs#"  GenPrimOp
   a -> Int# -> Int# -> Int# -> Int# -> Int# -> b -> Int#
   with
   has_side_effects = True

primop  ParAtRelOp  "parAtRel#" GenPrimOp
   a -> Int# -> Int# -> Int# -> Int# -> Int# -> b -> Int#
   with
   has_side_effects = True

primop  ParAtForNowOp  "parAtForNow#" GenPrimOp
   b -> a -> Int# -> Int# -> Int# -> Int# -> c -> Int#
   with
   has_side_effects = True

-- copyable# and noFollow# are yet to be implemented (for GpH)
--
--primop  CopyableOp  "copyable#" GenPrimOp
--   a -> Int#
--   with
--   has_side_effects = True
--
--primop  NoFollowOp "noFollow#" GenPrimOp
--   a -> Int#
--   with
--   has_side_effects = True


------------------------------------------------------------------------
section "Tag to enum stuff"
	{Convert back and forth between values of enumerated types
	and small integers.}
------------------------------------------------------------------------

primop  DataToTagOp "dataToTag#" GenPrimOp
   a -> Int#
   with
   strictness  = { \ _arity -> mkStrictSig (mkTopDmdType [seqDmd] TopRes) }
	-- dataToTag# must have an evaluated argument

primop  TagToEnumOp "tagToEnum#" GenPrimOp     
   Int# -> a

------------------------------------------------------------------------
section "Bytecode operations" 
	{Support for the bytecode interpreter and linker.}
------------------------------------------------------------------------

primtype BCO#
   {Primitive bytecode type.}

primop   AddrToHValueOp "addrToHValue#" GenPrimOp
   Addr# -> (# a #)
   {Convert an {\tt Addr\#} to a followable type.}

primop   MkApUpd0_Op "mkApUpd0#" GenPrimOp
   BCO# -> (# a #)
   with
   out_of_line = True

primop  NewBCOOp "newBCO#" GenPrimOp
   ByteArray# -> ByteArray# -> Array# a -> Int# -> ByteArray# -> State# s -> (# State# s, BCO# #)
   with
   has_side_effects = True
   out_of_line      = True

primop  UnpackClosureOp "unpackClosure#" GenPrimOp
   a -> (# Addr#, Array# b, ByteArray# #)
   with
   out_of_line = True

primop  GetApStackValOp "getApStackVal#" GenPrimOp
   a -> Int# -> (# Int#, b #)
   with
   out_of_line = True

------------------------------------------------------------------------
section "Misc"
        {These aren't nearly as wired in as Etc...}
------------------------------------------------------------------------

primop  TraceCcsOp "traceCcs#" GenPrimOp
   a -> b -> b
   with
   has_side_effects = True
   out_of_line = True

------------------------------------------------------------------------
section "Etc" 
	{Miscellaneous built-ins}
------------------------------------------------------------------------

pseudoop   "seq"
   a -> b -> b
   { Evaluates its first argument to head normal form, and then returns its second
	argument as the result. }

pseudoop   "inline"
   a -> a
   { The call {\tt (inline f)} arranges that f is inlined, regardless of its size.
	More precisely, the call {\tt (inline f)} rewrites to the right-hand side of
	{\tt f}'s definition. This allows the programmer to control inlining from a
	particular call site rather than the definition site of the function (c.f.
	{\tt INLINE} pragmas in User's Guide, Section 7.10.3, "INLINE and NOINLINE
	pragmas").

	This inlining occurs regardless of the argument to the call or the size of
	{\tt f}'s definition; it is unconditional. The main caveat is that {\tt f}'s
	definition must be visible to the compiler. That is, {\tt f} must be
	{\tt let}-bound in the current scope. If no inlining takes place, the
	{\tt inline} function expands to the identity function in Phase zero; so its
	use imposes no overhead.

	It is good practice to mark the function with an INLINABLE pragma at
        its definition, (a) so that GHC guarantees to expose its unfolding regardless
        of size, and (b) so that you have control over exactly what is inlined. }

pseudoop   "lazy"
   a -> a
   { The {\tt lazy} function restrains strictness analysis a little. The call
	{\tt (lazy e)} means the same as {\tt e}, but {\tt lazy} has a magical
	property so far as strictness analysis is concerned: it is lazy in its first
	argument, even though its semantics is strict. After strictness analysis has
	run, calls to {\tt lazy} are inlined to be the identity function.

	This behaviour is occasionally useful when controlling evaluation order.
	Notably, {\tt lazy} is used in the library definition of {\tt Control.Parallel.par}:

	{\tt par :: a -> b -> b}

	{\tt par x y = case (par\# x) of \_ -> lazy y}

	If {\tt lazy} were not lazy, {\tt par} would look strict in {\tt y} which
	would defeat the whole purpose of {\tt par}.

	Like {\tt seq}, the argument of {\tt lazy} can have an unboxed type. }

primtype Any a
	{ The type constructor {\tt Any} is type to which you can unsafely coerce any
	lifted type, and back. 

	  * It is lifted, and hence represented by a pointer

	  * It does not claim to be a {\it data} type, and that's important for
	    the code generator, because the code gen may {\it enter} a data value
	    but never enters a function value.  

	It's also used to instantiate un-constrained type variables after type
	checking.  For example, {\tt length} has type

	{\tt length :: forall a. [a] -> Int}

	and the list datacon for the empty list has type

	{\tt [] :: forall a. [a]}

	In order to compose these two terms as {\tt length []} a type
	application is required, but there is no constraint on the
	choice.  In this situation GHC uses {\tt Any}:

	{\tt length Any ([] Any)}

	Annoyingly, we sometimes need {\tt Any}s of other kinds, such as {\tt (* -> *)} etc.
	This is a bit like tuples.   We define a couple of useful ones here,
	and make others up on the fly.  If any of these others end up being exported
	into interface files, we'll get a crash; at least until we add interface-file
	syntax to support them. }

pseudoop   "unsafeCoerce#"
   a -> b
   { The function {\tt unsafeCoerce\#} allows you to side-step the typechecker entirely. That
	is, it allows you to coerce any type into any other type. If you use this function,
	you had better get it right, otherwise segmentation faults await. It is generally
	used when you want to write a program that you know is well-typed, but where Haskell's
	type system is not expressive enough to prove that it is well typed.

        The following uses of {\tt unsafeCoerce\#} are supposed to work (i.e. not lead to
        spurious compile-time or run-time crashes):

         * Casting any lifted type to {\tt Any}

         * Casting {\tt Any} back to the real type

         * Casting an unboxed type to another unboxed type of the same size
           (but not coercions between floating-point and integral types)

         * Casting between two types that have the same runtime representation.  One case is when
           the two types differ only in "phantom" type parameters, for example
           {\tt Ptr Int} to {\tt Ptr Float}, or {\tt [Int]} to {\tt [Float]} when the list is 
           known to be empty.  Also, a {\tt newtype} of a type {\tt T} has the same representation
           at runtime as {\tt T}.

        Other uses of {\tt unsafeCoerce\#} are undefined.  In particular, you should not use
	{\tt unsafeCoerce\#} to cast a T to an algebraic data type D, unless T is also
	an algebraic data type.  For example, do not cast {\tt Int->Int} to {\tt Bool}, even if
        you later cast that {\tt Bool} back to {\tt Int->Int} before applying it.  The reasons
        have to do with GHC's internal representation details (for the congnoscenti, data values
	can be entered but function closures cannot).  If you want a safe type to cast things
	to, use {\tt Any}, which is not an algebraic data type.
	
        }

-- NB. It is tempting to think that casting a value to a type that it doesn't have is safe
-- as long as you don't "do anything" with the value in its cast form, such as seq on it.  This
-- isn't the case: the compiler can insert seqs itself, and if these happen at the wrong type,
-- Bad Things Might Happen.  See bug #1616: in this case we cast a function of type (a,b) -> (a,b)
-- to () -> () and back again.  The strictness analyser saw that the function was strict, but
-- the wrapper had type () -> (), and hence the wrapper de-constructed the (), the worker re-constructed
-- a new (), with the result that the code ended up with "case () of (a,b) -> ...".

primop  TraceEventOp "traceEvent#" GenPrimOp
   Addr# -> State# s -> State# s
   { Emits an event via the RTS tracing framework.  The contents
     of the event is the zero-terminated byte string passed as the first
     argument.  The event will be emitted either to the .eventlog file,
     or to stderr, depending on the runtime RTS flags. }
   with
   has_side_effects = True
   out_of_line      = True

------------------------------------------------------------------------
---                                                                  ---
------------------------------------------------------------------------

thats_all_folks