1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[RnPat]{Renaming of patterns}
Basically dependency analysis.
Handles @Match@, @GRHSs@, @HsExpr@, and @Qualifier@ datatypes. In
general, all of these functions return a renamed thing, and a set of
free variables.
\begin{code}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
-- http://ghc.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details
{-# LANGUAGE ScopedTypeVariables #-}
module RnPat (-- main entry points
rnPat, rnPats, rnBindPat, rnPatAndThen,
NameMaker, applyNameMaker, -- a utility for making names:
localRecNameMaker, topRecNameMaker, -- sometimes we want to make local names,
-- sometimes we want to make top (qualified) names.
isTopRecNameMaker,
rnHsRecFields1, HsRecFieldContext(..),
-- CpsRn monad
CpsRn, liftCps,
-- Literals
rnLit, rnOverLit,
-- Pattern Error messages that are also used elsewhere
checkTupSize, patSigErr
) where
-- ENH: thin imports to only what is necessary for patterns
import {-# SOURCE #-} RnExpr ( rnLExpr )
import {-# SOURCE #-} RnSplice ( rnSplicePat )
import {-# SOURCE #-} TcSplice ( runQuasiQuotePat )
#include "HsVersions.h"
import HsSyn
import TcRnMonad
import TcHsSyn ( hsOverLitName )
import RnEnv
import RnTypes
import DynFlags
import PrelNames
import TyCon ( tyConName )
import ConLike
import DataCon ( dataConTyCon )
import TypeRep ( TyThing(..) )
import Name
import NameSet
import RdrName
import BasicTypes
import Util
import ListSetOps ( removeDups )
import Outputable
import SrcLoc
import FastString
import Literal ( inCharRange )
import TysWiredIn ( nilDataCon )
import DataCon ( dataConName )
import Control.Monad ( when, liftM, ap )
import Data.Ratio
\end{code}
%*********************************************************
%* *
The CpsRn Monad
%* *
%*********************************************************
Note [CpsRn monad]
~~~~~~~~~~~~~~~~~~
The CpsRn monad uses continuation-passing style to support this
style of programming:
do { ...
; ns <- bindNames rs
; ...blah... }
where rs::[RdrName], ns::[Name]
The idea is that '...blah...'
a) sees the bindings of ns
b) returns the free variables it mentions
so that bindNames can report unused ones
In particular,
mapM rnPatAndThen [p1, p2, p3]
has a *left-to-right* scoping: it makes the binders in
p1 scope over p2,p3.
\begin{code}
newtype CpsRn b = CpsRn { unCpsRn :: forall r. (b -> RnM (r, FreeVars))
-> RnM (r, FreeVars) }
-- See Note [CpsRn monad]
instance Functor CpsRn where
fmap = liftM
instance Applicative CpsRn where
pure = return
(<*>) = ap
instance Monad CpsRn where
return x = CpsRn (\k -> k x)
(CpsRn m) >>= mk = CpsRn (\k -> m (\v -> unCpsRn (mk v) k))
runCps :: CpsRn a -> RnM (a, FreeVars)
runCps (CpsRn m) = m (\r -> return (r, emptyFVs))
liftCps :: RnM a -> CpsRn a
liftCps rn_thing = CpsRn (\k -> rn_thing >>= k)
liftCpsFV :: RnM (a, FreeVars) -> CpsRn a
liftCpsFV rn_thing = CpsRn (\k -> do { (v,fvs1) <- rn_thing
; (r,fvs2) <- k v
; return (r, fvs1 `plusFV` fvs2) })
wrapSrcSpanCps :: (a -> CpsRn b) -> Located a -> CpsRn (Located b)
-- Set the location, and also wrap it around the value returned
wrapSrcSpanCps fn (L loc a)
= CpsRn (\k -> setSrcSpan loc $
unCpsRn (fn a) $ \v ->
k (L loc v))
lookupConCps :: Located RdrName -> CpsRn (Located Name)
lookupConCps con_rdr
= CpsRn (\k -> do { con_name <- lookupLocatedOccRn con_rdr
; (r, fvs) <- k con_name
; return (r, addOneFV fvs (unLoc con_name)) })
-- We add the constructor name to the free vars
-- See Note [Patterns are uses]
\end{code}
Note [Patterns are uses]
~~~~~~~~~~~~~~~~~~~~~~~~
Consider
module Foo( f, g ) where
data T = T1 | T2
f T1 = True
f T2 = False
g _ = T1
Arguably we should report T2 as unused, even though it appears in a
pattern, because it never occurs in a constructed position. See
Trac #7336.
However, implementing this in the face of pattern synonyms would be
less straightforward, since given two pattern synonyms
pattern P1 <- P2
pattern P2 <- ()
we need to observe the dependency between P1 and P2 so that type
checking can be done in the correct order (just like for value
bindings). Dependencies between bindings is analyzed in the renamer,
where we don't know yet whether P2 is a constructor or a pattern
synonym. So for now, we do report conid occurrences in patterns as
uses.
%*********************************************************
%* *
Name makers
%* *
%*********************************************************
Externally abstract type of name makers,
which is how you go from a RdrName to a Name
\begin{code}
data NameMaker
= LamMk -- Lambdas
Bool -- True <=> report unused bindings
-- (even if True, the warning only comes out
-- if -fwarn-unused-matches is on)
| LetMk -- Let bindings, incl top level
-- Do *not* check for unused bindings
TopLevelFlag
MiniFixityEnv
topRecNameMaker :: MiniFixityEnv -> NameMaker
topRecNameMaker fix_env = LetMk TopLevel fix_env
isTopRecNameMaker :: NameMaker -> Bool
isTopRecNameMaker (LetMk TopLevel _) = True
isTopRecNameMaker _ = False
localRecNameMaker :: MiniFixityEnv -> NameMaker
localRecNameMaker fix_env = LetMk NotTopLevel fix_env
matchNameMaker :: HsMatchContext a -> NameMaker
matchNameMaker ctxt = LamMk report_unused
where
-- Do not report unused names in interactive contexts
-- i.e. when you type 'x <- e' at the GHCi prompt
report_unused = case ctxt of
StmtCtxt GhciStmtCtxt -> False
_ -> True
rnHsSigCps :: HsWithBndrs (LHsType RdrName) -> CpsRn (HsWithBndrs (LHsType Name))
rnHsSigCps sig
= CpsRn (rnHsBndrSig PatCtx sig)
newPatName :: NameMaker -> Located RdrName -> CpsRn Name
newPatName (LamMk report_unused) rdr_name
= CpsRn (\ thing_inside ->
do { name <- newLocalBndrRn rdr_name
; (res, fvs) <- bindLocalNames [name] (thing_inside name)
; when report_unused $ warnUnusedMatches [name] fvs
; return (res, name `delFV` fvs) })
newPatName (LetMk is_top fix_env) rdr_name
= CpsRn (\ thing_inside ->
do { name <- case is_top of
NotTopLevel -> newLocalBndrRn rdr_name
TopLevel -> newTopSrcBinder rdr_name
; bindLocalNames [name] $ -- Do *not* use bindLocalNameFV here
-- See Note [View pattern usage]
addLocalFixities fix_env [name] $
thing_inside name })
-- Note: the bindLocalNames is somewhat suspicious
-- because it binds a top-level name as a local name.
-- however, this binding seems to work, and it only exists for
-- the duration of the patterns and the continuation;
-- then the top-level name is added to the global env
-- before going on to the RHSes (see RnSource.lhs).
\end{code}
Note [View pattern usage]
~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
let (r, (r -> x)) = x in ...
Here the pattern binds 'r', and then uses it *only* in the view pattern.
We want to "see" this use, and in let-bindings we collect all uses and
report unused variables at the binding level. So we must use bindLocalNames
here, *not* bindLocalNameFV. Trac #3943.
%*********************************************************
%* *
External entry points
%* *
%*********************************************************
There are various entry points to renaming patterns, depending on
(1) whether the names created should be top-level names or local names
(2) whether the scope of the names is entirely given in a continuation
(e.g., in a case or lambda, but not in a let or at the top-level,
because of the way mutually recursive bindings are handled)
(3) whether the a type signature in the pattern can bind
lexically-scoped type variables (for unpacking existential
type vars in data constructors)
(4) whether we do duplicate and unused variable checking
(5) whether there are fixity declarations associated with the names
bound by the patterns that need to be brought into scope with them.
Rather than burdening the clients of this module with all of these choices,
we export the three points in this design space that we actually need:
\begin{code}
-- ----------- Entry point 1: rnPats -------------------
-- Binds local names; the scope of the bindings is entirely in the thing_inside
-- * allows type sigs to bind type vars
-- * local namemaker
-- * unused and duplicate checking
-- * no fixities
rnPats :: HsMatchContext Name -- for error messages
-> [LPat RdrName]
-> ([LPat Name] -> RnM (a, FreeVars))
-> RnM (a, FreeVars)
rnPats ctxt pats thing_inside
= do { envs_before <- getRdrEnvs
-- (1) rename the patterns, bringing into scope all of the term variables
-- (2) then do the thing inside.
; unCpsRn (rnLPatsAndThen (matchNameMaker ctxt) pats) $ \ pats' -> do
{ -- Check for duplicated and shadowed names
-- Must do this *after* renaming the patterns
-- See Note [Collect binders only after renaming] in HsUtils
-- Because we don't bind the vars all at once, we can't
-- check incrementally for duplicates;
-- Nor can we check incrementally for shadowing, else we'll
-- complain *twice* about duplicates e.g. f (x,x) = ...
; addErrCtxt doc_pat $
checkDupAndShadowedNames envs_before $
collectPatsBinders pats'
; thing_inside pats' } }
where
doc_pat = ptext (sLit "In") <+> pprMatchContext ctxt
rnPat :: HsMatchContext Name -- for error messages
-> LPat RdrName
-> (LPat Name -> RnM (a, FreeVars))
-> RnM (a, FreeVars) -- Variables bound by pattern do not
-- appear in the result FreeVars
rnPat ctxt pat thing_inside
= rnPats ctxt [pat] (\pats' -> let [pat'] = pats' in thing_inside pat')
applyNameMaker :: NameMaker -> Located RdrName -> RnM Name
applyNameMaker mk rdr = do { (n, _fvs) <- runCps (newPatName mk rdr); return n }
-- ----------- Entry point 2: rnBindPat -------------------
-- Binds local names; in a recursive scope that involves other bound vars
-- e.g let { (x, Just y) = e1; ... } in ...
-- * does NOT allows type sig to bind type vars
-- * local namemaker
-- * no unused and duplicate checking
-- * fixities might be coming in
rnBindPat :: NameMaker
-> LPat RdrName
-> RnM (LPat Name, FreeVars)
-- Returned FreeVars are the free variables of the pattern,
-- of course excluding variables bound by this pattern
rnBindPat name_maker pat = runCps (rnLPatAndThen name_maker pat)
\end{code}
%*********************************************************
%* *
The main event
%* *
%*********************************************************
\begin{code}
-- ----------- Entry point 3: rnLPatAndThen -------------------
-- General version: parametrized by how you make new names
rnLPatsAndThen :: NameMaker -> [LPat RdrName] -> CpsRn [LPat Name]
rnLPatsAndThen mk = mapM (rnLPatAndThen mk)
-- Despite the map, the monad ensures that each pattern binds
-- variables that may be mentioned in subsequent patterns in the list
--------------------
-- The workhorse
rnLPatAndThen :: NameMaker -> LPat RdrName -> CpsRn (LPat Name)
rnLPatAndThen nm lpat = wrapSrcSpanCps (rnPatAndThen nm) lpat
rnPatAndThen :: NameMaker -> Pat RdrName -> CpsRn (Pat Name)
rnPatAndThen _ (WildPat _) = return (WildPat placeHolderType)
rnPatAndThen mk (ParPat pat) = do { pat' <- rnLPatAndThen mk pat; return (ParPat pat') }
rnPatAndThen mk (LazyPat pat) = do { pat' <- rnLPatAndThen mk pat; return (LazyPat pat') }
rnPatAndThen mk (BangPat pat) = do { pat' <- rnLPatAndThen mk pat; return (BangPat pat') }
rnPatAndThen mk (VarPat rdr) = do { loc <- liftCps getSrcSpanM
; name <- newPatName mk (L loc rdr)
; return (VarPat name) }
-- we need to bind pattern variables for view pattern expressions
-- (e.g. in the pattern (x, x -> y) x needs to be bound in the rhs of the tuple)
rnPatAndThen mk (SigPatIn pat sig)
-- When renaming a pattern type signature (e.g. f (a :: T) = ...), it is
-- important to rename its type signature _before_ renaming the rest of the
-- pattern, so that type variables are first bound by the _outermost_ pattern
-- type signature they occur in. This keeps the type checker happy when
-- pattern type signatures happen to be nested (#7827)
--
-- f ((Just (x :: a) :: Maybe a)
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~^ `a' is first bound here
-- ~~~~~~~~~~~~~~~^ the same `a' then used here
= do { sig' <- rnHsSigCps sig
; pat' <- rnLPatAndThen mk pat
; return (SigPatIn pat' sig') }
rnPatAndThen mk (LitPat lit)
| HsString s <- lit
= do { ovlStr <- liftCps (xoptM Opt_OverloadedStrings)
; if ovlStr
then rnPatAndThen mk (mkNPat (mkHsIsString s placeHolderType) Nothing)
else normal_lit }
| otherwise = normal_lit
where
normal_lit = do { liftCps (rnLit lit); return (LitPat lit) }
rnPatAndThen _ (NPat lit mb_neg _eq)
= do { lit' <- liftCpsFV $ rnOverLit lit
; mb_neg' <- liftCpsFV $ case mb_neg of
Nothing -> return (Nothing, emptyFVs)
Just _ -> do { (neg, fvs) <- lookupSyntaxName negateName
; return (Just neg, fvs) }
; eq' <- liftCpsFV $ lookupSyntaxName eqName
; return (NPat lit' mb_neg' eq') }
rnPatAndThen mk (NPlusKPat rdr lit _ _)
= do { new_name <- newPatName mk rdr
; lit' <- liftCpsFV $ rnOverLit lit
; minus <- liftCpsFV $ lookupSyntaxName minusName
; ge <- liftCpsFV $ lookupSyntaxName geName
; return (NPlusKPat (L (nameSrcSpan new_name) new_name) lit' ge minus) }
-- The Report says that n+k patterns must be in Integral
rnPatAndThen mk (AsPat rdr pat)
= do { new_name <- newPatName mk rdr
; pat' <- rnLPatAndThen mk pat
; return (AsPat (L (nameSrcSpan new_name) new_name) pat') }
rnPatAndThen mk p@(ViewPat expr pat ty)
= do { liftCps $ do { vp_flag <- xoptM Opt_ViewPatterns
; checkErr vp_flag (badViewPat p) }
-- Because of the way we're arranging the recursive calls,
-- this will be in the right context
; expr' <- liftCpsFV $ rnLExpr expr
; pat' <- rnLPatAndThen mk pat
; return (ViewPat expr' pat' ty) }
rnPatAndThen mk (ConPatIn con stuff)
-- rnConPatAndThen takes care of reconstructing the pattern
-- The pattern for the empty list needs to be replaced by an empty explicit list pattern when overloaded lists is turned on.
= case unLoc con == nameRdrName (dataConName nilDataCon) of
True -> do { ol_flag <- liftCps $ xoptM Opt_OverloadedLists
; if ol_flag then rnPatAndThen mk (ListPat [] placeHolderType Nothing)
else rnConPatAndThen mk con stuff}
False -> rnConPatAndThen mk con stuff
rnPatAndThen mk (ListPat pats _ _)
= do { opt_OverloadedLists <- liftCps $ xoptM Opt_OverloadedLists
; pats' <- rnLPatsAndThen mk pats
; case opt_OverloadedLists of
True -> do { (to_list_name,_) <- liftCps $ lookupSyntaxName toListName
; return (ListPat pats' placeHolderType (Just (placeHolderType, to_list_name)))}
False -> return (ListPat pats' placeHolderType Nothing) }
rnPatAndThen mk (PArrPat pats _)
= do { pats' <- rnLPatsAndThen mk pats
; return (PArrPat pats' placeHolderType) }
rnPatAndThen mk (TuplePat pats boxed _)
= do { liftCps $ checkTupSize (length pats)
; pats' <- rnLPatsAndThen mk pats
; return (TuplePat pats' boxed placeHolderType) }
rnPatAndThen _ (SplicePat splice)
= do { -- XXX How to deal with free variables?
; (pat, _) <- liftCps $ rnSplicePat splice
; return pat }
rnPatAndThen mk (QuasiQuotePat qq)
= do { pat <- liftCps $ runQuasiQuotePat qq
-- Wrap the result of the quasi-quoter in parens so that we don't
-- lose the outermost location set by runQuasiQuote (#7918)
; rnPatAndThen mk (ParPat pat) }
rnPatAndThen _ pat = pprPanic "rnLPatAndThen" (ppr pat)
--------------------
rnConPatAndThen :: NameMaker
-> Located RdrName -- the constructor
-> HsConPatDetails RdrName
-> CpsRn (Pat Name)
rnConPatAndThen mk con (PrefixCon pats)
= do { con' <- lookupConCps con
; pats' <- rnLPatsAndThen mk pats
; return (ConPatIn con' (PrefixCon pats')) }
rnConPatAndThen mk con (InfixCon pat1 pat2)
= do { con' <- lookupConCps con
; pat1' <- rnLPatAndThen mk pat1
; pat2' <- rnLPatAndThen mk pat2
; fixity <- liftCps $ lookupFixityRn (unLoc con')
; liftCps $ mkConOpPatRn con' fixity pat1' pat2' }
rnConPatAndThen mk con (RecCon rpats)
= do { con' <- lookupConCps con
; rpats' <- rnHsRecPatsAndThen mk con' rpats
; return (ConPatIn con' (RecCon rpats')) }
--------------------
rnHsRecPatsAndThen :: NameMaker
-> Located Name -- Constructor
-> HsRecFields RdrName (LPat RdrName)
-> CpsRn (HsRecFields Name (LPat Name))
rnHsRecPatsAndThen mk (L _ con) hs_rec_fields@(HsRecFields { rec_dotdot = dd })
= do { flds <- liftCpsFV $ rnHsRecFields1 (HsRecFieldPat con) VarPat hs_rec_fields
; flds' <- mapM rn_field (flds `zip` [1..])
; return (HsRecFields { rec_flds = flds', rec_dotdot = dd }) }
where
rn_field (fld, n') = do { arg' <- rnLPatAndThen (nested_mk dd mk n')
(hsRecFieldArg fld)
; return (fld { hsRecFieldArg = arg' }) }
-- Suppress unused-match reporting for fields introduced by ".."
nested_mk Nothing mk _ = mk
nested_mk (Just _) mk@(LetMk {}) _ = mk
nested_mk (Just n) (LamMk report_unused) n' = LamMk (report_unused && (n' <= n))
\end{code}
%************************************************************************
%* *
Record fields
%* *
%************************************************************************
\begin{code}
data HsRecFieldContext
= HsRecFieldCon Name
| HsRecFieldPat Name
| HsRecFieldUpd
rnHsRecFields1
:: forall arg.
HsRecFieldContext
-> (RdrName -> arg) -- When punning, use this to build a new field
-> HsRecFields RdrName (Located arg)
-> RnM ([HsRecField Name (Located arg)], FreeVars)
-- This supprisingly complicated pass
-- a) looks up the field name (possibly using disambiguation)
-- b) fills in puns and dot-dot stuff
-- When we we've finished, we've renamed the LHS, but not the RHS,
-- of each x=e binding
rnHsRecFields1 ctxt mk_arg (HsRecFields { rec_flds = flds, rec_dotdot = dotdot })
= do { pun_ok <- xoptM Opt_RecordPuns
; disambig_ok <- xoptM Opt_DisambiguateRecordFields
; parent <- check_disambiguation disambig_ok mb_con
; flds1 <- mapM (rn_fld pun_ok parent) flds
; mapM_ (addErr . dupFieldErr ctxt) dup_flds
; dotdot_flds <- rn_dotdot dotdot mb_con flds1
; let all_flds | null dotdot_flds = flds1
| otherwise = flds1 ++ dotdot_flds
; return (all_flds, mkFVs (getFieldIds all_flds)) }
where
mb_con = case ctxt of
HsRecFieldCon con | not (isUnboundName con) -> Just con
HsRecFieldPat con | not (isUnboundName con) -> Just con
_other -> Nothing
-- The unbound name test is because if the constructor
-- isn't in scope the constructor lookup will add an error
-- add an error, but still return an unbound name.
-- We don't want that to screw up the dot-dot fill-in stuff.
doc = case mb_con of
Nothing -> ptext (sLit "constructor field name")
Just con -> ptext (sLit "field of constructor") <+> quotes (ppr con)
rn_fld pun_ok parent (HsRecField { hsRecFieldId = fld
, hsRecFieldArg = arg
, hsRecPun = pun })
= do { fld'@(L loc fld_nm) <- wrapLocM (lookupSubBndrOcc True parent doc) fld
; arg' <- if pun
then do { checkErr pun_ok (badPun fld)
; return (L loc (mk_arg (mkRdrUnqual (nameOccName fld_nm)))) }
else return arg
; return (HsRecField { hsRecFieldId = fld'
, hsRecFieldArg = arg'
, hsRecPun = pun }) }
rn_dotdot :: Maybe Int -- See Note [DotDot fields] in HsPat
-> Maybe Name -- The constructor (Nothing for an update
-- or out of scope constructor)
-> [HsRecField Name (Located arg)] -- Explicit fields
-> RnM [HsRecField Name (Located arg)] -- Filled in .. fields
rn_dotdot Nothing _mb_con _flds -- No ".." at all
= return []
rn_dotdot (Just {}) Nothing _flds -- ".." on record update
= do { addErr (badDotDot ctxt); return [] }
rn_dotdot (Just n) (Just con) flds -- ".." on record construction / pat match
= ASSERT( n == length flds )
do { loc <- getSrcSpanM -- Rather approximate
; dd_flag <- xoptM Opt_RecordWildCards
; checkErr dd_flag (needFlagDotDot ctxt)
; (rdr_env, lcl_env) <- getRdrEnvs
; con_fields <- lookupConstructorFields con
; let present_flds = getFieldIds flds
parent_tc = find_tycon rdr_env con
-- For constructor uses (but not patterns)
-- the arg should be in scope (unqualified)
-- ignoring the record field itself
-- Eg. data R = R { x,y :: Int }
-- f x = R { .. } -- Should expand to R {x=x}, not R{x=x,y=y}
arg_in_scope fld
= rdr `elemLocalRdrEnv` lcl_env
|| notNull [ gre | gre <- lookupGRE_RdrName rdr rdr_env
, case gre_par gre of
ParentIs p -> p /= parent_tc
_ -> True ]
where
rdr = mkRdrUnqual (nameOccName fld)
dot_dot_gres = [ head gres
| fld <- con_fields
, not (fld `elem` present_flds)
, let gres = lookupGRE_Name rdr_env fld
, not (null gres) -- Check field is in scope
, case ctxt of
HsRecFieldCon {} -> arg_in_scope fld
_other -> True ]
; addUsedRdrNames (map greRdrName dot_dot_gres)
; return [ HsRecField
{ hsRecFieldId = L loc fld
, hsRecFieldArg = L loc (mk_arg arg_rdr)
, hsRecPun = False }
| gre <- dot_dot_gres
, let fld = gre_name gre
arg_rdr = mkRdrUnqual (nameOccName fld) ] }
check_disambiguation :: Bool -> Maybe Name -> RnM Parent
-- When disambiguation is on,
check_disambiguation disambig_ok mb_con
| disambig_ok, Just con <- mb_con
= do { env <- getGlobalRdrEnv; return (ParentIs (find_tycon env con)) }
| otherwise = return NoParent
find_tycon :: GlobalRdrEnv -> Name {- DataCon -} -> Name {- TyCon -}
-- Return the parent *type constructor* of the data constructor
-- That is, the parent of the data constructor.
-- That's the parent to use for looking up record fields.
find_tycon env con
| Just (AConLike (RealDataCon dc)) <- wiredInNameTyThing_maybe con
= tyConName (dataConTyCon dc) -- Special case for [], which is built-in syntax
-- and not in the GlobalRdrEnv (Trac #8448)
| [GRE { gre_par = ParentIs p }] <- lookupGRE_Name env con
= p
| otherwise
= pprPanic "find_tycon" (ppr con $$ ppr (lookupGRE_Name env con))
dup_flds :: [[RdrName]]
-- Each list represents a RdrName that occurred more than once
-- (the list contains all occurrences)
-- Each list in dup_fields is non-empty
(_, dup_flds) = removeDups compare (getFieldIds flds)
getFieldIds :: [HsRecField id arg] -> [id]
getFieldIds flds = map (unLoc . hsRecFieldId) flds
needFlagDotDot :: HsRecFieldContext -> SDoc
needFlagDotDot ctxt = vcat [ptext (sLit "Illegal `..' in record") <+> pprRFC ctxt,
ptext (sLit "Use RecordWildCards to permit this")]
badDotDot :: HsRecFieldContext -> SDoc
badDotDot ctxt = ptext (sLit "You cannot use `..' in a record") <+> pprRFC ctxt
badPun :: Located RdrName -> SDoc
badPun fld = vcat [ptext (sLit "Illegal use of punning for field") <+> quotes (ppr fld),
ptext (sLit "Use NamedFieldPuns to permit this")]
dupFieldErr :: HsRecFieldContext -> [RdrName] -> SDoc
dupFieldErr ctxt dups
= hsep [ptext (sLit "duplicate field name"),
quotes (ppr (head dups)),
ptext (sLit "in record"), pprRFC ctxt]
pprRFC :: HsRecFieldContext -> SDoc
pprRFC (HsRecFieldCon {}) = ptext (sLit "construction")
pprRFC (HsRecFieldPat {}) = ptext (sLit "pattern")
pprRFC (HsRecFieldUpd {}) = ptext (sLit "update")
\end{code}
%************************************************************************
%* *
\subsubsection{Literals}
%* *
%************************************************************************
When literals occur we have to make sure
that the types and classes they involve
are made available.
\begin{code}
rnLit :: HsLit -> RnM ()
rnLit (HsChar c) = checkErr (inCharRange c) (bogusCharError c)
rnLit _ = return ()
-- Turn a Fractional-looking literal which happens to be an integer into an
-- Integer-looking literal.
generalizeOverLitVal :: OverLitVal -> OverLitVal
generalizeOverLitVal (HsFractional (FL {fl_value=val}))
| denominator val == 1 = HsIntegral (numerator val)
generalizeOverLitVal lit = lit
rnOverLit :: HsOverLit t -> RnM (HsOverLit Name, FreeVars)
rnOverLit origLit
= do { opt_NumDecimals <- xoptM Opt_NumDecimals
; let { lit@(OverLit {ol_val=val})
| opt_NumDecimals = origLit {ol_val = generalizeOverLitVal (ol_val origLit)}
| otherwise = origLit
}
; let std_name = hsOverLitName val
; (from_thing_name, fvs) <- lookupSyntaxName std_name
; let rebindable = case from_thing_name of
HsVar v -> v /= std_name
_ -> panic "rnOverLit"
; return (lit { ol_witness = from_thing_name
, ol_rebindable = rebindable }, fvs) }
\end{code}
%************************************************************************
%* *
\subsubsection{Errors}
%* *
%************************************************************************
\begin{code}
patSigErr :: Outputable a => a -> SDoc
patSigErr ty
= (ptext (sLit "Illegal signature in pattern:") <+> ppr ty)
$$ nest 4 (ptext (sLit "Use ScopedTypeVariables to permit it"))
bogusCharError :: Char -> SDoc
bogusCharError c
= ptext (sLit "character literal out of range: '\\") <> char c <> char '\''
badViewPat :: Pat RdrName -> SDoc
badViewPat pat = vcat [ptext (sLit "Illegal view pattern: ") <+> ppr pat,
ptext (sLit "Use ViewPatterns to enable view patterns")]
\end{code}
|