summaryrefslogtreecommitdiff
path: root/compiler/simplCore/CallArity.hs
blob: 7bfd2f53cf01c2974dd231e773f60845046f0b67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
--
-- Copyright (c) 2014 Joachim Breitner
--

module CallArity
    ( callArityAnalProgram
    , callArityRHS -- for testing
    ) where

import VarSet
import VarEnv
import DynFlags ( DynFlags )

import BasicTypes
import CoreSyn
import Id
import CoreArity ( typeArity )
import CoreUtils ( exprIsHNF )
--import Outputable
import UnVarGraph

import Control.Arrow ( first, second )


{-
%************************************************************************
%*                                                                      *
              Call Arity Analyis
%*                                                                      *
%************************************************************************

Note [Call Arity: The goal]
~~~~~~~~~~~~~~~~~~~~~~~~~~~

The goal of this analysis is to find out if we can eta-expand a local function,
based on how it is being called. The motivating example is this code,
which comes up when we implement foldl using foldr, and do list fusion:

    let go = \x -> let d = case ... of
                              False -> go (x+1)
                              True  -> id
                   in \z -> d (x + z)
    in go 1 0

If we do not eta-expand `go` to have arity 2, we are going to allocate a lot of
partial function applications, which would be bad.

The function `go` has a type of arity two, but only one lambda is manifest.
Furthermore, an analysis that only looks at the RHS of go cannot be sufficient
to eta-expand go: If `go` is ever called with one argument (and the result used
multiple times), we would be doing the work in `...` multiple times.

So `callArityAnalProgram` looks at the whole let expression to figure out if
all calls are nice, i.e. have a high enough arity. It then stores the result in
the `calledArity` field of the `IdInfo` of `go`, which the next simplifier
phase will eta-expand.

The specification of the `calledArity` field is:

    No work will be lost if you eta-expand me to the arity in `calledArity`.

What we want to know for a variable
-----------------------------------

For every let-bound variable we'd like to know:
  1. A lower bound on the arity of all calls to the variable, and
  2. whether the variable is being called at most once or possible multiple
     times.

It is always ok to lower the arity, or pretend that there are multiple calls.
In particular, "Minimum arity 0 and possible called multiple times" is always
correct.


What we want to know from an expression
---------------------------------------

In order to obtain that information for variables, we analyize expression and
obtain bits of information:

 I.  The arity analysis:
     For every variable, whether it is absent, or called,
     and if called, which what arity.

 II. The Co-Called analysis:
     For every two variables, whether there is a possibility that both are being
     called.
     We obtain as a special case: For every variables, whether there is a
     possibility that it is being called twice.

For efficiency reasons, we gather this information only for a set of
*interesting variables*, to avoid spending time on, e.g., variables from pattern matches.

The two analysis are not completely independent, as a higher arity can improve
the information about what variables are being called once or multiple times.

Note [Analysis I: The arity analyis]
------------------------------------

The arity analysis is quite straight forward: The information about an
expression is an
    VarEnv Arity
where absent variables are bound to Nothing and otherwise to a lower bound to
their arity.

When we analyize an expression, we analyize it with a given context arity.
Lambdas decrease and applications increase the incoming arity. Analysizing a
variable will put that arity in the environment. In lets or cases all the
results from the various subexpressions are lubed, which takes the point-wise
minimum (considering Nothing an infinity).


Note [Analysis II: The Co-Called analysis]
------------------------------------------

The second part is more sophisticated. For reasons explained below, it is not
sufficient to simply know how often an expression evalutes a variable. Instead
we need to know which variables are possibly called together.

The data structure here is an undirected graph of variables, which is provided
by the abstract
    UnVarGraph

It is safe to return a larger graph, i.e. one with more edges. The worst case
(i.e. the least useful and always correct result) is the complete graph on all
free variables, which means that anything can be called together with anything
(including itself).

Notation for the following:
C(e)  is the co-called result for e.
G₁∪G₂ is the union of two graphs
fv    is the set of free variables (conveniently the domain of the arity analysis result)
S₁×S₂ is the complete bipartite graph { {a,b} | a ∈ S₁, b ∈ S₂ }
S²    is the complete graph on the set of variables S, S² = S×S
C'(e) is a variant for bound expression:
      If e is called at most once, or it is and stays a thunk (after the analysis),
      it is simply C(e). Otherwise, the expression can be called multiple times
      and we return (fv e)²

The interesting cases of the analysis:
 * Var v:
   No other variables are being called.
   Return {} (the empty graph)
 * Lambda v e, under arity 0:
   This means that e can be evaluated many times and we cannot get
   any useful co-call information.
   Return (fv e)²
 * Case alternatives alt₁,alt₂,...:
   Only one can be execuded, so
   Return (alt₁ ∪ alt₂ ∪...)
 * App e₁ e₂ (and analogously Case scrut alts):
   We get the results from both sides. Additionally, anything called by e₁ can
   possibly called with anything from e₂.
   Return: C(e₁) ∪ C(e₂) ∪ (fv e₁) × (fv e₂)
 * Let v = rhs in body:
   In addition to the results from the subexpressions, add all co-calls from
   everything that the body calls together with v to everthing that is called
   by v.
   Return: C'(rhs) ∪ C(body) ∪ (fv rhs) × {v'| {v,v'} ∈ C(body)}
 * Letrec v₁ = rhs₁ ... vₙ = rhsₙ in body
   Tricky.
   We assume that it is really mutually recursive, i.e. that every variable
   calls one of the others, and that this is strongly connected (otherwise we
   return an over-approximation, so that's ok), see note [Recursion and fixpointing].

   Let V = {v₁,...vₙ}.
   Assume that the vs have been analysed with an incoming demand and
   cardinality consistent with the final result (this is the fixed-pointing).
   Again we can use the results from all subexpressions.
   In addition, for every variable vᵢ, we need to find out what it is called
   with (call this set Sᵢ). There are two cases:
    * If vᵢ is a function, we need to go through all right-hand-sides and bodies,
      and collect every variable that is called together with any variable from V:
      Sᵢ = {v' | j ∈ {1,...,n},      {v',vⱼ} ∈ C'(rhs₁) ∪ ... ∪ C'(rhsₙ) ∪ C(body) }
    * If vᵢ is a thunk, then its rhs is evaluated only once, so we need to
      exclude it from this set:
      Sᵢ = {v' | j ∈ {1,...,n}, j≠i, {v',vⱼ} ∈ C'(rhs₁) ∪ ... ∪ C'(rhsₙ) ∪ C(body) }
   Finally, combine all this:
   Return: C(body) ∪
           C'(rhs₁) ∪ ... ∪ C'(rhsₙ) ∪
           (fv rhs₁) × S₁) ∪ ... ∪ (fv rhsₙ) × Sₙ)

Using the result: Eta-Expansion
-------------------------------

We use the result of these two analyses to decide whether we can eta-expand the
rhs of a let-bound variable.

If the variable is already a function (exprIsHNF), and all calls to the
variables have a higher arity than the current manifest arity (i.e. the number
of lambdas), expand.

If the variable is a thunk we must be careful: Eta-Expansion will prevent
sharing of work, so this is only safe if there is at most one call to the
function. Therefore, we check whether {v,v} ∈ G.

    Example:

        let n = case .. of .. -- A thunk!
        in n 0 + n 1

    vs.

        let n = case .. of ..
        in case .. of T -> n 0
                      F -> n 1

    We are only allowed to eta-expand `n` if it is going to be called at most
    once in the body of the outer let. So we need to know, for each variable
    individually, that it is going to be called at most once.


Why the co-call graph?
----------------------

Why is it not sufficient to simply remember which variables are called once and
which are called multiple times? It would be in the previous example, but consider

        let n = case .. of ..
        in case .. of
            True -> let go = \y -> case .. of
                                     True -> go (y + n 1)
                                     False > n
                    in go 1
            False -> n

vs.

        let n = case .. of ..
        in case .. of
            True -> let go = \y -> case .. of
                                     True -> go (y+1)
                                     False > n
                    in go 1
            False -> n

In both cases, the body and the rhs of the inner let call n at most once.
But only in the second case that holds for the whole expression! The
crucial difference is that in the first case, the rhs of `go` can call
*both* `go` and `n`, and hence can call `n` multiple times as it recurses,
while in the second case find out that `go` and `n` are not called together.


Why co-call information for functions?
--------------------------------------

Although for eta-expansion we need the information only for thunks, we still
need to know whether functions are being called once or multiple times, and
together with what other functions.

    Example:

        let n = case .. of ..
            f x = n (x+1)
        in f 1 + f 2

    vs.

        let n = case .. of ..
            f x = n (x+1)
        in case .. of T -> f 0
                      F -> f 1

    Here, the body of f calls n exactly once, but f itself is being called
    multiple times, so eta-expansion is not allowed.


Note [Analysis type signature]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The work-hourse of the analysis is the function `callArityAnal`, with the
following type:

    type CallArityRes = (UnVarGraph, VarEnv Arity)
    callArityAnal ::
        Arity ->  -- The arity this expression is called with
        VarSet -> -- The set of interesting variables
        CoreExpr ->  -- The expression to analyse
        (CallArityRes, CoreExpr)

and the following specification:

  ((coCalls, callArityEnv), expr') = callArityEnv arity interestingIds expr

                            <=>

  Assume the expression `expr` is being passed `arity` arguments. Then it holds that
    * The domain of `callArityEnv` is a subset of `interestingIds`.
    * Any variable from `interestingIds` that is not mentioned in the `callArityEnv`
      is absent, i.e. not called at all.
    * Every call from `expr` to a variable bound to n in `callArityEnv` has at
      least n value arguments.
    * For two interesting variables `v1` and `v2`, they are not adjacent in `coCalls`,
      then in no execution of `expr` both are being called.
  Furthermore, expr' is expr with the callArity field of the `IdInfo` updated.


Note [Which variables are interesting]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The analysis would quickly become prohibitive expensive if we would analyse all
variables; for most variables we simply do not care about how often they are
called, i.e. variables bound in a pattern match. So interesting are variables that are
 * top-level or let bound
 * and possibly functions (typeArity > 0)

Note [Information about boring variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If we decide that the variable bound in `let x = e1 in e2` is not interesting,
the analysis of `e2` will not report anything about `x`. To ensure that
`callArityBind` does still do the right thing we have to extend the result from
`e2` with a safe approximation.

This is done using `fakeBoringCalls` and has the effect of analysing
   x `seq` x `seq` e2
instead, i.e. with `both` the result from `e2` with the most conservative
result about the uninteresting value.

Note [Recursion and fixpointing]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For a mutually recursive let, we begin by
 1. analysing the body, using the same incoming arity as for the whole expression.
 2. Then we iterate, memoizing for each of the bound variables the last
    analysis call, i.e. incoming arity, whether it is called once, and the CallArityRes.
 3. We combine the analysis result from the body and the memoized results for
    the arguments (if already present).
 4. For each variable, we find out the incoming arity and whether it is called
    once, based on the the current analysis result. If this differs from the
    memoized results, we re-analyse the rhs and update the memoized table.
 5. If nothing had to be reanalized, we are done.
    Otherwise, repeat from step 3.


Note [Thunks in recursive groups]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We never eta-expand a thunk in a recursive group, on the grounds that if it is
part of a recursive group, then it will be called multipe times.

This is not necessarily true, e.g.  it would be safe to eta-expand t2 (but not
t1) in the follwing code:

  let go x = t1
      t1 = if ... then t2 else ...
      t2 = if ... then go 1 else ...
  in go 0

Detecting this would require finding out what variables are only ever called
from thunks. While this is certainly possible, we yet have to see this to be
relevant in the wild.


Note [Analysing top-level binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We can eta-expand top-level-binds if they are not exported, as we see all calls
to them. The plan is as follows: Treat the top-level binds as nested lets around
a body representing “all external calls”, which returns a pessimistic
CallArityRes (the co-call graph is the complete graph, all arityies 0).

-}

-- Main entry point

callArityAnalProgram :: DynFlags -> CoreProgram -> CoreProgram
callArityAnalProgram _dflags binds = binds'
  where
    (_, binds') = callArityTopLvl [] emptyVarSet binds

-- See Note [Analysing top-level-binds]
callArityTopLvl :: [Var] -> VarSet -> [CoreBind] -> (CallArityRes, [CoreBind])
callArityTopLvl exported _ []
    = ( calledMultipleTimes $ (emptyUnVarGraph, mkVarEnv $ [(v, 0) | v <- exported])
      , [] )
callArityTopLvl exported int1 (b:bs)
    = (ae2, b':bs')
  where
    int2 = bindersOf b
    exported' = filter isExportedId int2 ++ exported
    int' = int1 `addInterestingBinds` b
    (ae1, bs') = callArityTopLvl exported' int' bs
    ae1' = fakeBoringCalls int' b ae1 -- See Note [Information about boring variables]
    (ae2, b')  = callArityBind ae1' int1 b


callArityRHS :: CoreExpr -> CoreExpr
callArityRHS = snd . callArityAnal 0 emptyVarSet

-- The main analysis function. See Note [Analysis type signature]
callArityAnal ::
    Arity ->  -- The arity this expression is called with
    VarSet -> -- The set of interesting variables
    CoreExpr ->  -- The expression to analyse
    (CallArityRes, CoreExpr)
        -- How this expression uses its interesting variables
        -- and the expression with IdInfo updated

-- The trivial base cases
callArityAnal _     _   e@(Lit _)
    = (emptyArityRes, e)
callArityAnal _     _   e@(Type _)
    = (emptyArityRes, e)
callArityAnal _     _   e@(Coercion _)
    = (emptyArityRes, e)
-- The transparent cases
callArityAnal arity int (Tick t e)
    = second (Tick t) $ callArityAnal arity int e
callArityAnal arity int (Cast e co)
    = second (\e -> Cast e co) $ callArityAnal arity int e

-- The interesting case: Variables, Lambdas, Lets, Applications, Cases
callArityAnal arity int e@(Var v)
    | v `elemVarSet` int
    = (unitArityRes v arity, e)
    | otherwise
    = (emptyArityRes, e)

-- Non-value lambdas are ignored
callArityAnal arity int (Lam v e) | not (isId v)
    = second (Lam v) $ callArityAnal arity (int `delVarSet` v) e

-- We have a lambda that may be called multiple times, so its free variables
-- can all be co-called.
callArityAnal 0     int (Lam v e)
    = (ae', Lam v e')
  where
    (ae, e') = callArityAnal 0 (int `delVarSet` v) e
    ae' = calledMultipleTimes ae
-- We have a lambda that we are calling. decrease arity.
callArityAnal arity int (Lam v e)
    = (ae, Lam v e')
  where
    (ae, e') = callArityAnal (arity - 1) (int `delVarSet` v) e

-- Application. Increase arity for the called expresion, nothing to know about
-- the second
callArityAnal arity int (App e (Type t))
    = second (\e -> App e (Type t)) $ callArityAnal arity int e
callArityAnal arity int (App e1 e2)
    = (final_ae, App e1' e2')
  where
    (ae1, e1') = callArityAnal (arity + 1) int e1
    (ae2, e2') = callArityAnal 0           int e2
    -- See Note [Case and App: Which side to take?]
    final_ae = ae1 `both` ae2

-- Case expression.
callArityAnal arity int (Case scrut bndr ty alts)
    = -- pprTrace "callArityAnal:Case"
      --          (vcat [ppr scrut, ppr final_ae])
      (final_ae, Case scrut' bndr ty alts')
  where
    (alt_aes, alts') = unzip $ map go alts
    go (dc, bndrs, e) = let (ae, e') = callArityAnal arity int e
                        in  (ae, (dc, bndrs, e'))
    alt_ae = lubRess alt_aes
    (scrut_ae, scrut') = callArityAnal 0 int scrut
    -- See Note [Case and App: Which side to take?]
    final_ae = scrut_ae `both` alt_ae

-- For lets, use callArityBind
callArityAnal arity int (Let bind e)
  = -- pprTrace "callArityAnal:Let"
    --          (vcat [ppr v, ppr arity, ppr n, ppr final_ae ])
    (final_ae, Let bind' e')
  where
    int_body = int `addInterestingBinds` bind
    (ae_body, e') = callArityAnal arity int_body e
    ae_body' = fakeBoringCalls int_body bind ae_body -- See Note [Information about boring variables]
    (final_ae, bind') = callArityBind ae_body' int bind

-- Which bindings should we look at?
-- See Note [Which variables are interesting]
interestingBinds :: CoreBind -> [Var]
interestingBinds = filter go . bindersOf
  where go v = 0 < length (typeArity (idType v))

addInterestingBinds :: VarSet -> CoreBind -> VarSet
addInterestingBinds int bind
    = int `delVarSetList`    bindersOf bind -- Possible shadowing
          `extendVarSetList` interestingBinds bind

-- For every boring variable in the binder, add a safe approximation
-- See Note [Information about boring variables]
fakeBoringCalls :: VarSet -> CoreBind -> CallArityRes -> CallArityRes
fakeBoringCalls int bind res = boring `both` res
  where
    boring = calledMultipleTimes $
        ( emptyUnVarGraph
        ,  mkVarEnv [ (v, 0) | v <- bindersOf bind, not (v `elemVarSet` int)])


-- Used for both local and top-level binds
-- First argument is the demand from the body
callArityBind :: CallArityRes -> VarSet -> CoreBind -> (CallArityRes, CoreBind)
-- Non-recursive let
callArityBind ae_body int (NonRec v rhs)
  | otherwise
  = -- pprTrace "callArityBind:NonRec"
    --          (vcat [ppr v, ppr ae_body, ppr int, ppr ae_rhs, ppr safe_arity])
    (final_ae, NonRec v' rhs')
  where
    is_thunk = not (exprIsHNF rhs)

    (arity, called_once)  = lookupCallArityRes ae_body v
    safe_arity | called_once = arity
               | is_thunk    = 0      -- A thunk! Do not eta-expand
               | otherwise   = arity
    (ae_rhs, rhs') = callArityAnal safe_arity int rhs

    ae_rhs'| called_once     = ae_rhs
           | safe_arity == 0 = ae_rhs -- If it is not a function, its body is evaluated only once
           | otherwise       = calledMultipleTimes ae_rhs

    final_ae = callArityNonRecEnv v ae_rhs' ae_body
    v' = v `setIdCallArity` safe_arity



-- Recursive let. See Note [Recursion and fixpointing]
callArityBind ae_body int b@(Rec binds)
  = -- pprTrace "callArityBind:Rec"
    --           (vcat [ppr (Rec binds'), ppr ae_body, ppr int, ppr ae_rhs]) $
    (final_ae, Rec binds')
  where
    int_body = int `addInterestingBinds` b
    (ae_rhs, binds') = fix initial_binds
    final_ae = bindersOf b `resDelList` ae_rhs

    initial_binds = [(i,Nothing,e) | (i,e) <- binds]

    fix :: [(Id, Maybe (Bool, Arity, CallArityRes), CoreExpr)] -> (CallArityRes, [(Id, CoreExpr)])
    fix ann_binds
        | -- pprTrace "callArityBind:fix" (vcat [ppr ann_binds, ppr any_change, ppr ae]) $
          any_change
        = fix ann_binds'
        | otherwise
        = (ae, map (\(i, _, e) -> (i, e)) ann_binds')
      where
        aes_old = [ (i,ae) | (i, Just (_,_,ae), _) <- ann_binds ]
        ae = callArityRecEnv aes_old ae_body

        rerun (i, mbLastRun, rhs)
            | i `elemVarSet` int_body && not (i `elemUnVarSet` domRes ae)
            -- No call to this yet, so do nothing
            = (False, (i, Nothing, rhs))

            | Just (old_called_once, old_arity, _) <- mbLastRun
            , called_once == old_called_once
            , new_arity == old_arity
            -- No change, no need to re-analize
            = (False, (i, mbLastRun, rhs))

            | otherwise
            -- We previously analized this with a different arity (or not at all)
            = let is_thunk = not (exprIsHNF rhs)

                  safe_arity | is_thunk    = 0  -- See Note [Thunks in recursive groups]
                             | otherwise   = new_arity

                  (ae_rhs, rhs') = callArityAnal safe_arity int_body rhs

                  ae_rhs' | called_once     = ae_rhs
                          | safe_arity == 0 = ae_rhs -- If it is not a function, its body is evaluated only once
                          | otherwise       = calledMultipleTimes ae_rhs

              in (True, (i `setIdCallArity` safe_arity, Just (called_once, new_arity, ae_rhs'), rhs'))
          where
            (new_arity, called_once)  = lookupCallArityRes ae i

        (changes, ann_binds') = unzip $ map rerun ann_binds
        any_change = or changes

-- Combining the results from body and rhs, non-recursive case
-- See Note [Analysis II: The Co-Called analysis]
callArityNonRecEnv :: Var -> CallArityRes -> CallArityRes -> CallArityRes
callArityNonRecEnv v ae_rhs ae_body
    = addCrossCoCalls called_by_v called_with_v $ ae_rhs `lubRes` resDel v ae_body
  where
    called_by_v = domRes ae_rhs
    called_with_v = calledWith ae_body v `delUnVarSet` v

-- Combining the results from body and rhs, (mutually) recursive case
-- See Note [Analysis II: The Co-Called analysis]
callArityRecEnv :: [(Var, CallArityRes)] -> CallArityRes -> CallArityRes
callArityRecEnv ae_rhss ae_body
    = -- pprTrace "callArityRecEnv" (vcat [ppr ae_rhss, ppr ae_body, ppr ae_new])
      ae_new
  where
    vars = map fst ae_rhss

    ae_combined = lubRess (map snd ae_rhss) `lubRes` ae_body

    cross_calls = unionUnVarGraphs $ map cross_call ae_rhss
    cross_call (v, ae_rhs) = completeBipartiteGraph called_by_v called_with_v
      where
        is_thunk = idCallArity v == 0
        -- What rhs are relevant as happening before (or after) calling v?
        --    If v is a thunk, everything from all the _other_ variables
        --    If v is not a thunk, everything can happen.
        ae_before_v | is_thunk  = lubRess (map snd $ filter ((/= v) . fst) ae_rhss) `lubRes` ae_body
                    | otherwise = ae_combined
        -- What do we want to know from these?
        -- Which calls can happen next to any recursive call.
        called_with_v
            = unionUnVarSets $ map (calledWith ae_before_v) vars
        called_by_v = domRes ae_rhs

    ae_new = first (cross_calls `unionUnVarGraph`) ae_combined

---------------------------------------
-- Functions related to CallArityRes --
---------------------------------------

-- Result type for the two analyses.
-- See Note [Analysis I: The arity analyis]
-- and Note [Analysis II: The Co-Called analysis]
type CallArityRes = (UnVarGraph, VarEnv Arity)

emptyArityRes :: CallArityRes
emptyArityRes = (emptyUnVarGraph, emptyVarEnv)

unitArityRes :: Var -> Arity -> CallArityRes
unitArityRes v arity = (emptyUnVarGraph, unitVarEnv v arity)

resDelList :: [Var] -> CallArityRes -> CallArityRes
resDelList vs ae = foldr resDel ae vs

resDel :: Var -> CallArityRes -> CallArityRes
resDel v (g, ae) = (g `delNode` v, ae `delVarEnv` v)

domRes :: CallArityRes -> UnVarSet
domRes (_, ae) = varEnvDom ae

-- In the result, find out the minimum arity and whether the variable is called
-- at most once.
lookupCallArityRes :: CallArityRes -> Var -> (Arity, Bool)
lookupCallArityRes (g, ae) v
    = case lookupVarEnv ae v of
        Just a -> (a, not (v `elemUnVarSet` (neighbors g v)))
        Nothing -> (0, False)

calledWith :: CallArityRes -> Var -> UnVarSet
calledWith (g, _) v = neighbors g v

addCrossCoCalls :: UnVarSet -> UnVarSet -> CallArityRes -> CallArityRes
addCrossCoCalls set1 set2 = first (completeBipartiteGraph set1 set2 `unionUnVarGraph`)

-- Replaces the co-call graph by a complete graph (i.e. no information)
calledMultipleTimes :: CallArityRes -> CallArityRes
calledMultipleTimes res = first (const (completeGraph (domRes res))) res

-- Used for application and cases
both :: CallArityRes -> CallArityRes -> CallArityRes
both r1 r2 = addCrossCoCalls (domRes r1) (domRes r2) $ r1 `lubRes` r2

-- Used when combining results from alternative cases; take the minimum
lubRes :: CallArityRes -> CallArityRes -> CallArityRes
lubRes (g1, ae1) (g2, ae2) = (g1 `unionUnVarGraph` g2, ae1 `lubArityEnv` ae2)

lubArityEnv :: VarEnv Arity -> VarEnv Arity -> VarEnv Arity
lubArityEnv = plusVarEnv_C min

lubRess :: [CallArityRes] -> CallArityRes
lubRess = foldl lubRes emptyArityRes