summaryrefslogtreecommitdiff
path: root/compiler/simplCore/Exitify.hs
blob: 40c7374f15bd07bb203ba589a23140d3762c6cc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
module Exitify ( exitifyProgram ) where

{-
Note [Exitification]
~~~~~~~~~~~~~~~~~~~~

This module implements Exitification. The goal is to pull as much code out of
recursive functions as possible, as the simplifier is better at inlining into
call-sites that are not in recursive functions.

Example:

  let t = foo bar
  joinrec go 0     x y = t (x*x)
          go (n-1) x y = jump go (n-1) (x+y)
  in …

We’d like to inline `t`, but that does not happen: Because t is a thunk and is
used in a recursive function, doing so might lose sharing in general. In
this case, however, `t` is on the _exit path_ of `go`, so called at most once.
How do we make this clearly visible to the simplifier?

A code path (i.e., an expression in a tail-recursive position) in a recursive
function is an exit path if it does not contain a recursive call. We can bind
this expression outside the recursive function, as a join-point.

Example result:

  let t = foo bar
  join exit x = t (x*x)
  joinrec go 0     x y = jump exit x
          go (n-1) x y = jump go (n-1) (x+y)
  in …

Now `t` is no longer in a recursive function, and good things happen!
-}

import GhcPrelude
import Var
import Id
import IdInfo
import CoreSyn
import CoreUtils
import State
import Unique
import VarSet
import VarEnv
import CoreFVs
import FastString
import Type

import Data.Bifunctor
import Control.Monad

-- | Traverses the AST, simply to find all joinrecs and call 'exitify' on them.
exitifyProgram :: CoreProgram -> CoreProgram
exitifyProgram binds = map goTopLvl binds
  where
    goTopLvl (NonRec v e) = NonRec v (go in_scope_toplvl e)
    goTopLvl (Rec pairs) = Rec (map (second (go in_scope_toplvl)) pairs)

    in_scope_toplvl = emptyInScopeSet `extendInScopeSetList` bindersOfBinds binds

    go :: InScopeSet -> CoreExpr -> CoreExpr
    go _ e@(Var{})       = e
    go _ e@(Lit {})      = e
    go _ e@(Type {})     = e
    go _ e@(Coercion {}) = e

    go in_scope (Lam v e')  = Lam v (go in_scope' e')
      where in_scope' = in_scope `extendInScopeSet` v
    go in_scope (App e1 e2) = App (go in_scope e1) (go in_scope e2)
    go in_scope (Case scrut bndr ty alts)
        = Case (go in_scope scrut) bndr ty (map (goAlt in_scope') alts)
      where in_scope' = in_scope `extendInScopeSet` bndr
    go in_scope (Cast e' c) = Cast (go in_scope e') c
    go in_scope (Tick t e') = Tick t (go in_scope e')
    go in_scope (Let bind body) = goBind in_scope bind (go in_scope' body)
      where in_scope' = in_scope `extendInScopeSetList` bindersOf bind

    goAlt :: InScopeSet -> CoreAlt -> CoreAlt
    goAlt in_scope (dc, pats, rhs) = (dc, pats, go in_scope' rhs)
      where in_scope' = in_scope `extendInScopeSetList` pats

    goBind :: InScopeSet -> CoreBind -> (CoreExpr -> CoreExpr)
    goBind in_scope (NonRec v rhs) = Let (NonRec v (go in_scope rhs))
    goBind in_scope (Rec pairs)
        | is_join_rec = exitify in_scope' pairs'
        | otherwise   = Let (Rec pairs')
      where pairs' = map (second (go in_scope')) pairs
            is_join_rec = any (isJoinId . fst) pairs
            in_scope' = in_scope `extendInScopeSetList` bindersOf (Rec pairs)

-- | Given a recursive group of a joinrec, identifies “exit paths” and binds them as
--   join-points outside the joinrec.
exitify :: InScopeSet -> [(Var,CoreExpr)] -> (CoreExpr -> CoreExpr)
exitify in_scope pairs =
    \body ->mkExitLets exits (mkLetRec pairs' body)
  where
    mkExitLets ((exitId, exitRhs):exits') = mkLetNonRec exitId exitRhs . mkExitLets exits'
    mkExitLets [] = id

    -- We need the set of free variables of many subexpressions here, so
    -- annotate the AST with them
    -- see Note [Calculating free variables]
    ann_pairs = map (second freeVars) pairs

    -- Which are the recursive calls?
    recursive_calls = mkVarSet $ map fst pairs

    (pairs',exits) = (`runState` []) $ do
        forM ann_pairs $ \(x,rhs) -> do
            -- go past the lambdas of the join point
            let (args, body) = collectNAnnBndrs (idJoinArity x) rhs
            body' <- go args body
            let rhs' = mkLams args body'
            return (x, rhs')

    -- main working function. Goes through the RHS (tail-call positions only),
    -- checks if there are no more recursive calls, if so, abstracts over
    -- variables bound on the way and lifts it out as a join point.
    --
    -- It uses a state monad to keep track of floated binds
    go :: [Var]           -- ^ variables to abstract over
       -> CoreExprWithFVs -- ^ current expression in tail position
       -> State [(Id, CoreExpr)] CoreExpr

    go captured ann_e
        -- Do not touch an expression that is already a join jump where all arguments
        -- are captured variables. See Note [Idempotency]
        -- But _do_ float join jumps with interesting arguments.
        -- See Note [Jumps can be interesting]
        | (Var f, args) <- collectArgs e
        , isJoinId f
        , all isCapturedVarArg args
        = return e

        -- Do not touch a boring expression (see Note [Interesting expression])
        | is_exit, not is_interesting = return e

        -- Cannot float out if local join points are used, as
        -- we cannot abstract over them
        | is_exit, captures_join_points = return e

        -- We have something to float out!
        | is_exit = do
            -- Assemble the RHS of the exit join point
            let rhs = mkLams args e
                ty = exprType rhs
            let avoid = in_scope `extendInScopeSetList` captured
            -- Remember this binding under a suitable name
            v <- addExit avoid ty (length args) rhs
            -- And jump to it from here
            return $ mkVarApps (Var v) args
      where
        -- An exit expression has no recursive calls
        is_exit = disjointVarSet fvs recursive_calls

        -- Used to detect exit expressoins that are already proper exit jumps
        isCapturedVarArg (Var v) = v `elem` captured
        isCapturedVarArg _ = False

        -- An interesting exit expression has free variables from
        -- outside the recursive group
        -- See Note [Interesting expression]
        is_interesting = not (isEmptyVarSet (fvs `minusVarSet` mkVarSet captured))

        -- The possible arguments of this exit join point
        args = filter (`elemVarSet` fvs) captured

        -- We cannot abstract over join points
        captures_join_points = any isJoinId args

        e = deAnnotate ann_e
        fvs = dVarSetToVarSet (freeVarsOf ann_e)


    -- Case right hand sides are in tail-call position
    go captured (_, AnnCase scrut bndr ty alts) = do
        alts' <- forM alts $ \(dc, pats, rhs) -> do
            rhs' <- go (captured ++ [bndr] ++ pats) rhs
            return (dc, pats, rhs')
        return $ Case (deAnnotate scrut) bndr ty alts'

    go captured (_, AnnLet ann_bind body)
        -- join point, RHS and body are in tail-call position
        | AnnNonRec j rhs <- ann_bind
        , Just join_arity <- isJoinId_maybe j
        = do let (params, join_body) = collectNAnnBndrs join_arity rhs
             join_body' <- go (captured ++ params) join_body
             let rhs' = mkLams params join_body'
             body' <- go (captured ++ [j]) body
             return $ Let (NonRec j rhs') body'

        -- rec join point, RHSs and body are in tail-call position
        | AnnRec pairs <- ann_bind
        , isJoinId (fst (head pairs))
        = do let js = map fst pairs
             pairs' <- forM pairs $ \(j,rhs) -> do
                 let join_arity = idJoinArity j
                     (params, join_body) = collectNAnnBndrs join_arity rhs
                 join_body' <- go (captured ++ js ++ params) join_body
                 let rhs' = mkLams params join_body'
                 return (j, rhs')
             body' <- go (captured ++ js) body
             return $ Let (Rec pairs') body'

        -- normal Let, only the body is in tail-call position
        | otherwise
        = do body' <- go (captured ++ bindersOf bind ) body
             return $ Let bind body'
      where bind = deAnnBind ann_bind

    go _ ann_e = return (deAnnotate ann_e)


-- Picks a new unique, which is disjoint from
--  * the free variables of the whole joinrec
--  * any bound variables (captured)
--  * any exit join points created so far.
mkExitJoinId :: InScopeSet -> Type -> JoinArity -> ExitifyM JoinId
mkExitJoinId in_scope ty join_arity = do
    fs <- get
    let avoid = in_scope `extendInScopeSetList` (map fst fs)
                         `extendInScopeSet` exit_id_tmpl -- just cosmetics
    return (uniqAway avoid exit_id_tmpl)
  where
    exit_id_tmpl = mkSysLocal (fsLit "exit") initExitJoinUnique ty
                    `asJoinId` join_arity
                    `setIdOccInfo` exit_occ_info

    -- See Note [Do not inline exit join points]
    exit_occ_info =
        OneOcc { occ_in_lam = True
               , occ_one_br = True
               , occ_int_cxt = False
               , occ_tail = AlwaysTailCalled join_arity }

addExit :: InScopeSet -> Type -> JoinArity -> CoreExpr -> ExitifyM JoinId
addExit in_scope ty join_arity rhs = do
    -- Pick a suitable name
    v <- mkExitJoinId in_scope ty join_arity
    fs <- get
    put ((v,rhs):fs)
    return v


type ExitifyM =  State [(JoinId, CoreExpr)]

{-
Note [Interesting expression]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We do not want this to happen:

  joinrec go 0     x y = x
          go (n-1) x y = jump go (n-1) (x+y)
  in …
==>
  join exit x = x
  joinrec go 0     x y = jump exit x
          go (n-1) x y = jump go (n-1) (x+y)
  in …

nor

  joinrec go 0     x y = x+x
          go (n-1) x y = jump go (n-1) (x+y)
  in …
==>
  join exit x = x+x
  joinrec go 0     x y = jump exit x
          go (n-1) x y = jump go (n-1) (x+y)
  in …

So we only hoist an exit expression out if it contains at least one free
non-exported variable.

Note [Jumps can be interesting]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A jump to a join point can be interesting, if its arguments contain free
non-exported variables (z in the following example):

  joinrec go 0     x y = jump j (x+z)
          go (n-1) x y = jump go (n-1) (x+y)
  in …
==>
  join exit x y = jump j (x+z)
  joinrec go 0     x y = jump exit x
          go (n-1) x y = jump go (n-1) (x+y)


The join point itself can be interesting, even if none if
its arguments are (assume `g` to be an imported function that, on its own, does
not make this interesting):

  join j y = map f y
  joinrec go 0     x y = jump j (map g x)
          go (n-1) x y = jump go (n-1) (x+y)
  in …

Here, `j` would not be inlined because we do not inline something that looks
like an exit join point (see Note [Do not inline exit join points]).

But after exitification we have

  join j y = map f y
  join exit x = jump j (map g x)
  joinrec go 0     x y = jump j (map g x)
              go (n-1) x y = jump go (n-1) (x+y)
  in …

and now we can inline `j` and this will allow `map/map` to fire.


Note [Idempotency]
~~~~~~~~~~~~~~~~~~

We do not want this to happen:

  join exit x = t (x*x)
  joinrec go 0     x y = jump exit x
          go (n-1) x y = jump go (n-1) (x+y)
  in …
==>
  join exit x = t (x*x)
  join exit' x = jump exit x
  joinrec go 0     x y = jump exit' x
          go (n-1) x y = jump go (n-1) (x+y)
  in …

So when the RHS is a join jump, and all ofits arguments are captured variables,
we leave it in place.

Note that `jump exit x` in this example looks interesting, as `exit` is a free
variable. Therefore, idempotency does not simply follow from floating only
interesting expressions.

Note [Calculating free variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We have two options where to annotate the tree with free variables:

 A) The whole tree.
 B) Each individual joinrec as we come across it.

Downside of A: We pay the price on the whole module, even outside any joinrecs.
Downside of B: We pay the price per joinrec, possibly multiple times when
joinrecs are nested.

Further downside of A: If the exitify function returns annotated expressions,
it would have to ensure that the annotations are correct.


Note [Do not inline exit join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When we have

  let t = foo bar
  join exit x = t (x*x)
  joinrec go 0     x y = jump exit x
          go (n-1) x y = jump go (n-1) (x+y)
  in …

we do not want the simplifier to simply inline `exit` back in (which it happily
would).

To prevent this, we need to recognize exit join points, and then disable
inlining.

Exit join points, recognizeable using `isExitJoinId` are join points with an
occurence in a recursive group, and can be recognized using `isExitJoinId`.
This function detects joinpoints with `occ_in_lam (idOccinfo id) == True`,
because the lambdas of a non-recursive join point are not considered for
`occ_in_lam`.  For example, in the following code, `j1` is /not/ marked
occ_in_lam, because `j2` is called only once.

  join j1 x = x+1
  join j2 y = join j1 (y+2)

We create exit join point ids with such an `OccInfo`, see `exit_occ_info`.

To prevent inlining, we check for that in `preInlineUnconditionally` directly.
For `postInlineUnconditionally` and unfolding-based inlining, the function
`simplLetUnfolding` simply gives exit join points no unfolding, which prevents
this kind of inlining.
-}