1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[FloatOut]{Float bindings outwards (towards the top level)}
``Long-distance'' floating of bindings towards the top level.
-}
{-# LANGUAGE CPP #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module FloatOut ( floatOutwards ) where
import GhcPrelude
import CoreSyn
import CoreUtils
import MkCore
import CoreArity ( etaExpand )
import CoreMonad ( FloatOutSwitches(..) )
import DynFlags
import ErrUtils ( dumpIfSet_dyn )
import Id ( Id, idArity, idType, isBottomingId,
isJoinId, isJoinId_maybe )
import SetLevels
import UniqSupply ( UniqSupply )
import Bag
import Util
import Maybes
import Outputable
import Type
import qualified Data.IntMap as M
import Data.List ( partition )
#include "HsVersions.h"
{-
-----------------
Overall game plan
-----------------
The Big Main Idea is:
To float out sub-expressions that can thereby get outside
a non-one-shot value lambda, and hence may be shared.
To achieve this we may need to do two things:
a) Let-bind the sub-expression:
f (g x) ==> let lvl = f (g x) in lvl
Now we can float the binding for 'lvl'.
b) More than that, we may need to abstract wrt a type variable
\x -> ... /\a -> let v = ...a... in ....
Here the binding for v mentions 'a' but not 'x'. So we
abstract wrt 'a', to give this binding for 'v':
vp = /\a -> ...a...
v = vp a
Now the binding for vp can float out unimpeded.
I can't remember why this case seemed important enough to
deal with, but I certainly found cases where important floats
didn't happen if we did not abstract wrt tyvars.
With this in mind we can also achieve another goal: lambda lifting.
We can make an arbitrary (function) binding float to top level by
abstracting wrt *all* local variables, not just type variables, leaving
a binding that can be floated right to top level. Whether or not this
happens is controlled by a flag.
Random comments
~~~~~~~~~~~~~~~
At the moment we never float a binding out to between two adjacent
lambdas. For example:
@
\x y -> let t = x+x in ...
===>
\x -> let t = x+x in \y -> ...
@
Reason: this is less efficient in the case where the original lambda
is never partially applied.
But there's a case I've seen where this might not be true. Consider:
@
elEm2 x ys
= elem' x ys
where
elem' _ [] = False
elem' x (y:ys) = x==y || elem' x ys
@
It turns out that this generates a subexpression of the form
@
\deq x ys -> let eq = eqFromEqDict deq in ...
@
which might usefully be separated to
@
\deq -> let eq = eqFromEqDict deq in \xy -> ...
@
Well, maybe. We don't do this at the moment.
Note [Join points]
~~~~~~~~~~~~~~~~~~
Every occurrence of a join point must be a tail call (see Note [Invariants on
join points] in CoreSyn), so we must be careful with how far we float them. The
mechanism for doing so is the *join ceiling*, detailed in Note [Join ceiling]
in SetLevels. For us, the significance is that a binder might be marked to be
dropped at the nearest boundary between tail calls and non-tail calls. For
example:
(< join j = ... in
let x = < ... > in
case < ... > of
A -> ...
B -> ...
>) < ... > < ... >
Here the join ceilings are marked with angle brackets. Either side of an
application is a join ceiling, as is the scrutinee position of a case
expression or the RHS of a let binding (but not a join point).
Why do we *want* do float join points at all? After all, they're never
allocated, so there's no sharing to be gained by floating them. However, the
other benefit of floating is making RHSes small, and this can have a significant
impact. In particular, stream fusion has been known to produce nested loops like
this:
joinrec j1 x1 =
joinrec j2 x2 =
joinrec j3 x3 = ... jump j1 (x3 + 1) ... jump j2 (x3 + 1) ...
in jump j3 x2
in jump j2 x1
in jump j1 x
(Assume x1 and x2 do *not* occur free in j3.)
Here j1 and j2 are wholly superfluous---each of them merely forwards its
argument to j3. Since j3 only refers to x3, we can float j2 and j3 to make
everything one big mutual recursion:
joinrec j1 x1 = jump j2 x1
j2 x2 = jump j3 x2
j3 x3 = ... jump j1 (x3 + 1) ... jump j2 (x3 + 1) ...
in jump j1 x
Now the simplifier will happily inline the trivial j1 and j2, leaving only j3.
Without floating, we're stuck with three loops instead of one.
************************************************************************
* *
\subsection[floatOutwards]{@floatOutwards@: let-floating interface function}
* *
************************************************************************
-}
floatOutwards :: FloatOutSwitches
-> DynFlags
-> UniqSupply
-> CoreProgram -> IO CoreProgram
floatOutwards float_sws dflags us pgm
= do {
let { annotated_w_levels = setLevels float_sws pgm us ;
(fss, binds_s') = unzip (map floatTopBind annotated_w_levels)
} ;
dumpIfSet_dyn dflags Opt_D_verbose_core2core "Levels added:"
(vcat (map ppr annotated_w_levels));
let { (tlets, ntlets, lams) = get_stats (sum_stats fss) };
dumpIfSet_dyn dflags Opt_D_dump_simpl_stats "FloatOut stats:"
(hcat [ int tlets, text " Lets floated to top level; ",
int ntlets, text " Lets floated elsewhere; from ",
int lams, text " Lambda groups"]);
return (bagToList (unionManyBags binds_s'))
}
floatTopBind :: LevelledBind -> (FloatStats, Bag CoreBind)
floatTopBind bind
= case (floatBind bind) of { (fs, floats, bind') ->
let float_bag = flattenTopFloats floats
in case bind' of
-- bind' can't have unlifted values or join points, so can only be one
-- value bind, rec or non-rec (see comment on floatBind)
[Rec prs] -> (fs, unitBag (Rec (addTopFloatPairs float_bag prs)))
[NonRec b e] -> (fs, float_bag `snocBag` NonRec b e)
_ -> pprPanic "floatTopBind" (ppr bind') }
{-
************************************************************************
* *
\subsection[FloatOut-Bind]{Floating in a binding (the business end)}
* *
************************************************************************
-}
floatBind :: LevelledBind -> (FloatStats, FloatBinds, [CoreBind])
-- Returns a list with either
-- * A single non-recursive binding (value or join point), or
-- * The following, in order:
-- * Zero or more non-rec unlifted bindings
-- * One or both of:
-- * A recursive group of join binds
-- * A recursive group of value binds
-- See Note [Floating out of Rec rhss] for why things get arranged this way.
floatBind (NonRec (TB var _) rhs)
= case (floatRhs var rhs) of { (fs, rhs_floats, rhs') ->
-- A tiresome hack:
-- see Note [Bottoming floats: eta expansion] in SetLevels
let rhs'' | isBottomingId var = etaExpand (idArity var) rhs'
| otherwise = rhs'
in (fs, rhs_floats, [NonRec var rhs'']) }
floatBind (Rec pairs)
= case floatList do_pair pairs of { (fs, rhs_floats, new_pairs) ->
let (new_ul_pairss, new_other_pairss) = unzip new_pairs
(new_join_pairs, new_l_pairs) = partition (isJoinId . fst)
(concat new_other_pairss)
-- Can't put the join points and the values in the same rec group
new_rec_binds | null new_join_pairs = [ Rec new_l_pairs ]
| null new_l_pairs = [ Rec new_join_pairs ]
| otherwise = [ Rec new_l_pairs
, Rec new_join_pairs ]
new_non_rec_binds = [ NonRec b e | (b, e) <- concat new_ul_pairss ]
in
(fs, rhs_floats, new_non_rec_binds ++ new_rec_binds) }
where
do_pair :: (LevelledBndr, LevelledExpr)
-> (FloatStats, FloatBinds,
([(Id,CoreExpr)], -- Non-recursive unlifted value bindings
[(Id,CoreExpr)])) -- Join points and lifted value bindings
do_pair (TB name spec, rhs)
| isTopLvl dest_lvl -- See Note [floatBind for top level]
= case (floatRhs name rhs) of { (fs, rhs_floats, rhs') ->
(fs, emptyFloats, ([], addTopFloatPairs (flattenTopFloats rhs_floats)
[(name, rhs')]))}
| otherwise -- Note [Floating out of Rec rhss]
= case (floatRhs name rhs) of { (fs, rhs_floats, rhs') ->
case (partitionByLevel dest_lvl rhs_floats) of { (rhs_floats', heres) ->
case (splitRecFloats heres) of { (ul_pairs, pairs, case_heres) ->
let pairs' = (name, installUnderLambdas case_heres rhs') : pairs in
(fs, rhs_floats', (ul_pairs, pairs')) }}}
where
dest_lvl = floatSpecLevel spec
splitRecFloats :: Bag FloatBind
-> ([(Id,CoreExpr)], -- Non-recursive unlifted value bindings
[(Id,CoreExpr)], -- Join points and lifted value bindings
Bag FloatBind) -- A tail of further bindings
-- The "tail" begins with a case
-- See Note [Floating out of Rec rhss]
splitRecFloats fs
= go [] [] (bagToList fs)
where
go ul_prs prs (FloatLet (NonRec b r) : fs) | isUnliftedType (idType b)
, not (isJoinId b)
= go ((b,r):ul_prs) prs fs
| otherwise
= go ul_prs ((b,r):prs) fs
go ul_prs prs (FloatLet (Rec prs') : fs) = go ul_prs (prs' ++ prs) fs
go ul_prs prs fs = (reverse ul_prs, prs,
listToBag fs)
-- Order only matters for
-- non-rec
installUnderLambdas :: Bag FloatBind -> CoreExpr -> CoreExpr
-- Note [Floating out of Rec rhss]
installUnderLambdas floats e
| isEmptyBag floats = e
| otherwise = go e
where
go (Lam b e) = Lam b (go e)
go e = install floats e
---------------
floatList :: (a -> (FloatStats, FloatBinds, b)) -> [a] -> (FloatStats, FloatBinds, [b])
floatList _ [] = (zeroStats, emptyFloats, [])
floatList f (a:as) = case f a of { (fs_a, binds_a, b) ->
case floatList f as of { (fs_as, binds_as, bs) ->
(fs_a `add_stats` fs_as, binds_a `plusFloats` binds_as, b:bs) }}
{-
Note [Floating out of Rec rhss]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider Rec { f<1,0> = \xy. body }
From the body we may get some floats. The ones with level <1,0> must
stay here, since they may mention f. Ideally we'd like to make them
part of the Rec block pairs -- but we can't if there are any
FloatCases involved.
Nor is it a good idea to dump them in the rhs, but outside the lambda
f = case x of I# y -> \xy. body
because now f's arity might get worse, which is Not Good. (And if
there's an SCC around the RHS it might not get better again.
See Trac #5342.)
So, gruesomely, we split the floats into
* the outer FloatLets, which can join the Rec, and
* an inner batch starting in a FloatCase, which are then
pushed *inside* the lambdas.
This loses full-laziness the rare situation where there is a
FloatCase and a Rec interacting.
If there are unlifted FloatLets (that *aren't* join points) among the floats,
we can't add them to the recursive group without angering Core Lint, but since
they must be ok-for-speculation, they can't actually be making any recursive
calls, so we can safely pull them out and keep them non-recursive.
(Why is something getting floated to <1,0> that doesn't make a recursive call?
The case that came up in testing was that f *and* the unlifted binding were
getting floated *to the same place*:
\x<2,0> ->
... <3,0>
letrec { f<F<2,0>> =
... let x'<F<2,0>> = x +# 1# in ...
} in ...
Everything gets labeled "float to <2,0>" because it all depends on x, but this
makes f and x' look mutually recursive when they're not.
The test was shootout/k-nucleotide, as compiled using commit 47d5dd68 on the
wip/join-points branch.
TODO: This can probably be solved somehow in SetLevels. The difference between
"this *is at* level <2,0>" and "this *depends on* level <2,0>" is very
important.)
Note [floatBind for top level]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We may have a *nested* binding whose destination level is (FloatMe tOP_LEVEL), thus
letrec { foo <0,0> = .... (let bar<0,0> = .. in ..) .... }
The binding for bar will be in the "tops" part of the floating binds,
and thus not partioned by floatBody.
We could perhaps get rid of the 'tops' component of the floating binds,
but this case works just as well.
************************************************************************
\subsection[FloatOut-Expr]{Floating in expressions}
* *
************************************************************************
-}
floatBody :: Level
-> LevelledExpr
-> (FloatStats, FloatBinds, CoreExpr)
floatBody lvl arg -- Used rec rhss, and case-alternative rhss
= case (floatExpr arg) of { (fsa, floats, arg') ->
case (partitionByLevel lvl floats) of { (floats', heres) ->
-- Dump bindings are bound here
(fsa, floats', install heres arg') }}
-----------------
{- Note [Floating past breakpoints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to disallow floating out of breakpoint ticks (see #10052). However, I
think this is too restrictive.
Consider the case of an expression scoped over by a breakpoint tick,
tick<...> (let x = ... in f x)
In this case it is completely legal to float out x, despite the fact that
breakpoint ticks are scoped,
let x = ... in (tick<...> f x)
The reason here is that we know that the breakpoint will still be hit when the
expression is entered since the tick still scopes over the RHS.
-}
floatExpr :: LevelledExpr
-> (FloatStats, FloatBinds, CoreExpr)
floatExpr (Var v) = (zeroStats, emptyFloats, Var v)
floatExpr (Type ty) = (zeroStats, emptyFloats, Type ty)
floatExpr (Coercion co) = (zeroStats, emptyFloats, Coercion co)
floatExpr (Lit lit) = (zeroStats, emptyFloats, Lit lit)
floatExpr (App e a)
= case (atJoinCeiling $ floatExpr e) of { (fse, floats_e, e') ->
case (atJoinCeiling $ floatExpr a) of { (fsa, floats_a, a') ->
(fse `add_stats` fsa, floats_e `plusFloats` floats_a, App e' a') }}
floatExpr lam@(Lam (TB _ lam_spec) _)
= let (bndrs_w_lvls, body) = collectBinders lam
bndrs = [b | TB b _ <- bndrs_w_lvls]
bndr_lvl = asJoinCeilLvl (floatSpecLevel lam_spec)
-- All the binders have the same level
-- See SetLevels.lvlLamBndrs
-- Use asJoinCeilLvl to make this the join ceiling
in
case (floatBody bndr_lvl body) of { (fs, floats, body') ->
(add_to_stats fs floats, floats, mkLams bndrs body') }
floatExpr (Tick tickish expr)
| tickish `tickishScopesLike` SoftScope -- not scoped, can just float
= case (atJoinCeiling $ floatExpr expr) of { (fs, floating_defns, expr') ->
(fs, floating_defns, Tick tickish expr') }
| not (tickishCounts tickish) || tickishCanSplit tickish
= case (atJoinCeiling $ floatExpr expr) of { (fs, floating_defns, expr') ->
let -- Annotate bindings floated outwards past an scc expression
-- with the cc. We mark that cc as "duplicated", though.
annotated_defns = wrapTick (mkNoCount tickish) floating_defns
in
(fs, annotated_defns, Tick tickish expr') }
-- Note [Floating past breakpoints]
| Breakpoint{} <- tickish
= case (floatExpr expr) of { (fs, floating_defns, expr') ->
(fs, floating_defns, Tick tickish expr') }
| otherwise
= pprPanic "floatExpr tick" (ppr tickish)
floatExpr (Cast expr co)
= case (atJoinCeiling $ floatExpr expr) of { (fs, floating_defns, expr') ->
(fs, floating_defns, Cast expr' co) }
floatExpr (Let bind body)
= case bind_spec of
FloatMe dest_lvl
-> case (floatBind bind) of { (fsb, bind_floats, binds') ->
case (floatExpr body) of { (fse, body_floats, body') ->
let new_bind_floats = foldr plusFloats emptyFloats
(map (unitLetFloat dest_lvl) binds') in
( add_stats fsb fse
, bind_floats `plusFloats` new_bind_floats
`plusFloats` body_floats
, body') }}
StayPut bind_lvl -- See Note [Avoiding unnecessary floating]
-> case (floatBind bind) of { (fsb, bind_floats, binds') ->
case (floatBody bind_lvl body) of { (fse, body_floats, body') ->
( add_stats fsb fse
, bind_floats `plusFloats` body_floats
, foldr Let body' binds' ) }}
where
bind_spec = case bind of
NonRec (TB _ s) _ -> s
Rec ((TB _ s, _) : _) -> s
Rec [] -> panic "floatExpr:rec"
floatExpr (Case scrut (TB case_bndr case_spec) ty alts)
= case case_spec of
FloatMe dest_lvl -- Case expression moves
| [(con@(DataAlt {}), bndrs, rhs)] <- alts
-> case atJoinCeiling $ floatExpr scrut of { (fse, fde, scrut') ->
case floatExpr rhs of { (fsb, fdb, rhs') ->
let
float = unitCaseFloat dest_lvl scrut'
case_bndr con [b | TB b _ <- bndrs]
in
(add_stats fse fsb, fde `plusFloats` float `plusFloats` fdb, rhs') }}
| otherwise
-> pprPanic "Floating multi-case" (ppr alts)
StayPut bind_lvl -- Case expression stays put
-> case atJoinCeiling $ floatExpr scrut of { (fse, fde, scrut') ->
case floatList (float_alt bind_lvl) alts of { (fsa, fda, alts') ->
(add_stats fse fsa, fda `plusFloats` fde, Case scrut' case_bndr ty alts')
}}
where
float_alt bind_lvl (con, bs, rhs)
= case (floatBody bind_lvl rhs) of { (fs, rhs_floats, rhs') ->
(fs, rhs_floats, (con, [b | TB b _ <- bs], rhs')) }
floatRhs :: CoreBndr
-> LevelledExpr
-> (FloatStats, FloatBinds, CoreExpr)
floatRhs bndr rhs
| Just join_arity <- isJoinId_maybe bndr
, Just (bndrs, body) <- try_collect join_arity rhs []
= case bndrs of
[] -> floatExpr rhs
(TB _ lam_spec):_ ->
let lvl = floatSpecLevel lam_spec in
case floatBody lvl body of { (fs, floats, body') ->
(fs, floats, mkLams [b | TB b _ <- bndrs] body') }
| otherwise
= atJoinCeiling $ floatExpr rhs
where
try_collect 0 expr acc = Just (reverse acc, expr)
try_collect n (Lam b e) acc = try_collect (n-1) e (b:acc)
try_collect _ _ _ = Nothing
{-
Note [Avoiding unnecessary floating]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general we want to avoid floating a let unnecessarily, because
it might worsen strictness:
let
x = ...(let y = e in y+y)....
Here y is demanded. If we float it outside the lazy 'x=..' then
we'd have to zap its demand info, and it may never be restored.
So at a 'let' we leave the binding right where the are unless
the binding will escape a value lambda, e.g.
(\x -> let y = fac 100 in y)
That's what the partitionByMajorLevel does in the floatExpr (Let ...)
case.
Notice, though, that we must take care to drop any bindings
from the body of the let that depend on the staying-put bindings.
We used instead to do the partitionByMajorLevel on the RHS of an '=',
in floatRhs. But that was quite tiresome. We needed to test for
values or trival rhss, because (in particular) we don't want to insert
new bindings between the "=" and the "\". E.g.
f = \x -> let <bind> in <body>
We do not want
f = let <bind> in \x -> <body>
(a) The simplifier will immediately float it further out, so we may
as well do so right now; in general, keeping rhss as manifest
values is good
(b) If a float-in pass follows immediately, it might add yet more
bindings just after the '='. And some of them might (correctly)
be strict even though the 'let f' is lazy, because f, being a value,
gets its demand-info zapped by the simplifier.
And even all that turned out to be very fragile, and broke
altogether when profiling got in the way.
So now we do the partition right at the (Let..) itself.
************************************************************************
* *
\subsection{Utility bits for floating stats}
* *
************************************************************************
I didn't implement this with unboxed numbers. I don't want to be too
strict in this stuff, as it is rarely turned on. (WDP 95/09)
-}
data FloatStats
= FlS Int -- Number of top-floats * lambda groups they've been past
Int -- Number of non-top-floats * lambda groups they've been past
Int -- Number of lambda (groups) seen
get_stats :: FloatStats -> (Int, Int, Int)
get_stats (FlS a b c) = (a, b, c)
zeroStats :: FloatStats
zeroStats = FlS 0 0 0
sum_stats :: [FloatStats] -> FloatStats
sum_stats xs = foldr add_stats zeroStats xs
add_stats :: FloatStats -> FloatStats -> FloatStats
add_stats (FlS a1 b1 c1) (FlS a2 b2 c2)
= FlS (a1 + a2) (b1 + b2) (c1 + c2)
add_to_stats :: FloatStats -> FloatBinds -> FloatStats
add_to_stats (FlS a b c) (FB tops ceils others)
= FlS (a + lengthBag tops)
(b + lengthBag ceils + lengthBag (flattenMajor others))
(c + 1)
{-
************************************************************************
* *
\subsection{Utility bits for floating}
* *
************************************************************************
Note [Representation of FloatBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The FloatBinds types is somewhat important. We can get very large numbers
of floating bindings, often all destined for the top level. A typical example
is x = [4,2,5,2,5, .... ]
Then we get lots of small expressions like (fromInteger 4), which all get
lifted to top level.
The trouble is that
(a) we partition these floating bindings *at every binding site*
(b) SetLevels introduces a new bindings site for every float
So we had better not look at each binding at each binding site!
That is why MajorEnv is represented as a finite map.
We keep the bindings destined for the *top* level separate, because
we float them out even if they don't escape a *value* lambda; see
partitionByMajorLevel.
-}
type FloatLet = CoreBind -- INVARIANT: a FloatLet is always lifted
type MajorEnv = M.IntMap MinorEnv -- Keyed by major level
type MinorEnv = M.IntMap (Bag FloatBind) -- Keyed by minor level
data FloatBinds = FB !(Bag FloatLet) -- Destined for top level
!(Bag FloatBind) -- Destined for join ceiling
!MajorEnv -- Other levels
-- See Note [Representation of FloatBinds]
instance Outputable FloatBinds where
ppr (FB fbs ceils defs)
= text "FB" <+> (braces $ vcat
[ text "tops =" <+> ppr fbs
, text "ceils =" <+> ppr ceils
, text "non-tops =" <+> ppr defs ])
flattenTopFloats :: FloatBinds -> Bag CoreBind
flattenTopFloats (FB tops ceils defs)
= ASSERT2( isEmptyBag (flattenMajor defs), ppr defs )
ASSERT2( isEmptyBag ceils, ppr ceils )
tops
addTopFloatPairs :: Bag CoreBind -> [(Id,CoreExpr)] -> [(Id,CoreExpr)]
addTopFloatPairs float_bag prs
= foldrBag add prs float_bag
where
add (NonRec b r) prs = (b,r):prs
add (Rec prs1) prs2 = prs1 ++ prs2
flattenMajor :: MajorEnv -> Bag FloatBind
flattenMajor = M.foldr (unionBags . flattenMinor) emptyBag
flattenMinor :: MinorEnv -> Bag FloatBind
flattenMinor = M.foldr unionBags emptyBag
emptyFloats :: FloatBinds
emptyFloats = FB emptyBag emptyBag M.empty
unitCaseFloat :: Level -> CoreExpr -> Id -> AltCon -> [Var] -> FloatBinds
unitCaseFloat (Level major minor t) e b con bs
| t == JoinCeilLvl
= FB emptyBag floats M.empty
| otherwise
= FB emptyBag emptyBag (M.singleton major (M.singleton minor floats))
where
floats = unitBag (FloatCase e b con bs)
unitLetFloat :: Level -> FloatLet -> FloatBinds
unitLetFloat lvl@(Level major minor t) b
| isTopLvl lvl = FB (unitBag b) emptyBag M.empty
| t == JoinCeilLvl = FB emptyBag floats M.empty
| otherwise = FB emptyBag emptyBag (M.singleton major
(M.singleton minor floats))
where
floats = unitBag (FloatLet b)
plusFloats :: FloatBinds -> FloatBinds -> FloatBinds
plusFloats (FB t1 c1 l1) (FB t2 c2 l2)
= FB (t1 `unionBags` t2) (c1 `unionBags` c2) (l1 `plusMajor` l2)
plusMajor :: MajorEnv -> MajorEnv -> MajorEnv
plusMajor = M.unionWith plusMinor
plusMinor :: MinorEnv -> MinorEnv -> MinorEnv
plusMinor = M.unionWith unionBags
install :: Bag FloatBind -> CoreExpr -> CoreExpr
install defn_groups expr
= foldrBag wrapFloat expr defn_groups
partitionByLevel
:: Level -- Partitioning level
-> FloatBinds -- Defns to be divided into 2 piles...
-> (FloatBinds, -- Defns with level strictly < partition level,
Bag FloatBind) -- The rest
{-
-- ---- partitionByMajorLevel ----
-- Float it if we escape a value lambda,
-- *or* if we get to the top level
-- *or* if it's a case-float and its minor level is < current
--
-- If we can get to the top level, say "yes" anyway. This means that
-- x = f e
-- transforms to
-- lvl = e
-- x = f lvl
-- which is as it should be
partitionByMajorLevel (Level major _) (FB tops defns)
= (FB tops outer, heres `unionBags` flattenMajor inner)
where
(outer, mb_heres, inner) = M.splitLookup major defns
heres = case mb_heres of
Nothing -> emptyBag
Just h -> flattenMinor h
-}
partitionByLevel (Level major minor typ) (FB tops ceils defns)
= (FB tops ceils' (outer_maj `plusMajor` M.singleton major outer_min),
here_min `unionBags` here_ceil
`unionBags` flattenMinor inner_min
`unionBags` flattenMajor inner_maj)
where
(outer_maj, mb_here_maj, inner_maj) = M.splitLookup major defns
(outer_min, mb_here_min, inner_min) = case mb_here_maj of
Nothing -> (M.empty, Nothing, M.empty)
Just min_defns -> M.splitLookup minor min_defns
here_min = mb_here_min `orElse` emptyBag
(here_ceil, ceils') | typ == JoinCeilLvl = (ceils, emptyBag)
| otherwise = (emptyBag, ceils)
-- Like partitionByLevel, but instead split out the bindings that are marked
-- to float to the nearest join ceiling (see Note [Join points])
partitionAtJoinCeiling :: FloatBinds -> (FloatBinds, Bag FloatBind)
partitionAtJoinCeiling (FB tops ceils defs)
= (FB tops emptyBag defs, ceils)
-- Perform some action at a join ceiling, i.e., don't let join points float out
-- (see Note [Join points])
atJoinCeiling :: (FloatStats, FloatBinds, CoreExpr)
-> (FloatStats, FloatBinds, CoreExpr)
atJoinCeiling (fs, floats, expr')
= (fs, floats', install ceils expr')
where
(floats', ceils) = partitionAtJoinCeiling floats
wrapTick :: Tickish Id -> FloatBinds -> FloatBinds
wrapTick t (FB tops ceils defns)
= FB (mapBag wrap_bind tops) (wrap_defns ceils)
(M.map (M.map wrap_defns) defns)
where
wrap_defns = mapBag wrap_one
wrap_bind (NonRec binder rhs) = NonRec binder (maybe_tick rhs)
wrap_bind (Rec pairs) = Rec (mapSnd maybe_tick pairs)
wrap_one (FloatLet bind) = FloatLet (wrap_bind bind)
wrap_one (FloatCase e b c bs) = FloatCase (maybe_tick e) b c bs
maybe_tick e | exprIsHNF e = tickHNFArgs t e
| otherwise = mkTick t e
-- we don't need to wrap a tick around an HNF when we float it
-- outside a tick: that is an invariant of the tick semantics
-- Conversely, inlining of HNFs inside an SCC is allowed, and
-- indeed the HNF we're floating here might well be inlined back
-- again, and we don't want to end up with duplicate ticks.
|