summaryrefslogtreecommitdiff
path: root/compiler/simplCore/LiberateCase.hs
blob: 1df14053295a9e036696da17b4fc0c810616a592 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
{-
(c) The AQUA Project, Glasgow University, 1994-1998

\section[LiberateCase]{Unroll recursion to allow evals to be lifted from a loop}
-}

{-# LANGUAGE CPP #-}
module LiberateCase ( liberateCase ) where

#include "HsVersions.h"

import DynFlags
import CoreSyn
import CoreUnfold       ( couldBeSmallEnoughToInline )
import Id
import VarEnv
import Util             ( notNull )

{-
The liberate-case transformation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module walks over @Core@, and looks for @case@ on free variables.
The criterion is:
        if there is case on a free on the route to the recursive call,
        then the recursive call is replaced with an unfolding.

Example

   f = \ t -> case v of
                 V a b -> a : f t

=> the inner f is replaced.

   f = \ t -> case v of
                 V a b -> a : (letrec
                                f =  \ t -> case v of
                                               V a b -> a : f t
                               in f) t
(note the NEED for shadowing)

=> Simplify

  f = \ t -> case v of
                 V a b -> a : (letrec
                                f = \ t -> a : f t
                               in f t)

Better code, because 'a' is  free inside the inner letrec, rather
than needing projection from v.

Note that this deals with *free variables*.  SpecConstr deals with
*arguments* that are of known form.  E.g.

        last []     = error
        last (x:[]) = x
        last (x:xs) = last xs


Note [Scrutinee with cast]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
    f = \ t -> case (v `cast` co) of
                 V a b -> a : f t

Exactly the same optimisation (unrolling one call to f) will work here,
despite the cast.  See mk_alt_env in the Case branch of libCase.


Note [Only functions!]
~~~~~~~~~~~~~~~~~~~~~~
Consider the following code

       f = g (case v of V a b -> a : t f)

where g is expensive. If we aren't careful, liberate case will turn this into

       f = g (case v of
               V a b -> a : t (letrec f = g (case v of V a b -> a : f t)
                                in f)
             )

Yikes! We evaluate g twice. This leads to a O(2^n) explosion
if g calls back to the same code recursively.

Solution: make sure that we only do the liberate-case thing on *functions*

To think about (Apr 94)
~~~~~~~~~~~~~~
Main worry: duplicating code excessively.  At the moment we duplicate
the entire binding group once at each recursive call.  But there may
be a group of recursive calls which share a common set of evaluated
free variables, in which case the duplication is a plain waste.

Another thing we could consider adding is some unfold-threshold thing,
so that we'll only duplicate if the size of the group rhss isn't too
big.

Data types
~~~~~~~~~~
The ``level'' of a binder tells how many
recursive defns lexically enclose the binding
A recursive defn "encloses" its RHS, not its
scope.  For example:
\begin{verbatim}
        letrec f = let g = ... in ...
        in
        let h = ...
        in ...
\end{verbatim}
Here, the level of @f@ is zero, the level of @g@ is one,
and the level of @h@ is zero (NB not one).


************************************************************************
*                                                                      *
         Top-level code
*                                                                      *
************************************************************************
-}

liberateCase :: DynFlags -> CoreProgram -> CoreProgram
liberateCase dflags binds = do_prog (initEnv dflags) binds
  where
    do_prog _   [] = []
    do_prog env (bind:binds) = bind' : do_prog env' binds
                             where
                               (env', bind') = libCaseBind env bind

{-
************************************************************************
*                                                                      *
         Main payload
*                                                                      *
************************************************************************

Bindings
~~~~~~~~
-}

libCaseBind :: LibCaseEnv -> CoreBind -> (LibCaseEnv, CoreBind)

libCaseBind env (NonRec binder rhs)
  = (addBinders env [binder], NonRec binder (libCase env rhs))

libCaseBind env (Rec pairs)
  = (env_body, Rec pairs')
  where
    binders = map fst pairs

    env_body = addBinders env binders

    pairs' = [(binder, libCase env_rhs rhs) | (binder,rhs) <- pairs]

        -- We extend the rec-env by binding each Id to its rhs, first
        -- processing the rhs with an *un-extended* environment, so
        -- that the same process doesn't occur for ever!
    env_rhs = addRecBinds env [ (localiseId binder, libCase env_body rhs)
                              | (binder, rhs) <- pairs
                              , rhs_small_enough binder rhs ]
        -- localiseID : see Note [Need to localiseId in libCaseBind]


    rhs_small_enough id rhs     -- Note [Small enough]
        =  idArity id > 0       -- Note [Only functions!]
        && maybe True (\size -> couldBeSmallEnoughToInline (lc_dflags env) size rhs)
                      (bombOutSize env)

{-
Note [Need to localiseId in libCaseBind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The call to localiseId is needed for two subtle reasons
(a)  Reset the export flags on the binders so
        that we don't get name clashes on exported things if the
        local binding floats out to top level.  This is most unlikely
        to happen, since the whole point concerns free variables.
        But resetting the export flag is right regardless.

(b)  Make the name an Internal one.  External Names should never be
        nested; if it were floated to the top level, we'd get a name
        clash at code generation time.

Note [Small enough]
~~~~~~~~~~~~~~~~~~~
Consider
  \fv. letrec
         f = \x. BIG...(case fv of { (a,b) -> ...g.. })...
         g = \y. SMALL...f...
Then we *can* do liberate-case on g (small RHS) but not for f (too big).
But we can choose on a item-by-item basis, and that's what the
rhs_small_enough call in the comprehension for env_rhs does.

Expressions
~~~~~~~~~~~
-}

libCase :: LibCaseEnv
        -> CoreExpr
        -> CoreExpr

libCase env (Var v)             = libCaseId env v
libCase _   (Lit lit)           = Lit lit
libCase _   (Type ty)           = Type ty
libCase _   (Coercion co)       = Coercion co
libCase env (App fun arg)       = App (libCase env fun) (libCase env arg)
libCase env (Tick tickish body) = Tick tickish (libCase env body)
libCase env (Cast e co)         = Cast (libCase env e) co

libCase env (Lam binder body)
  = Lam binder (libCase (addBinders env [binder]) body)

libCase env (Let bind body)
  = Let bind' (libCase env_body body)
  where
    (env_body, bind') = libCaseBind env bind

libCase env (Case scrut bndr ty alts)
  = Case (libCase env scrut) bndr ty (map (libCaseAlt env_alts) alts)
  where
    env_alts = addBinders (mk_alt_env scrut) [bndr]
    mk_alt_env (Var scrut_var) = addScrutedVar env scrut_var
    mk_alt_env (Cast scrut _)  = mk_alt_env scrut       -- Note [Scrutinee with cast]
    mk_alt_env _               = env

libCaseAlt :: LibCaseEnv -> (AltCon, [CoreBndr], CoreExpr)
                         -> (AltCon, [CoreBndr], CoreExpr)
libCaseAlt env (con,args,rhs) = (con, args, libCase (addBinders env args) rhs)

{-
Ids
~~~
-}

libCaseId :: LibCaseEnv -> Id -> CoreExpr
libCaseId env v
  | Just the_bind <- lookupRecId env v  -- It's a use of a recursive thing
  , notNull free_scruts                 -- with free vars scrutinised in RHS
  = Let the_bind (Var v)

  | otherwise
  = Var v

  where
    rec_id_level = lookupLevel env v
    free_scruts  = freeScruts env rec_id_level

freeScruts :: LibCaseEnv
           -> LibCaseLevel      -- Level of the recursive Id
           -> [Id]              -- Ids that are scrutinised between the binding
                                -- of the recursive Id and here
freeScruts env rec_bind_lvl
  = [v | (v, scrut_bind_lvl, scrut_at_lvl) <- lc_scruts env
       , scrut_bind_lvl <= rec_bind_lvl
       , scrut_at_lvl > rec_bind_lvl]
        -- Note [When to specialise]
        -- Note [Avoiding fruitless liberate-case]

{-
Note [When to specialise]
~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  f = \x. letrec g = \y. case x of
                           True  -> ... (f a) ...
                           False -> ... (g b) ...

We get the following levels
          f  0
          x  1
          g  1
          y  2

Then 'x' is being scrutinised at a deeper level than its binding, so
it's added to lc_sruts:  [(x,1)]

We do *not* want to specialise the call to 'f', because 'x' is not free
in 'f'.  So here the bind-level of 'x' (=1) is not <= the bind-level of 'f' (=0).

We *do* want to specialise the call to 'g', because 'x' is free in g.
Here the bind-level of 'x' (=1) is <= the bind-level of 'g' (=1).

Note [Avoiding fruitless liberate-case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider also:
  f = \x. case top_lvl_thing of
                I# _ -> let g = \y. ... g ...
                        in ...

Here, top_lvl_thing is scrutinised at a level (1) deeper than its
binding site (0).  Nevertheless, we do NOT want to specialise the call
to 'g' because all the structure in its free variables is already
visible at the definition site for g.  Hence, when considering specialising
an occurrence of 'g', we want to check that there's a scruted-var v st

   a) v's binding site is *outside* g
   b) v's scrutinisation site is *inside* g


************************************************************************
*                                                                      *
        Utility functions
*                                                                      *
************************************************************************
-}

addBinders :: LibCaseEnv -> [CoreBndr] -> LibCaseEnv
addBinders env@(LibCaseEnv { lc_lvl = lvl, lc_lvl_env = lvl_env }) binders
  = env { lc_lvl_env = lvl_env' }
  where
    lvl_env' = extendVarEnvList lvl_env (binders `zip` repeat lvl)

addRecBinds :: LibCaseEnv -> [(Id,CoreExpr)] -> LibCaseEnv
addRecBinds env@(LibCaseEnv {lc_lvl = lvl, lc_lvl_env = lvl_env,
                             lc_rec_env = rec_env}) pairs
  = env { lc_lvl = lvl', lc_lvl_env = lvl_env', lc_rec_env = rec_env' }
  where
    lvl'     = lvl + 1
    lvl_env' = extendVarEnvList lvl_env [(binder,lvl) | (binder,_) <- pairs]
    rec_env' = extendVarEnvList rec_env [(binder, Rec pairs) | (binder,_) <- pairs]

addScrutedVar :: LibCaseEnv
              -> Id             -- This Id is being scrutinised by a case expression
              -> LibCaseEnv

addScrutedVar env@(LibCaseEnv { lc_lvl = lvl, lc_lvl_env = lvl_env,
                                lc_scruts = scruts }) scrut_var
  | bind_lvl < lvl
  = env { lc_scruts = scruts' }
        -- Add to scruts iff the scrut_var is being scrutinised at
        -- a deeper level than its defn

  | otherwise = env
  where
    scruts'  = (scrut_var, bind_lvl, lvl) : scruts
    bind_lvl = case lookupVarEnv lvl_env scrut_var of
                 Just lvl -> lvl
                 Nothing  -> topLevel

lookupRecId :: LibCaseEnv -> Id -> Maybe CoreBind
lookupRecId env id = lookupVarEnv (lc_rec_env env) id

lookupLevel :: LibCaseEnv -> Id -> LibCaseLevel
lookupLevel env id
  = case lookupVarEnv (lc_lvl_env env) id of
      Just lvl -> lvl
      Nothing  -> topLevel

{-
************************************************************************
*                                                                      *
         The environment
*                                                                      *
************************************************************************
-}

type LibCaseLevel = Int

topLevel :: LibCaseLevel
topLevel = 0

data LibCaseEnv
  = LibCaseEnv {
        lc_dflags :: DynFlags,

        lc_lvl :: LibCaseLevel, -- Current level
                -- The level is incremented when (and only when) going
                -- inside the RHS of a (sufficiently small) recursive
                -- function.

        lc_lvl_env :: IdEnv LibCaseLevel,
                -- Binds all non-top-level in-scope Ids (top-level and
                -- imported things have a level of zero)

        lc_rec_env :: IdEnv CoreBind,
                -- Binds *only* recursively defined ids, to their own
                -- binding group, and *only* in their own RHSs

        lc_scruts :: [(Id, LibCaseLevel, LibCaseLevel)]
                -- Each of these Ids was scrutinised by an enclosing
                -- case expression, at a level deeper than its binding
                -- level.
                --
                -- The first LibCaseLevel is the *binding level* of
                --   the scrutinised Id,
                -- The second is the level *at which it was scrutinised*.
                --   (see Note [Avoiding fruitless liberate-case])
                -- The former is a bit redundant, since you could always
                -- look it up in lc_lvl_env, but it's just cached here
                --
                -- The order is insignificant; it's a bag really
                --
                -- There's one element per scrutinisation;
                --    in principle the same Id may appear multiple times,
                --    although that'd be unusual:
                --       case x of { (a,b) -> ....(case x of ...) .. }
        }

initEnv :: DynFlags -> LibCaseEnv
initEnv dflags
  = LibCaseEnv { lc_dflags = dflags,
                 lc_lvl = 0,
                 lc_lvl_env = emptyVarEnv,
                 lc_rec_env = emptyVarEnv,
                 lc_scruts = [] }

-- Bomb-out size for deciding if
-- potential liberatees are too big.
-- (passed in from cmd-line args)
bombOutSize :: LibCaseEnv -> Maybe Int
bombOutSize = liberateCaseThreshold . lc_dflags