summaryrefslogtreecommitdiff
path: root/compiler/simplCore/OccurAnal.lhs
blob: 90a565f4ddd0782795ac95badfa4a84172cd0daa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
%************************************************************************
%*									*
\section[OccurAnal]{Occurrence analysis pass}
%*									*
%************************************************************************

The occurrence analyser re-typechecks a core expression, returning a new
core expression with (hopefully) improved usage information.

\begin{code}
module OccurAnal (
	occurAnalysePgm, occurAnalyseExpr
    ) where

#include "HsVersions.h"

import CoreSyn
import CoreFVs		( idRuleVars )
import CoreUtils	( exprIsTrivial, isDefaultAlt )
import Id		( isDataConWorkId, isOneShotBndr, setOneShotLambda, 
			  idOccInfo, setIdOccInfo, isLocalId,
			  isExportedId, idArity, idSpecialisation,
			  idType, idUnique, Id
			)
import IdInfo		( isEmptySpecInfo )
import BasicTypes	( OccInfo(..), isOneOcc, InterestingCxt )

import VarSet
import VarEnv

import Type		( isFunTy, dropForAlls )
import Maybes		( orElse )
import Digraph		( stronglyConnCompR, SCC(..) )
import PrelNames	( buildIdKey, foldrIdKey, runSTRepIdKey, augmentIdKey )
import Unique		( Unique )
import UniqFM		( keysUFM )  
import Util		( zipWithEqual, mapAndUnzip )
import Outputable
\end{code}


%************************************************************************
%*									*
\subsection[OccurAnal-main]{Counting occurrences: main function}
%*									*
%************************************************************************

Here's the externally-callable interface:

\begin{code}
occurAnalysePgm :: [CoreBind] -> [CoreBind]
occurAnalysePgm binds
  = snd (go initOccEnv binds)
  where
    go :: OccEnv -> [CoreBind] -> (UsageDetails, [CoreBind])
    go env [] 
	= (emptyDetails, [])
    go env (bind:binds) 
	= (final_usage, bind' ++ binds')
	where
	   (bs_usage, binds')   = go env binds
	   (final_usage, bind') = occAnalBind env bind bs_usage

occurAnalyseExpr :: CoreExpr -> CoreExpr
	-- Do occurrence analysis, and discard occurence info returned
occurAnalyseExpr expr = snd (occAnal initOccEnv expr)
\end{code}


%************************************************************************
%*									*
\subsection[OccurAnal-main]{Counting occurrences: main function}
%*									*
%************************************************************************

Bindings
~~~~~~~~

\begin{code}
type IdWithOccInfo = Id			-- An Id with fresh PragmaInfo attached

type Node details = (details, Unique, [Unique])	-- The Ints are gotten from the Unique,
						-- which is gotten from the Id.
type Details1	  = (Id, UsageDetails, CoreExpr)
type Details2	  = (IdWithOccInfo, CoreExpr)


occAnalBind :: OccEnv
	    -> CoreBind
	    -> UsageDetails		-- Usage details of scope
	    -> (UsageDetails,		-- Of the whole let(rec)
		[CoreBind])

occAnalBind env (NonRec binder rhs) body_usage
  | not (binder `usedIn` body_usage)		-- It's not mentioned
  = (body_usage, [])

  | otherwise			-- It's mentioned in the body
  = (final_body_usage `combineUsageDetails` rhs_usage,
     [NonRec tagged_binder rhs'])

  where
    (final_body_usage, tagged_binder) = tagBinder body_usage binder
    (rhs_usage, rhs')		      = occAnalRhs env tagged_binder rhs
\end{code}

Dropping dead code for recursive bindings is done in a very simple way:

	the entire set of bindings is dropped if none of its binders are
	mentioned in its body; otherwise none are.

This seems to miss an obvious improvement.
@
	letrec  f = ...g...
		g = ...f...
	in
	...g...

===>

	letrec f = ...g...
	       g = ...(...g...)...
	in
	...g...
@

Now @f@ is unused. But dependency analysis will sort this out into a
@letrec@ for @g@ and a @let@ for @f@, and then @f@ will get dropped.
It isn't easy to do a perfect job in one blow.  Consider

@
	letrec f = ...g...
	       g = ...h...
	       h = ...k...
	       k = ...m...
	       m = ...m...
	in
	...m...
@


\begin{code}
occAnalBind env (Rec pairs) body_usage
  = foldr (_scc_ "occAnalBind.dofinal" do_final_bind) (body_usage, []) sccs
  where
    analysed_pairs :: [Details1]
    analysed_pairs  = [ (bndr, rhs_usage, rhs')
		      | (bndr, rhs) <- pairs,
			let (rhs_usage, rhs') = occAnalRhs env bndr rhs
		      ]

    sccs :: [SCC (Node Details1)]
    sccs = _scc_ "occAnalBind.scc" stronglyConnCompR edges


    ---- stuff for dependency analysis of binds -------------------------------
    edges :: [Node Details1]
    edges = _scc_ "occAnalBind.assoc"
	    [ (details, idUnique id, edges_from rhs_usage)
	    | details@(id, rhs_usage, rhs) <- analysed_pairs
	    ]

	-- (a -> b) means a mentions b
	-- Given the usage details (a UFM that gives occ info for each free var of
	-- the RHS) we can get the list of free vars -- or rather their Int keys --
	-- by just extracting the keys from the finite map.  Grimy, but fast.
	-- Previously we had this:
	-- 	[ bndr | bndr <- bndrs,
	--		 maybeToBool (lookupVarEnv rhs_usage bndr)]
	-- which has n**2 cost, and this meant that edges_from alone 
	-- consumed 10% of total runtime!
    edges_from :: UsageDetails -> [Unique]
    edges_from rhs_usage = _scc_ "occAnalBind.edges_from"
			   keysUFM rhs_usage

    ---- stuff to "re-constitute" bindings from dependency-analysis info ------

	-- Non-recursive SCC
    do_final_bind (AcyclicSCC ((bndr, rhs_usage, rhs'), _, _)) (body_usage, binds_so_far)
      | not (bndr `usedIn` body_usage)
      = (body_usage, binds_so_far)			-- Dead code
      | otherwise
      = (combined_usage, new_bind : binds_so_far)	
      where
	total_usage       	      = combineUsageDetails body_usage rhs_usage
	(combined_usage, tagged_bndr) = tagBinder total_usage bndr
	new_bind		      = NonRec tagged_bndr rhs'

	-- Recursive SCC
    do_final_bind (CyclicSCC cycle) (body_usage, binds_so_far)
      | not (any (`usedIn` body_usage) bndrs)		-- NB: look at body_usage, not total_usage
      = (body_usage, binds_so_far)			-- Dead code
      | otherwise
      = (combined_usage, final_bind:binds_so_far)
      where
	details			       = [details   | (details, _, _) <- cycle]
	bndrs			       = [bndr      | (bndr, _, _)      <- details]
	rhs_usages		       = [rhs_usage | (_, rhs_usage, _) <- details]
	total_usage		       = foldr combineUsageDetails body_usage rhs_usages
	(combined_usage, tagged_bndrs) = tagBinders total_usage bndrs
	final_bind		       = Rec (reOrderRec env new_cycle)

	new_cycle = CyclicSCC (zipWithEqual "occAnalBind" mk_new_bind tagged_bndrs cycle)
	mk_new_bind tagged_bndr ((_, _, rhs'), key, keys) = ((tagged_bndr, rhs'), key, keys)
\end{code}

@reOrderRec@ is applied to the list of (binder,rhs) pairs for a cyclic
strongly connected component (there's guaranteed to be a cycle).  It returns the
same pairs, but 
	a) in a better order,
	b) with some of the Ids having a IMustNotBeINLINEd pragma

The "no-inline" Ids are sufficient to break all cycles in the SCC.  This means
that the simplifier can guarantee not to loop provided it never records an inlining
for these no-inline guys.

Furthermore, the order of the binds is such that if we neglect dependencies
on the no-inline Ids then the binds are topologically sorted.  This means
that the simplifier will generally do a good job if it works from top bottom,
recording inlinings for any Ids which aren't marked as "no-inline" as it goes.

==============
[June 98: I don't understand the following paragraphs, and I've 
	  changed the a=b case again so that it isn't a special case any more.]

Here's a case that bit me:

	letrec
		a = b
		b = \x. BIG
	in
	...a...a...a....

Re-ordering doesn't change the order of bindings, but there was no loop-breaker.

My solution was to make a=b bindings record b as Many, rather like INLINE bindings.
Perhaps something cleverer would suffice.
===============

You might think that you can prevent non-termination simply by making
sure that we simplify a recursive binding's RHS in an environment that
simply clones the recursive Id.  But no.  Consider

		letrec f = \x -> let z = f x' in ...

		in
		let n = f y
		in
		case n of { ... }

We bind n to its *simplified* RHS, we then *re-simplify* it when
we inline n.  Then we may well inline f; and then the same thing
happens with z!

I don't think it's possible to prevent non-termination by environment
manipulation in this way.  Apart from anything else, successive
iterations of the simplifier may unroll recursive loops in cases like
that above.  The idea of beaking every recursive loop with an
IMustNotBeINLINEd pragma is much much better.


\begin{code}
reOrderRec
	:: OccEnv
	-> SCC (Node Details2)
	-> [Details2]
			-- Sorted into a plausible order.  Enough of the Ids have
			--	dontINLINE pragmas that there are no loops left.

	-- Non-recursive case
reOrderRec env (AcyclicSCC (bind, _, _)) = [bind]

	-- Common case of simple self-recursion
reOrderRec env (CyclicSCC [bind])
  = [(setIdOccInfo tagged_bndr IAmALoopBreaker, rhs)]
  where
    ((tagged_bndr, rhs), _, _) = bind

reOrderRec env (CyclicSCC (bind : binds))
  = 	-- Choose a loop breaker, mark it no-inline,
	-- do SCC analysis on the rest, and recursively sort them out
    concat (map (reOrderRec env) (stronglyConnCompR unchosen))
    ++ 
    [(setIdOccInfo tagged_bndr IAmALoopBreaker, rhs)]

  where
    (chosen_pair, unchosen) = choose_loop_breaker bind (score bind) [] binds
    (tagged_bndr, rhs)      = chosen_pair

	-- This loop looks for the bind with the lowest score
	-- to pick as the loop  breaker.  The rest accumulate in 
    choose_loop_breaker (details,_,_) loop_sc acc []
	= (details, acc)	-- Done

    choose_loop_breaker loop_bind loop_sc acc (bind : binds)
	| sc < loop_sc	-- Lower score so pick this new one
	= choose_loop_breaker bind sc (loop_bind : acc) binds

	| otherwise	-- No lower so don't pick it
	= choose_loop_breaker loop_bind loop_sc (bind : acc) binds
	where
	  sc = score bind
	  
    score :: Node Details2 -> Int	-- Higher score => less likely to be picked as loop breaker
    score ((bndr, rhs), _, _)
	| exprIsTrivial rhs 	   = 4	-- Practically certain to be inlined
		-- Used to have also: && not (isExportedId bndr)
		-- But I found this sometimes cost an extra iteration when we have
		--	rec { d = (a,b); a = ...df...; b = ...df...; df = d }
		-- where df is the exported dictionary. Then df makes a really
		-- bad choice for loop breaker
	  
	| not_fun_ty (idType bndr) = 3	-- Data types help with cases
		-- This used to have a lower score than inlineCandidate, but
		-- it's *really* helpful if dictionaries get inlined fast,
		-- so I'm experimenting with giving higher priority to data-typed things

	| inlineCandidate bndr rhs = 2	-- Likely to be inlined

	| not (isEmptySpecInfo (idSpecialisation bndr)) = 1
		-- Avoid things with specialisations; we'd like
		-- to take advantage of them in the subsequent bindings

	| otherwise = 0

    inlineCandidate :: Id -> CoreExpr -> Bool
    inlineCandidate id (Note InlineMe _) = True
    inlineCandidate id rhs	         = isOneOcc (idOccInfo id)

	-- Real example (the Enum Ordering instance from PrelBase):
	--	rec	f = \ x -> case d of (p,q,r) -> p x
	--		g = \ x -> case d of (p,q,r) -> q x
	--		d = (v, f, g)
	--
	-- Here, f and g occur just once; but we can't inline them into d.
	-- On the other hand we *could* simplify those case expressions if
	-- we didn't stupidly choose d as the loop breaker.
	-- But we won't because constructor args are marked "Many".

    not_fun_ty ty = not (isFunTy (dropForAlls ty))
\end{code}

@occAnalRhs@ deals with the question of bindings where the Id is marked
by an INLINE pragma.  For these we record that anything which occurs
in its RHS occurs many times.  This pessimistically assumes that ths
inlined binder also occurs many times in its scope, but if it doesn't
we'll catch it next time round.  At worst this costs an extra simplifier pass.
ToDo: try using the occurrence info for the inline'd binder.

[March 97] We do the same for atomic RHSs.  Reason: see notes with reOrderRec.
[June 98, SLPJ]  I've undone this change; I don't understand it.  See notes with reOrderRec.


\begin{code}
occAnalRhs :: OccEnv
	   -> Id -> CoreExpr	-- Binder and rhs
				-- For non-recs the binder is alrady tagged
				-- with occurrence info
	   -> (UsageDetails, CoreExpr)

occAnalRhs env id rhs
  = (final_usage, rhs')
  where
    (rhs_usage, rhs') = occAnal ctxt rhs
    ctxt | certainly_inline id = env
	 | otherwise	       = rhsCtxt
	-- Note that we generally use an rhsCtxt.  This tells the occ anal n
	-- that it's looking at an RHS, which has an effect in occAnalApp
	--
	-- But there's a problem.  Consider
	--	x1 = a0 : []
	--	x2 = a1 : x1
	--	x3 = a2 : x2
	--	g  = f x3
	-- First time round, it looks as if x1 and x2 occur as an arg of a 
	-- let-bound constructor ==> give them a many-occurrence.
	-- But then x3 is inlined (unconditionally as it happens) and
	-- next time round, x2 will be, and the next time round x1 will be
	-- Result: multiple simplifier iterations.  Sigh.  
	-- Crude solution: use rhsCtxt for things that occur just once...

    certainly_inline id = case idOccInfo id of
			    OneOcc in_lam one_br _ -> not in_lam && one_br
			    other		   -> False

	-- [March 98] A new wrinkle is that if the binder has specialisations inside
	-- it then we count the specialised Ids as "extra rhs's".  That way
	-- the "parent" keeps the specialised "children" alive.  If the parent
	-- dies (because it isn't referenced any more), then the children will
	-- die too unless they are already referenced directly.

    final_usage = addRuleUsage rhs_usage id

addRuleUsage :: UsageDetails -> Id -> UsageDetails
-- Add the usage from RULES in Id to the usage
addRuleUsage usage id
  = foldVarSet add usage (idRuleVars id)
  where
    add v u = addOneOcc u v NoOccInfo		-- Give a non-committal binder info
						-- (i.e manyOcc) because many copies
						-- of the specialised thing can appear
\end{code}

Expressions
~~~~~~~~~~~
\begin{code}
occAnal :: OccEnv
	-> CoreExpr
	-> (UsageDetails,	-- Gives info only about the "interesting" Ids
	    CoreExpr)

occAnal env (Type t)  = (emptyDetails, Type t)
occAnal env (Var v)   = (mkOneOcc env v False, Var v)
    -- At one stage, I gathered the idRuleVars for v here too,
    -- which in a way is the right thing to do.
    -- Btu that went wrong right after specialisation, when
    -- the *occurrences* of the overloaded function didn't have any
    -- rules in them, so the *specialised* versions looked as if they
    -- weren't used at all.
\end{code}

We regard variables that occur as constructor arguments as "dangerousToDup":

\begin{verbatim}
module A where
f x = let y = expensive x in 
      let z = (True,y) in 
      (case z of {(p,q)->q}, case z of {(p,q)->q})
\end{verbatim}

We feel free to duplicate the WHNF (True,y), but that means
that y may be duplicated thereby.

If we aren't careful we duplicate the (expensive x) call!
Constructors are rather like lambdas in this way.

\begin{code}
occAnal env expr@(Lit lit) = (emptyDetails, expr)
\end{code}

\begin{code}
occAnal env (Note InlineMe body)
  = case occAnal env body of { (usage, body') -> 
    (mapVarEnv markMany usage, Note InlineMe body')
    }

occAnal env (Note note@(SCC cc) body)
  = case occAnal env body of { (usage, body') ->
    (mapVarEnv markInsideSCC usage, Note note body')
    }

occAnal env (Note note body)
  = case occAnal env body of { (usage, body') ->
    (usage, Note note body')
    }
\end{code}

\begin{code}
occAnal env app@(App fun arg)
  = occAnalApp env (collectArgs app) False

-- Ignore type variables altogether
--   (a) occurrences inside type lambdas only not marked as InsideLam
--   (b) type variables not in environment

occAnal env expr@(Lam x body) | isTyVar x
  = case occAnal env body of { (body_usage, body') ->
    (body_usage, Lam x body')
    }

-- For value lambdas we do a special hack.  Consider
-- 	(\x. \y. ...x...)
-- If we did nothing, x is used inside the \y, so would be marked
-- as dangerous to dup.  But in the common case where the abstraction
-- is applied to two arguments this is over-pessimistic.
-- So instead, we just mark each binder with its occurrence
-- info in the *body* of the multiple lambda.
-- Then, the simplifier is careful when partially applying lambdas.

occAnal env expr@(Lam _ _)
  = case occAnal env_body body of { (body_usage, body') ->
    let
        (final_usage, tagged_binders) = tagBinders body_usage binders
	--	URGH!  Sept 99: we don't seem to be able to use binders' here, because
	--	we get linear-typed things in the resulting program that we can't handle yet.
	--	(e.g. PrelShow)  TODO 

	really_final_usage = if linear then
				final_usage
			     else
				mapVarEnv markInsideLam final_usage
    in
    (really_final_usage,
     mkLams tagged_binders body') }
  where
    env_body	    = vanillaCtxt			-- Body is (no longer) an RhsContext
    (binders, body) = collectBinders expr
    binders' 	    = oneShotGroup env binders
    linear	    = all is_one_shot binders'
    is_one_shot b   = isId b && isOneShotBndr b

occAnal env (Case scrut bndr ty alts)
  = case occ_anal_scrut scrut alts		of { (scrut_usage, scrut') ->
    case mapAndUnzip (occAnalAlt env bndr) alts of { (alts_usage_s, alts')   -> 
    let
	alts_usage  = foldr1 combineAltsUsageDetails alts_usage_s
	alts_usage' = addCaseBndrUsage alts_usage
	(alts_usage1, tagged_bndr) = tagBinder alts_usage' bndr
        total_usage = scrut_usage `combineUsageDetails` alts_usage1
    in
    total_usage `seq` (total_usage, Case scrut' tagged_bndr ty alts') }}
  where
	-- The case binder gets a usage of either "many" or "dead", never "one".
	-- Reason: we like to inline single occurrences, to eliminate a binding,
	-- but inlining a case binder *doesn't* eliminate a binding.
	-- We *don't* want to transform
	--	case x of w { (p,q) -> f w }
	-- into
	--	case x of w { (p,q) -> f (p,q) }
    addCaseBndrUsage usage = case lookupVarEnv usage bndr of
				Nothing  -> usage
				Just occ -> extendVarEnv usage bndr (markMany occ)

    occ_anal_scrut (Var v) (alt1 : other_alts)
				| not (null other_alts) || not (isDefaultAlt alt1)
			        = (mkOneOcc env v True, Var v)
    occ_anal_scrut scrut alts   = occAnal vanillaCtxt scrut
					-- No need for rhsCtxt

occAnal env (Let bind body)
  = case occAnal env body     	         of { (body_usage, body') ->
    case occAnalBind env bind body_usage of { (final_usage, new_binds) ->
       (final_usage, mkLets new_binds body') }}

occAnalArgs env args
  = case mapAndUnzip (occAnal arg_env) args of	{ (arg_uds_s, args') ->
    (foldr combineUsageDetails emptyDetails arg_uds_s, args')}
  where
    arg_env = vanillaCtxt
\end{code}

Applications are dealt with specially because we want
the "build hack" to work.

\begin{code}
-- Hack for build, fold, runST
occAnalApp env (Var fun, args) is_rhs
  = case args_stuff of { (args_uds, args') ->
    let
	-- We mark the free vars of the argument of a constructor or PAP 
	-- as "many", if it is the RHS of a let(rec).
	-- This means that nothing gets inlined into a constructor argument
	-- position, which is what we want.  Typically those constructor
	-- arguments are just variables, or trivial expressions.
	--
	-- This is the *whole point* of the isRhsEnv predicate
        final_args_uds
		| isRhsEnv env,
		  isDataConWorkId fun || valArgCount args < idArity fun
		= mapVarEnv markMany args_uds
		| otherwise = args_uds
    in
    (fun_uds `combineUsageDetails` final_args_uds, mkApps (Var fun) args') }
  where
    fun_uniq = idUnique fun
    fun_uds  = mkOneOcc env fun (valArgCount args > 0)
    args_stuff	| fun_uniq == buildIdKey    = appSpecial env 2 [True,True]  args
		| fun_uniq == augmentIdKey  = appSpecial env 2 [True,True]  args
		| fun_uniq == foldrIdKey    = appSpecial env 3 [False,True] args
		| fun_uniq == runSTRepIdKey = appSpecial env 2 [True]	    args
			-- (foldr k z xs) may call k many times, but it never
			-- shares a partial application of k; hence [False,True]
			-- This means we can optimise
			--	foldr (\x -> let v = ...x... in \y -> ...v...) z xs
			-- by floating in the v

		| otherwise = occAnalArgs env args


occAnalApp env (fun, args) is_rhs
  = case occAnal (addAppCtxt env args) fun of	{ (fun_uds, fun') ->
	-- The addAppCtxt is a bit cunning.  One iteration of the simplifier
	-- often leaves behind beta redexs like
	--	(\x y -> e) a1 a2
	-- Here we would like to mark x,y as one-shot, and treat the whole
	-- thing much like a let.  We do this by pushing some True items
	-- onto the context stack.

    case occAnalArgs env args of	{ (args_uds, args') ->
    let
	final_uds = fun_uds `combineUsageDetails` args_uds
    in
    (final_uds, mkApps fun' args') }}
    
appSpecial :: OccEnv 
	   -> Int -> CtxtTy	-- Argument number, and context to use for it
	   -> [CoreExpr]
	   -> (UsageDetails, [CoreExpr])
appSpecial env n ctxt args
  = go n args
  where
    arg_env = vanillaCtxt

    go n [] = (emptyDetails, [])	-- Too few args

    go 1 (arg:args)			-- The magic arg
      = case occAnal (setCtxt arg_env ctxt) arg of	{ (arg_uds, arg') ->
	case occAnalArgs env args of			{ (args_uds, args') ->
	(combineUsageDetails arg_uds args_uds, arg':args') }}
    
    go n (arg:args)
      = case occAnal arg_env arg of	{ (arg_uds, arg') ->
	case go (n-1) args of		{ (args_uds, args') ->
	(combineUsageDetails arg_uds args_uds, arg':args') }}
\end{code}

    
Case alternatives
~~~~~~~~~~~~~~~~~
If the case binder occurs at all, the other binders effectively do too.  
For example
	case e of x { (a,b) -> rhs }
is rather like
	let x = (a,b) in rhs
If e turns out to be (e1,e2) we indeed get something like
	let a = e1; b = e2; x = (a,b) in rhs

\begin{code}
occAnalAlt env case_bndr (con, bndrs, rhs)
  = case occAnal env rhs of { (rhs_usage, rhs') ->
    let
        (final_usage, tagged_bndrs) = tagBinders rhs_usage bndrs
	final_bndrs | case_bndr `elemVarEnv` final_usage = bndrs
		    | otherwise				= tagged_bndrs
		-- Leave the binders untagged if the case 
		-- binder occurs at all; see note above
    in
    (final_usage, (con, final_bndrs, rhs')) }
\end{code}


%************************************************************************
%*									*
\subsection[OccurAnal-types]{OccEnv}
%*									*
%************************************************************************

\begin{code}
data OccEnv
  = OccEnv OccEncl	-- Enclosing context information
	   CtxtTy	-- Tells about linearity

-- OccEncl is used to control whether to inline into constructor arguments
-- For example:
--	x = (p,q)		-- Don't inline p or q
--	y = /\a -> (p a, q a)	-- Still don't inline p or q
--	z = f (p,q)		-- Do inline p,q; it may make a rule fire
-- So OccEncl tells enought about the context to know what to do when
-- we encounter a contructor application or PAP.

data OccEncl
  = OccRhs 		-- RHS of let(rec), albeit perhaps inside a type lambda
			-- Don't inline into constructor args here
  | OccVanilla		-- Argument of function, body of lambda, scruintee of case etc.
			-- Do inline into constructor args here

type CtxtTy = [Bool]
	-- []	 	No info
	--
	-- True:ctxt  	Analysing a function-valued expression that will be
	--			applied just once
	--
	-- False:ctxt	Analysing a function-valued expression that may
	--			be applied many times; but when it is, 
	--			the CtxtTy inside applies

initOccEnv :: OccEnv
initOccEnv = OccEnv OccRhs []

vanillaCtxt = OccEnv OccVanilla []
rhsCtxt     = OccEnv OccRhs     []

isRhsEnv (OccEnv OccRhs     _) = True
isRhsEnv (OccEnv OccVanilla _) = False

setCtxt :: OccEnv -> CtxtTy -> OccEnv
setCtxt (OccEnv encl _) ctxt = OccEnv encl ctxt

oneShotGroup :: OccEnv -> [CoreBndr] -> [CoreBndr]
	-- The result binders have one-shot-ness set that they might not have had originally.
	-- This happens in (build (\cn -> e)).  Here the occurrence analyser
	-- linearity context knows that c,n are one-shot, and it records that fact in
	-- the binder. This is useful to guide subsequent float-in/float-out tranformations

oneShotGroup (OccEnv encl ctxt) bndrs 
  = go ctxt bndrs []
  where
    go ctxt [] rev_bndrs = reverse rev_bndrs

    go (lin_ctxt:ctxt) (bndr:bndrs) rev_bndrs
	| isId bndr = go ctxt bndrs (bndr':rev_bndrs)
	where
	  bndr' | lin_ctxt  = setOneShotLambda bndr
		| otherwise = bndr

    go ctxt (bndr:bndrs) rev_bndrs = go ctxt bndrs (bndr:rev_bndrs)

addAppCtxt (OccEnv encl ctxt) args 
  = OccEnv encl (replicate (valArgCount args) True ++ ctxt)
\end{code}

%************************************************************************
%*									*
\subsection[OccurAnal-types]{OccEnv}
%*									*
%************************************************************************

\begin{code}
type UsageDetails = IdEnv OccInfo	-- A finite map from ids to their usage

combineUsageDetails, combineAltsUsageDetails
	:: UsageDetails -> UsageDetails -> UsageDetails

combineUsageDetails usage1 usage2
  = plusVarEnv_C addOccInfo usage1 usage2

combineAltsUsageDetails usage1 usage2
  = plusVarEnv_C orOccInfo usage1 usage2

addOneOcc :: UsageDetails -> Id -> OccInfo -> UsageDetails
addOneOcc usage id info
  = plusVarEnv_C addOccInfo usage (unitVarEnv id info)
	-- ToDo: make this more efficient

emptyDetails = (emptyVarEnv :: UsageDetails)

usedIn :: Id -> UsageDetails -> Bool
v `usedIn` details =  isExportedId v || v `elemVarEnv` details

tagBinders :: UsageDetails	    -- Of scope
	   -> [Id]		    -- Binders
	   -> (UsageDetails, 	    -- Details with binders removed
	      [IdWithOccInfo])    -- Tagged binders

tagBinders usage binders
 = let
     usage' = usage `delVarEnvList` binders
     uss    = map (setBinderOcc usage) binders
   in
   usage' `seq` (usage', uss)

tagBinder :: UsageDetails	    -- Of scope
	  -> Id			    -- Binders
	  -> (UsageDetails, 	    -- Details with binders removed
	      IdWithOccInfo)	    -- Tagged binders

tagBinder usage binder
 = let
     usage'  = usage `delVarEnv` binder
     binder' = setBinderOcc usage binder
   in
   usage' `seq` (usage', binder')

setBinderOcc :: UsageDetails -> CoreBndr -> CoreBndr
setBinderOcc usage bndr
  | isTyVar bndr      = bndr
  | isExportedId bndr = case idOccInfo bndr of
			  NoOccInfo -> bndr
			  other     -> setIdOccInfo bndr NoOccInfo
  	    -- Don't use local usage info for visible-elsewhere things
	    -- BUT *do* erase any IAmALoopBreaker annotation, because we're
	    -- about to re-generate it and it shouldn't be "sticky"
			  
  | otherwise = setIdOccInfo bndr occ_info
  where
    occ_info = lookupVarEnv usage bndr `orElse` IAmDead
\end{code}


%************************************************************************
%*									*
\subsection{Operations over OccInfo}
%*									*
%************************************************************************

\begin{code}
mkOneOcc :: OccEnv -> Id -> InterestingCxt -> UsageDetails
mkOneOcc env id int_cxt
  | isLocalId id = unitVarEnv id (OneOcc False True int_cxt)
  | otherwise    = emptyDetails

markMany, markInsideLam, markInsideSCC :: OccInfo -> OccInfo

markMany IAmDead = IAmDead
markMany other   = NoOccInfo

markInsideSCC occ = markMany occ

markInsideLam (OneOcc _ one_br int_cxt) = OneOcc True one_br int_cxt
markInsideLam occ		 	= occ

addOccInfo, orOccInfo :: OccInfo -> OccInfo -> OccInfo

addOccInfo IAmDead info2 = info2
addOccInfo info1 IAmDead = info1
addOccInfo info1 info2   = NoOccInfo

-- (orOccInfo orig new) is used
-- when combining occurrence info from branches of a case

orOccInfo IAmDead info2 = info2
orOccInfo info1 IAmDead = info1
orOccInfo (OneOcc in_lam1 one_branch1 int_cxt1)
	  (OneOcc in_lam2 one_branch2 int_cxt2)
  = OneOcc (in_lam1 || in_lam2)
	   False	-- False, because it occurs in both branches
	   (int_cxt1 && int_cxt2)

orOccInfo info1 info2 = NoOccInfo
\end{code}