1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section{SetLevels}
***************************
Overview
***************************
1. We attach binding levels to Core bindings, in preparation for floating
outwards (@FloatOut@).
2. We also let-ify many expressions (notably case scrutinees), so they
will have a fighting chance of being floated sensible.
3. Note [Need for cloning during float-out]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We clone the binders of any floatable let-binding, so that when it is
floated out it will be unique. Example
(let x=2 in x) + (let x=3 in x)
we must clone before floating so we get
let x1=2 in
let x2=3 in
x1+x2
NOTE: this can't be done using the uniqAway idea, because the variable
must be unique in the whole program, not just its current scope,
because two variables in different scopes may float out to the
same top level place
NOTE: Very tiresomely, we must apply this substitution to
the rules stored inside a variable too.
We do *not* clone top-level bindings, because some of them must not change,
but we *do* clone bindings that are heading for the top level
4. Note [Binder-swap during float-out]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the expression
case x of wild { p -> ...wild... }
we substitute x for wild in the RHS of the case alternatives:
case x of wild { p -> ...x... }
This means that a sub-expression involving x is not "trapped" inside the RHS.
And it's not inconvenient because we already have a substitution.
Note that this is EXACTLY BACKWARDS from the what the simplifier does.
The simplifier tries to get rid of occurrences of x, in favour of wild,
in the hope that there will only be one remaining occurrence of x, namely
the scrutinee of the case, and we can inline it.
-}
{-# LANGUAGE CPP, MultiWayIf #-}
module SetLevels (
setLevels,
Level(..), LevelType(..), tOP_LEVEL, isJoinCeilLvl, asJoinCeilLvl,
LevelledBind, LevelledExpr, LevelledBndr,
FloatSpec(..), floatSpecLevel,
incMinorLvl, ltMajLvl, ltLvl, isTopLvl
) where
#include "HsVersions.h"
import GhcPrelude
import CoreSyn
import CoreMonad ( FloatOutSwitches(..) )
import CoreUtils ( exprType, exprIsHNF
, exprOkForSpeculation
, exprIsTopLevelBindable
, isExprLevPoly
, collectMakeStaticArgs
)
import CoreArity ( exprBotStrictness_maybe )
import CoreFVs -- all of it
import CoreSubst
import MkCore ( sortQuantVars )
import Id
import IdInfo
import Var
import VarSet
import UniqSet ( nonDetFoldUniqSet )
import UniqDSet ( getUniqDSet )
import VarEnv
import Literal ( litIsTrivial )
import Demand ( StrictSig, Demand, isStrictDmd, splitStrictSig, increaseStrictSigArity )
import Name ( getOccName, mkSystemVarName )
import OccName ( occNameString )
import Type ( Type, mkLamTypes, splitTyConApp_maybe, tyCoVarsOfType
, mightBeUnliftedType, closeOverKindsDSet )
import BasicTypes ( Arity, RecFlag(..), isRec )
import DataCon ( dataConOrigResTy )
import TysWiredIn
import UniqSupply
import Util
import Outputable
import FastString
import UniqDFM
import FV
import Data.Maybe
import MonadUtils ( mapAccumLM )
{-
************************************************************************
* *
\subsection{Level numbers}
* *
************************************************************************
-}
type LevelledExpr = TaggedExpr FloatSpec
type LevelledBind = TaggedBind FloatSpec
type LevelledBndr = TaggedBndr FloatSpec
data Level = Level Int -- Level number of enclosing lambdas
Int -- Number of big-lambda and/or case expressions and/or
-- context boundaries between
-- here and the nearest enclosing lambda
LevelType -- Binder or join ceiling?
data LevelType = BndrLvl | JoinCeilLvl deriving (Eq)
data FloatSpec
= FloatMe Level -- Float to just inside the binding
-- tagged with this level
| StayPut Level -- Stay where it is; binding is
-- tagged with this level
floatSpecLevel :: FloatSpec -> Level
floatSpecLevel (FloatMe l) = l
floatSpecLevel (StayPut l) = l
{-
The {\em level number} on a (type-)lambda-bound variable is the
nesting depth of the (type-)lambda which binds it. The outermost lambda
has level 1, so (Level 0 0) means that the variable is bound outside any lambda.
On an expression, it's the maximum level number of its free
(type-)variables. On a let(rec)-bound variable, it's the level of its
RHS. On a case-bound variable, it's the number of enclosing lambdas.
Top-level variables: level~0. Those bound on the RHS of a top-level
definition but ``before'' a lambda; e.g., the \tr{x} in (levels shown
as ``subscripts'')...
\begin{verbatim}
a_0 = let b_? = ... in
x_1 = ... b ... in ...
\end{verbatim}
The main function @lvlExpr@ carries a ``context level'' (@le_ctxt_lvl@).
That's meant to be the level number of the enclosing binder in the
final (floated) program. If the level number of a sub-expression is
less than that of the context, then it might be worth let-binding the
sub-expression so that it will indeed float.
If you can float to level @Level 0 0@ worth doing so because then your
allocation becomes static instead of dynamic. We always start with
context @Level 0 0@.
Note [FloatOut inside INLINE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@InlineCtxt@ very similar to @Level 0 0@, but is used for one purpose:
to say "don't float anything out of here". That's exactly what we
want for the body of an INLINE, where we don't want to float anything
out at all. See notes with lvlMFE below.
But, check this out:
-- At one time I tried the effect of not floating anything out of an InlineMe,
-- but it sometimes works badly. For example, consider PrelArr.done. It
-- has the form __inline (\d. e)
-- where e doesn't mention d. If we float this to
-- __inline (let x = e in \d. x)
-- things are bad. The inliner doesn't even inline it because it doesn't look
-- like a head-normal form. So it seems a lesser evil to let things float.
-- In SetLevels we do set the context to (Level 0 0) when we get to an InlineMe
-- which discourages floating out.
So the conclusion is: don't do any floating at all inside an InlineMe.
(In the above example, don't float the {x=e} out of the \d.)
One particular case is that of workers: we don't want to float the
call to the worker outside the wrapper, otherwise the worker might get
inlined into the floated expression, and an importing module won't see
the worker at all.
Note [Join ceiling]
~~~~~~~~~~~~~~~~~~~
Join points can't float very far; too far, and they can't remain join points
So, suppose we have:
f x = (joinrec j y = ... x ... in jump j x) + 1
One may be tempted to float j out to the top of f's RHS, but then the jump
would not be a tail call. Thus we keep track of a level called the *join
ceiling* past which join points are not allowed to float.
The troublesome thing is that, unlike most levels to which something might
float, there is not necessarily an identifier to which the join ceiling is
attached. Fortunately, if something is to be floated to a join ceiling, it must
be dropped at the *nearest* join ceiling. Thus each level is marked as to
whether it is a join ceiling, so that FloatOut can tell which binders are being
floated to the nearest join ceiling and which to a particular binder (or set of
binders).
-}
instance Outputable FloatSpec where
ppr (FloatMe l) = char 'F' <> ppr l
ppr (StayPut l) = ppr l
tOP_LEVEL :: Level
tOP_LEVEL = Level 0 0 BndrLvl
incMajorLvl :: Level -> Level
incMajorLvl (Level major _ _) = Level (major + 1) 0 BndrLvl
incMinorLvl :: Level -> Level
incMinorLvl (Level major minor _) = Level major (minor+1) BndrLvl
asJoinCeilLvl :: Level -> Level
asJoinCeilLvl (Level major minor _) = Level major minor JoinCeilLvl
maxLvl :: Level -> Level -> Level
maxLvl l1@(Level maj1 min1 _) l2@(Level maj2 min2 _)
| (maj1 > maj2) || (maj1 == maj2 && min1 > min2) = l1
| otherwise = l2
ltLvl :: Level -> Level -> Bool
ltLvl (Level maj1 min1 _) (Level maj2 min2 _)
= (maj1 < maj2) || (maj1 == maj2 && min1 < min2)
ltMajLvl :: Level -> Level -> Bool
-- Tells if one level belongs to a difft *lambda* level to another
ltMajLvl (Level maj1 _ _) (Level maj2 _ _) = maj1 < maj2
isTopLvl :: Level -> Bool
isTopLvl (Level 0 0 _) = True
isTopLvl _ = False
isJoinCeilLvl :: Level -> Bool
isJoinCeilLvl (Level _ _ t) = t == JoinCeilLvl
instance Outputable Level where
ppr (Level maj min typ)
= hcat [ char '<', int maj, char ',', int min, char '>'
, ppWhen (typ == JoinCeilLvl) (char 'C') ]
instance Eq Level where
(Level maj1 min1 _) == (Level maj2 min2 _) = maj1 == maj2 && min1 == min2
{-
************************************************************************
* *
\subsection{Main level-setting code}
* *
************************************************************************
-}
setLevels :: FloatOutSwitches
-> CoreProgram
-> UniqSupply
-> [LevelledBind]
setLevels float_lams binds us
= initLvl us (do_them init_env binds)
where
init_env = initialEnv float_lams
do_them :: LevelEnv -> [CoreBind] -> LvlM [LevelledBind]
do_them _ [] = return []
do_them env (b:bs)
= do { (lvld_bind, env') <- lvlTopBind env b
; lvld_binds <- do_them env' bs
; return (lvld_bind : lvld_binds) }
lvlTopBind :: LevelEnv -> Bind Id -> LvlM (LevelledBind, LevelEnv)
lvlTopBind env (NonRec bndr rhs)
= do { rhs' <- lvl_top env NonRecursive bndr rhs
; let (env', [bndr']) = substAndLvlBndrs NonRecursive env tOP_LEVEL [bndr]
; return (NonRec bndr' rhs', env') }
lvlTopBind env (Rec pairs)
= do { let (env', bndrs') = substAndLvlBndrs Recursive env tOP_LEVEL
(map fst pairs)
; rhss' <- mapM (\(b,r) -> lvl_top env' Recursive b r) pairs
; return (Rec (bndrs' `zip` rhss'), env') }
lvl_top :: LevelEnv -> RecFlag -> Id -> CoreExpr -> LvlM LevelledExpr
lvl_top env is_rec bndr rhs
= lvlRhs env is_rec
(isBottomingId bndr)
Nothing -- Not a join point
(freeVars rhs)
{-
************************************************************************
* *
\subsection{Setting expression levels}
* *
************************************************************************
Note [Floating over-saturated applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we see (f x y), and (f x) is a redex (ie f's arity is 1),
we call (f x) an "over-saturated application"
Should we float out an over-sat app, if can escape a value lambda?
It is sometimes very beneficial (-7% runtime -4% alloc over nofib -O2).
But we don't want to do it for class selectors, because the work saved
is minimal, and the extra local thunks allocated cost money.
Arguably we could float even class-op applications if they were going to
top level -- but then they must be applied to a constant dictionary and
will almost certainly be optimised away anyway.
-}
lvlExpr :: LevelEnv -- Context
-> CoreExprWithFVs -- Input expression
-> LvlM LevelledExpr -- Result expression
{-
The @le_ctxt_lvl@ is, roughly, the level of the innermost enclosing
binder. Here's an example
v = \x -> ...\y -> let r = case (..x..) of
..x..
in ..
When looking at the rhs of @r@, @le_ctxt_lvl@ will be 1 because that's
the level of @r@, even though it's inside a level-2 @\y@. It's
important that @le_ctxt_lvl@ is 1 and not 2 in @r@'s rhs, because we
don't want @lvlExpr@ to turn the scrutinee of the @case@ into an MFE
--- because it isn't a *maximal* free expression.
If there were another lambda in @r@'s rhs, it would get level-2 as well.
-}
lvlExpr env (_, AnnType ty) = return (Type (CoreSubst.substTy (le_subst env) ty))
lvlExpr env (_, AnnCoercion co) = return (Coercion (substCo (le_subst env) co))
lvlExpr env (_, AnnVar v) = return (lookupVar env v)
lvlExpr _ (_, AnnLit lit) = return (Lit lit)
lvlExpr env (_, AnnCast expr (_, co)) = do
expr' <- lvlNonTailExpr env expr
return (Cast expr' (substCo (le_subst env) co))
lvlExpr env (_, AnnTick tickish expr) = do
expr' <- lvlNonTailExpr env expr
let tickish' = substTickish (le_subst env) tickish
return (Tick tickish' expr')
lvlExpr env expr@(_, AnnApp _ _) = lvlApp env expr (collectAnnArgs expr)
-- We don't split adjacent lambdas. That is, given
-- \x y -> (x+1,y)
-- we don't float to give
-- \x -> let v = x+1 in \y -> (v,y)
-- Why not? Because partial applications are fairly rare, and splitting
-- lambdas makes them more expensive.
lvlExpr env expr@(_, AnnLam {})
= do { new_body <- lvlNonTailMFE new_env True body
; return (mkLams new_bndrs new_body) }
where
(bndrs, body) = collectAnnBndrs expr
(env1, bndrs1) = substBndrsSL NonRecursive env bndrs
(new_env, new_bndrs) = lvlLamBndrs env1 (le_ctxt_lvl env) bndrs1
-- At one time we called a special version of collectBinders,
-- which ignored coercions, because we don't want to split
-- a lambda like this (\x -> coerce t (\s -> ...))
-- This used to happen quite a bit in state-transformer programs,
-- but not nearly so much now non-recursive newtypes are transparent.
-- [See SetLevels rev 1.50 for a version with this approach.]
lvlExpr env (_, AnnLet bind body)
= do { (bind', new_env) <- lvlBind env bind
; body' <- lvlExpr new_env body
-- No point in going via lvlMFE here. If the binding is alive
-- (mentioned in body), and the whole let-expression doesn't
-- float, then neither will the body
; return (Let bind' body') }
lvlExpr env (_, AnnCase scrut case_bndr ty alts)
= do { scrut' <- lvlNonTailMFE env True scrut
; lvlCase env (freeVarsOf scrut) scrut' case_bndr ty alts }
lvlNonTailExpr :: LevelEnv -- Context
-> CoreExprWithFVs -- Input expression
-> LvlM LevelledExpr -- Result expression
lvlNonTailExpr env expr
= lvlExpr (placeJoinCeiling env) expr
-------------------------------------------
lvlApp :: LevelEnv
-> CoreExprWithFVs
-> (CoreExprWithFVs, [CoreExprWithFVs]) -- Input application
-> LvlM LevelledExpr -- Result expression
lvlApp env orig_expr ((_,AnnVar fn), args)
| floatOverSat env -- See Note [Floating over-saturated applications]
, arity > 0
, arity < n_val_args
, Nothing <- isClassOpId_maybe fn
= do { rargs' <- mapM (lvlNonTailMFE env False) rargs
; lapp' <- lvlNonTailMFE env False lapp
; return (foldl' App lapp' rargs') }
| otherwise
= do { (_, args') <- mapAccumLM lvl_arg stricts args
-- Take account of argument strictness; see
-- Note [Floating to the top]
; return (foldl' App (lookupVar env fn) args') }
where
n_val_args = count (isValArg . deAnnotate) args
arity = idArity fn
stricts :: [Demand] -- True for strict /value/ arguments
stricts = case splitStrictSig (idStrictness fn) of
(arg_ds, _) | arg_ds `lengthExceeds` n_val_args
-> []
| otherwise
-> arg_ds
-- Separate out the PAP that we are floating from the extra
-- arguments, by traversing the spine until we have collected
-- (n_val_args - arity) value arguments.
(lapp, rargs) = left (n_val_args - arity) orig_expr []
left 0 e rargs = (e, rargs)
left n (_, AnnApp f a) rargs
| isValArg (deAnnotate a) = left (n-1) f (a:rargs)
| otherwise = left n f (a:rargs)
left _ _ _ = panic "SetLevels.lvlExpr.left"
is_val_arg :: CoreExprWithFVs -> Bool
is_val_arg (_, AnnType {}) = False
is_val_arg _ = True
lvl_arg :: [Demand] -> CoreExprWithFVs -> LvlM ([Demand], LevelledExpr)
lvl_arg strs arg | (str1 : strs') <- strs
, is_val_arg arg
= do { arg' <- lvlMFE env (isStrictDmd str1) arg
; return (strs', arg') }
| otherwise
= do { arg' <- lvlMFE env False arg
; return (strs, arg') }
lvlApp env _ (fun, args)
= -- No PAPs that we can float: just carry on with the
-- arguments and the function.
do { args' <- mapM (lvlNonTailMFE env False) args
; fun' <- lvlNonTailExpr env fun
; return (foldl' App fun' args') }
-------------------------------------------
lvlCase :: LevelEnv -- Level of in-scope names/tyvars
-> DVarSet -- Free vars of input scrutinee
-> LevelledExpr -- Processed scrutinee
-> Id -> Type -- Case binder and result type
-> [CoreAltWithFVs] -- Input alternatives
-> LvlM LevelledExpr -- Result expression
lvlCase env scrut_fvs scrut' case_bndr ty alts
-- See Note [Floating single-alternative cases]
| [(con@(DataAlt {}), bs, body)] <- alts
, exprIsHNF (deTagExpr scrut') -- See Note [Check the output scrutinee for exprIsHNF]
, not (isTopLvl dest_lvl) -- Can't have top-level cases
, not (floatTopLvlOnly env) -- Can float anywhere
= -- Always float the case if possible
-- Unlike lets we don't insist that it escapes a value lambda
do { (env1, (case_bndr' : bs')) <- cloneCaseBndrs env dest_lvl (case_bndr : bs)
; let rhs_env = extendCaseBndrEnv env1 case_bndr scrut'
; body' <- lvlMFE rhs_env True body
; let alt' = (con, map (stayPut dest_lvl) bs', body')
; return (Case scrut' (TB case_bndr' (FloatMe dest_lvl)) ty' [alt']) }
| otherwise -- Stays put
= do { let (alts_env1, [case_bndr']) = substAndLvlBndrs NonRecursive env incd_lvl [case_bndr]
alts_env = extendCaseBndrEnv alts_env1 case_bndr scrut'
; alts' <- mapM (lvl_alt alts_env) alts
; return (Case scrut' case_bndr' ty' alts') }
where
ty' = substTy (le_subst env) ty
incd_lvl = incMinorLvl (le_ctxt_lvl env)
dest_lvl = maxFvLevel (const True) env scrut_fvs
-- Don't abstract over type variables, hence const True
lvl_alt alts_env (con, bs, rhs)
= do { rhs' <- lvlMFE new_env True rhs
; return (con, bs', rhs') }
where
(new_env, bs') = substAndLvlBndrs NonRecursive alts_env incd_lvl bs
{- Note [Floating single-alternative cases]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
data T a = MkT !a
f :: T Int -> blah
f x vs = case x of { MkT y ->
let f vs = ...(case y of I# w -> e)...f..
in f vs
Here we can float the (case y ...) out, because y is sure
to be evaluated, to give
f x vs = case x of { MkT y ->
case y of I# w ->
let f vs = ...(e)...f..
in f vs
That saves unboxing it every time round the loop. It's important in
some DPH stuff where we really want to avoid that repeated unboxing in
the inner loop.
Things to note:
* The test we perform is exprIsHNF, and /not/ exprOkForSpeculation.
- exrpIsHNF catches the key case of an evaluated variable
- exprOkForSpeculation is /false/ of an evaluated variable;
See Note [exprOkForSpeculation and evaluated variables] in CoreUtils
So we'd actually miss the key case!
- Nothing is gained from the extra generality of exprOkForSpeculation
since we only consider floating a case whose single alternative
is a DataAlt K a b -> rhs
* We can't float a case to top level
* It's worth doing this float even if we don't float
the case outside a value lambda. Example
case x of {
MkT y -> (case y of I# w2 -> ..., case y of I# w2 -> ...)
If we floated the cases out we could eliminate one of them.
* We only do this with a single-alternative case
Note [Setting levels when floating single-alternative cases]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Handling level-setting when floating a single-alternative case binding
is a bit subtle, as evidenced by #16978. In particular, we must keep
in mind that we are merely moving the case and its binders, not the
body. For example, suppose 'a' is known to be evaluated and we have
\z -> case a of
(x,_) -> <body involving x and z>
After floating we may have:
case a of
(x,_) -> \z -> <body involving x and z>
{- some expression involving x and z -}
When analysing <body involving...> we want to use the /ambient/ level,
and /not/ the desitnation level of the 'case a of (x,-) ->' binding.
#16978 was caused by us setting the context level to the destination
level of `x` when analysing <body>. This led us to conclude that we
needed to quantify over some of its free variables (e.g. z), resulting
in shadowing and very confusing Core Lint failures.
Note [Check the output scrutinee for exprIsHNF]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
case x of y {
A -> ....(case y of alts)....
}
Because of the binder-swap, the inner case will get substituted to
(case x of ..). So when testing whether the scrutinee is in HNF we
must be careful to test the *result* scrutinee ('x' in this case), not
the *input* one 'y'. The latter *is* in HNF here (because y is
evaluated), but the former is not -- and indeed we can't float the
inner case out, at least not unless x is also evaluated at its binding
site. See #5453.
That's why we apply exprIsHNF to scrut' and not to scrut.
See Note [Floating single-alternative cases] for why
we use exprIsHNF in the first place.
-}
lvlNonTailMFE :: LevelEnv -- Level of in-scope names/tyvars
-> Bool -- True <=> strict context [body of case
-- or let]
-> CoreExprWithFVs -- input expression
-> LvlM LevelledExpr -- Result expression
lvlNonTailMFE env strict_ctxt ann_expr
= lvlMFE (placeJoinCeiling env) strict_ctxt ann_expr
lvlMFE :: LevelEnv -- Level of in-scope names/tyvars
-> Bool -- True <=> strict context [body of case or let]
-> CoreExprWithFVs -- input expression
-> LvlM LevelledExpr -- Result expression
-- lvlMFE is just like lvlExpr, except that it might let-bind
-- the expression, so that it can itself be floated.
lvlMFE env _ (_, AnnType ty)
= return (Type (CoreSubst.substTy (le_subst env) ty))
-- No point in floating out an expression wrapped in a coercion or note
-- If we do we'll transform lvl = e |> co
-- to lvl' = e; lvl = lvl' |> co
-- and then inline lvl. Better just to float out the payload.
lvlMFE env strict_ctxt (_, AnnTick t e)
= do { e' <- lvlMFE env strict_ctxt e
; let t' = substTickish (le_subst env) t
; return (Tick t' e') }
lvlMFE env strict_ctxt (_, AnnCast e (_, co))
= do { e' <- lvlMFE env strict_ctxt e
; return (Cast e' (substCo (le_subst env) co)) }
lvlMFE env strict_ctxt e@(_, AnnCase {})
| strict_ctxt -- Don't share cases in a strict context
= lvlExpr env e -- See Note [Case MFEs]
lvlMFE env strict_ctxt ann_expr
| floatTopLvlOnly env && not (isTopLvl dest_lvl)
-- Only floating to the top level is allowed.
|| anyDVarSet isJoinId fvs -- If there is a free join, don't float
-- See Note [Free join points]
|| isExprLevPoly expr
-- We can't let-bind levity polymorphic expressions
-- See Note [Levity polymorphism invariants] in CoreSyn
|| notWorthFloating expr abs_vars
|| not float_me
= -- Don't float it out
lvlExpr env ann_expr
| float_is_new_lam || exprIsTopLevelBindable expr expr_ty
-- No wrapping needed if the type is lifted, or is a literal string
-- or if we are wrapping it in one or more value lambdas
= do { expr1 <- lvlFloatRhs abs_vars dest_lvl rhs_env NonRecursive
(isJust mb_bot_str)
join_arity_maybe
ann_expr
-- Treat the expr just like a right-hand side
; var <- newLvlVar expr1 join_arity_maybe is_mk_static
; let var2 = annotateBotStr var float_n_lams mb_bot_str
; return (Let (NonRec (TB var2 (FloatMe dest_lvl)) expr1)
(mkVarApps (Var var2) abs_vars)) }
-- OK, so the float has an unlifted type (not top-level bindable)
-- and no new value lambdas (float_is_new_lam is False)
-- Try for the boxing strategy
-- See Note [Floating MFEs of unlifted type]
| escapes_value_lam
, not expr_ok_for_spec -- Boxing/unboxing isn't worth it for cheap expressions
-- See Note [Test cheapness with exprOkForSpeculation]
, Just (tc, _) <- splitTyConApp_maybe expr_ty
, Just dc <- boxingDataCon_maybe tc
, let dc_res_ty = dataConOrigResTy dc -- No free type variables
[bx_bndr, ubx_bndr] = mkTemplateLocals [dc_res_ty, expr_ty]
= do { expr1 <- lvlExpr rhs_env ann_expr
; let l1r = incMinorLvlFrom rhs_env
float_rhs = mkLams abs_vars_w_lvls $
Case expr1 (stayPut l1r ubx_bndr) dc_res_ty
[(DEFAULT, [], mkConApp dc [Var ubx_bndr])]
; var <- newLvlVar float_rhs Nothing is_mk_static
; let l1u = incMinorLvlFrom env
use_expr = Case (mkVarApps (Var var) abs_vars)
(stayPut l1u bx_bndr) expr_ty
[(DataAlt dc, [stayPut l1u ubx_bndr], Var ubx_bndr)]
; return (Let (NonRec (TB var (FloatMe dest_lvl)) float_rhs)
use_expr) }
| otherwise -- e.g. do not float unboxed tuples
= lvlExpr env ann_expr
where
expr = deAnnotate ann_expr
expr_ty = exprType expr
fvs = freeVarsOf ann_expr
fvs_ty = tyCoVarsOfType expr_ty
is_bot = isBottomThunk mb_bot_str
is_function = isFunction ann_expr
mb_bot_str = exprBotStrictness_maybe expr
-- See Note [Bottoming floats]
-- esp Bottoming floats (2)
expr_ok_for_spec = exprOkForSpeculation expr
dest_lvl = destLevel env fvs fvs_ty is_function is_bot False
abs_vars = abstractVars dest_lvl env fvs
-- float_is_new_lam: the floated thing will be a new value lambda
-- replacing, say (g (x+4)) by (lvl x). No work is saved, nor is
-- allocation saved. The benefit is to get it to the top level
-- and hence out of the body of this function altogether, making
-- it smaller and more inlinable
float_is_new_lam = float_n_lams > 0
float_n_lams = count isId abs_vars
(rhs_env, abs_vars_w_lvls) = lvlLamBndrs env dest_lvl abs_vars
join_arity_maybe = Nothing
is_mk_static = isJust (collectMakeStaticArgs expr)
-- Yuk: See Note [Grand plan for static forms] in main/StaticPtrTable
-- A decision to float entails let-binding this thing, and we only do
-- that if we'll escape a value lambda, or will go to the top level.
float_me = saves_work || saves_alloc || is_mk_static
-- We can save work if we can move a redex outside a value lambda
-- But if float_is_new_lam is True, then the redex is wrapped in a
-- a new lambda, so no work is saved
saves_work = escapes_value_lam && not float_is_new_lam
escapes_value_lam = dest_lvl `ltMajLvl` (le_ctxt_lvl env)
-- See Note [Escaping a value lambda]
-- See Note [Floating to the top]
saves_alloc = isTopLvl dest_lvl
&& floatConsts env
&& (not strict_ctxt || is_bot || exprIsHNF expr)
isBottomThunk :: Maybe (Arity, s) -> Bool
-- See Note [Bottoming floats] (2)
isBottomThunk (Just (0, _)) = True -- Zero arity
isBottomThunk _ = False
{- Note [Floating to the top]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We are keen to float something to the top level, even if it does not
escape a value lambda (and hence save work), for two reasons:
* Doing so makes the function smaller, by floating out
bottoming expressions, or integer or string literals. That in
turn makes it easier to inline, with less duplication.
* (Minor) Doing so may turn a dynamic allocation (done by machine
instructions) into a static one. Minor because we are assuming
we are not escaping a value lambda.
But do not so if:
- the context is a strict, and
- the expression is not a HNF, and
- the expression is not bottoming
Exammples:
* Bottoming
f x = case x of
0 -> error <big thing>
_ -> x+1
Here we want to float (error <big thing>) to top level, abstracting
over 'x', so as to make f's RHS smaller.
* HNF
f = case y of
True -> p:q
False -> blah
We may as well float the (p:q) so it becomes a static data structure.
* Case scrutinee
f = case g True of ....
Don't float (g True) to top level; then we have the admin of a
top-level thunk to worry about, with zero gain.
* Case alternative
h = case y of
True -> g True
False -> False
Don't float (g True) to the top level
* Arguments
t = f (g True)
If f is lazy, we /do/ float (g True) because then we can allocate
the thunk statically rather than dynamically. But if f is strict
we don't (see the use of idStrictness in lvlApp). It's not clear
if this test is worth the bother: it's only about CAFs!
It's controlled by a flag (floatConsts), because doing this too
early loses opportunities for RULES which (needless to say) are
important in some nofib programs (gcd is an example). [SPJ note:
I think this is obselete; the flag seems always on.]
Note [Floating join point bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Mostly we only float a join point if it can /stay/ a join point. But
there is one exception: if it can go to the top level (#13286).
Consider
f x = joinrec j y n = <...j y' n'...>
in jump j x 0
Here we may just as well produce
j y n = <....j y' n'...>
f x = j x 0
and now there is a chance that 'f' will be inlined at its call sites.
It shouldn't make a lot of difference, but thes tests
perf/should_run/MethSharing
simplCore/should_compile/spec-inline
and one nofib program, all improve if you do float to top, because
of the resulting inlining of f. So ok, let's do it.
Note [Free join points]
~~~~~~~~~~~~~~~~~~~~~~~
We never float a MFE that has a free join-point variable. You mght think
this can never occur. After all, consider
join j x = ...
in ....(jump j x)....
How might we ever want to float that (jump j x)?
* If it would escape a value lambda, thus
join j x = ... in (\y. ...(jump j x)... )
then 'j' isn't a valid join point in the first place.
But consider
join j x = .... in
joinrec j2 y = ...(jump j x)...(a+b)....
Since j2 is recursive, it /is/ worth floating (a+b) out of the joinrec.
But it is emphatically /not/ good to float the (jump j x) out:
(a) 'j' will stop being a join point
(b) In any case, jumping to 'j' must be an exit of the j2 loop, so no
work would be saved by floating it out of the \y.
Even if we floated 'j' to top level, (b) would still hold.
Bottom line: never float a MFE that has a free JoinId.
Note [Floating MFEs of unlifted type]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
case f x of (r::Int#) -> blah
we'd like to float (f x). But it's not trivial because it has type
Int#, and we don't want to evaluate it too early. But we can instead
float a boxed version
y = case f x of r -> I# r
and replace the original (f x) with
case (case y of I# r -> r) of r -> blah
Being able to float unboxed expressions is sometimes important; see
#12603. I'm not sure how /often/ it is important, but it's
not hard to achieve.
We only do it for a fixed collection of types for which we have a
convenient boxing constructor (see boxingDataCon_maybe). In
particular we /don't/ do it for unboxed tuples; it's better to float
the components of the tuple individually.
I did experiment with a form of boxing that works for any type, namely
wrapping in a function. In our example
let y = case f x of r -> \v. f x
in case y void of r -> blah
It works fine, but it's 50% slower (based on some crude benchmarking).
I suppose we could do it for types not covered by boxingDataCon_maybe,
but it's more code and I'll wait to see if anyone wants it.
Note [Test cheapness with exprOkForSpeculation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We don't want to float very cheap expressions by boxing and unboxing.
But we use exprOkForSpeculation for the test, not exprIsCheap.
Why? Because it's important /not/ to transform
f (a /# 3)
to
f (case bx of I# a -> a /# 3)
and float bx = I# (a /# 3), because the application of f no
longer obeys the let/app invariant. But (a /# 3) is ok-for-spec
due to a special hack that says division operators can't fail
when the denominator is definitely non-zero. And yet that
same expression says False to exprIsCheap. Simplest way to
guarantee the let/app invariant is to use the same function!
If an expression is okay for speculation, we could also float it out
*without* boxing and unboxing, since evaluating it early is okay.
However, it turned out to usually be better not to float such expressions,
since they tend to be extremely cheap things like (x +# 1#). Even the
cost of spilling the let-bound variable to the stack across a call may
exceed the cost of recomputing such an expression. (And we can't float
unlifted bindings to top-level.)
We could try to do something smarter here, and float out expensive yet
okay-for-speculation things, such as division by non-zero constants.
But I suspect it's a narrow target.
Note [Bottoming floats]
~~~~~~~~~~~~~~~~~~~~~~~
If we see
f = \x. g (error "urk")
we'd like to float the call to error, to get
lvl = error "urk"
f = \x. g lvl
But, as ever, we need to be careful:
(1) We want to float a bottoming
expression even if it has free variables:
f = \x. g (let v = h x in error ("urk" ++ v))
Then we'd like to abstract over 'x' can float the whole arg of g:
lvl = \x. let v = h x in error ("urk" ++ v)
f = \x. g (lvl x)
To achieve this we pass is_bot to destLevel
(2) We do not do this for lambdas that return
bottom. Instead we treat the /body/ of such a function specially,
via point (1). For example:
f = \x. ....(\y z. if x then error y else error z)....
===>
lvl = \x z y. if b then error y else error z
f = \x. ...(\y z. lvl x z y)...
(There is no guarantee that we'll choose the perfect argument order.)
(3) If we have a /binding/ that returns bottom, we want to float it to top
level, even if it has free vars (point (1)), and even it has lambdas.
Example:
... let { v = \y. error (show x ++ show y) } in ...
We want to abstract over x and float the whole thing to top:
lvl = \xy. errror (show x ++ show y)
...let {v = lvl x} in ...
Then of course we don't want to separately float the body (error ...)
as /another/ MFE, so we tell lvlFloatRhs not to do that, via the is_bot
argument.
See Maessen's paper 1999 "Bottom extraction: factoring error handling out
of functional programs" (unpublished I think).
When we do this, we set the strictness and arity of the new bottoming
Id, *immediately*, for three reasons:
* To prevent the abstracted thing being immediately inlined back in again
via preInlineUnconditionally. The latter has a test for bottoming Ids
to stop inlining them, so we'd better make sure it *is* a bottoming Id!
* So that it's properly exposed as such in the interface file, even if
this is all happening after strictness analysis.
* In case we do CSE with the same expression that *is* marked bottom
lvl = error "urk"
x{str=bot) = error "urk"
Here we don't want to replace 'x' with 'lvl', else we may get Lint
errors, e.g. via a case with empty alternatives: (case x of {})
Lint complains unless the scrutinee of such a case is clearly bottom.
This was reported in #11290. But since the whole bottoming-float
thing is based on the cheap-and-cheerful exprIsBottom, I'm not sure
that it'll nail all such cases.
Note [Bottoming floats: eta expansion] c.f Note [Bottoming floats]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tiresomely, though, the simplifier has an invariant that the manifest
arity of the RHS should be the same as the arity; but we can't call
etaExpand during SetLevels because it works over a decorated form of
CoreExpr. So we do the eta expansion later, in FloatOut.
Note [Case MFEs]
~~~~~~~~~~~~~~~~
We don't float a case expression as an MFE from a strict context. Why not?
Because in doing so we share a tiny bit of computation (the switch) but
in exchange we build a thunk, which is bad. This case reduces allocation
by 7% in spectral/puzzle (a rather strange benchmark) and 1.2% in real/fem.
Doesn't change any other allocation at all.
We will make a separate decision for the scrutinee and alternatives.
However this can have a knock-on effect for fusion: consider
\v -> foldr k z (case x of I# y -> build ..y..)
Perhaps we can float the entire (case x of ...) out of the \v. Then
fusion will not happen, but we will get more sharing. But if we don't
float the case (as advocated here) we won't float the (build ...y..)
either, so fusion will happen. It can be a big effect, esp in some
artificial benchmarks (e.g. integer, queens), but there is no perfect
answer.
-}
annotateBotStr :: Id -> Arity -> Maybe (Arity, StrictSig) -> Id
-- See Note [Bottoming floats] for why we want to add
-- bottoming information right now
--
-- n_extra are the number of extra value arguments added during floating
annotateBotStr id n_extra mb_str
= case mb_str of
Nothing -> id
Just (arity, sig) -> id `setIdArity` (arity + n_extra)
`setIdStrictness` (increaseStrictSigArity n_extra sig)
notWorthFloating :: CoreExpr -> [Var] -> Bool
-- Returns True if the expression would be replaced by
-- something bigger than it is now. For example:
-- abs_vars = tvars only: return True if e is trivial,
-- but False for anything bigger
-- abs_vars = [x] (an Id): return True for trivial, or an application (f x)
-- but False for (f x x)
--
-- One big goal is that floating should be idempotent. Eg if
-- we replace e with (lvl79 x y) and then run FloatOut again, don't want
-- to replace (lvl79 x y) with (lvl83 x y)!
notWorthFloating e abs_vars
= go e (count isId abs_vars)
where
go (Var {}) n = n >= 0
go (Lit lit) n = ASSERT( n==0 )
litIsTrivial lit -- Note [Floating literals]
go (Tick t e) n = not (tickishIsCode t) && go e n
go (Cast e _) n = go e n
go (App e arg) n
| Type {} <- arg = go e n
| Coercion {} <- arg = go e n
| n==0 = False
| is_triv arg = go e (n-1)
| otherwise = False
go _ _ = False
is_triv (Lit {}) = True -- Treat all literals as trivial
is_triv (Var {}) = True -- (ie not worth floating)
is_triv (Cast e _) = is_triv e
is_triv (App e (Type {})) = is_triv e
is_triv (App e (Coercion {})) = is_triv e
is_triv (Tick t e) = not (tickishIsCode t) && is_triv e
is_triv _ = False
{-
Note [Floating literals]
~~~~~~~~~~~~~~~~~~~~~~~~
It's important to float Integer literals, so that they get shared,
rather than being allocated every time round the loop.
Hence the litIsTrivial.
Ditto literal strings (LitString), which we'd like to float to top
level, which is now possible.
Note [Escaping a value lambda]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to float even cheap expressions out of value lambdas,
because that saves allocation. Consider
f = \x. .. (\y.e) ...
Then we'd like to avoid allocating the (\y.e) every time we call f,
(assuming e does not mention x). An example where this really makes a
difference is simplrun009.
Another reason it's good is because it makes SpecContr fire on functions.
Consider
f = \x. ....(f (\y.e))....
After floating we get
lvl = \y.e
f = \x. ....(f lvl)...
and that is much easier for SpecConstr to generate a robust
specialisation for.
However, if we are wrapping the thing in extra value lambdas (in
abs_vars), then nothing is saved. E.g.
f = \xyz. ...(e1[y],e2)....
If we float
lvl = \y. (e1[y],e2)
f = \xyz. ...(lvl y)...
we have saved nothing: one pair will still be allocated for each
call of 'f'. Hence the (not float_is_lam) in float_me.
************************************************************************
* *
\subsection{Bindings}
* *
************************************************************************
The binding stuff works for top level too.
-}
lvlBind :: LevelEnv
-> CoreBindWithFVs
-> LvlM (LevelledBind, LevelEnv)
lvlBind env (AnnNonRec bndr rhs)
| isTyVar bndr -- Don't do anything for TyVar binders
-- (simplifier gets rid of them pronto)
|| isCoVar bndr -- Difficult to fix up CoVar occurrences (see extendPolyLvlEnv)
-- so we will ignore this case for now
|| not (profitableFloat env dest_lvl)
|| (isTopLvl dest_lvl && not (exprIsTopLevelBindable deann_rhs bndr_ty))
-- We can't float an unlifted binding to top level (except
-- literal strings), so we don't float it at all. It's a
-- bit brutal, but unlifted bindings aren't expensive either
= -- No float
do { rhs' <- lvlRhs env NonRecursive is_bot mb_join_arity rhs
; let bind_lvl = incMinorLvl (le_ctxt_lvl env)
(env', [bndr']) = substAndLvlBndrs NonRecursive env bind_lvl [bndr]
; return (NonRec bndr' rhs', env') }
-- Otherwise we are going to float
| null abs_vars
= do { -- No type abstraction; clone existing binder
rhs' <- lvlFloatRhs [] dest_lvl env NonRecursive
is_bot mb_join_arity rhs
; (env', [bndr']) <- cloneLetVars NonRecursive env dest_lvl [bndr]
; let bndr2 = annotateBotStr bndr' 0 mb_bot_str
; return (NonRec (TB bndr2 (FloatMe dest_lvl)) rhs', env') }
| otherwise
= do { -- Yes, type abstraction; create a new binder, extend substitution, etc
rhs' <- lvlFloatRhs abs_vars dest_lvl env NonRecursive
is_bot mb_join_arity rhs
; (env', [bndr']) <- newPolyBndrs dest_lvl env abs_vars [bndr]
; let bndr2 = annotateBotStr bndr' n_extra mb_bot_str
; return (NonRec (TB bndr2 (FloatMe dest_lvl)) rhs', env') }
where
bndr_ty = idType bndr
ty_fvs = tyCoVarsOfType bndr_ty
rhs_fvs = freeVarsOf rhs
bind_fvs = rhs_fvs `unionDVarSet` dIdFreeVars bndr
abs_vars = abstractVars dest_lvl env bind_fvs
dest_lvl = destLevel env bind_fvs ty_fvs (isFunction rhs) is_bot is_join
deann_rhs = deAnnotate rhs
mb_bot_str = exprBotStrictness_maybe deann_rhs
is_bot = isJust mb_bot_str
-- NB: not isBottomThunk! See Note [Bottoming floats] point (3)
n_extra = count isId abs_vars
mb_join_arity = isJoinId_maybe bndr
is_join = isJust mb_join_arity
lvlBind env (AnnRec pairs)
| floatTopLvlOnly env && not (isTopLvl dest_lvl)
-- Only floating to the top level is allowed.
|| not (profitableFloat env dest_lvl)
|| (isTopLvl dest_lvl && any (mightBeUnliftedType . idType) bndrs)
-- This mightBeUnliftedType stuff is the same test as in the non-rec case
-- You might wonder whether we can have a recursive binding for
-- an unlifted value -- but we can if it's a /join binding/ (#16978)
-- (Ultimately I think we should not use SetLevels to
-- float join bindings at all, but that's another story.)
= -- No float
do { let bind_lvl = incMinorLvl (le_ctxt_lvl env)
(env', bndrs') = substAndLvlBndrs Recursive env bind_lvl bndrs
lvl_rhs (b,r) = lvlRhs env' Recursive is_bot (isJoinId_maybe b) r
; rhss' <- mapM lvl_rhs pairs
; return (Rec (bndrs' `zip` rhss'), env') }
-- Otherwise we are going to float
| null abs_vars
= do { (new_env, new_bndrs) <- cloneLetVars Recursive env dest_lvl bndrs
; new_rhss <- mapM (do_rhs new_env) pairs
; return ( Rec ([TB b (FloatMe dest_lvl) | b <- new_bndrs] `zip` new_rhss)
, new_env) }
-- ToDo: when enabling the floatLambda stuff,
-- I think we want to stop doing this
| [(bndr,rhs)] <- pairs
, count isId abs_vars > 1
= do -- Special case for self recursion where there are
-- several variables carried around: build a local loop:
-- poly_f = \abs_vars. \lam_vars . letrec f = \lam_vars. rhs in f lam_vars
-- This just makes the closures a bit smaller. If we don't do
-- this, allocation rises significantly on some programs
--
-- We could elaborate it for the case where there are several
-- mutually recursive functions, but it's quite a bit more complicated
--
-- This all seems a bit ad hoc -- sigh
let (rhs_env, abs_vars_w_lvls) = lvlLamBndrs env dest_lvl abs_vars
rhs_lvl = le_ctxt_lvl rhs_env
(rhs_env', [new_bndr]) <- cloneLetVars Recursive rhs_env rhs_lvl [bndr]
let
(lam_bndrs, rhs_body) = collectAnnBndrs rhs
(body_env1, lam_bndrs1) = substBndrsSL NonRecursive rhs_env' lam_bndrs
(body_env2, lam_bndrs2) = lvlLamBndrs body_env1 rhs_lvl lam_bndrs1
new_rhs_body <- lvlRhs body_env2 Recursive is_bot (get_join bndr) rhs_body
(poly_env, [poly_bndr]) <- newPolyBndrs dest_lvl env abs_vars [bndr]
return (Rec [(TB poly_bndr (FloatMe dest_lvl)
, mkLams abs_vars_w_lvls $
mkLams lam_bndrs2 $
Let (Rec [( TB new_bndr (StayPut rhs_lvl)
, mkLams lam_bndrs2 new_rhs_body)])
(mkVarApps (Var new_bndr) lam_bndrs1))]
, poly_env)
| otherwise -- Non-null abs_vars
= do { (new_env, new_bndrs) <- newPolyBndrs dest_lvl env abs_vars bndrs
; new_rhss <- mapM (do_rhs new_env) pairs
; return ( Rec ([TB b (FloatMe dest_lvl) | b <- new_bndrs] `zip` new_rhss)
, new_env) }
where
(bndrs,rhss) = unzip pairs
is_join = isJoinId (head bndrs)
-- bndrs is always non-empty and if one is a join they all are
-- Both are checked by Lint
is_fun = all isFunction rhss
is_bot = False -- It's odd to have an unconditionally divergent
-- function in a Rec, and we don't much care what
-- happens to it. False is simple!
do_rhs env (bndr,rhs) = lvlFloatRhs abs_vars dest_lvl env Recursive
is_bot (get_join bndr)
rhs
get_join bndr | need_zap = Nothing
| otherwise = isJoinId_maybe bndr
need_zap = dest_lvl `ltLvl` joinCeilingLevel env
-- Finding the free vars of the binding group is annoying
bind_fvs = ((unionDVarSets [ freeVarsOf rhs | (_, rhs) <- pairs])
`unionDVarSet`
(fvDVarSet $ unionsFV [ idFVs bndr
| (bndr, (_,_)) <- pairs]))
`delDVarSetList`
bndrs
ty_fvs = foldr (unionVarSet . tyCoVarsOfType . idType) emptyVarSet bndrs
dest_lvl = destLevel env bind_fvs ty_fvs is_fun is_bot is_join
abs_vars = abstractVars dest_lvl env bind_fvs
profitableFloat :: LevelEnv -> Level -> Bool
profitableFloat env dest_lvl
= (dest_lvl `ltMajLvl` le_ctxt_lvl env) -- Escapes a value lambda
|| isTopLvl dest_lvl -- Going all the way to top level
----------------------------------------------------
-- Three help functions for the type-abstraction case
lvlRhs :: LevelEnv
-> RecFlag
-> Bool -- Is this a bottoming function
-> Maybe JoinArity
-> CoreExprWithFVs
-> LvlM LevelledExpr
lvlRhs env rec_flag is_bot mb_join_arity expr
= lvlFloatRhs [] (le_ctxt_lvl env) env
rec_flag is_bot mb_join_arity expr
lvlFloatRhs :: [OutVar] -> Level -> LevelEnv -> RecFlag
-> Bool -- Binding is for a bottoming function
-> Maybe JoinArity
-> CoreExprWithFVs
-> LvlM (Expr LevelledBndr)
-- Ignores the le_ctxt_lvl in env; treats dest_lvl as the baseline
lvlFloatRhs abs_vars dest_lvl env rec is_bot mb_join_arity rhs
= do { body' <- if not is_bot -- See Note [Floating from a RHS]
&& any isId bndrs
then lvlMFE body_env True body
else lvlExpr body_env body
; return (mkLams bndrs' body') }
where
(bndrs, body) | Just join_arity <- mb_join_arity
= collectNAnnBndrs join_arity rhs
| otherwise
= collectAnnBndrs rhs
(env1, bndrs1) = substBndrsSL NonRecursive env bndrs
all_bndrs = abs_vars ++ bndrs1
(body_env, bndrs') | Just _ <- mb_join_arity
= lvlJoinBndrs env1 dest_lvl rec all_bndrs
| otherwise
= case lvlLamBndrs env1 dest_lvl all_bndrs of
(env2, bndrs') -> (placeJoinCeiling env2, bndrs')
-- The important thing here is that we call lvlLamBndrs on
-- all these binders at once (abs_vars and bndrs), so they
-- all get the same major level. Otherwise we create stupid
-- let-bindings inside, joyfully thinking they can float; but
-- in the end they don't because we never float bindings in
-- between lambdas
{- Note [Floating from a RHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When floating the RHS of a let-binding, we don't always want to apply
lvlMFE to the body of a lambda, as we usually do, because the entire
binding body is already going to the right place (dest_lvl).
A particular example is the top level. Consider
concat = /\ a -> foldr ..a.. (++) []
We don't want to float the body of the lambda to get
lvl = /\ a -> foldr ..a.. (++) []
concat = /\ a -> lvl a
That would be stupid.
Previously this was avoided in a much nastier way, by testing strict_ctxt
in float_me in lvlMFE. But that wasn't even right because it would fail
to float out the error sub-expression in
f = \x. case x of
True -> error ("blah" ++ show x)
False -> ...
But we must be careful:
* If we had
f = \x -> factorial 20
we /would/ want to float that (factorial 20) out! Functions are treated
differently: see the use of isFunction in the calls to destLevel. If
there are only type lambdas, then destLevel will say "go to top, and
abstract over the free tyvars" and we don't want that here.
* But if we had
f = \x -> error (...x....)
we would NOT want to float the bottoming expression out to give
lvl = \x -> error (...x...)
f = \x -> lvl x
Conclusion: use lvlMFE if there are
* any value lambdas in the original function, and
* this is not a bottoming function (the is_bot argument)
Use lvlExpr otherwise. A little subtle, and I got it wrong at least twice
(e.g. #13369).
-}
{-
************************************************************************
* *
\subsection{Deciding floatability}
* *
************************************************************************
-}
substAndLvlBndrs :: RecFlag -> LevelEnv -> Level -> [InVar] -> (LevelEnv, [LevelledBndr])
substAndLvlBndrs is_rec env lvl bndrs
= lvlBndrs subst_env lvl subst_bndrs
where
(subst_env, subst_bndrs) = substBndrsSL is_rec env bndrs
substBndrsSL :: RecFlag -> LevelEnv -> [InVar] -> (LevelEnv, [OutVar])
-- So named only to avoid the name clash with CoreSubst.substBndrs
substBndrsSL is_rec env@(LE { le_subst = subst, le_env = id_env }) bndrs
= ( env { le_subst = subst'
, le_env = foldl' add_id id_env (bndrs `zip` bndrs') }
, bndrs')
where
(subst', bndrs') = case is_rec of
NonRecursive -> substBndrs subst bndrs
Recursive -> substRecBndrs subst bndrs
lvlLamBndrs :: LevelEnv -> Level -> [OutVar] -> (LevelEnv, [LevelledBndr])
-- Compute the levels for the binders of a lambda group
lvlLamBndrs env lvl bndrs
= lvlBndrs env new_lvl bndrs
where
new_lvl | any is_major bndrs = incMajorLvl lvl
| otherwise = incMinorLvl lvl
is_major bndr = isId bndr && not (isProbablyOneShotLambda bndr)
-- The "probably" part says "don't float things out of a
-- probable one-shot lambda"
-- See Note [Computing one-shot info] in Demand.hs
lvlJoinBndrs :: LevelEnv -> Level -> RecFlag -> [OutVar]
-> (LevelEnv, [LevelledBndr])
lvlJoinBndrs env lvl rec bndrs
= lvlBndrs env new_lvl bndrs
where
new_lvl | isRec rec = incMajorLvl lvl
| otherwise = incMinorLvl lvl
-- Non-recursive join points are one-shot; recursive ones are not
lvlBndrs :: LevelEnv -> Level -> [CoreBndr] -> (LevelEnv, [LevelledBndr])
-- The binders returned are exactly the same as the ones passed,
-- apart from applying the substitution, but they are now paired
-- with a (StayPut level)
--
-- The returned envt has le_ctxt_lvl updated to the new_lvl
--
-- All the new binders get the same level, because
-- any floating binding is either going to float past
-- all or none. We never separate binders.
lvlBndrs env@(LE { le_lvl_env = lvl_env }) new_lvl bndrs
= ( env { le_ctxt_lvl = new_lvl
, le_join_ceil = new_lvl
, le_lvl_env = addLvls new_lvl lvl_env bndrs }
, map (stayPut new_lvl) bndrs)
stayPut :: Level -> OutVar -> LevelledBndr
stayPut new_lvl bndr = TB bndr (StayPut new_lvl)
-- Destination level is the max Id level of the expression
-- (We'll abstract the type variables, if any.)
destLevel :: LevelEnv
-> DVarSet -- Free vars of the term
-> TyCoVarSet -- Free in the /type/ of the term
-- (a subset of the previous argument)
-> Bool -- True <=> is function
-> Bool -- True <=> is bottom
-> Bool -- True <=> is a join point
-> Level
-- INVARIANT: if is_join=True then result >= join_ceiling
destLevel env fvs fvs_ty is_function is_bot is_join
| isTopLvl max_fv_id_level -- Float even joins if they get to top level
-- See Note [Floating join point bindings]
= tOP_LEVEL
| is_join -- Never float a join point past the join ceiling
-- See Note [Join points] in FloatOut
= if max_fv_id_level `ltLvl` join_ceiling
then join_ceiling
else max_fv_id_level
| is_bot -- Send bottoming bindings to the top
= as_far_as_poss -- regardless; see Note [Bottoming floats]
-- Esp Bottoming floats (1)
| Just n_args <- floatLams env
, n_args > 0 -- n=0 case handled uniformly by the 'otherwise' case
, is_function
, countFreeIds fvs <= n_args
= as_far_as_poss -- Send functions to top level; see
-- the comments with isFunction
| otherwise = max_fv_id_level
where
join_ceiling = joinCeilingLevel env
max_fv_id_level = maxFvLevel isId env fvs -- Max over Ids only; the
-- tyvars will be abstracted
as_far_as_poss = maxFvLevel' isId env fvs_ty
-- See Note [Floating and kind casts]
{- Note [Floating and kind casts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
case x of
K (co :: * ~# k) -> let v :: Int |> co
v = e
in blah
Then, even if we are abstracting over Ids, or if e is bottom, we can't
float v outside the 'co' binding. Reason: if we did we'd get
v' :: forall k. (Int ~# Age) => Int |> co
and now 'co' isn't in scope in that type. The underlying reason is
that 'co' is a value-level thing and we can't abstract over that in a
type (else we'd get a dependent type). So if v's /type/ mentions 'co'
we can't float it out beyond the binding site of 'co'.
That's why we have this as_far_as_poss stuff. Usually as_far_as_poss
is just tOP_LEVEL; but occasionally a coercion variable (which is an
Id) mentioned in type prevents this.
Example #14270 comment:15.
-}
isFunction :: CoreExprWithFVs -> Bool
-- The idea here is that we want to float *functions* to
-- the top level. This saves no work, but
-- (a) it can make the host function body a lot smaller,
-- and hence inlinable.
-- (b) it can also save allocation when the function is recursive:
-- h = \x -> letrec f = \y -> ...f...y...x...
-- in f x
-- becomes
-- f = \x y -> ...(f x)...y...x...
-- h = \x -> f x x
-- No allocation for f now.
-- We may only want to do this if there are sufficiently few free
-- variables. We certainly only want to do it for values, and not for
-- constructors. So the simple thing is just to look for lambdas
isFunction (_, AnnLam b e) | isId b = True
| otherwise = isFunction e
-- isFunction (_, AnnTick _ e) = isFunction e -- dubious
isFunction _ = False
countFreeIds :: DVarSet -> Int
countFreeIds = nonDetFoldUDFM add 0 . getUniqDSet
-- It's OK to use nonDetFoldUDFM here because we're just counting things.
where
add :: Var -> Int -> Int
add v n | isId v = n+1
| otherwise = n
{-
************************************************************************
* *
\subsection{Free-To-Level Monad}
* *
************************************************************************
-}
data LevelEnv
= LE { le_switches :: FloatOutSwitches
, le_ctxt_lvl :: Level -- The current level
, le_lvl_env :: VarEnv Level -- Domain is *post-cloned* TyVars and Ids
, le_join_ceil:: Level -- Highest level to which joins float
-- Invariant: always >= le_ctxt_lvl
-- See Note [le_subst and le_env]
, le_subst :: Subst -- Domain is pre-cloned TyVars and Ids
-- The Id -> CoreExpr in the Subst is ignored
-- (since we want to substitute a LevelledExpr for
-- an Id via le_env) but we do use the Co/TyVar substs
, le_env :: IdEnv ([OutVar], LevelledExpr) -- Domain is pre-cloned Ids
}
{- Note [le_subst and le_env]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We clone let- and case-bound variables so that they are still distinct
when floated out; hence the le_subst/le_env. (see point 3 of the
module overview comment). We also use these envs when making a
variable polymorphic because we want to float it out past a big
lambda.
The le_subst and le_env always implement the same mapping,
in_x :-> out_x a b
where out_x is an OutVar, and a,b are its arguments (when
we perform abstraction at the same time as floating).
le_subst maps to CoreExpr
le_env maps to LevelledExpr
Since the range is always a variable or application, there is never
any difference between the two, but sadly the types differ. The
le_subst is used when substituting in a variable's IdInfo; the le_env
when we find a Var.
In addition the le_env records a [OutVar] of variables free in the
OutExpr/LevelledExpr, just so we don't have to call freeVars
repeatedly. This list is always non-empty, and the first element is
out_x
The domain of the both envs is *pre-cloned* Ids, though
The domain of the le_lvl_env is the *post-cloned* Ids
-}
initialEnv :: FloatOutSwitches -> LevelEnv
initialEnv float_lams
= LE { le_switches = float_lams
, le_ctxt_lvl = tOP_LEVEL
, le_join_ceil = panic "initialEnv"
, le_lvl_env = emptyVarEnv
, le_subst = emptySubst
, le_env = emptyVarEnv }
addLvl :: Level -> VarEnv Level -> OutVar -> VarEnv Level
addLvl dest_lvl env v' = extendVarEnv env v' dest_lvl
addLvls :: Level -> VarEnv Level -> [OutVar] -> VarEnv Level
addLvls dest_lvl env vs = foldl' (addLvl dest_lvl) env vs
floatLams :: LevelEnv -> Maybe Int
floatLams le = floatOutLambdas (le_switches le)
floatConsts :: LevelEnv -> Bool
floatConsts le = floatOutConstants (le_switches le)
floatOverSat :: LevelEnv -> Bool
floatOverSat le = floatOutOverSatApps (le_switches le)
floatTopLvlOnly :: LevelEnv -> Bool
floatTopLvlOnly le = floatToTopLevelOnly (le_switches le)
incMinorLvlFrom :: LevelEnv -> Level
incMinorLvlFrom env = incMinorLvl (le_ctxt_lvl env)
-- extendCaseBndrEnv adds the mapping case-bndr->scrut-var if it can
-- See Note [Binder-swap during float-out]
extendCaseBndrEnv :: LevelEnv
-> Id -- Pre-cloned case binder
-> Expr LevelledBndr -- Post-cloned scrutinee
-> LevelEnv
extendCaseBndrEnv le@(LE { le_subst = subst, le_env = id_env })
case_bndr (Var scrut_var)
= le { le_subst = extendSubstWithVar subst case_bndr scrut_var
, le_env = add_id id_env (case_bndr, scrut_var) }
extendCaseBndrEnv env _ _ = env
-- See Note [Join ceiling]
placeJoinCeiling :: LevelEnv -> LevelEnv
placeJoinCeiling le@(LE { le_ctxt_lvl = lvl })
= le { le_ctxt_lvl = lvl', le_join_ceil = lvl' }
where
lvl' = asJoinCeilLvl (incMinorLvl lvl)
maxFvLevel :: (Var -> Bool) -> LevelEnv -> DVarSet -> Level
maxFvLevel max_me env var_set
= foldDVarSet (maxIn max_me env) tOP_LEVEL var_set
maxFvLevel' :: (Var -> Bool) -> LevelEnv -> TyCoVarSet -> Level
-- Same but for TyCoVarSet
maxFvLevel' max_me env var_set
= nonDetFoldUniqSet (maxIn max_me env) tOP_LEVEL var_set
maxIn :: (Var -> Bool) -> LevelEnv -> InVar -> Level -> Level
maxIn max_me (LE { le_lvl_env = lvl_env, le_env = id_env }) in_var lvl
= case lookupVarEnv id_env in_var of
Just (abs_vars, _) -> foldr max_out lvl abs_vars
Nothing -> max_out in_var lvl
where
max_out out_var lvl
| max_me out_var = case lookupVarEnv lvl_env out_var of
Just lvl' -> maxLvl lvl' lvl
Nothing -> lvl
| otherwise = lvl -- Ignore some vars depending on max_me
lookupVar :: LevelEnv -> Id -> LevelledExpr
lookupVar le v = case lookupVarEnv (le_env le) v of
Just (_, expr) -> expr
_ -> Var v
-- Level to which join points are allowed to float (boundary of current tail
-- context). See Note [Join ceiling]
joinCeilingLevel :: LevelEnv -> Level
joinCeilingLevel = le_join_ceil
abstractVars :: Level -> LevelEnv -> DVarSet -> [OutVar]
-- Find the variables in fvs, free vars of the target expression,
-- whose level is greater than the destination level
-- These are the ones we are going to abstract out
--
-- Note that to get reproducible builds, the variables need to be
-- abstracted in deterministic order, not dependent on the values of
-- Uniques. This is achieved by using DVarSets, deterministic free
-- variable computation and deterministic sort.
-- See Note [Unique Determinism] in Unique for explanation of why
-- Uniques are not deterministic.
abstractVars dest_lvl (LE { le_subst = subst, le_lvl_env = lvl_env }) in_fvs
= -- NB: sortQuantVars might not put duplicates next to each other
map zap $ sortQuantVars $
filter abstract_me $
dVarSetElems $
closeOverKindsDSet $
substDVarSet subst in_fvs
-- NB: it's important to call abstract_me only on the OutIds the
-- come from substDVarSet (not on fv, which is an InId)
where
abstract_me v = case lookupVarEnv lvl_env v of
Just lvl -> dest_lvl `ltLvl` lvl
Nothing -> False
-- We are going to lambda-abstract, so nuke any IdInfo,
-- and add the tyvars of the Id (if necessary)
zap v | isId v = WARN( isStableUnfolding (idUnfolding v) ||
not (isEmptyRuleInfo (idSpecialisation v)),
text "absVarsOf: discarding info on" <+> ppr v )
setIdInfo v vanillaIdInfo
| otherwise = v
type LvlM result = UniqSM result
initLvl :: UniqSupply -> UniqSM a -> a
initLvl = initUs_
newPolyBndrs :: Level -> LevelEnv -> [OutVar] -> [InId]
-> LvlM (LevelEnv, [OutId])
-- The envt is extended to bind the new bndrs to dest_lvl, but
-- the le_ctxt_lvl is unaffected
newPolyBndrs dest_lvl
env@(LE { le_lvl_env = lvl_env, le_subst = subst, le_env = id_env })
abs_vars bndrs
= ASSERT( all (not . isCoVar) bndrs ) -- What would we add to the CoSubst in this case. No easy answer.
do { uniqs <- getUniquesM
; let new_bndrs = zipWith mk_poly_bndr bndrs uniqs
bndr_prs = bndrs `zip` new_bndrs
env' = env { le_lvl_env = addLvls dest_lvl lvl_env new_bndrs
, le_subst = foldl' add_subst subst bndr_prs
, le_env = foldl' add_id id_env bndr_prs }
; return (env', new_bndrs) }
where
add_subst env (v, v') = extendIdSubst env v (mkVarApps (Var v') abs_vars)
add_id env (v, v') = extendVarEnv env v ((v':abs_vars), mkVarApps (Var v') abs_vars)
mk_poly_bndr bndr uniq = transferPolyIdInfo bndr abs_vars $ -- Note [transferPolyIdInfo] in Id.hs
transfer_join_info bndr $
mkSysLocalOrCoVar (mkFastString str) uniq poly_ty
where
str = "poly_" ++ occNameString (getOccName bndr)
poly_ty = mkLamTypes abs_vars (CoreSubst.substTy subst (idType bndr))
-- If we are floating a join point to top level, it stops being
-- a join point. Otherwise it continues to be a join point,
-- but we may need to adjust its arity
dest_is_top = isTopLvl dest_lvl
transfer_join_info bndr new_bndr
| Just join_arity <- isJoinId_maybe bndr
, not dest_is_top
= new_bndr `asJoinId` join_arity + length abs_vars
| otherwise
= new_bndr
newLvlVar :: LevelledExpr -- The RHS of the new binding
-> Maybe JoinArity -- Its join arity, if it is a join point
-> Bool -- True <=> the RHS looks like (makeStatic ...)
-> LvlM Id
newLvlVar lvld_rhs join_arity_maybe is_mk_static
= do { uniq <- getUniqueM
; return (add_join_info (mk_id uniq rhs_ty))
}
where
add_join_info var = var `asJoinId_maybe` join_arity_maybe
de_tagged_rhs = deTagExpr lvld_rhs
rhs_ty = exprType de_tagged_rhs
mk_id uniq rhs_ty
-- See Note [Grand plan for static forms] in StaticPtrTable.
| is_mk_static
= mkExportedVanillaId (mkSystemVarName uniq (mkFastString "static_ptr"))
rhs_ty
| otherwise
= mkSysLocalOrCoVar (mkFastString "lvl") uniq rhs_ty
-- | Clone the binders bound by a single-alternative case.
cloneCaseBndrs :: LevelEnv -> Level -> [Var] -> LvlM (LevelEnv, [Var])
cloneCaseBndrs env@(LE { le_subst = subst, le_lvl_env = lvl_env, le_env = id_env })
new_lvl vs
= do { us <- getUniqueSupplyM
; let (subst', vs') = cloneBndrs subst us vs
-- N.B. We are not moving the body of the case, merely its case
-- binders. Consequently we should *not* set le_ctxt_lvl and
-- le_join_ceil. See Note [Setting levels when floating
-- single-alternative cases].
env' = env { le_lvl_env = addLvls new_lvl lvl_env vs'
, le_subst = subst'
, le_env = foldl' add_id id_env (vs `zip` vs') }
; return (env', vs') }
cloneLetVars :: RecFlag -> LevelEnv -> Level -> [InVar]
-> LvlM (LevelEnv, [OutVar])
-- See Note [Need for cloning during float-out]
-- Works for Ids bound by let(rec)
-- The dest_lvl is attributed to the binders in the new env,
-- but cloneVars doesn't affect the le_ctxt_lvl of the incoming env
cloneLetVars is_rec
env@(LE { le_subst = subst, le_lvl_env = lvl_env, le_env = id_env })
dest_lvl vs
= do { us <- getUniqueSupplyM
; let vs1 = map zap vs
-- See Note [Zapping the demand info]
(subst', vs2) = case is_rec of
NonRecursive -> cloneBndrs subst us vs1
Recursive -> cloneRecIdBndrs subst us vs1
prs = vs `zip` vs2
env' = env { le_lvl_env = addLvls dest_lvl lvl_env vs2
, le_subst = subst'
, le_env = foldl' add_id id_env prs }
; return (env', vs2) }
where
zap :: Var -> Var
zap v | isId v = zap_join (zapIdDemandInfo v)
| otherwise = v
zap_join | isTopLvl dest_lvl = zapJoinId
| otherwise = id
add_id :: IdEnv ([Var], LevelledExpr) -> (Var, Var) -> IdEnv ([Var], LevelledExpr)
add_id id_env (v, v1)
| isTyVar v = delVarEnv id_env v
| otherwise = extendVarEnv id_env v ([v1], ASSERT(not (isCoVar v1)) Var v1)
{-
Note [Zapping the demand info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
VERY IMPORTANT: we must zap the demand info if the thing is going to
float out, because it may be less demanded than at its original
binding site. Eg
f :: Int -> Int
f x = let v = 3*4 in v+x
Here v is strict; but if we float v to top level, it isn't any more.
Similarly, if we're floating a join point, it won't be one anymore, so we zap
join point information as well.
-}
|