1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section{SetLevels}
***************************
Overview
***************************
1. We attach binding levels to Core bindings, in preparation for floating
outwards (@FloatOut@).
2. We also let-ify many expressions (notably case scrutinees), so they
will have a fighting chance of being floated sensible.
3. We clone the binders of any floatable let-binding, so that when it is
floated out it will be unique. (This used to be done by the simplifier
but the latter now only ensures that there's no shadowing; indeed, even
that may not be true.)
NOTE: this can't be done using the uniqAway idea, because the variable
must be unique in the whole program, not just its current scope,
because two variables in different scopes may float out to the
same top level place
NOTE: Very tiresomely, we must apply this substitution to
the rules stored inside a variable too.
We do *not* clone top-level bindings, because some of them must not change,
but we *do* clone bindings that are heading for the top level
4. In the expression
case x of wild { p -> ...wild... }
we substitute x for wild in the RHS of the case alternatives:
case x of wild { p -> ...x... }
This means that a sub-expression involving x is not "trapped" inside the RHS.
And it's not inconvenient because we already have a substitution.
Note that this is EXACTLY BACKWARDS from the what the simplifier does.
The simplifier tries to get rid of occurrences of x, in favour of wild,
in the hope that there will only be one remaining occurrence of x, namely
the scrutinee of the case, and we can inline it.
\begin{code}
module SetLevels (
setLevels,
Level(..), tOP_LEVEL,
LevelledBind, LevelledExpr,
incMinorLvl, ltMajLvl, ltLvl, isTopLvl, isInlineCtxt
) where
#include "HsVersions.h"
import CoreSyn
import DynFlags ( FloatOutSwitches(..) )
import CoreUtils ( exprType, exprIsTrivial, mkPiTypes )
import CoreFVs -- all of it
import CoreSubst ( Subst, emptySubst, extendInScope, extendIdSubst,
cloneIdBndr, cloneRecIdBndrs )
import Id ( Id, idType, mkSysLocal, isOneShotLambda,
zapDemandIdInfo, transferPolyIdInfo,
idSpecialisation, idWorkerInfo, setIdInfo
)
import IdInfo
import Var
import VarSet
import VarEnv
import Name ( getOccName )
import OccName ( occNameString )
import Type ( isUnLiftedType, Type )
import BasicTypes ( TopLevelFlag(..) )
import UniqSupply
import Util ( sortLe, isSingleton, count )
import Outputable
import FastString
\end{code}
%************************************************************************
%* *
\subsection{Level numbers}
%* *
%************************************************************************
\begin{code}
data Level = InlineCtxt -- A level that's used only for
-- the context parameter ctxt_lvl
| Level Int -- Level number of enclosing lambdas
Int -- Number of big-lambda and/or case expressions between
-- here and the nearest enclosing lambda
\end{code}
The {\em level number} on a (type-)lambda-bound variable is the
nesting depth of the (type-)lambda which binds it. The outermost lambda
has level 1, so (Level 0 0) means that the variable is bound outside any lambda.
On an expression, it's the maximum level number of its free
(type-)variables. On a let(rec)-bound variable, it's the level of its
RHS. On a case-bound variable, it's the number of enclosing lambdas.
Top-level variables: level~0. Those bound on the RHS of a top-level
definition but ``before'' a lambda; e.g., the \tr{x} in (levels shown
as ``subscripts'')...
\begin{verbatim}
a_0 = let b_? = ... in
x_1 = ... b ... in ...
\end{verbatim}
The main function @lvlExpr@ carries a ``context level'' (@ctxt_lvl@).
That's meant to be the level number of the enclosing binder in the
final (floated) program. If the level number of a sub-expression is
less than that of the context, then it might be worth let-binding the
sub-expression so that it will indeed float.
If you can float to level @Level 0 0@ worth doing so because then your
allocation becomes static instead of dynamic. We always start with
context @Level 0 0@.
Note [FloatOut inside INLINE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@InlineCtxt@ very similar to @Level 0 0@, but is used for one purpose:
to say "don't float anything out of here". That's exactly what we
want for the body of an INLINE, where we don't want to float anything
out at all. See notes with lvlMFE below.
But, check this out:
-- At one time I tried the effect of not float anything out of an InlineMe,
-- but it sometimes works badly. For example, consider PrelArr.done. It
-- has the form __inline (\d. e)
-- where e doesn't mention d. If we float this to
-- __inline (let x = e in \d. x)
-- things are bad. The inliner doesn't even inline it because it doesn't look
-- like a head-normal form. So it seems a lesser evil to let things float.
-- In SetLevels we do set the context to (Level 0 0) when we get to an InlineMe
-- which discourages floating out.
So the conclusion is: don't do any floating at all inside an InlineMe.
(In the above example, don't float the {x=e} out of the \d.)
One particular case is that of workers: we don't want to float the
call to the worker outside the wrapper, otherwise the worker might get
inlined into the floated expression, and an importing module won't see
the worker at all.
\begin{code}
type LevelledExpr = TaggedExpr Level
type LevelledBind = TaggedBind Level
tOP_LEVEL, iNLINE_CTXT :: Level
tOP_LEVEL = Level 0 0
iNLINE_CTXT = InlineCtxt
incMajorLvl :: Level -> Level
-- For InlineCtxt we ignore any inc's; we don't want
-- to do any floating at all; see notes above
incMajorLvl InlineCtxt = InlineCtxt
incMajorLvl (Level major _) = Level (major + 1) 0
incMinorLvl :: Level -> Level
incMinorLvl InlineCtxt = InlineCtxt
incMinorLvl (Level major minor) = Level major (minor+1)
maxLvl :: Level -> Level -> Level
maxLvl InlineCtxt l2 = l2
maxLvl l1 InlineCtxt = l1
maxLvl l1@(Level maj1 min1) l2@(Level maj2 min2)
| (maj1 > maj2) || (maj1 == maj2 && min1 > min2) = l1
| otherwise = l2
ltLvl :: Level -> Level -> Bool
ltLvl _ InlineCtxt = False
ltLvl InlineCtxt (Level _ _) = True
ltLvl (Level maj1 min1) (Level maj2 min2)
= (maj1 < maj2) || (maj1 == maj2 && min1 < min2)
ltMajLvl :: Level -> Level -> Bool
-- Tells if one level belongs to a difft *lambda* level to another
ltMajLvl _ InlineCtxt = False
ltMajLvl InlineCtxt (Level maj2 _) = 0 < maj2
ltMajLvl (Level maj1 _) (Level maj2 _) = maj1 < maj2
isTopLvl :: Level -> Bool
isTopLvl (Level 0 0) = True
isTopLvl _ = False
isInlineCtxt :: Level -> Bool
isInlineCtxt InlineCtxt = True
isInlineCtxt _ = False
instance Outputable Level where
ppr InlineCtxt = text "<INLINE>"
ppr (Level maj min) = hcat [ char '<', int maj, char ',', int min, char '>' ]
instance Eq Level where
InlineCtxt == InlineCtxt = True
(Level maj1 min1) == (Level maj2 min2) = maj1 == maj2 && min1 == min2
_ == _ = False
\end{code}
%************************************************************************
%* *
\subsection{Main level-setting code}
%* *
%************************************************************************
\begin{code}
setLevels :: FloatOutSwitches
-> [CoreBind]
-> UniqSupply
-> [LevelledBind]
setLevels float_lams binds us
= initLvl us (do_them binds)
where
-- "do_them"'s main business is to thread the monad along
-- It gives each top binding the same empty envt, because
-- things unbound in the envt have level number zero implicitly
do_them :: [CoreBind] -> LvlM [LevelledBind]
do_them [] = return []
do_them (b:bs) = do
(lvld_bind, _) <- lvlTopBind init_env b
lvld_binds <- do_them bs
return (lvld_bind : lvld_binds)
init_env = initialEnv float_lams
lvlTopBind :: LevelEnv -> Bind Id -> LvlM (LevelledBind, LevelEnv)
lvlTopBind env (NonRec binder rhs)
= lvlBind TopLevel tOP_LEVEL env (AnnNonRec binder (freeVars rhs))
-- Rhs can have no free vars!
lvlTopBind env (Rec pairs)
= lvlBind TopLevel tOP_LEVEL env (AnnRec [(b,freeVars rhs) | (b,rhs) <- pairs])
\end{code}
%************************************************************************
%* *
\subsection{Setting expression levels}
%* *
%************************************************************************
\begin{code}
lvlExpr :: Level -- ctxt_lvl: Level of enclosing expression
-> LevelEnv -- Level of in-scope names/tyvars
-> CoreExprWithFVs -- input expression
-> LvlM LevelledExpr -- Result expression
\end{code}
The @ctxt_lvl@ is, roughly, the level of the innermost enclosing
binder. Here's an example
v = \x -> ...\y -> let r = case (..x..) of
..x..
in ..
When looking at the rhs of @r@, @ctxt_lvl@ will be 1 because that's
the level of @r@, even though it's inside a level-2 @\y@. It's
important that @ctxt_lvl@ is 1 and not 2 in @r@'s rhs, because we
don't want @lvlExpr@ to turn the scrutinee of the @case@ into an MFE
--- because it isn't a *maximal* free expression.
If there were another lambda in @r@'s rhs, it would get level-2 as well.
\begin{code}
lvlExpr _ _ ( _, AnnType ty) = return (Type ty)
lvlExpr _ env (_, AnnVar v) = return (lookupVar env v)
lvlExpr _ _ (_, AnnLit lit) = return (Lit lit)
lvlExpr ctxt_lvl env (_, AnnApp fun arg) = do
fun' <- lvl_fun fun
arg' <- lvlMFE False ctxt_lvl env arg
return (App fun' arg')
where
-- gaw 2004
lvl_fun (_, AnnCase _ _ _ _) = lvlMFE True ctxt_lvl env fun
lvl_fun _ = lvlExpr ctxt_lvl env fun
-- We don't do MFE on partial applications generally,
-- but we do if the function is big and hairy, like a case
lvlExpr _ env (_, AnnNote InlineMe expr) = do
-- Don't float anything out of an InlineMe; hence the iNLINE_CTXT
expr' <- lvlExpr iNLINE_CTXT env expr
return (Note InlineMe expr')
lvlExpr ctxt_lvl env (_, AnnNote note expr) = do
expr' <- lvlExpr ctxt_lvl env expr
return (Note note expr')
lvlExpr ctxt_lvl env (_, AnnCast expr co) = do
expr' <- lvlExpr ctxt_lvl env expr
return (Cast expr' co)
-- We don't split adjacent lambdas. That is, given
-- \x y -> (x+1,y)
-- we don't float to give
-- \x -> let v = x+y in \y -> (v,y)
-- Why not? Because partial applications are fairly rare, and splitting
-- lambdas makes them more expensive.
lvlExpr ctxt_lvl env expr@(_, AnnLam {}) = do
new_body <- lvlMFE True new_lvl new_env body
return (mkLams new_bndrs new_body)
where
(bndrs, body) = collectAnnBndrs expr
(new_lvl, new_bndrs) = lvlLamBndrs ctxt_lvl bndrs
new_env = extendLvlEnv env new_bndrs
-- At one time we called a special verion of collectBinders,
-- which ignored coercions, because we don't want to split
-- a lambda like this (\x -> coerce t (\s -> ...))
-- This used to happen quite a bit in state-transformer programs,
-- but not nearly so much now non-recursive newtypes are transparent.
-- [See SetLevels rev 1.50 for a version with this approach.]
lvlExpr ctxt_lvl env (_, AnnLet (AnnNonRec bndr rhs) body)
| isUnLiftedType (idType bndr) = do
-- Treat unlifted let-bindings (let x = b in e) just like (case b of x -> e)
-- That is, leave it exactly where it is
-- We used to float unlifted bindings too (e.g. to get a cheap primop
-- outside a lambda (to see how, look at lvlBind in rev 1.58)
-- but an unrelated change meant that these unlifed bindings
-- could get to the top level which is bad. And there's not much point;
-- unlifted bindings are always cheap, and so hardly worth floating.
rhs' <- lvlExpr ctxt_lvl env rhs
body' <- lvlExpr incd_lvl env' body
return (Let (NonRec bndr' rhs') body')
where
incd_lvl = incMinorLvl ctxt_lvl
bndr' = TB bndr incd_lvl
env' = extendLvlEnv env [bndr']
lvlExpr ctxt_lvl env (_, AnnLet bind body) = do
(bind', new_env) <- lvlBind NotTopLevel ctxt_lvl env bind
body' <- lvlExpr ctxt_lvl new_env body
return (Let bind' body')
lvlExpr ctxt_lvl env (_, AnnCase expr case_bndr ty alts) = do
expr' <- lvlMFE True ctxt_lvl env expr
let alts_env = extendCaseBndrLvlEnv env expr' case_bndr incd_lvl
alts' <- mapM (lvl_alt alts_env) alts
return (Case expr' (TB case_bndr incd_lvl) ty alts')
where
incd_lvl = incMinorLvl ctxt_lvl
lvl_alt alts_env (con, bs, rhs) = do
rhs' <- lvlMFE True incd_lvl new_env rhs
return (con, bs', rhs')
where
bs' = [ TB b incd_lvl | b <- bs ]
new_env = extendLvlEnv alts_env bs'
\end{code}
@lvlMFE@ is just like @lvlExpr@, except that it might let-bind
the expression, so that it can itself be floated.
Note [Unlifted MFEs]
~~~~~~~~~~~~~~~~~~~~~
We don't float unlifted MFEs, which potentially loses big opportunites.
For example:
\x -> f (h y)
where h :: Int -> Int# is expensive. We'd like to float the (h y) outside
the \x, but we don't because it's unboxed. Possible solution: box it.
\begin{code}
lvlMFE :: Bool -- True <=> strict context [body of case or let]
-> Level -- Level of innermost enclosing lambda/tylam
-> LevelEnv -- Level of in-scope names/tyvars
-> CoreExprWithFVs -- input expression
-> LvlM LevelledExpr -- Result expression
lvlMFE _ _ _ (_, AnnType ty)
= return (Type ty)
-- No point in floating out an expression wrapped in a coercion;
-- If we do we'll transform lvl = e |> co
-- to lvl' = e; lvl = lvl' |> co
-- and then inline lvl. Better just to float out the payload.
lvlMFE strict_ctxt ctxt_lvl env (_, AnnCast e co)
= do { expr' <- lvlMFE strict_ctxt ctxt_lvl env e
; return (Cast expr' co) }
lvlMFE strict_ctxt ctxt_lvl env ann_expr@(fvs, _)
| isUnLiftedType ty -- Can't let-bind it; see Note [Unlifted MFEs]
|| isInlineCtxt ctxt_lvl -- Don't float out of an __inline__ context
|| exprIsTrivial expr -- Never float if it's trivial
|| not good_destination
= -- Don't float it out
lvlExpr ctxt_lvl env ann_expr
| otherwise -- Float it out!
= do expr' <- lvlFloatRhs abs_vars dest_lvl env ann_expr
var <- newLvlVar "lvl" abs_vars ty
return (Let (NonRec (TB var dest_lvl) expr')
(mkVarApps (Var var) abs_vars))
where
expr = deAnnotate ann_expr
ty = exprType expr
dest_lvl = destLevel env fvs (isFunction ann_expr)
abs_vars = abstractVars dest_lvl env fvs
-- A decision to float entails let-binding this thing, and we only do
-- that if we'll escape a value lambda, or will go to the top level.
good_destination
| dest_lvl `ltMajLvl` ctxt_lvl -- Escapes a value lambda
= True
-- OLD CODE: not (exprIsCheap expr) || isTopLvl dest_lvl
-- see Note [Escaping a value lambda]
| otherwise -- Does not escape a value lambda
= isTopLvl dest_lvl -- Only float if we are going to the top level
&& floatConsts env -- and the floatConsts flag is on
&& not strict_ctxt -- Don't float from a strict context
-- We are keen to float something to the top level, even if it does not
-- escape a lambda, because then it needs no allocation. But it's controlled
-- by a flag, because doing this too early loses opportunities for RULES
-- which (needless to say) are important in some nofib programs
-- (gcd is an example).
--
-- Beware:
-- concat = /\ a -> foldr ..a.. (++) []
-- was getting turned into
-- concat = /\ a -> lvl a
-- lvl = /\ a -> foldr ..a.. (++) []
-- which is pretty stupid. Hence the strict_ctxt test
\end{code}
Note [Escaping a value lambda]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to float even cheap expressions out of value lambdas,
because that saves allocation. Consider
f = \x. .. (\y.e) ...
Then we'd like to avoid allocating the (\y.e) every time we call f,
(assuming e does not mention x).
An example where this really makes a difference is simplrun009.
Another reason it's good is because it makes SpecContr fire on functions.
Consider
f = \x. ....(f (\y.e))....
After floating we get
lvl = \y.e
f = \x. ....(f lvl)...
and that is much easier for SpecConstr to generate a robust specialisation for.
The OLD CODE (given where this Note is referred to) prevents floating
of the example above, so I just don't understand the old code. I
don't understand the old comment either (which appears below). I
measured the effect on nofib of changing OLD CODE to 'True', and got
zeros everywhere, but a 4% win for 'puzzle'. Very small 0.5% loss for
'cse'; turns out to be because our arity analysis isn't good enough
yet (mentioned in Simon-nofib-notes).
OLD comment was:
Even if it escapes a value lambda, we only
float if it's not cheap (unless it'll get all the
way to the top). I've seen cases where we
float dozens of tiny free expressions, which cost
more to allocate than to evaluate.
NB: exprIsCheap is also true of bottom expressions, which
is good; we don't want to share them
It's only Really Bad to float a cheap expression out of a
strict context, because that builds a thunk that otherwise
would never be built. So another alternative would be to
add
|| (strict_ctxt && not (exprIsBottom expr))
to the condition above. We should really try this out.
%************************************************************************
%* *
\subsection{Bindings}
%* *
%************************************************************************
The binding stuff works for top level too.
\begin{code}
lvlBind :: TopLevelFlag -- Used solely to decide whether to clone
-> Level -- Context level; might be Top even for bindings nested in the RHS
-- of a top level binding
-> LevelEnv
-> CoreBindWithFVs
-> LvlM (LevelledBind, LevelEnv)
lvlBind top_lvl ctxt_lvl env (AnnNonRec bndr rhs@(rhs_fvs,_))
| isTyVar bndr -- Don't do anything for TyVar binders
-- (simplifier gets rid of them pronto)
|| isInlineCtxt ctxt_lvl -- Don't do anything inside InlineMe
= do rhs' <- lvlExpr ctxt_lvl env rhs
return (NonRec (TB bndr ctxt_lvl) rhs', env)
| null abs_vars
= do -- No type abstraction; clone existing binder
rhs' <- lvlExpr dest_lvl env rhs
(env', bndr') <- cloneVar top_lvl env bndr ctxt_lvl dest_lvl
return (NonRec (TB bndr' dest_lvl) rhs', env')
| otherwise
= do -- Yes, type abstraction; create a new binder, extend substitution, etc
rhs' <- lvlFloatRhs abs_vars dest_lvl env rhs
(env', [bndr']) <- newPolyBndrs dest_lvl env abs_vars [bndr]
return (NonRec (TB bndr' dest_lvl) rhs', env')
where
bind_fvs = rhs_fvs `unionVarSet` idFreeVars bndr
abs_vars = abstractVars dest_lvl env bind_fvs
dest_lvl = destLevel env bind_fvs (isFunction rhs)
\end{code}
\begin{code}
lvlBind top_lvl ctxt_lvl env (AnnRec pairs)
| isInlineCtxt ctxt_lvl -- Don't do anything inside InlineMe
= do rhss' <- mapM (lvlExpr ctxt_lvl env) rhss
return (Rec ([TB b ctxt_lvl | b <- bndrs] `zip` rhss'), env)
| null abs_vars
= do (new_env, new_bndrs) <- cloneRecVars top_lvl env bndrs ctxt_lvl dest_lvl
new_rhss <- mapM (lvlExpr ctxt_lvl new_env) rhss
return (Rec ([TB b dest_lvl | b <- new_bndrs] `zip` new_rhss), new_env)
| isSingleton pairs && count isIdVar abs_vars > 1
= do -- Special case for self recursion where there are
-- several variables carried around: build a local loop:
-- poly_f = \abs_vars. \lam_vars . letrec f = \lam_vars. rhs in f lam_vars
-- This just makes the closures a bit smaller. If we don't do
-- this, allocation rises significantly on some programs
--
-- We could elaborate it for the case where there are several
-- mutually functions, but it's quite a bit more complicated
--
-- This all seems a bit ad hoc -- sigh
let
(bndr,rhs) = head pairs
(rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars
rhs_env = extendLvlEnv env abs_vars_w_lvls
(rhs_env', new_bndr) <- cloneVar NotTopLevel rhs_env bndr rhs_lvl rhs_lvl
let
(lam_bndrs, rhs_body) = collectAnnBndrs rhs
(body_lvl, new_lam_bndrs) = lvlLamBndrs rhs_lvl lam_bndrs
body_env = extendLvlEnv rhs_env' new_lam_bndrs
new_rhs_body <- lvlExpr body_lvl body_env rhs_body
(poly_env, [poly_bndr]) <- newPolyBndrs dest_lvl env abs_vars [bndr]
return (Rec [(TB poly_bndr dest_lvl,
mkLams abs_vars_w_lvls $
mkLams new_lam_bndrs $
Let (Rec [(TB new_bndr rhs_lvl, mkLams new_lam_bndrs new_rhs_body)])
(mkVarApps (Var new_bndr) lam_bndrs))],
poly_env)
| otherwise = do -- Non-null abs_vars
(new_env, new_bndrs) <- newPolyBndrs dest_lvl env abs_vars bndrs
new_rhss <- mapM (lvlFloatRhs abs_vars dest_lvl new_env) rhss
return (Rec ([TB b dest_lvl | b <- new_bndrs] `zip` new_rhss), new_env)
where
(bndrs,rhss) = unzip pairs
-- Finding the free vars of the binding group is annoying
bind_fvs = (unionVarSets [ idFreeVars bndr `unionVarSet` rhs_fvs
| (bndr, (rhs_fvs,_)) <- pairs])
`minusVarSet`
mkVarSet bndrs
dest_lvl = destLevel env bind_fvs (all isFunction rhss)
abs_vars = abstractVars dest_lvl env bind_fvs
----------------------------------------------------
-- Three help functons for the type-abstraction case
lvlFloatRhs :: [CoreBndr] -> Level -> LevelEnv -> CoreExprWithFVs
-> UniqSM (Expr (TaggedBndr Level))
lvlFloatRhs abs_vars dest_lvl env rhs = do
rhs' <- lvlExpr rhs_lvl rhs_env rhs
return (mkLams abs_vars_w_lvls rhs')
where
(rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars
rhs_env = extendLvlEnv env abs_vars_w_lvls
\end{code}
%************************************************************************
%* *
\subsection{Deciding floatability}
%* *
%************************************************************************
\begin{code}
lvlLamBndrs :: Level -> [CoreBndr] -> (Level, [TaggedBndr Level])
-- Compute the levels for the binders of a lambda group
-- The binders returned are exactly the same as the ones passed,
-- but they are now paired with a level
lvlLamBndrs lvl []
= (lvl, [])
lvlLamBndrs lvl bndrs
= go (incMinorLvl lvl)
False -- Havn't bumped major level in this group
[] bndrs
where
go old_lvl bumped_major rev_lvld_bndrs (bndr:bndrs)
| isIdVar bndr && -- Go to the next major level if this is a value binder,
not bumped_major && -- and we havn't already gone to the next level (one jump per group)
not (isOneShotLambda bndr) -- and it isn't a one-shot lambda
= go new_lvl True (TB bndr new_lvl : rev_lvld_bndrs) bndrs
| otherwise
= go old_lvl bumped_major (TB bndr old_lvl : rev_lvld_bndrs) bndrs
where
new_lvl = incMajorLvl old_lvl
go old_lvl _ rev_lvld_bndrs []
= (old_lvl, reverse rev_lvld_bndrs)
-- a lambda like this (\x -> coerce t (\s -> ...))
-- This happens quite a bit in state-transformer programs
\end{code}
\begin{code}
-- Destintion level is the max Id level of the expression
-- (We'll abstract the type variables, if any.)
destLevel :: LevelEnv -> VarSet -> Bool -> Level
destLevel env fvs is_function
| floatLams env
&& is_function = tOP_LEVEL -- Send functions to top level; see
-- the comments with isFunction
| otherwise = maxIdLevel env fvs
isFunction :: CoreExprWithFVs -> Bool
-- The idea here is that we want to float *functions* to
-- the top level. This saves no work, but
-- (a) it can make the host function body a lot smaller,
-- and hence inlinable.
-- (b) it can also save allocation when the function is recursive:
-- h = \x -> letrec f = \y -> ...f...y...x...
-- in f x
-- becomes
-- f = \x y -> ...(f x)...y...x...
-- h = \x -> f x x
-- No allocation for f now.
-- We may only want to do this if there are sufficiently few free
-- variables. We certainly only want to do it for values, and not for
-- constructors. So the simple thing is just to look for lambdas
isFunction (_, AnnLam b e) | isIdVar b = True
| otherwise = isFunction e
isFunction (_, AnnNote _ e) = isFunction e
isFunction _ = False
\end{code}
%************************************************************************
%* *
\subsection{Free-To-Level Monad}
%* *
%************************************************************************
\begin{code}
type LevelEnv = (FloatOutSwitches,
VarEnv Level, -- Domain is *post-cloned* TyVars and Ids
Subst, -- Domain is pre-cloned Ids; tracks the in-scope set
-- so that subtitution is capture-avoiding
IdEnv ([Var], LevelledExpr)) -- Domain is pre-cloned Ids
-- We clone let-bound variables so that they are still
-- distinct when floated out; hence the SubstEnv/IdEnv.
-- (see point 3 of the module overview comment).
-- We also use these envs when making a variable polymorphic
-- because we want to float it out past a big lambda.
--
-- The Subst and IdEnv always implement the same mapping, but the
-- Subst maps to CoreExpr and the IdEnv to LevelledExpr
-- Since the range is always a variable or type application,
-- there is never any difference between the two, but sadly
-- the types differ. The SubstEnv is used when substituting in
-- a variable's IdInfo; the IdEnv when we find a Var.
--
-- In addition the IdEnv records a list of tyvars free in the
-- type application, just so we don't have to call freeVars on
-- the type application repeatedly.
--
-- The domain of the both envs is *pre-cloned* Ids, though
--
-- The domain of the VarEnv Level is the *post-cloned* Ids
initialEnv :: FloatOutSwitches -> LevelEnv
initialEnv float_lams = (float_lams, emptyVarEnv, emptySubst, emptyVarEnv)
floatLams :: LevelEnv -> Bool
floatLams (fos, _, _, _) = floatOutLambdas fos
floatConsts :: LevelEnv -> Bool
floatConsts (fos, _, _, _) = floatOutConstants fos
extendLvlEnv :: LevelEnv -> [TaggedBndr Level] -> LevelEnv
-- Used when *not* cloning
extendLvlEnv (float_lams, lvl_env, subst, id_env) prs
= (float_lams,
foldl add_lvl lvl_env prs,
foldl del_subst subst prs,
foldl del_id id_env prs)
where
add_lvl env (TB v l) = extendVarEnv env v l
del_subst env (TB v _) = extendInScope env v
del_id env (TB v _) = delVarEnv env v
-- We must remove any clone for this variable name in case of
-- shadowing. This bit me in the following case
-- (in nofib/real/gg/Spark.hs):
--
-- case ds of wild {
-- ... -> case e of wild {
-- ... -> ... wild ...
-- }
-- }
--
-- The inside occurrence of @wild@ was being replaced with @ds@,
-- incorrectly, because the SubstEnv was still lying around. Ouch!
-- KSW 2000-07.
-- extendCaseBndrLvlEnv adds the mapping case-bndr->scrut-var if it can
-- (see point 4 of the module overview comment)
extendCaseBndrLvlEnv :: LevelEnv -> Expr (TaggedBndr Level) -> Var -> Level
-> LevelEnv
extendCaseBndrLvlEnv (float_lams, lvl_env, subst, id_env) (Var scrut_var) case_bndr lvl
= (float_lams,
extendVarEnv lvl_env case_bndr lvl,
extendIdSubst subst case_bndr (Var scrut_var),
extendVarEnv id_env case_bndr ([scrut_var], Var scrut_var))
extendCaseBndrLvlEnv env _scrut case_bndr lvl
= extendLvlEnv env [TB case_bndr lvl]
extendPolyLvlEnv :: Level -> LevelEnv -> [Var] -> [(Var, Var)] -> LevelEnv
extendPolyLvlEnv dest_lvl (float_lams, lvl_env, subst, id_env) abs_vars bndr_pairs
= (float_lams,
foldl add_lvl lvl_env bndr_pairs,
foldl add_subst subst bndr_pairs,
foldl add_id id_env bndr_pairs)
where
add_lvl env (_, v') = extendVarEnv env v' dest_lvl
add_subst env (v, v') = extendIdSubst env v (mkVarApps (Var v') abs_vars)
add_id env (v, v') = extendVarEnv env v ((v':abs_vars), mkVarApps (Var v') abs_vars)
extendCloneLvlEnv :: Level -> LevelEnv -> Subst -> [(Var, Var)] -> LevelEnv
extendCloneLvlEnv lvl (float_lams, lvl_env, _, id_env) new_subst bndr_pairs
= (float_lams,
foldl add_lvl lvl_env bndr_pairs,
new_subst,
foldl add_id id_env bndr_pairs)
where
add_lvl env (_, v') = extendVarEnv env v' lvl
add_id env (v, v') = extendVarEnv env v ([v'], Var v')
maxIdLevel :: LevelEnv -> VarSet -> Level
maxIdLevel (_, lvl_env,_,id_env) var_set
= foldVarSet max_in tOP_LEVEL var_set
where
max_in in_var lvl = foldr max_out lvl (case lookupVarEnv id_env in_var of
Just (abs_vars, _) -> abs_vars
Nothing -> [in_var])
max_out out_var lvl
| isIdVar out_var = case lookupVarEnv lvl_env out_var of
Just lvl' -> maxLvl lvl' lvl
Nothing -> lvl
| otherwise = lvl -- Ignore tyvars in *maxIdLevel*
lookupVar :: LevelEnv -> Id -> LevelledExpr
lookupVar (_, _, _, id_env) v = case lookupVarEnv id_env v of
Just (_, expr) -> expr
_ -> Var v
abstractVars :: Level -> LevelEnv -> VarSet -> [Var]
-- Find the variables in fvs, free vars of the target expresion,
-- whose level is greater than the destination level
-- These are the ones we are going to abstract out
abstractVars dest_lvl (_, lvl_env, _, id_env) fvs
= map zap $ uniq $ sortLe le
[var | fv <- varSetElems fvs
, var <- absVarsOf id_env fv
, abstract_me var ]
-- NB: it's important to call abstract_me only on the OutIds the
-- come from absVarsOf (not on fv, which is an InId)
where
-- Sort the variables so the true type variables come first;
-- the tyvars scope over Ids and coercion vars
v1 `le` v2 = case (is_tv v1, is_tv v2) of
(True, False) -> True
(False, True) -> False
_ -> v1 <= v2 -- Same family
is_tv v = isTyVar v && not (isCoVar v)
uniq :: [Var] -> [Var]
-- Remove adjacent duplicates; the sort will have brought them together
uniq (v1:v2:vs) | v1 == v2 = uniq (v2:vs)
| otherwise = v1 : uniq (v2:vs)
uniq vs = vs
abstract_me v = case lookupVarEnv lvl_env v of
Just lvl -> dest_lvl `ltLvl` lvl
Nothing -> False
-- We are going to lambda-abstract, so nuke any IdInfo,
-- and add the tyvars of the Id (if necessary)
zap v | isIdVar v = WARN( workerExists (idWorkerInfo v) ||
not (isEmptySpecInfo (idSpecialisation v)),
text "absVarsOf: discarding info on" <+> ppr v )
setIdInfo v vanillaIdInfo
| otherwise = v
absVarsOf :: IdEnv ([Var], LevelledExpr) -> Var -> [Var]
-- If f is free in the expression, and f maps to poly_f a b c in the
-- current substitution, then we must report a b c as candidate type
-- variables
--
-- Also, if x::a is an abstracted variable, then so is a; that is,
-- we must look in x's type
-- And similarly if x is a coercion variable.
absVarsOf id_env v
| isIdVar v = [av2 | av1 <- lookup_avs v
, av2 <- add_tyvars av1]
| isCoVar v = add_tyvars v
| otherwise = [v]
where
lookup_avs v = case lookupVarEnv id_env v of
Just (abs_vars, _) -> abs_vars
Nothing -> [v]
add_tyvars v = v : varSetElems (varTypeTyVars v)
\end{code}
\begin{code}
type LvlM result = UniqSM result
initLvl :: UniqSupply -> UniqSM a -> a
initLvl = initUs_
\end{code}
\begin{code}
newPolyBndrs :: Level -> LevelEnv -> [Var] -> [Id] -> UniqSM (LevelEnv, [Id])
newPolyBndrs dest_lvl env abs_vars bndrs = do
uniqs <- getUniquesM
let new_bndrs = zipWith mk_poly_bndr bndrs uniqs
return (extendPolyLvlEnv dest_lvl env abs_vars (bndrs `zip` new_bndrs), new_bndrs)
where
mk_poly_bndr bndr uniq = transferPolyIdInfo bndr $ -- Note [transferPolyIdInfo] in Id.lhs
mkSysLocal (mkFastString str) uniq poly_ty
where
str = "poly_" ++ occNameString (getOccName bndr)
poly_ty = mkPiTypes abs_vars (idType bndr)
newLvlVar :: String
-> [CoreBndr] -> Type -- Abstract wrt these bndrs
-> LvlM Id
newLvlVar str vars body_ty = do
uniq <- getUniqueM
return (mkSysLocal (mkFastString str) uniq (mkPiTypes vars body_ty))
-- The deeply tiresome thing is that we have to apply the substitution
-- to the rules inside each Id. Grr. But it matters.
cloneVar :: TopLevelFlag -> LevelEnv -> Id -> Level -> Level -> LvlM (LevelEnv, Id)
cloneVar TopLevel env v _ _
= return (env, v) -- Don't clone top level things
cloneVar NotTopLevel env@(_,_,subst,_) v ctxt_lvl dest_lvl
= ASSERT( isIdVar v ) do
us <- getUniqueSupplyM
let
(subst', v1) = cloneIdBndr subst us v
v2 = zap_demand ctxt_lvl dest_lvl v1
env' = extendCloneLvlEnv dest_lvl env subst' [(v,v2)]
return (env', v2)
cloneRecVars :: TopLevelFlag -> LevelEnv -> [Id] -> Level -> Level -> LvlM (LevelEnv, [Id])
cloneRecVars TopLevel env vs _ _
= return (env, vs) -- Don't clone top level things
cloneRecVars NotTopLevel env@(_,_,subst,_) vs ctxt_lvl dest_lvl
= ASSERT( all isIdVar vs ) do
us <- getUniqueSupplyM
let
(subst', vs1) = cloneRecIdBndrs subst us vs
vs2 = map (zap_demand ctxt_lvl dest_lvl) vs1
env' = extendCloneLvlEnv dest_lvl env subst' (vs `zip` vs2)
return (env', vs2)
-- VERY IMPORTANT: we must zap the demand info
-- if the thing is going to float out past a lambda,
-- or if it's going to top level (where things can't be strict)
zap_demand :: Level -> Level -> Id -> Id
zap_demand dest_lvl ctxt_lvl id
| ctxt_lvl == dest_lvl,
not (isTopLvl dest_lvl) = id -- Stays, and not going to top level
| otherwise = zapDemandIdInfo id -- Floats out
\end{code}
|