1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
|
{-
(c) The AQUA Project, Glasgow University, 1993-1998
\section[SimplMonad]{The simplifier Monad}
-}
{-# LANGUAGE CPP #-}
module SimplEnv (
-- * The simplifier mode
setMode, getMode, updMode, seDynFlags,
-- * Environments
SimplEnv(..), pprSimplEnv, -- Temp not abstract
mkSimplEnv, extendIdSubst,
SimplEnv.extendTvSubst, SimplEnv.extendCvSubst,
zapSubstEnv, setSubstEnv,
getInScope, setInScopeFromE, setInScopeFromF,
setInScopeSet, modifyInScope, addNewInScopeIds,
getSimplRules,
-- * Substitution results
SimplSR(..), mkContEx, substId, lookupRecBndr, refineFromInScope,
-- * Simplifying 'Id' binders
simplNonRecBndr, simplNonRecJoinBndr, simplRecBndrs, simplRecJoinBndrs,
simplBinder, simplBinders,
substTy, substTyVar, getTCvSubst,
substCo, substCoVar,
-- * Floats
SimplFloats(..), emptyFloats, mkRecFloats,
mkFloatBind, addLetFloats, addJoinFloats, addFloats,
extendFloats, wrapFloats,
doFloatFromRhs, getTopFloatBinds,
-- * LetFloats
LetFloats, letFloatBinds, emptyLetFloats, unitLetFloat,
addLetFlts, mapLetFloats,
-- * JoinFloats
JoinFloat, JoinFloats, emptyJoinFloats,
wrapJoinFloats, wrapJoinFloatsX, unitJoinFloat, addJoinFlts
) where
#include "HsVersions.h"
import GhcPrelude
import SimplMonad
import CoreMonad ( SimplMode(..) )
import CoreSyn
import CoreUtils
import Var
import VarEnv
import VarSet
import OrdList
import Id
import MkCore ( mkWildValBinder )
import DynFlags ( DynFlags )
import TysWiredIn
import qualified Type
import Type hiding ( substTy, substTyVar, substTyVarBndr )
import qualified Coercion
import Coercion hiding ( substCo, substCoVar, substCoVarBndr )
import BasicTypes
import MonadUtils
import Outputable
import Util
import UniqFM ( pprUniqFM )
import Data.List
{-
************************************************************************
* *
\subsubsection{The @SimplEnv@ type}
* *
************************************************************************
-}
data SimplEnv
= SimplEnv {
----------- Static part of the environment -----------
-- Static in the sense of lexically scoped,
-- wrt the original expression
seMode :: SimplMode
-- The current substitution
, seTvSubst :: TvSubstEnv -- InTyVar |--> OutType
, seCvSubst :: CvSubstEnv -- InCoVar |--> OutCoercion
, seIdSubst :: SimplIdSubst -- InId |--> OutExpr
----------- Dynamic part of the environment -----------
-- Dynamic in the sense of describing the setup where
-- the expression finally ends up
-- The current set of in-scope variables
-- They are all OutVars, and all bound in this module
, seInScope :: InScopeSet -- OutVars only
}
data SimplFloats
= SimplFloats
{ -- Ordinary let bindings
sfLetFloats :: LetFloats
-- See Note [LetFloats]
-- Join points
, sfJoinFloats :: JoinFloats
-- Handled separately; they don't go very far
-- We consider these to be /inside/ sfLetFloats
-- because join points can refer to ordinary bindings,
-- but not vice versa
-- Includes all variables bound by sfLetFloats and
-- sfJoinFloats, plus at least whatever is in scope where
-- these bindings land up.
, sfInScope :: InScopeSet -- All OutVars
}
instance Outputable SimplFloats where
ppr (SimplFloats { sfLetFloats = lf, sfJoinFloats = jf, sfInScope = is })
= text "SimplFloats"
<+> braces (vcat [ text "lets: " <+> ppr lf
, text "joins:" <+> ppr jf
, text "in_scope:" <+> ppr is ])
emptyFloats :: SimplEnv -> SimplFloats
emptyFloats env
= SimplFloats { sfLetFloats = emptyLetFloats
, sfJoinFloats = emptyJoinFloats
, sfInScope = seInScope env }
pprSimplEnv :: SimplEnv -> SDoc
-- Used for debugging; selective
pprSimplEnv env
= vcat [text "TvSubst:" <+> ppr (seTvSubst env),
text "CvSubst:" <+> ppr (seCvSubst env),
text "IdSubst:" <+> id_subst_doc,
text "InScope:" <+> in_scope_vars_doc
]
where
id_subst_doc = pprUniqFM ppr (seIdSubst env)
in_scope_vars_doc = pprVarSet (getInScopeVars (seInScope env))
(vcat . map ppr_one)
ppr_one v | isId v = ppr v <+> ppr (idUnfolding v)
| otherwise = ppr v
type SimplIdSubst = IdEnv SimplSR -- IdId |--> OutExpr
-- See Note [Extending the Subst] in CoreSubst
-- | A substitution result.
data SimplSR
= DoneEx OutExpr (Maybe JoinArity)
-- If x :-> DoneEx e ja is in the SimplIdSubst
-- then replace occurrences of x by e
-- and ja = Just a <=> x is a join-point of arity a
-- See Note [Join arity in SimplIdSubst]
| DoneId OutId
-- If x :-> DoneId v is in the SimplIdSubst
-- then replace occurrences of x by v
-- and v is a join-point of arity a
-- <=> x is a join-point of arity a
| ContEx TvSubstEnv -- A suspended substitution
CvSubstEnv
SimplIdSubst
InExpr
-- If x :-> ContEx tv cv id e is in the SimplISubst
-- then replace occurrences of x by (subst (tv,cv,id) e)
instance Outputable SimplSR where
ppr (DoneId v) = text "DoneId" <+> ppr v
ppr (DoneEx e mj) = text "DoneEx" <> pp_mj <+> ppr e
where
pp_mj = case mj of
Nothing -> empty
Just n -> parens (int n)
ppr (ContEx _tv _cv _id e) = vcat [text "ContEx" <+> ppr e {-,
ppr (filter_env tv), ppr (filter_env id) -}]
-- where
-- fvs = exprFreeVars e
-- filter_env env = filterVarEnv_Directly keep env
-- keep uniq _ = uniq `elemUFM_Directly` fvs
{-
Note [SimplEnv invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~
seInScope:
The in-scope part of Subst includes *all* in-scope TyVars and Ids
The elements of the set may have better IdInfo than the
occurrences of in-scope Ids, and (more important) they will
have a correctly-substituted type. So we use a lookup in this
set to replace occurrences
The Ids in the InScopeSet are replete with their Rules,
and as we gather info about the unfolding of an Id, we replace
it in the in-scope set.
The in-scope set is actually a mapping OutVar -> OutVar, and
in case expressions we sometimes bind
seIdSubst:
The substitution is *apply-once* only, because InIds and OutIds
can overlap.
For example, we generally omit mappings
a77 -> a77
from the substitution, when we decide not to clone a77, but it's quite
legitimate to put the mapping in the substitution anyway.
Furthermore, consider
let x = case k of I# x77 -> ... in
let y = case k of I# x77 -> ... in ...
and suppose the body is strict in both x and y. Then the simplifier
will pull the first (case k) to the top; so the second (case k) will
cancel out, mapping x77 to, well, x77! But one is an in-Id and the
other is an out-Id.
Of course, the substitution *must* applied! Things in its domain
simply aren't necessarily bound in the result.
* substId adds a binding (DoneId new_id) to the substitution if
the Id's unique has changed
Note, though that the substitution isn't necessarily extended
if the type of the Id changes. Why not? Because of the next point:
* We *always, always* finish by looking up in the in-scope set
any variable that doesn't get a DoneEx or DoneVar hit in the substitution.
Reason: so that we never finish up with a "old" Id in the result.
An old Id might point to an old unfolding and so on... which gives a space
leak.
[The DoneEx and DoneVar hits map to "new" stuff.]
* It follows that substExpr must not do a no-op if the substitution is empty.
substType is free to do so, however.
* When we come to a let-binding (say) we generate new IdInfo, including an
unfolding, attach it to the binder, and add this newly adorned binder to
the in-scope set. So all subsequent occurrences of the binder will get
mapped to the full-adorned binder, which is also the one put in the
binding site.
* The in-scope "set" usually maps x->x; we use it simply for its domain.
But sometimes we have two in-scope Ids that are synomyms, and should
map to the same target: x->x, y->x. Notably:
case y of x { ... }
That's why the "set" is actually a VarEnv Var
Note [Join arity in SimplIdSubst]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We have to remember which incoming variables are join points: the occurrences
may not be marked correctly yet, and we're in change of propagating the change if
OccurAnal makes something a join point).
Normally the in-scope set is where we keep the latest information, but
the in-scope set tracks only OutVars; if a binding is unconditionally
inlined (via DoneEx), it never makes it into the in-scope set, and we
need to know at the occurrence site that the variable is a join point
so that we know to drop the context. Thus we remember which join
points we're substituting. -}
mkSimplEnv :: SimplMode -> SimplEnv
mkSimplEnv mode
= SimplEnv { seMode = mode
, seInScope = init_in_scope
, seTvSubst = emptyVarEnv
, seCvSubst = emptyVarEnv
, seIdSubst = emptyVarEnv }
-- The top level "enclosing CC" is "SUBSUMED".
init_in_scope :: InScopeSet
init_in_scope = mkInScopeSet (unitVarSet (mkWildValBinder unitTy))
-- See Note [WildCard binders]
{-
Note [WildCard binders]
~~~~~~~~~~~~~~~~~~~~~~~
The program to be simplified may have wild binders
case e of wild { p -> ... }
We want to *rename* them away, so that there are no
occurrences of 'wild-id' (with wildCardKey). The easy
way to do that is to start of with a representative
Id in the in-scope set
There can be *occurrences* of wild-id. For example,
MkCore.mkCoreApp transforms
e (a /# b) --> case (a /# b) of wild { DEFAULT -> e wild }
This is ok provided 'wild' isn't free in 'e', and that's the delicate
thing. Generally, you want to run the simplifier to get rid of the
wild-ids before doing much else.
It's a very dark corner of GHC. Maybe it should be cleaned up.
-}
getMode :: SimplEnv -> SimplMode
getMode env = seMode env
seDynFlags :: SimplEnv -> DynFlags
seDynFlags env = sm_dflags (seMode env)
setMode :: SimplMode -> SimplEnv -> SimplEnv
setMode mode env = env { seMode = mode }
updMode :: (SimplMode -> SimplMode) -> SimplEnv -> SimplEnv
updMode upd env = env { seMode = upd (seMode env) }
---------------------
extendIdSubst :: SimplEnv -> Id -> SimplSR -> SimplEnv
extendIdSubst env@(SimplEnv {seIdSubst = subst}) var res
= ASSERT2( isId var && not (isCoVar var), ppr var )
env { seIdSubst = extendVarEnv subst var res }
extendTvSubst :: SimplEnv -> TyVar -> Type -> SimplEnv
extendTvSubst env@(SimplEnv {seTvSubst = tsubst}) var res
= ASSERT2( isTyVar var, ppr var $$ ppr res )
env {seTvSubst = extendVarEnv tsubst var res}
extendCvSubst :: SimplEnv -> CoVar -> Coercion -> SimplEnv
extendCvSubst env@(SimplEnv {seCvSubst = csubst}) var co
= ASSERT( isCoVar var )
env {seCvSubst = extendVarEnv csubst var co}
---------------------
getInScope :: SimplEnv -> InScopeSet
getInScope env = seInScope env
setInScopeSet :: SimplEnv -> InScopeSet -> SimplEnv
setInScopeSet env in_scope = env {seInScope = in_scope}
setInScopeFromE :: SimplEnv -> SimplEnv -> SimplEnv
-- See Note [Setting the right in-scope set]
setInScopeFromE rhs_env here_env = rhs_env { seInScope = seInScope here_env }
setInScopeFromF :: SimplEnv -> SimplFloats -> SimplEnv
setInScopeFromF env floats = env { seInScope = sfInScope floats }
addNewInScopeIds :: SimplEnv -> [CoreBndr] -> SimplEnv
-- The new Ids are guaranteed to be freshly allocated
addNewInScopeIds env@(SimplEnv { seInScope = in_scope, seIdSubst = id_subst }) vs
= env { seInScope = in_scope `extendInScopeSetList` vs,
seIdSubst = id_subst `delVarEnvList` vs }
-- Why delete? Consider
-- let x = a*b in (x, \x -> x+3)
-- We add [x |-> a*b] to the substitution, but we must
-- _delete_ it from the substitution when going inside
-- the (\x -> ...)!
modifyInScope :: SimplEnv -> CoreBndr -> SimplEnv
-- The variable should already be in scope, but
-- replace the existing version with this new one
-- which has more information
modifyInScope env@(SimplEnv {seInScope = in_scope}) v
= env {seInScope = extendInScopeSet in_scope v}
{- Note [Setting the right in-scope set]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
\x. (let x = e in b) arg[x]
where the let shadows the lambda. Really this means something like
\x1. (let x2 = e in b) arg[x1]
- When we capture the 'arg' in an ApplyToVal continuation, we capture
the environment, which says what 'x' is bound to, namely x1
- Then that continuation gets pushed under the let
- Finally we simplify 'arg'. We want
- the static, lexical environment bindig x :-> x1
- the in-scopeset from "here", under the 'let' which includes
both x1 and x2
It's important to have the right in-scope set, else we may rename a
variable to one that is already in scope. So we must pick up the
in-scope set from "here", but otherwise use the environment we
captured along with 'arg'. This transfer of in-scope set is done by
setInScopeFromE.
-}
---------------------
zapSubstEnv :: SimplEnv -> SimplEnv
zapSubstEnv env = env {seTvSubst = emptyVarEnv, seCvSubst = emptyVarEnv, seIdSubst = emptyVarEnv}
setSubstEnv :: SimplEnv -> TvSubstEnv -> CvSubstEnv -> SimplIdSubst -> SimplEnv
setSubstEnv env tvs cvs ids = env { seTvSubst = tvs, seCvSubst = cvs, seIdSubst = ids }
mkContEx :: SimplEnv -> InExpr -> SimplSR
mkContEx (SimplEnv { seTvSubst = tvs, seCvSubst = cvs, seIdSubst = ids }) e = ContEx tvs cvs ids e
{-
************************************************************************
* *
\subsection{LetFloats}
* *
************************************************************************
Note [LetFloats]
~~~~~~~~~~~~~~~~
The LetFloats is a bunch of bindings, classified by a FloatFlag.
* All of them satisfy the let/app invariant
Examples
NonRec x (y:ys) FltLifted
Rec [(x,rhs)] FltLifted
NonRec x* (p:q) FltOKSpec -- RHS is WHNF. Question: why not FltLifted?
NonRec x# (y +# 3) FltOkSpec -- Unboxed, but ok-for-spec'n
NonRec x* (f y) FltCareful -- Strict binding; might fail or diverge
Can't happen:
NonRec x# (a /# b) -- Might fail; does not satisfy let/app
NonRec x# (f y) -- Might diverge; does not satisfy let/app
-}
data LetFloats = LetFloats (OrdList OutBind) FloatFlag
-- See Note [LetFloats]
type JoinFloat = OutBind
type JoinFloats = OrdList JoinFloat
data FloatFlag
= FltLifted -- All bindings are lifted and lazy *or*
-- consist of a single primitive string literal
-- Hence ok to float to top level, or recursive
| FltOkSpec -- All bindings are FltLifted *or*
-- strict (perhaps because unlifted,
-- perhaps because of a strict binder),
-- *and* ok-for-speculation
-- Hence ok to float out of the RHS
-- of a lazy non-recursive let binding
-- (but not to top level, or into a rec group)
| FltCareful -- At least one binding is strict (or unlifted)
-- and not guaranteed cheap
-- Do not float these bindings out of a lazy let
instance Outputable LetFloats where
ppr (LetFloats binds ff) = ppr ff $$ ppr (fromOL binds)
instance Outputable FloatFlag where
ppr FltLifted = text "FltLifted"
ppr FltOkSpec = text "FltOkSpec"
ppr FltCareful = text "FltCareful"
andFF :: FloatFlag -> FloatFlag -> FloatFlag
andFF FltCareful _ = FltCareful
andFF FltOkSpec FltCareful = FltCareful
andFF FltOkSpec _ = FltOkSpec
andFF FltLifted flt = flt
doFloatFromRhs :: TopLevelFlag -> RecFlag -> Bool -> SimplFloats -> OutExpr -> Bool
-- If you change this function look also at FloatIn.noFloatFromRhs
doFloatFromRhs lvl rec str (SimplFloats { sfLetFloats = LetFloats fs ff }) rhs
= not (isNilOL fs) && want_to_float && can_float
where
want_to_float = isTopLevel lvl || exprIsCheap rhs || exprIsExpandable rhs
-- See Note [Float when cheap or expandable]
can_float = case ff of
FltLifted -> True
FltOkSpec -> isNotTopLevel lvl && isNonRec rec
FltCareful -> isNotTopLevel lvl && isNonRec rec && str
{-
Note [Float when cheap or expandable]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to float a let from a let if the residual RHS is
a) cheap, such as (\x. blah)
b) expandable, such as (f b) if f is CONLIKE
But there are
- cheap things that are not expandable (eg \x. expensive)
- expandable things that are not cheap (eg (f b) where b is CONLIKE)
so we must take the 'or' of the two.
-}
emptyLetFloats :: LetFloats
emptyLetFloats = LetFloats nilOL FltLifted
emptyJoinFloats :: JoinFloats
emptyJoinFloats = nilOL
unitLetFloat :: OutBind -> LetFloats
-- This key function constructs a singleton float with the right form
unitLetFloat bind = ASSERT(all (not . isJoinId) (bindersOf bind))
LetFloats (unitOL bind) (flag bind)
where
flag (Rec {}) = FltLifted
flag (NonRec bndr rhs)
| not (isStrictId bndr) = FltLifted
| exprIsTickedString rhs = FltLifted
-- String literals can be floated freely.
-- See Note [CoreSyn top-level string literals] in CoreSyn.
| exprOkForSpeculation rhs = FltOkSpec -- Unlifted, and lifted but ok-for-spec (eg HNF)
| otherwise = ASSERT2( not (isUnliftedType (idType bndr)), ppr bndr )
FltCareful
-- Unlifted binders can only be let-bound if exprOkForSpeculation holds
unitJoinFloat :: OutBind -> JoinFloats
unitJoinFloat bind = ASSERT(all isJoinId (bindersOf bind))
unitOL bind
mkFloatBind :: SimplEnv -> OutBind -> (SimplFloats, SimplEnv)
-- Make a singleton SimplFloats, and
-- extend the incoming SimplEnv's in-scope set with its binders
-- These binders may already be in the in-scope set,
-- but may have by now been augmented with more IdInfo
mkFloatBind env bind
= (floats, env { seInScope = in_scope' })
where
floats
| isJoinBind bind
= SimplFloats { sfLetFloats = emptyLetFloats
, sfJoinFloats = unitJoinFloat bind
, sfInScope = in_scope' }
| otherwise
= SimplFloats { sfLetFloats = unitLetFloat bind
, sfJoinFloats = emptyJoinFloats
, sfInScope = in_scope' }
in_scope' = seInScope env `extendInScopeSetBind` bind
extendFloats :: SimplFloats -> OutBind -> SimplFloats
-- Add this binding to the floats, and extend the in-scope env too
extendFloats (SimplFloats { sfLetFloats = floats
, sfJoinFloats = jfloats
, sfInScope = in_scope })
bind
| isJoinBind bind
= SimplFloats { sfInScope = in_scope'
, sfLetFloats = floats
, sfJoinFloats = jfloats' }
| otherwise
= SimplFloats { sfInScope = in_scope'
, sfLetFloats = floats'
, sfJoinFloats = jfloats }
where
in_scope' = in_scope `extendInScopeSetBind` bind
floats' = floats `addLetFlts` unitLetFloat bind
jfloats' = jfloats `addJoinFlts` unitJoinFloat bind
addLetFloats :: SimplFloats -> LetFloats -> SimplFloats
-- Add the let-floats for env2 to env1;
-- *plus* the in-scope set for env2, which is bigger
-- than that for env1
addLetFloats floats let_floats@(LetFloats binds _)
= floats { sfLetFloats = sfLetFloats floats `addLetFlts` let_floats
, sfInScope = foldlOL extendInScopeSetBind
(sfInScope floats) binds }
addJoinFloats :: SimplFloats -> JoinFloats -> SimplFloats
addJoinFloats floats join_floats
= floats { sfJoinFloats = sfJoinFloats floats `addJoinFlts` join_floats
, sfInScope = foldlOL extendInScopeSetBind
(sfInScope floats) join_floats }
extendInScopeSetBind :: InScopeSet -> CoreBind -> InScopeSet
extendInScopeSetBind in_scope bind
= extendInScopeSetList in_scope (bindersOf bind)
addFloats :: SimplFloats -> SimplFloats -> SimplFloats
-- Add both let-floats and join-floats for env2 to env1;
-- *plus* the in-scope set for env2, which is bigger
-- than that for env1
addFloats (SimplFloats { sfLetFloats = lf1, sfJoinFloats = jf1 })
(SimplFloats { sfLetFloats = lf2, sfJoinFloats = jf2, sfInScope = in_scope })
= SimplFloats { sfLetFloats = lf1 `addLetFlts` lf2
, sfJoinFloats = jf1 `addJoinFlts` jf2
, sfInScope = in_scope }
addLetFlts :: LetFloats -> LetFloats -> LetFloats
addLetFlts (LetFloats bs1 l1) (LetFloats bs2 l2)
= LetFloats (bs1 `appOL` bs2) (l1 `andFF` l2)
letFloatBinds :: LetFloats -> [CoreBind]
letFloatBinds (LetFloats bs _) = fromOL bs
addJoinFlts :: JoinFloats -> JoinFloats -> JoinFloats
addJoinFlts = appOL
mkRecFloats :: SimplFloats -> SimplFloats
-- Flattens the floats from env2 into a single Rec group,
-- They must either all be lifted LetFloats or all JoinFloats
mkRecFloats floats@(SimplFloats { sfLetFloats = LetFloats bs ff
, sfJoinFloats = jbs
, sfInScope = in_scope })
= ASSERT2( case ff of { FltLifted -> True; _ -> False }, ppr (fromOL bs) )
ASSERT2( isNilOL bs || isNilOL jbs, ppr floats )
SimplFloats { sfLetFloats = floats'
, sfJoinFloats = jfloats'
, sfInScope = in_scope }
where
floats' | isNilOL bs = emptyLetFloats
| otherwise = unitLetFloat (Rec (flattenBinds (fromOL bs)))
jfloats' | isNilOL jbs = emptyJoinFloats
| otherwise = unitJoinFloat (Rec (flattenBinds (fromOL jbs)))
wrapFloats :: SimplFloats -> OutExpr -> OutExpr
-- Wrap the floats around the expression; they should all
-- satisfy the let/app invariant, so mkLets should do the job just fine
wrapFloats (SimplFloats { sfLetFloats = LetFloats bs _
, sfJoinFloats = jbs }) body
= foldrOL Let (wrapJoinFloats jbs body) bs
-- Note: Always safe to put the joins on the inside
-- since the values can't refer to them
wrapJoinFloatsX :: SimplFloats -> OutExpr -> (SimplFloats, OutExpr)
-- Wrap the sfJoinFloats of the env around the expression,
-- and take them out of the SimplEnv
wrapJoinFloatsX floats body
= ( floats { sfJoinFloats = emptyJoinFloats }
, wrapJoinFloats (sfJoinFloats floats) body )
wrapJoinFloats :: JoinFloats -> OutExpr -> OutExpr
-- Wrap the sfJoinFloats of the env around the expression,
-- and take them out of the SimplEnv
wrapJoinFloats join_floats body
= foldrOL Let body join_floats
getTopFloatBinds :: SimplFloats -> [CoreBind]
getTopFloatBinds (SimplFloats { sfLetFloats = lbs
, sfJoinFloats = jbs})
= ASSERT( isNilOL jbs ) -- Can't be any top-level join bindings
letFloatBinds lbs
mapLetFloats :: LetFloats -> ((Id,CoreExpr) -> (Id,CoreExpr)) -> LetFloats
mapLetFloats (LetFloats fs ff) fun
= LetFloats (mapOL app fs) ff
where
app (NonRec b e) = case fun (b,e) of (b',e') -> NonRec b' e'
app (Rec bs) = Rec (map fun bs)
{-
************************************************************************
* *
Substitution of Vars
* *
************************************************************************
Note [Global Ids in the substitution]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We look up even a global (eg imported) Id in the substitution. Consider
case X.g_34 of b { (a,b) -> ... case X.g_34 of { (p,q) -> ...} ... }
The binder-swap in the occurrence analyser will add a binding
for a LocalId version of g (with the same unique though):
case X.g_34 of b { (a,b) -> let g_34 = b in
... case X.g_34 of { (p,q) -> ...} ... }
So we want to look up the inner X.g_34 in the substitution, where we'll
find that it has been substituted by b. (Or conceivably cloned.)
-}
substId :: SimplEnv -> InId -> SimplSR
-- Returns DoneEx only on a non-Var expression
substId (SimplEnv { seInScope = in_scope, seIdSubst = ids }) v
= case lookupVarEnv ids v of -- Note [Global Ids in the substitution]
Nothing -> DoneId (refineFromInScope in_scope v)
Just (DoneId v) -> DoneId (refineFromInScope in_scope v)
Just res -> res -- DoneEx non-var, or ContEx
-- Get the most up-to-date thing from the in-scope set
-- Even though it isn't in the substitution, it may be in
-- the in-scope set with better IdInfo
refineFromInScope :: InScopeSet -> Var -> Var
refineFromInScope in_scope v
| isLocalId v = case lookupInScope in_scope v of
Just v' -> v'
Nothing -> WARN( True, ppr v ) v -- This is an error!
| otherwise = v
lookupRecBndr :: SimplEnv -> InId -> OutId
-- Look up an Id which has been put into the envt by simplRecBndrs,
-- but where we have not yet done its RHS
lookupRecBndr (SimplEnv { seInScope = in_scope, seIdSubst = ids }) v
= case lookupVarEnv ids v of
Just (DoneId v) -> v
Just _ -> pprPanic "lookupRecBndr" (ppr v)
Nothing -> refineFromInScope in_scope v
{-
************************************************************************
* *
\section{Substituting an Id binder}
* *
************************************************************************
These functions are in the monad only so that they can be made strict via seq.
Note [Return type for join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
(join j :: Char -> Int -> Int) 77
( j x = \y. y + ord x )
(in case v of )
( A -> j 'x' )
( B -> j 'y' )
( C -> <blah> )
The simplifier pushes the "apply to 77" continuation inwards to give
join j :: Char -> Int
j x = (\y. y + ord x) 77
in case v of
A -> j 'x'
B -> j 'y'
C -> <blah> 77
Notice that the "apply to 77" continuation went into the RHS of the
join point. And that meant that the return type of the join point
changed!!
That's why we pass res_ty into simplNonRecJoinBndr, and substIdBndr
takes a (Just res_ty) argument so that it knows to do the type-changing
thing.
-}
simplBinders :: SimplEnv -> [InBndr] -> SimplM (SimplEnv, [OutBndr])
simplBinders env bndrs = mapAccumLM simplBinder env bndrs
-------------
simplBinder :: SimplEnv -> InBndr -> SimplM (SimplEnv, OutBndr)
-- Used for lambda and case-bound variables
-- Clone Id if necessary, substitute type
-- Return with IdInfo already substituted, but (fragile) occurrence info zapped
-- The substitution is extended only if the variable is cloned, because
-- we *don't* need to use it to track occurrence info.
simplBinder env bndr
| isTyVar bndr = do { let (env', tv) = substTyVarBndr env bndr
; seqTyVar tv `seq` return (env', tv) }
| otherwise = do { let (env', id) = substIdBndr Nothing env bndr
; seqId id `seq` return (env', id) }
---------------
simplNonRecBndr :: SimplEnv -> InBndr -> SimplM (SimplEnv, OutBndr)
-- A non-recursive let binder
simplNonRecBndr env id
= do { let (env1, id1) = substIdBndr Nothing env id
; seqId id1 `seq` return (env1, id1) }
---------------
simplNonRecJoinBndr :: SimplEnv -> OutType -> InBndr
-> SimplM (SimplEnv, OutBndr)
-- A non-recursive let binder for a join point;
-- context being pushed inward may change the type
-- See Note [Return type for join points]
simplNonRecJoinBndr env res_ty id
= do { let (env1, id1) = substIdBndr (Just res_ty) env id
; seqId id1 `seq` return (env1, id1) }
---------------
simplRecBndrs :: SimplEnv -> [InBndr] -> SimplM SimplEnv
-- Recursive let binders
simplRecBndrs env@(SimplEnv {}) ids
= ASSERT(all (not . isJoinId) ids)
do { let (env1, ids1) = mapAccumL (substIdBndr Nothing) env ids
; seqIds ids1 `seq` return env1 }
---------------
simplRecJoinBndrs :: SimplEnv -> OutType -> [InBndr] -> SimplM SimplEnv
-- Recursive let binders for join points;
-- context being pushed inward may change types
-- See Note [Return type for join points]
simplRecJoinBndrs env@(SimplEnv {}) res_ty ids
= ASSERT(all isJoinId ids)
do { let (env1, ids1) = mapAccumL (substIdBndr (Just res_ty)) env ids
; seqIds ids1 `seq` return env1 }
---------------
substIdBndr :: Maybe OutType -> SimplEnv -> InBndr -> (SimplEnv, OutBndr)
-- Might be a coercion variable
substIdBndr new_res_ty env bndr
| isCoVar bndr = substCoVarBndr env bndr
| otherwise = substNonCoVarIdBndr new_res_ty env bndr
---------------
substNonCoVarIdBndr
:: Maybe OutType -- New result type, if a join binder
-- See Note [Return type for join points]
-> SimplEnv
-> InBndr -- Env and binder to transform
-> (SimplEnv, OutBndr)
-- Clone Id if necessary, substitute its type
-- Return an Id with its
-- * Type substituted
-- * UnfoldingInfo, Rules, WorkerInfo zapped
-- * Fragile OccInfo (only) zapped: Note [Robust OccInfo]
-- * Robust info, retained especially arity and demand info,
-- so that they are available to occurrences that occur in an
-- earlier binding of a letrec
--
-- For the robust info, see Note [Arity robustness]
--
-- Augment the substitution if the unique changed
-- Extend the in-scope set with the new Id
--
-- Similar to CoreSubst.substIdBndr, except that
-- the type of id_subst differs
-- all fragile info is zapped
substNonCoVarIdBndr new_res_ty
env@(SimplEnv { seInScope = in_scope
, seIdSubst = id_subst })
old_id
= ASSERT2( not (isCoVar old_id), ppr old_id )
(env { seInScope = in_scope `extendInScopeSet` new_id,
seIdSubst = new_subst }, new_id)
where
id1 = uniqAway in_scope old_id
id2 = substIdType env id1
id3 | Just res_ty <- new_res_ty
= id2 `setIdType` setJoinResTy (idJoinArity id2) res_ty (idType id2)
-- See Note [Return type for join points]
| otherwise
= id2
new_id = zapFragileIdInfo id3 -- Zaps rules, worker-info, unfolding
-- and fragile OccInfo
-- Extend the substitution if the unique has changed,
-- or there's some useful occurrence information
-- See the notes with substTyVarBndr for the delSubstEnv
new_subst | new_id /= old_id
= extendVarEnv id_subst old_id (DoneId new_id)
| otherwise
= delVarEnv id_subst old_id
------------------------------------
seqTyVar :: TyVar -> ()
seqTyVar b = b `seq` ()
seqId :: Id -> ()
seqId id = seqType (idType id) `seq`
idInfo id `seq`
()
seqIds :: [Id] -> ()
seqIds [] = ()
seqIds (id:ids) = seqId id `seq` seqIds ids
{-
Note [Arity robustness]
~~~~~~~~~~~~~~~~~~~~~~~
We *do* transfer the arity from from the in_id of a let binding to the
out_id. This is important, so that the arity of an Id is visible in
its own RHS. For example:
f = \x. ....g (\y. f y)....
We can eta-reduce the arg to g, because f is a value. But that
needs to be visible.
This interacts with the 'state hack' too:
f :: Bool -> IO Int
f = \x. case x of
True -> f y
False -> \s -> ...
Can we eta-expand f? Only if we see that f has arity 1, and then we
take advantage of the 'state hack' on the result of
(f y) :: State# -> (State#, Int) to expand the arity one more.
There is a disadvantage though. Making the arity visible in the RHS
allows us to eta-reduce
f = \x -> f x
to
f = f
which technically is not sound. This is very much a corner case, so
I'm not worried about it. Another idea is to ensure that f's arity
never decreases; its arity started as 1, and we should never eta-reduce
below that.
Note [Robust OccInfo]
~~~~~~~~~~~~~~~~~~~~~
It's important that we *do* retain the loop-breaker OccInfo, because
that's what stops the Id getting inlined infinitely, in the body of
the letrec.
-}
{-
************************************************************************
* *
Impedance matching to type substitution
* *
************************************************************************
-}
getTCvSubst :: SimplEnv -> TCvSubst
getTCvSubst (SimplEnv { seInScope = in_scope, seTvSubst = tv_env
, seCvSubst = cv_env })
= mkTCvSubst in_scope (tv_env, cv_env)
substTy :: SimplEnv -> Type -> Type
substTy env ty = Type.substTy (getTCvSubst env) ty
substTyVar :: SimplEnv -> TyVar -> Type
substTyVar env tv = Type.substTyVar (getTCvSubst env) tv
substTyVarBndr :: SimplEnv -> TyVar -> (SimplEnv, TyVar)
substTyVarBndr env tv
= case Type.substTyVarBndr (getTCvSubst env) tv of
(TCvSubst in_scope' tv_env' cv_env', tv')
-> (env { seInScope = in_scope', seTvSubst = tv_env', seCvSubst = cv_env' }, tv')
substCoVar :: SimplEnv -> CoVar -> Coercion
substCoVar env tv = Coercion.substCoVar (getTCvSubst env) tv
substCoVarBndr :: SimplEnv -> CoVar -> (SimplEnv, CoVar)
substCoVarBndr env cv
= case Coercion.substCoVarBndr (getTCvSubst env) cv of
(TCvSubst in_scope' tv_env' cv_env', cv')
-> (env { seInScope = in_scope', seTvSubst = tv_env', seCvSubst = cv_env' }, cv')
substCo :: SimplEnv -> Coercion -> Coercion
substCo env co = Coercion.substCo (getTCvSubst env) co
------------------
substIdType :: SimplEnv -> Id -> Id
substIdType (SimplEnv { seInScope = in_scope, seTvSubst = tv_env, seCvSubst = cv_env }) id
| (isEmptyVarEnv tv_env && isEmptyVarEnv cv_env)
|| noFreeVarsOfType old_ty
= id
| otherwise = Id.setIdType id (Type.substTy (TCvSubst in_scope tv_env cv_env) old_ty)
-- The tyCoVarsOfType is cheaper than it looks
-- because we cache the free tyvars of the type
-- in a Note in the id's type itself
where
old_ty = idType id
|