1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
|
%
% (c) The AQUA Project, Glasgow University, 1993-1998
%
\section[SimplMonad]{The simplifier Monad}
\begin{code}
module SimplEnv (
InId, InBind, InExpr, InAlt, InArg, InType, InBinder,
OutId, OutTyVar, OutBind, OutExpr, OutAlt, OutArg, OutType, OutBinder,
-- The simplifier mode
setMode, getMode,
-- Switch checker
SwitchChecker, SwitchResult(..), getSwitchChecker, getSimplIntSwitch,
isAmongSimpl, intSwitchSet, switchIsOn,
setEnclosingCC, getEnclosingCC,
-- Environments
SimplEnv, mkSimplEnv, extendIdSubst, extendTvSubst,
zapSubstEnv, setSubstEnv,
getInScope, setInScope, setInScopeSet, modifyInScope, addNewInScopeIds,
getRules, refineSimplEnv,
SimplSR(..), mkContEx, substId,
simplNonRecBndr, simplRecBndrs, simplLamBndr, simplLamBndrs,
simplBinder, simplBinders, addLetIdInfo,
substExpr, substTy,
-- Floats
FloatsWith, FloatsWithExpr,
Floats, emptyFloats, isEmptyFloats, unitFloat, addFloats, flattenFloats,
allLifted, wrapFloats, floatBinds,
addAuxiliaryBind,
) where
#include "HsVersions.h"
import SimplMonad
import Id ( Id, idType, idOccInfo, idUnfolding, setIdUnfolding )
import IdInfo ( IdInfo, vanillaIdInfo, occInfo, setOccInfo, specInfo, setSpecInfo,
arityInfo, setArityInfo, workerInfo, setWorkerInfo,
unfoldingInfo, setUnfoldingInfo, isEmptySpecInfo,
unknownArity, workerExists
)
import CoreSyn
import Unify ( TypeRefinement )
import Rules ( RuleBase )
import CoreUtils ( needsCaseBinding )
import CostCentre ( CostCentreStack, subsumedCCS )
import Var
import VarEnv
import VarSet ( isEmptyVarSet )
import OrdList
import qualified CoreSubst ( Subst, mkSubst, substExpr, substSpec, substWorker )
import qualified Type ( substTy, substTyVarBndr )
import Type ( Type, TvSubst(..), TvSubstEnv, composeTvSubst,
isUnLiftedType, seqType, tyVarsOfType )
import BasicTypes ( OccInfo(..), isFragileOcc )
import DynFlags ( SimplifierMode(..) )
import Util ( mapAccumL )
import Outputable
\end{code}
%************************************************************************
%* *
\subsection[Simplify-types]{Type declarations}
%* *
%************************************************************************
\begin{code}
type InBinder = CoreBndr
type InId = Id -- Not yet cloned
type InType = Type -- Ditto
type InBind = CoreBind
type InExpr = CoreExpr
type InAlt = CoreAlt
type InArg = CoreArg
type OutBinder = CoreBndr
type OutId = Id -- Cloned
type OutTyVar = TyVar -- Cloned
type OutType = Type -- Cloned
type OutBind = CoreBind
type OutExpr = CoreExpr
type OutAlt = CoreAlt
type OutArg = CoreArg
\end{code}
%************************************************************************
%* *
\subsubsection{The @SimplEnv@ type}
%* *
%************************************************************************
\begin{code}
data SimplEnv
= SimplEnv {
seMode :: SimplifierMode,
seChkr :: SwitchChecker,
seCC :: CostCentreStack, -- The enclosing CCS (when profiling)
-- Rules from other modules
seExtRules :: RuleBase,
-- The current set of in-scope variables
-- They are all OutVars, and all bound in this module
seInScope :: InScopeSet, -- OutVars only
-- The current substitution
seTvSubst :: TvSubstEnv, -- InTyVar |--> OutType
seIdSubst :: SimplIdSubst -- InId |--> OutExpr
}
type SimplIdSubst = IdEnv SimplSR -- IdId |--> OutExpr
data SimplSR
= DoneEx OutExpr -- Completed term
| DoneId OutId OccInfo -- Completed term variable, with occurrence info
| ContEx TvSubstEnv -- A suspended substitution
SimplIdSubst
InExpr
\end{code}
seInScope:
The in-scope part of Subst includes *all* in-scope TyVars and Ids
The elements of the set may have better IdInfo than the
occurrences of in-scope Ids, and (more important) they will
have a correctly-substituted type. So we use a lookup in this
set to replace occurrences
The Ids in the InScopeSet are replete with their Rules,
and as we gather info about the unfolding of an Id, we replace
it in the in-scope set.
The in-scope set is actually a mapping OutVar -> OutVar, and
in case expressions we sometimes bind
seIdSubst:
The substitution is *apply-once* only, because InIds and OutIds can overlap.
For example, we generally omit mappings
a77 -> a77
from the substitution, when we decide not to clone a77, but it's quite
legitimate to put the mapping in the substitution anyway.
Indeed, we do so when we want to pass fragile OccInfo to the
occurrences of the variable; we add a substitution
x77 -> DoneId x77 occ
to record x's occurrence information.]
Furthermore, consider
let x = case k of I# x77 -> ... in
let y = case k of I# x77 -> ... in ...
and suppose the body is strict in both x and y. Then the simplifier
will pull the first (case k) to the top; so the second (case k) will
cancel out, mapping x77 to, well, x77! But one is an in-Id and the
other is an out-Id.
Of course, the substitution *must* applied! Things in its domain
simply aren't necessarily bound in the result.
* substId adds a binding (DoneId new_id occ) to the substitution if
EITHER the Id's unique has changed
OR the Id has interesting occurrence information
So in effect you can only get to interesting occurrence information
by looking up the *old* Id; it's not really attached to the new id
at all.
Note, though that the substitution isn't necessarily extended
if the type changes. Why not? Because of the next point:
* We *always, always* finish by looking up in the in-scope set
any variable that doesn't get a DoneEx or DoneVar hit in the substitution.
Reason: so that we never finish up with a "old" Id in the result.
An old Id might point to an old unfolding and so on... which gives a space leak.
[The DoneEx and DoneVar hits map to "new" stuff.]
* It follows that substExpr must not do a no-op if the substitution is empty.
substType is free to do so, however.
* When we come to a let-binding (say) we generate new IdInfo, including an
unfolding, attach it to the binder, and add this newly adorned binder to
the in-scope set. So all subsequent occurrences of the binder will get mapped
to the full-adorned binder, which is also the one put in the binding site.
* The in-scope "set" usually maps x->x; we use it simply for its domain.
But sometimes we have two in-scope Ids that are synomyms, and should
map to the same target: x->x, y->x. Notably:
case y of x { ... }
That's why the "set" is actually a VarEnv Var
Note [GADT type refinement]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we come to a GADT pattern match that refines the in-scope types, we
a) Refine the types of the Ids in the in-scope set, seInScope.
For exmaple, consider
data T a where
Foo :: T (Bool -> Bool)
(\ (x::T a) (y::a) -> case x of { Foo -> y True }
Technically this is well-typed, but exprType will barf on the
(y True) unless we refine the type on y's occurrence.
b) Refine the range of the type substitution, seTvSubst.
Very similar reason to (a).
NB: we don't refine the range of the SimplIdSubst, because it's always
interpreted relative to the seInScope (see substId)
For (b) we need to be a little careful. Specifically, we compose the refinement
with the type substitution. Suppose
The substitution was [a->b, b->a]
and the refinement was [b->Int]
Then we want [a->Int, b->a]
But also if
The substitution was [a->b]
and the refinement was [b->Int]
Then we want [a->Int, b->Int]
becuase b might be both an InTyVar and OutTyVar
\begin{code}
mkSimplEnv :: SimplifierMode -> SwitchChecker -> RuleBase -> SimplEnv
mkSimplEnv mode switches rules
= SimplEnv { seChkr = switches, seCC = subsumedCCS,
seMode = mode, seInScope = emptyInScopeSet,
seExtRules = rules,
seTvSubst = emptyVarEnv, seIdSubst = emptyVarEnv }
-- The top level "enclosing CC" is "SUBSUMED".
---------------------
getSwitchChecker :: SimplEnv -> SwitchChecker
getSwitchChecker env = seChkr env
---------------------
getMode :: SimplEnv -> SimplifierMode
getMode env = seMode env
setMode :: SimplifierMode -> SimplEnv -> SimplEnv
setMode mode env = env { seMode = mode }
---------------------
getEnclosingCC :: SimplEnv -> CostCentreStack
getEnclosingCC env = seCC env
setEnclosingCC :: SimplEnv -> CostCentreStack -> SimplEnv
setEnclosingCC env cc = env {seCC = cc}
---------------------
extendIdSubst :: SimplEnv -> Id -> SimplSR -> SimplEnv
extendIdSubst env@(SimplEnv {seIdSubst = subst}) var res
= env {seIdSubst = extendVarEnv subst var res}
extendTvSubst :: SimplEnv -> TyVar -> Type -> SimplEnv
extendTvSubst env@(SimplEnv {seTvSubst = subst}) var res
= env {seTvSubst = extendVarEnv subst var res}
---------------------
getInScope :: SimplEnv -> InScopeSet
getInScope env = seInScope env
setInScopeSet :: SimplEnv -> InScopeSet -> SimplEnv
setInScopeSet env in_scope = env {seInScope = in_scope}
setInScope :: SimplEnv -> SimplEnv -> SimplEnv
setInScope env env_with_in_scope = setInScopeSet env (getInScope env_with_in_scope)
addNewInScopeIds :: SimplEnv -> [CoreBndr] -> SimplEnv
-- The new Ids are guaranteed to be freshly allocated
addNewInScopeIds env@(SimplEnv { seInScope = in_scope, seIdSubst = id_subst }) vs
= env { seInScope = in_scope `extendInScopeSetList` vs,
seIdSubst = id_subst `delVarEnvList` vs }
-- Why delete? Consider
-- let x = a*b in (x, \x -> x+3)
-- We add [x |-> a*b] to the substitution, but we must
-- *delete* it from the substitution when going inside
-- the (\x -> ...)!
modifyInScope :: SimplEnv -> CoreBndr -> CoreBndr -> SimplEnv
modifyInScope env@(SimplEnv {seInScope = in_scope}) v v'
= env {seInScope = modifyInScopeSet in_scope v v'}
---------------------
zapSubstEnv :: SimplEnv -> SimplEnv
zapSubstEnv env = env {seTvSubst = emptyVarEnv, seIdSubst = emptyVarEnv}
setSubstEnv :: SimplEnv -> TvSubstEnv -> SimplIdSubst -> SimplEnv
setSubstEnv env tvs ids = env { seTvSubst = tvs, seIdSubst = ids }
mkContEx :: SimplEnv -> InExpr -> SimplSR
mkContEx (SimplEnv { seTvSubst = tvs, seIdSubst = ids }) e = ContEx tvs ids e
isEmptySimplSubst :: SimplEnv -> Bool
isEmptySimplSubst (SimplEnv { seTvSubst = tvs, seIdSubst = ids })
= isEmptyVarEnv tvs && isEmptyVarEnv ids
---------------------
getRules :: SimplEnv -> RuleBase
getRules = seExtRules
\end{code}
GADT stuff
Given an idempotent substitution, generated by the unifier, use it to
refine the environment
\begin{code}
refineSimplEnv :: SimplEnv -> TypeRefinement -> SimplEnv
-- The TvSubstEnv is the refinement, and it refines OutTyVars into OutTypes
refineSimplEnv env@(SimplEnv { seTvSubst = tv_subst, seInScope = in_scope })
(refine_tv_subst, all_bound_here)
= env { seTvSubst = composeTvSubst in_scope refine_tv_subst tv_subst,
seInScope = in_scope' }
where
in_scope'
| all_bound_here = in_scope
-- The tvs are the tyvars bound here. If only they
-- are refined, there's no need to do anything
| otherwise = mapInScopeSet refine_id in_scope
refine_id v -- Only refine its type; any rules will get
-- refined if they are used (I hope)
| isId v = setIdType v (Type.substTy refine_subst (idType v))
| otherwise = v
refine_subst = TvSubst in_scope refine_tv_subst
\end{code}
%************************************************************************
%* *
Substitution of Vars
%* *
%************************************************************************
\begin{code}
substId :: SimplEnv -> Id -> SimplSR
substId (SimplEnv { seInScope = in_scope, seIdSubst = ids }) v
| not (isLocalId v)
= DoneId v NoOccInfo
| otherwise -- A local Id
= case lookupVarEnv ids v of
Just (DoneId v occ) -> DoneId (refine v) occ
Just res -> res
Nothing -> let v' = refine v
in DoneId v' (idOccInfo v')
-- We don't put LoopBreakers in the substitution (unless then need
-- to be cloned for name-clash rasons), so the idOccInfo is
-- very important! If isFragileOcc returned True for
-- loop breakers we could avoid this call, but at the expense
-- of adding more to the substitution, and building new Ids
-- a bit more often than really necessary
where
-- Get the most up-to-date thing from the in-scope set
-- Even though it isn't in the substitution, it may be in
-- the in-scope set with a different type (we only use the
-- substitution if the unique changes).
refine v = case lookupInScope in_scope v of
Just v' -> v'
Nothing -> WARN( True, ppr v ) v -- This is an error!
\end{code}
%************************************************************************
%* *
\section{Substituting an Id binder}
%* *
%************************************************************************
These functions are in the monad only so that they can be made strict via seq.
\begin{code}
simplBinders, simplLamBndrs
:: SimplEnv -> [InBinder] -> SimplM (SimplEnv, [OutBinder])
simplBinders env bndrs = mapAccumLSmpl simplBinder env bndrs
simplLamBndrs env bndrs = mapAccumLSmpl simplLamBndr env bndrs
-------------
simplBinder :: SimplEnv -> InBinder -> SimplM (SimplEnv, OutBinder)
-- Used for lambda and case-bound variables
-- Clone Id if necessary, substitute type
-- Return with IdInfo already substituted, but (fragile) occurrence info zapped
-- The substitution is extended only if the variable is cloned, because
-- we *don't* need to use it to track occurrence info.
simplBinder env bndr
| isTyVar bndr = do { let (env', tv) = substTyVarBndr env bndr
; seqTyVar tv `seq` return (env', tv) }
| otherwise = do { let (env', id) = substIdBndr env bndr
; seqId id `seq` return (env', id) }
-------------
simplLamBndr :: SimplEnv -> Var -> SimplM (SimplEnv, Var)
-- Used for lambda binders. These sometimes have unfoldings added by
-- the worker/wrapper pass that must be preserved, becuase they can't
-- be reconstructed from context. For example:
-- f x = case x of (a,b) -> fw a b x
-- fw a b x{=(a,b)} = ...
-- The "{=(a,b)}" is an unfolding we can't reconstruct otherwise.
simplLamBndr env bndr
| not (isId bndr && hasSomeUnfolding old_unf) = simplBinder env bndr -- Normal case
| otherwise = seqId id2 `seq` return (env', id2)
where
old_unf = idUnfolding bndr
(env', id1) = substIdBndr env bndr
id2 = id1 `setIdUnfolding` substUnfolding env old_unf
--------------
substIdBndr :: SimplEnv -> Id -- Substitition and Id to transform
-> (SimplEnv, Id) -- Transformed pair
-- Returns with:
-- * Unique changed if necessary
-- * Type substituted
-- * Unfolding zapped
-- * Rules, worker, lbvar info all substituted
-- * Fragile occurrence info zapped
-- * The in-scope set extended with the returned Id
-- * The substitution extended with a DoneId if unique changed
-- In this case, the var in the DoneId is the same as the
-- var returned
substIdBndr env@(SimplEnv { seInScope = in_scope, seIdSubst = id_subst})
old_id
= (env { seInScope = in_scope `extendInScopeSet` new_id,
seIdSubst = new_subst }, new_id)
where
-- id1 is cloned if necessary
id1 = uniqAway in_scope old_id
-- id2 has its type zapped
id2 = substIdType env id1
-- new_id has the final IdInfo
subst = mkCoreSubst env
new_id = maybeModifyIdInfo (substIdInfo subst) id2
-- Extend the substitution if the unique has changed
-- See the notes with substTyVarBndr for the delSubstEnv
new_subst | new_id /= old_id
= extendVarEnv id_subst old_id (DoneId new_id (idOccInfo old_id))
| otherwise
= delVarEnv id_subst old_id
\end{code}
\begin{code}
seqTyVar :: TyVar -> ()
seqTyVar b = b `seq` ()
seqId :: Id -> ()
seqId id = seqType (idType id) `seq`
idInfo id `seq`
()
seqIds :: [Id] -> ()
seqIds [] = ()
seqIds (id:ids) = seqId id `seq` seqIds ids
\end{code}
%************************************************************************
%* *
Let bindings
%* *
%************************************************************************
Simplifying let binders
~~~~~~~~~~~~~~~~~~~~~~~
Rename the binders if necessary,
\begin{code}
simplNonRecBndr :: SimplEnv -> InBinder -> SimplM (SimplEnv, OutBinder)
simplNonRecBndr env id
= do { let (env1, id1) = substLetIdBndr env id
; seqId id1 `seq` return (env1, id1) }
---------------
simplRecBndrs :: SimplEnv -> [InBinder] -> SimplM (SimplEnv, [OutBinder])
simplRecBndrs env@(SimplEnv { seInScope = in_scope, seIdSubst = id_subst }) ids
= do { let (env1, ids1) = mapAccumL substLetIdBndr env ids
; seqIds ids1 `seq` return (env1, ids1) }
---------------
substLetIdBndr :: SimplEnv -> InBinder -- Env and binder to transform
-> (SimplEnv, OutBinder)
-- C.f. CoreSubst.substIdBndr
-- Clone Id if necessary, substitute its type
-- Return an Id with completely zapped IdInfo
-- [addLetIdInfo, below, will restore its IdInfo]
-- Augment the subtitution
-- if the unique changed, *or*
-- if there's interesting occurrence info
substLetIdBndr env@(SimplEnv { seInScope = in_scope, seIdSubst = id_subst }) old_id
= (env { seInScope = in_scope `extendInScopeSet` new_id,
seIdSubst = new_subst }, new_id)
where
id1 = uniqAway in_scope old_id
id2 = substIdType env id1
new_id = setIdInfo id2 vanillaIdInfo
-- Extend the substitution if the unique has changed,
-- or there's some useful occurrence information
-- See the notes with substTyVarBndr for the delSubstEnv
occ_info = occInfo (idInfo old_id)
new_subst | new_id /= old_id || isFragileOcc occ_info
= extendVarEnv id_subst old_id (DoneId new_id occ_info)
| otherwise
= delVarEnv id_subst old_id
\end{code}
Add IdInfo back onto a let-bound Id
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must transfer the IdInfo of the original binder to the new binder.
This is crucial, to preserve
strictness
rules
worker info
etc. To do this we must apply the current substitution,
which incorporates earlier substitutions in this very letrec group.
NB 1. We do this *before* processing the RHS of the binder, so that
its substituted rules are visible in its own RHS.
This is important. Manuel found cases where he really, really
wanted a RULE for a recursive function to apply in that function's
own right-hand side.
NB 2: We do not transfer the arity (see Subst.substIdInfo)
The arity of an Id should not be visible
in its own RHS, else we eta-reduce
f = \x -> f x
to
f = f
which isn't sound. And it makes the arity in f's IdInfo greater than
the manifest arity, which isn't good.
The arity will get added later.
NB 3: It's important that we *do* transer the loop-breaker OccInfo,
because that's what stops the Id getting inlined infinitely, in the body
of the letrec.
NB 4: does no harm for non-recursive bindings
NB 5: we can't do the addLetIdInfo part before *all* the RHSs because
rec { f = g
h = ...
RULE h Int = f
}
Here, we'll do postInlineUnconditionally on f, and we must "see" that
when substituting in h's RULE.
\begin{code}
addLetIdInfo :: SimplEnv -> InBinder -> OutBinder -> (SimplEnv, OutBinder)
addLetIdInfo env in_id out_id
= (modifyInScope env out_id out_id, final_id)
where
final_id = out_id `setIdInfo` new_info
subst = mkCoreSubst env
old_info = idInfo in_id
new_info = case substIdInfo subst old_info of
Nothing -> old_info
Just new_info -> new_info
substIdInfo :: CoreSubst.Subst -> IdInfo -> Maybe IdInfo
-- Substitute the
-- rules
-- worker info
-- Zap the unfolding
-- Keep only 'robust' OccInfo
-- Zap Arity
--
-- Seq'ing on the returned IdInfo is enough to cause all the
-- substitutions to happen completely
substIdInfo subst info
| nothing_to_do = Nothing
| otherwise = Just (info `setOccInfo` (if keep_occ then old_occ else NoOccInfo)
`setArityInfo` (if keep_arity then old_arity else unknownArity)
`setSpecInfo` CoreSubst.substSpec subst old_rules
`setWorkerInfo` CoreSubst.substWorker subst old_wrkr
`setUnfoldingInfo` noUnfolding)
-- setSpecInfo does a seq
-- setWorkerInfo does a seq
where
nothing_to_do = keep_occ && keep_arity &&
isEmptySpecInfo old_rules &&
not (workerExists old_wrkr) &&
not (hasUnfolding (unfoldingInfo info))
keep_occ = not (isFragileOcc old_occ)
keep_arity = old_arity == unknownArity
old_arity = arityInfo info
old_occ = occInfo info
old_rules = specInfo info
old_wrkr = workerInfo info
------------------
substIdType :: SimplEnv -> Id -> Id
substIdType env@(SimplEnv { seInScope = in_scope, seTvSubst = tv_env}) id
| isEmptyVarEnv tv_env || isEmptyVarSet (tyVarsOfType old_ty) = id
| otherwise = setIdType id (Type.substTy (TvSubst in_scope tv_env) old_ty)
-- The tyVarsOfType is cheaper than it looks
-- because we cache the free tyvars of the type
-- in a Note in the id's type itself
where
old_ty = idType id
------------------
substUnfolding env NoUnfolding = NoUnfolding
substUnfolding env (OtherCon cons) = OtherCon cons
substUnfolding env (CompulsoryUnfolding rhs) = CompulsoryUnfolding (substExpr env rhs)
substUnfolding env (CoreUnfolding rhs t v w g) = CoreUnfolding (substExpr env rhs) t v w g
\end{code}
%************************************************************************
%* *
Impedence matching to type substitution
%* *
%************************************************************************
\begin{code}
substTy :: SimplEnv -> Type -> Type
substTy (SimplEnv { seInScope = in_scope, seTvSubst = tv_env }) ty
= Type.substTy (TvSubst in_scope tv_env) ty
substTyVarBndr :: SimplEnv -> TyVar -> (SimplEnv, TyVar)
substTyVarBndr env@(SimplEnv { seInScope = in_scope, seTvSubst = tv_env }) tv
= case Type.substTyVarBndr (TvSubst in_scope tv_env) tv of
(TvSubst in_scope' tv_env', tv')
-> (env { seInScope = in_scope', seTvSubst = tv_env'}, tv')
-- When substituting in rules etc we can get CoreSubst to do the work
-- But CoreSubst uses a simpler form of IdSubstEnv, so we must impedence-match
-- here. I think the this will not usually result in a lot of work;
-- the substitutions are typically small, and laziness will avoid work in many cases.
mkCoreSubst :: SimplEnv -> CoreSubst.Subst
mkCoreSubst (SimplEnv { seInScope = in_scope, seTvSubst = tv_env, seIdSubst = id_env })
= mk_subst tv_env id_env
where
mk_subst tv_env id_env = CoreSubst.mkSubst in_scope tv_env (mapVarEnv fiddle id_env)
fiddle (DoneEx e) = e
fiddle (DoneId v occ) = Var v
fiddle (ContEx tv id e) = CoreSubst.substExpr (mk_subst tv id) e
substExpr :: SimplEnv -> CoreExpr -> CoreExpr
substExpr env expr
| isEmptySimplSubst env = expr
| otherwise = CoreSubst.substExpr (mkCoreSubst env) expr
\end{code}
%************************************************************************
%* *
\subsection{Floats}
%* *
%************************************************************************
\begin{code}
type FloatsWithExpr = FloatsWith OutExpr
type FloatsWith a = (Floats, a)
-- We return something equivalent to (let b in e), but
-- in pieces to avoid the quadratic blowup when floating
-- incrementally. Comments just before simplExprB in Simplify.lhs
data Floats = Floats (OrdList OutBind)
InScopeSet -- Environment "inside" all the floats
Bool -- True <=> All bindings are lifted
allLifted :: Floats -> Bool
allLifted (Floats _ _ is_lifted) = is_lifted
wrapFloats :: Floats -> OutExpr -> OutExpr
wrapFloats (Floats bs _ _) body = foldrOL Let body bs
isEmptyFloats :: Floats -> Bool
isEmptyFloats (Floats bs _ _) = isNilOL bs
floatBinds :: Floats -> [OutBind]
floatBinds (Floats bs _ _) = fromOL bs
flattenFloats :: Floats -> Floats
-- Flattens into a single Rec group
flattenFloats (Floats bs is is_lifted)
= ASSERT2( is_lifted, ppr (fromOL bs) )
Floats (unitOL (Rec (flattenBinds (fromOL bs)))) is is_lifted
\end{code}
\begin{code}
emptyFloats :: SimplEnv -> Floats
emptyFloats env = Floats nilOL (getInScope env) True
unitFloat :: SimplEnv -> OutId -> OutExpr -> Floats
-- A single non-rec float; extend the in-scope set
unitFloat env var rhs = Floats (unitOL (NonRec var rhs))
(extendInScopeSet (getInScope env) var)
(not (isUnLiftedType (idType var)))
addFloats :: SimplEnv -> Floats
-> (SimplEnv -> SimplM (FloatsWith a))
-> SimplM (FloatsWith a)
addFloats env (Floats b1 is1 l1) thing_inside
| isNilOL b1
= thing_inside env
| otherwise
= thing_inside (setInScopeSet env is1) `thenSmpl` \ (Floats b2 is2 l2, res) ->
returnSmpl (Floats (b1 `appOL` b2) is2 (l1 && l2), res)
addLetBind :: OutBind -> Floats -> Floats
addLetBind bind (Floats binds in_scope lifted)
= Floats (bind `consOL` binds) in_scope (lifted && is_lifted_bind bind)
is_lifted_bind (Rec _) = True
is_lifted_bind (NonRec b r) = not (isUnLiftedType (idType b))
-- addAuxiliaryBind * takes already-simplified things (bndr and rhs)
-- * extends the in-scope env
-- * assumes it's a let-bindable thing
addAuxiliaryBind :: SimplEnv -> OutBind
-> (SimplEnv -> SimplM (FloatsWith a))
-> SimplM (FloatsWith a)
-- Extends the in-scope environment as well as wrapping the bindings
addAuxiliaryBind env bind thing_inside
= ASSERT( case bind of { NonRec b r -> not (needsCaseBinding (idType b) r) ; Rec _ -> True } )
thing_inside (addNewInScopeIds env (bindersOf bind)) `thenSmpl` \ (floats, x) ->
returnSmpl (addLetBind bind floats, x)
\end{code}
|