1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
|
{-
(c) The AQUA Project, Glasgow University, 1993-1998
\section[Simplify]{The main module of the simplifier}
-}
{-# LANGUAGE CPP #-}
module Simplify ( simplTopBinds, simplExpr, simplRules ) where
#include "HsVersions.h"
import GhcPrelude
import DynFlags
import SimplMonad
import Type hiding ( substTy, substTyVar, extendTvSubst, extendCvSubst )
import SimplEnv
import SimplUtils
import OccurAnal ( occurAnalyseExpr )
import FamInstEnv ( FamInstEnv )
import Literal ( litIsLifted ) --, mkMachInt ) -- temporalily commented out. See #8326
import Id
import MkId ( seqId )
import MkCore ( mkImpossibleExpr, castBottomExpr )
import IdInfo
import Name ( mkSystemVarName, isExternalName, getOccFS )
import Coercion hiding ( substCo, substCoVar )
import OptCoercion ( optCoercion )
import FamInstEnv ( topNormaliseType_maybe )
import DataCon ( DataCon, dataConWorkId, dataConRepStrictness
, dataConRepArgTys, isUnboxedTupleCon
, StrictnessMark (..) )
import CoreMonad ( Tick(..), SimplMode(..) )
import CoreSyn
import Demand ( StrictSig(..), dmdTypeDepth, isStrictDmd )
import PprCore ( pprCoreExpr )
import CoreUnfold
import CoreUtils
import CoreOpt ( pushCoTyArg, pushCoValArg
, joinPointBinding_maybe, joinPointBindings_maybe )
import Rules ( mkRuleInfo, lookupRule, getRules )
import Demand ( mkClosedStrictSig, topDmd, exnRes )
import BasicTypes ( TopLevelFlag(..), isNotTopLevel, isTopLevel,
RecFlag(..), Arity )
import MonadUtils ( mapAccumLM, liftIO )
import Maybes ( orElse )
import Control.Monad
import Outputable
import FastString
import Pair
import Util
import ErrUtils
import Module ( moduleName, pprModuleName )
import PrimOp ( PrimOp (SeqOp) )
{-
The guts of the simplifier is in this module, but the driver loop for
the simplifier is in SimplCore.hs.
Note [The big picture]
~~~~~~~~~~~~~~~~~~~~~~
The general shape of the simplifier is this:
simplExpr :: SimplEnv -> InExpr -> SimplCont -> SimplM (SimplFloats, OutExpr)
simplBind :: SimplEnv -> InBind -> SimplM (SimplFloats, SimplEnv)
* SimplEnv contains
- Simplifier mode (which includes DynFlags for convenience)
- Ambient substitution
- InScopeSet
* SimplFloats contains
- Let-floats (which includes ok-for-spec case-floats)
- Join floats
- InScopeSet (including all the floats)
* Expressions
simplExpr :: SimplEnv -> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
The result of simplifying an /expression/ is (floats, expr)
- A bunch of floats (let bindings, join bindings)
- A simplified expression.
The overall result is effectively (let floats in expr)
* Bindings
simplBind :: SimplEnv -> InBind -> SimplM (SimplFloats, SimplEnv)
The result of simplifying a binding is
- A bunch of floats, the last of which is the simplified binding
There may be auxiliary bindings too; see prepareRhs
- An environment suitable for simplifying the scope of the binding
The floats may also be empty, if the binding is inlined unconditionally;
in that case the returned SimplEnv will have an augmented substitution.
The returned floats and env both have an in-scope set, and they are
guaranteed to be the same.
Note [Shadowing]
~~~~~~~~~~~~~~~~
The simplifier used to guarantee that the output had no shadowing, but
it does not do so any more. (Actually, it never did!) The reason is
documented with simplifyArgs.
Eta expansion
~~~~~~~~~~~~~~
For eta expansion, we want to catch things like
case e of (a,b) -> \x -> case a of (p,q) -> \y -> r
If the \x was on the RHS of a let, we'd eta expand to bring the two
lambdas together. And in general that's a good thing to do. Perhaps
we should eta expand wherever we find a (value) lambda? Then the eta
expansion at a let RHS can concentrate solely on the PAP case.
************************************************************************
* *
\subsection{Bindings}
* *
************************************************************************
-}
simplTopBinds :: SimplEnv -> [InBind] -> SimplM (SimplFloats, SimplEnv)
-- See Note [The big picture]
simplTopBinds env0 binds0
= do { -- Put all the top-level binders into scope at the start
-- so that if a transformation rule has unexpectedly brought
-- anything into scope, then we don't get a complaint about that.
-- It's rather as if the top-level binders were imported.
-- See note [Glomming] in OccurAnal.
; env1 <- {-#SCC "simplTopBinds-simplRecBndrs" #-} simplRecBndrs env0 (bindersOfBinds binds0)
; (floats, env2) <- {-#SCC "simplTopBinds-simpl_binds" #-} simpl_binds env1 binds0
; freeTick SimplifierDone
; return (floats, env2) }
where
-- We need to track the zapped top-level binders, because
-- they should have their fragile IdInfo zapped (notably occurrence info)
-- That's why we run down binds and bndrs' simultaneously.
--
simpl_binds :: SimplEnv -> [InBind] -> SimplM (SimplFloats, SimplEnv)
simpl_binds env [] = return (emptyFloats env, env)
simpl_binds env (bind:binds) = do { (float, env1) <- simpl_bind env bind
; (floats, env2) <- simpl_binds env1 binds
; return (float `addFloats` floats, env2) }
simpl_bind env (Rec pairs)
= simplRecBind env TopLevel Nothing pairs
simpl_bind env (NonRec b r)
= do { (env', b') <- addBndrRules env b (lookupRecBndr env b) Nothing
; simplRecOrTopPair env' TopLevel NonRecursive Nothing b b' r }
{-
************************************************************************
* *
Lazy bindings
* *
************************************************************************
simplRecBind is used for
* recursive bindings only
-}
simplRecBind :: SimplEnv -> TopLevelFlag -> MaybeJoinCont
-> [(InId, InExpr)]
-> SimplM (SimplFloats, SimplEnv)
simplRecBind env0 top_lvl mb_cont pairs0
= do { (env_with_info, triples) <- mapAccumLM add_rules env0 pairs0
; (rec_floats, env1) <- go env_with_info triples
; return (mkRecFloats rec_floats, env1) }
where
add_rules :: SimplEnv -> (InBndr,InExpr) -> SimplM (SimplEnv, (InBndr, OutBndr, InExpr))
-- Add the (substituted) rules to the binder
add_rules env (bndr, rhs)
= do { (env', bndr') <- addBndrRules env bndr (lookupRecBndr env bndr) mb_cont
; return (env', (bndr, bndr', rhs)) }
go env [] = return (emptyFloats env, env)
go env ((old_bndr, new_bndr, rhs) : pairs)
= do { (float, env1) <- simplRecOrTopPair env top_lvl Recursive mb_cont
old_bndr new_bndr rhs
; (floats, env2) <- go env1 pairs
; return (float `addFloats` floats, env2) }
{-
simplOrTopPair is used for
* recursive bindings (whether top level or not)
* top-level non-recursive bindings
It assumes the binder has already been simplified, but not its IdInfo.
-}
simplRecOrTopPair :: SimplEnv
-> TopLevelFlag -> RecFlag -> MaybeJoinCont
-> InId -> OutBndr -> InExpr -- Binder and rhs
-> SimplM (SimplFloats, SimplEnv)
simplRecOrTopPair env top_lvl is_rec mb_cont old_bndr new_bndr rhs
| Just env' <- preInlineUnconditionally env top_lvl old_bndr rhs env
= {-#SCC "simplRecOrTopPair-pre-inline-uncond" #-}
trace_bind "pre-inline-uncond" $
do { tick (PreInlineUnconditionally old_bndr)
; return ( emptyFloats env, env' ) }
| Just cont <- mb_cont
= {-#SCC "simplRecOrTopPair-join" #-}
ASSERT( isNotTopLevel top_lvl && isJoinId new_bndr )
trace_bind "join" $
simplJoinBind env cont old_bndr new_bndr rhs env
| otherwise
= {-#SCC "simplRecOrTopPair-normal" #-}
trace_bind "normal" $
simplLazyBind env top_lvl is_rec old_bndr new_bndr rhs env
where
dflags = seDynFlags env
-- trace_bind emits a trace for each top-level binding, which
-- helps to locate the tracing for inlining and rule firing
trace_bind what thing_inside
| not (dopt Opt_D_verbose_core2core dflags)
= thing_inside
| otherwise
= pprTrace ("SimplBind " ++ what) (ppr old_bndr) thing_inside
--------------------------
simplLazyBind :: SimplEnv
-> TopLevelFlag -> RecFlag
-> InId -> OutId -- Binder, both pre-and post simpl
-- Not a JoinId
-- The OutId has IdInfo, except arity, unfolding
-- Ids only, no TyVars
-> InExpr -> SimplEnv -- The RHS and its environment
-> SimplM (SimplFloats, SimplEnv)
-- Precondition: not a JoinId
-- Precondition: rhs obeys the let/app invariant
-- NOT used for JoinIds
simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se
= ASSERT( isId bndr )
ASSERT2( not (isJoinId bndr), ppr bndr )
-- pprTrace "simplLazyBind" ((ppr bndr <+> ppr bndr1) $$ ppr rhs $$ ppr (seIdSubst rhs_se)) $
do { let rhs_env = rhs_se `setInScopeFromE` env
(tvs, body) = case collectTyAndValBinders rhs of
(tvs, [], body)
| surely_not_lam body -> (tvs, body)
_ -> ([], rhs)
surely_not_lam (Lam {}) = False
surely_not_lam (Tick t e)
| not (tickishFloatable t) = surely_not_lam e
-- eta-reduction could float
surely_not_lam _ = True
-- Do not do the "abstract tyyvar" thing if there's
-- a lambda inside, because it defeats eta-reduction
-- f = /\a. \x. g a x
-- should eta-reduce.
; (body_env, tvs') <- {-#SCC "simplBinders" #-} simplBinders rhs_env tvs
-- See Note [Floating and type abstraction] in SimplUtils
-- Simplify the RHS
; let rhs_cont = mkRhsStop (substTy body_env (exprType body))
; (body_floats0, body0) <- {-#SCC "simplExprF" #-} simplExprF body_env body rhs_cont
-- Never float join-floats out of a non-join let-binding
-- So wrap the body in the join-floats right now
-- Henc: body_floats1 consists only of let-floats
; let (body_floats1, body1) = wrapJoinFloatsX body_floats0 body0
-- ANF-ise a constructor or PAP rhs
-- We get at most one float per argument here
; (let_floats, body2) <- {-#SCC "prepareRhs" #-} prepareRhs (getMode env) top_lvl
(getOccFS bndr1) (idInfo bndr1) body1
; let body_floats2 = body_floats1 `addLetFloats` let_floats
; (rhs_floats, rhs')
<- if not (doFloatFromRhs top_lvl is_rec False body_floats2 body2)
then -- No floating, revert to body1
{-#SCC "simplLazyBind-no-floating" #-}
do { rhs' <- mkLam env tvs' (wrapFloats body_floats2 body1) rhs_cont
; return (emptyFloats env, rhs') }
else if null tvs then -- Simple floating
{-#SCC "simplLazyBind-simple-floating" #-}
do { tick LetFloatFromLet
; return (body_floats2, body2) }
else -- Do type-abstraction first
{-#SCC "simplLazyBind-type-abstraction-first" #-}
do { tick LetFloatFromLet
; (poly_binds, body3) <- abstractFloats (seDynFlags env) top_lvl
tvs' body_floats2 body2
; let floats = foldl' extendFloats (emptyFloats env) poly_binds
; rhs' <- mkLam env tvs' body3 rhs_cont
; return (floats, rhs') }
; (bind_float, env2) <- completeBind (env `setInScopeFromF` rhs_floats)
top_lvl Nothing bndr bndr1 rhs'
; return (rhs_floats `addFloats` bind_float, env2) }
--------------------------
simplJoinBind :: SimplEnv
-> SimplCont
-> InId -> OutId -- Binder, both pre-and post simpl
-- The OutId has IdInfo, except arity,
-- unfolding
-> InExpr -> SimplEnv -- The right hand side and its env
-> SimplM (SimplFloats, SimplEnv)
simplJoinBind env cont old_bndr new_bndr rhs rhs_se
= do { let rhs_env = rhs_se `setInScopeFromE` env
; rhs' <- simplJoinRhs rhs_env old_bndr rhs cont
; completeBind env NotTopLevel (Just cont) old_bndr new_bndr rhs' }
--------------------------
simplNonRecX :: SimplEnv
-> InId -- Old binder; not a JoinId
-> OutExpr -- Simplified RHS
-> SimplM (SimplFloats, SimplEnv)
-- A specialised variant of simplNonRec used when the RHS is already
-- simplified, notably in knownCon. It uses case-binding where necessary.
--
-- Precondition: rhs satisfies the let/app invariant
simplNonRecX env bndr new_rhs
| ASSERT2( not (isJoinId bndr), ppr bndr )
isDeadBinder bndr -- Not uncommon; e.g. case (a,b) of c { (p,q) -> p }
= return (emptyFloats env, env) -- Here c is dead, and we avoid
-- creating the binding c = (a,b)
| Coercion co <- new_rhs
= return (emptyFloats env, extendCvSubst env bndr co)
| otherwise
= do { (env', bndr') <- simplBinder env bndr
; completeNonRecX NotTopLevel env' (isStrictId bndr) bndr bndr' new_rhs }
-- simplNonRecX is only used for NotTopLevel things
--------------------------
completeNonRecX :: TopLevelFlag -> SimplEnv
-> Bool
-> InId -- Old binder; not a JoinId
-> OutId -- New binder
-> OutExpr -- Simplified RHS
-> SimplM (SimplFloats, SimplEnv) -- The new binding is in the floats
-- Precondition: rhs satisfies the let/app invariant
-- See Note [CoreSyn let/app invariant] in CoreSyn
completeNonRecX top_lvl env is_strict old_bndr new_bndr new_rhs
= ASSERT2( not (isJoinId new_bndr), ppr new_bndr )
do { (prepd_floats, rhs1) <- prepareRhs (getMode env) top_lvl (getOccFS new_bndr)
(idInfo new_bndr) new_rhs
; let floats = emptyFloats env `addLetFloats` prepd_floats
; (rhs_floats, rhs2) <-
if doFloatFromRhs NotTopLevel NonRecursive is_strict floats rhs1
then -- Add the floats to the main env
do { tick LetFloatFromLet
; return (floats, rhs1) }
else -- Do not float; wrap the floats around the RHS
return (emptyFloats env, wrapFloats floats rhs1)
; (bind_float, env2) <- completeBind (env `setInScopeFromF` rhs_floats)
NotTopLevel Nothing
old_bndr new_bndr rhs2
; return (rhs_floats `addFloats` bind_float, env2) }
{- *********************************************************************
* *
prepareRhs, makeTrivial
* *
************************************************************************
Note [prepareRhs]
~~~~~~~~~~~~~~~~~
prepareRhs takes a putative RHS, checks whether it's a PAP or
constructor application and, if so, converts it to ANF, so that the
resulting thing can be inlined more easily. Thus
x = (f a, g b)
becomes
t1 = f a
t2 = g b
x = (t1,t2)
We also want to deal well cases like this
v = (f e1 `cast` co) e2
Here we want to make e1,e2 trivial and get
x1 = e1; x2 = e2; v = (f x1 `cast` co) v2
That's what the 'go' loop in prepareRhs does
-}
prepareRhs :: SimplMode -> TopLevelFlag
-> FastString -- Base for any new variables
-> IdInfo -- IdInfo for the LHS of this binding
-> OutExpr
-> SimplM (LetFloats, OutExpr)
-- Transforms a RHS into a better RHS by adding floats
-- e.g x = Just e
-- becomes a = e
-- x = Just a
-- See Note [prepareRhs]
prepareRhs mode top_lvl occ info (Cast rhs co) -- Note [Float coercions]
| Pair ty1 _ty2 <- coercionKind co -- Do *not* do this if rhs has an unlifted type
, not (isUnliftedType ty1) -- see Note [Float coercions (unlifted)]
= do { (floats, rhs') <- makeTrivialWithInfo mode top_lvl occ sanitised_info rhs
; return (floats, Cast rhs' co) }
where
sanitised_info = vanillaIdInfo `setStrictnessInfo` strictnessInfo info
`setDemandInfo` demandInfo info
prepareRhs mode top_lvl occ _ rhs0
= do { (_is_exp, floats, rhs1) <- go 0 rhs0
; return (floats, rhs1) }
where
go :: Int -> OutExpr -> SimplM (Bool, LetFloats, OutExpr)
go n_val_args (Cast rhs co)
= do { (is_exp, floats, rhs') <- go n_val_args rhs
; return (is_exp, floats, Cast rhs' co) }
go n_val_args (App fun (Type ty))
= do { (is_exp, floats, rhs') <- go n_val_args fun
; return (is_exp, floats, App rhs' (Type ty)) }
go n_val_args (App fun arg)
= do { (is_exp, floats1, fun') <- go (n_val_args+1) fun
; case is_exp of
False -> return (False, emptyLetFloats, App fun arg)
True -> do { (floats2, arg') <- makeTrivial mode top_lvl occ arg
; return (True, floats1 `addLetFlts` floats2, App fun' arg') } }
go n_val_args (Var fun)
= return (is_exp, emptyLetFloats, Var fun)
where
is_exp = isExpandableApp fun n_val_args -- The fun a constructor or PAP
-- See Note [CONLIKE pragma] in BasicTypes
-- The definition of is_exp should match that in
-- OccurAnal.occAnalApp
go n_val_args (Tick t rhs)
-- We want to be able to float bindings past this
-- tick. Non-scoping ticks don't care.
| tickishScoped t == NoScope
= do { (is_exp, floats, rhs') <- go n_val_args rhs
; return (is_exp, floats, Tick t rhs') }
-- On the other hand, for scoping ticks we need to be able to
-- copy them on the floats, which in turn is only allowed if
-- we can obtain non-counting ticks.
| (not (tickishCounts t) || tickishCanSplit t)
= do { (is_exp, floats, rhs') <- go n_val_args rhs
; let tickIt (id, expr) = (id, mkTick (mkNoCount t) expr)
floats' = mapLetFloats floats tickIt
; return (is_exp, floats', Tick t rhs') }
go _ other
= return (False, emptyLetFloats, other)
{-
Note [Float coercions]
~~~~~~~~~~~~~~~~~~~~~~
When we find the binding
x = e `cast` co
we'd like to transform it to
x' = e
x = x `cast` co -- A trivial binding
There's a chance that e will be a constructor application or function, or something
like that, so moving the coercion to the usage site may well cancel the coercions
and lead to further optimisation. Example:
data family T a :: *
data instance T Int = T Int
foo :: Int -> Int -> Int
foo m n = ...
where
x = T m
go 0 = 0
go n = case x of { T m -> go (n-m) }
-- This case should optimise
Note [Preserve strictness when floating coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the Note [Float coercions] transformation, keep the strictness info.
Eg
f = e `cast` co -- f has strictness SSL
When we transform to
f' = e -- f' also has strictness SSL
f = f' `cast` co -- f still has strictness SSL
Its not wrong to drop it on the floor, but better to keep it.
Note [Float coercions (unlifted)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
BUT don't do [Float coercions] if 'e' has an unlifted type.
This *can* happen:
foo :: Int = (error (# Int,Int #) "urk")
`cast` CoUnsafe (# Int,Int #) Int
If do the makeTrivial thing to the error call, we'll get
foo = case error (# Int,Int #) "urk" of v -> v `cast` ...
But 'v' isn't in scope!
These strange casts can happen as a result of case-of-case
bar = case (case x of { T -> (# 2,3 #); F -> error "urk" }) of
(# p,q #) -> p+q
-}
makeTrivialArg :: SimplMode -> ArgSpec -> SimplM (LetFloats, ArgSpec)
makeTrivialArg mode (ValArg e)
= do { (floats, e') <- makeTrivial mode NotTopLevel (fsLit "arg") e
; return (floats, ValArg e') }
makeTrivialArg _ arg
= return (emptyLetFloats, arg) -- CastBy, TyArg
makeTrivial :: SimplMode -> TopLevelFlag
-> FastString -- ^ A "friendly name" to build the new binder from
-> OutExpr -- ^ This expression satisfies the let/app invariant
-> SimplM (LetFloats, OutExpr)
-- Binds the expression to a variable, if it's not trivial, returning the variable
makeTrivial mode top_lvl context expr
= makeTrivialWithInfo mode top_lvl context vanillaIdInfo expr
makeTrivialWithInfo :: SimplMode -> TopLevelFlag
-> FastString -- ^ a "friendly name" to build the new binder from
-> IdInfo
-> OutExpr -- ^ This expression satisfies the let/app invariant
-> SimplM (LetFloats, OutExpr)
-- Propagate strictness and demand info to the new binder
-- Note [Preserve strictness when floating coercions]
-- Returned SimplEnv has same substitution as incoming one
makeTrivialWithInfo mode top_lvl occ_fs info expr
| exprIsTrivial expr -- Already trivial
|| not (bindingOk top_lvl expr expr_ty) -- Cannot trivialise
-- See Note [Cannot trivialise]
= return (emptyLetFloats, expr)
| otherwise
= do { (floats, expr1) <- prepareRhs mode top_lvl occ_fs info expr
; if exprIsTrivial expr1 -- See Note [Trivial after prepareRhs]
then return (floats, expr1)
else do
{ uniq <- getUniqueM
; let name = mkSystemVarName uniq occ_fs
var = mkLocalIdOrCoVarWithInfo name expr_ty info
-- Now something very like completeBind,
-- but without the postInlineUnconditinoally part
; (arity, is_bot, expr2) <- tryEtaExpandRhs mode var expr1
; unf <- mkLetUnfolding (sm_dflags mode) top_lvl InlineRhs var expr2
; let final_id = addLetBndrInfo var arity is_bot unf
bind = NonRec final_id expr2
; return ( floats `addLetFlts` unitLetFloat bind, Var final_id ) }}
where
expr_ty = exprType expr
bindingOk :: TopLevelFlag -> CoreExpr -> Type -> Bool
-- True iff we can have a binding of this expression at this level
-- Precondition: the type is the type of the expression
bindingOk top_lvl expr expr_ty
| isTopLevel top_lvl = exprIsTopLevelBindable expr expr_ty
| otherwise = True
{- Note [Trivial after prepareRhs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we call makeTrival on (e |> co), the recursive use of prepareRhs
may leave us with
{ a1 = e } and (a1 |> co)
Now the latter is trivial, so we don't want to let-bind it.
Note [Cannot trivialise]
~~~~~~~~~~~~~~~~~~~~~~~~
Consider:
f :: Int -> Addr#
foo :: Bar
foo = Bar (f 3)
Then we can't ANF-ise foo, even though we'd like to, because
we can't make a top-level binding for the Addr# (f 3). And if
so we don't want to turn it into
foo = let x = f 3 in Bar x
because we'll just end up inlining x back, and that makes the
simplifier loop. Better not to ANF-ise it at all.
Literal strings are an exception.
foo = Ptr "blob"#
We want to turn this into:
foo1 = "blob"#
foo = Ptr foo1
See Note [CoreSyn top-level string literals] in CoreSyn.
************************************************************************
* *
Completing a lazy binding
* *
************************************************************************
completeBind
* deals only with Ids, not TyVars
* takes an already-simplified binder and RHS
* is used for both recursive and non-recursive bindings
* is used for both top-level and non-top-level bindings
It does the following:
- tries discarding a dead binding
- tries PostInlineUnconditionally
- add unfolding [this is the only place we add an unfolding]
- add arity
It does *not* attempt to do let-to-case. Why? Because it is used for
- top-level bindings (when let-to-case is impossible)
- many situations where the "rhs" is known to be a WHNF
(so let-to-case is inappropriate).
Nor does it do the atomic-argument thing
-}
completeBind :: SimplEnv
-> TopLevelFlag -- Flag stuck into unfolding
-> MaybeJoinCont -- Required only for join point
-> InId -- Old binder
-> OutId -> OutExpr -- New binder and RHS
-> SimplM (SimplFloats, SimplEnv)
-- completeBind may choose to do its work
-- * by extending the substitution (e.g. let x = y in ...)
-- * or by adding to the floats in the envt
--
-- Binder /can/ be a JoinId
-- Precondition: rhs obeys the let/app invariant
completeBind env top_lvl mb_cont old_bndr new_bndr new_rhs
| isCoVar old_bndr
= case new_rhs of
Coercion co -> return (emptyFloats env, extendCvSubst env old_bndr co)
_ -> return (mkFloatBind env (NonRec new_bndr new_rhs))
| otherwise
= ASSERT( isId new_bndr )
do { let old_info = idInfo old_bndr
old_unf = unfoldingInfo old_info
occ_info = occInfo old_info
-- Do eta-expansion on the RHS of the binding
-- See Note [Eta-expanding at let bindings] in SimplUtils
; (new_arity, is_bot, final_rhs) <- tryEtaExpandRhs (getMode env)
new_bndr new_rhs
-- Simplify the unfolding
; new_unfolding <- simplLetUnfolding env top_lvl mb_cont old_bndr
final_rhs (idType new_bndr) old_unf
; let final_bndr = addLetBndrInfo new_bndr new_arity is_bot new_unfolding
; if postInlineUnconditionally env top_lvl final_bndr occ_info final_rhs
then -- Inline and discard the binding
do { tick (PostInlineUnconditionally old_bndr)
; return ( emptyFloats env
, extendIdSubst env old_bndr $
DoneEx final_rhs (isJoinId_maybe new_bndr)) }
-- Use the substitution to make quite, quite sure that the
-- substitution will happen, since we are going to discard the binding
else -- Keep the binding
-- pprTrace "Binding" (ppr final_bndr <+> ppr new_unfolding) $
return (mkFloatBind env (NonRec final_bndr final_rhs)) }
addLetBndrInfo :: OutId -> Arity -> Bool -> Unfolding -> OutId
addLetBndrInfo new_bndr new_arity is_bot new_unf
= new_bndr `setIdInfo` info5
where
info1 = idInfo new_bndr `setArityInfo` new_arity
-- Unfolding info: Note [Setting the new unfolding]
info2 = info1 `setUnfoldingInfo` new_unf
-- Demand info: Note [Setting the demand info]
-- We also have to nuke demand info if for some reason
-- eta-expansion *reduces* the arity of the binding to less
-- than that of the strictness sig. This can happen: see Note [Arity decrease].
info3 | isEvaldUnfolding new_unf
|| (case strictnessInfo info2 of
StrictSig dmd_ty -> new_arity < dmdTypeDepth dmd_ty)
= zapDemandInfo info2 `orElse` info2
| otherwise
= info2
-- Bottoming bindings: see Note [Bottoming bindings]
info4 | is_bot = info3 `setStrictnessInfo`
mkClosedStrictSig (replicate new_arity topDmd) exnRes
| otherwise = info3
-- Zap call arity info. We have used it by now (via
-- `tryEtaExpandRhs`), and the simplifier can invalidate this
-- information, leading to broken code later (e.g. #13479)
info5 = zapCallArityInfo info4
{- Note [Arity decrease]
~~~~~~~~~~~~~~~~~~~~~~~~
Generally speaking the arity of a binding should not decrease. But it *can*
legitimately happen because of RULES. Eg
f = g Int
where g has arity 2, will have arity 2. But if there's a rewrite rule
g Int --> h
where h has arity 1, then f's arity will decrease. Here's a real-life example,
which is in the output of Specialise:
Rec {
$dm {Arity 2} = \d.\x. op d
{-# RULES forall d. $dm Int d = $s$dm #-}
dInt = MkD .... opInt ...
opInt {Arity 1} = $dm dInt
$s$dm {Arity 0} = \x. op dInt }
Here opInt has arity 1; but when we apply the rule its arity drops to 0.
That's why Specialise goes to a little trouble to pin the right arity
on specialised functions too.
Note [Bottoming bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
let x = error "urk"
in ...(case x of <alts>)...
or
let f = \x. error (x ++ "urk")
in ...(case f "foo" of <alts>)...
Then we'd like to drop the dead <alts> immediately. So it's good to
propagate the info that x's RHS is bottom to x's IdInfo as rapidly as
possible.
We use tryEtaExpandRhs on every binding, and it turns ou that the
arity computation it performs (via CoreArity.findRhsArity) already
does a simple bottoming-expression analysis. So all we need to do
is propagate that info to the binder's IdInfo.
This showed up in Trac #12150; see comment:16.
Note [Setting the demand info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the unfolding is a value, the demand info may
go pear-shaped, so we nuke it. Example:
let x = (a,b) in
case x of (p,q) -> h p q x
Here x is certainly demanded. But after we've nuked
the case, we'll get just
let x = (a,b) in h a b x
and now x is not demanded (I'm assuming h is lazy)
This really happens. Similarly
let f = \x -> e in ...f..f...
After inlining f at some of its call sites the original binding may
(for example) be no longer strictly demanded.
The solution here is a bit ad hoc...
************************************************************************
* *
\subsection[Simplify-simplExpr]{The main function: simplExpr}
* *
************************************************************************
The reason for this OutExprStuff stuff is that we want to float *after*
simplifying a RHS, not before. If we do so naively we get quadratic
behaviour as things float out.
To see why it's important to do it after, consider this (real) example:
let t = f x
in fst t
==>
let t = let a = e1
b = e2
in (a,b)
in fst t
==>
let a = e1
b = e2
t = (a,b)
in
a -- Can't inline a this round, cos it appears twice
==>
e1
Each of the ==> steps is a round of simplification. We'd save a
whole round if we float first. This can cascade. Consider
let f = g d
in \x -> ...f...
==>
let f = let d1 = ..d.. in \y -> e
in \x -> ...f...
==>
let d1 = ..d..
in \x -> ...(\y ->e)...
Only in this second round can the \y be applied, and it
might do the same again.
-}
simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr
simplExpr env (Type ty)
= do { ty' <- simplType env ty -- See Note [Avoiding space leaks in OutType]
; return (Type ty') }
simplExpr env expr
= simplExprC env expr (mkBoringStop expr_out_ty)
where
expr_out_ty :: OutType
expr_out_ty = substTy env (exprType expr)
-- NB: Since 'expr' is term-valued, not (Type ty), this call
-- to exprType will succeed. exprType fails on (Type ty).
simplExprC :: SimplEnv
-> InExpr -- A term-valued expression, never (Type ty)
-> SimplCont
-> SimplM OutExpr
-- Simplify an expression, given a continuation
simplExprC env expr cont
= -- pprTrace "simplExprC" (ppr expr $$ ppr cont {- $$ ppr (seIdSubst env) -} $$ ppr (seLetFloats env) ) $
do { (floats, expr') <- simplExprF env expr cont
; -- pprTrace "simplExprC ret" (ppr expr $$ ppr expr') $
-- pprTrace "simplExprC ret3" (ppr (seInScope env')) $
-- pprTrace "simplExprC ret4" (ppr (seLetFloats env')) $
return (wrapFloats floats expr') }
--------------------------------------------------
simplExprF :: SimplEnv
-> InExpr -- A term-valued expression, never (Type ty)
-> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplExprF env e cont
= {- pprTrace "simplExprF" (vcat
[ ppr e
, text "cont =" <+> ppr cont
, text "inscope =" <+> ppr (seInScope env)
, text "tvsubst =" <+> ppr (seTvSubst env)
, text "idsubst =" <+> ppr (seIdSubst env)
, text "cvsubst =" <+> ppr (seCvSubst env)
]) $ -}
simplExprF1 env e cont
simplExprF1 :: SimplEnv -> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplExprF1 _ (Type ty) _
= pprPanic "simplExprF: type" (ppr ty)
-- simplExprF does only with term-valued expressions
-- The (Type ty) case is handled separately by simplExpr
-- and by the other callers of simplExprF
simplExprF1 env (Var v) cont = {-#SCC "simplIdF" #-} simplIdF env v cont
simplExprF1 env (Lit lit) cont = {-#SCC "rebuild" #-} rebuild env (Lit lit) cont
simplExprF1 env (Tick t expr) cont = {-#SCC "simplTick" #-} simplTick env t expr cont
simplExprF1 env (Cast body co) cont = {-#SCC "simplCast" #-} simplCast env body co cont
simplExprF1 env (Coercion co) cont = {-#SCC "simplCoercionF" #-} simplCoercionF env co cont
simplExprF1 env (App fun arg) cont
= {-#SCC "simplExprF1-App" #-} case arg of
Type ty -> do { -- The argument type will (almost) certainly be used
-- in the output program, so just force it now.
-- See Note [Avoiding space leaks in OutType]
arg' <- simplType env ty
-- But use substTy, not simplType, to avoid forcing
-- the hole type; it will likely not be needed.
-- See Note [The hole type in ApplyToTy]
; let hole' = substTy env (exprType fun)
; simplExprF env fun $
ApplyToTy { sc_arg_ty = arg'
, sc_hole_ty = hole'
, sc_cont = cont } }
_ -> simplExprF env fun $
ApplyToVal { sc_arg = arg, sc_env = env
, sc_dup = NoDup, sc_cont = cont }
simplExprF1 env expr@(Lam {}) cont
= {-#SCC "simplExprF1-Lam" #-}
simplLam env zapped_bndrs body cont
-- The main issue here is under-saturated lambdas
-- (\x1. \x2. e) arg1
-- Here x1 might have "occurs-once" occ-info, because occ-info
-- is computed assuming that a group of lambdas is applied
-- all at once. If there are too few args, we must zap the
-- occ-info, UNLESS the remaining binders are one-shot
where
(bndrs, body) = collectBinders expr
zapped_bndrs | need_to_zap = map zap bndrs
| otherwise = bndrs
need_to_zap = any zappable_bndr (drop n_args bndrs)
n_args = countArgs cont
-- NB: countArgs counts all the args (incl type args)
-- and likewise drop counts all binders (incl type lambdas)
zappable_bndr b = isId b && not (isOneShotBndr b)
zap b | isTyVar b = b
| otherwise = zapLamIdInfo b
simplExprF1 env (Case scrut bndr _ alts) cont
= {-#SCC "simplExprF1-Case" #-}
simplExprF env scrut (Select { sc_dup = NoDup, sc_bndr = bndr
, sc_alts = alts
, sc_env = env, sc_cont = cont })
simplExprF1 env (Let (Rec pairs) body) cont
| Just pairs' <- joinPointBindings_maybe pairs
= {-#SCC "simplRecJoinPoin" #-} simplRecJoinPoint env pairs' body cont
| otherwise
= {-#SCC "simplRecE" #-} simplRecE env pairs body cont
simplExprF1 env (Let (NonRec bndr rhs) body) cont
| Type ty <- rhs -- First deal with type lets (let a = Type ty in e)
= {-#SCC "simplExprF1-NonRecLet-Type" #-}
ASSERT( isTyVar bndr )
do { ty' <- simplType env ty
; simplExprF (extendTvSubst env bndr ty') body cont }
| Just (bndr', rhs') <- joinPointBinding_maybe bndr rhs
= {-#SCC "simplNonRecJoinPoint" #-} simplNonRecJoinPoint env bndr' rhs' body cont
| otherwise
= {-#SCC "simplNonRecE" #-} simplNonRecE env bndr (rhs, env) ([], body) cont
{- Note [Avoiding space leaks in OutType]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since the simplifier is run for multiple iterations, we need to ensure
that any thunks in the output of one simplifier iteration are forced
by the evaluation of the next simplifier iteration. Otherwise we may
retain multiple copies of the Core program and leak a terrible amount
of memory (as in #13426).
The simplifier is naturally strict in the entire "Expr part" of the
input Core program, because any expression may contain binders, which
we must find in order to extend the SimplEnv accordingly. But types
do not contain binders and so it is tempting to write things like
simplExpr env (Type ty) = return (Type (substTy env ty)) -- Bad!
This is Bad because the result includes a thunk (substTy env ty) which
retains a reference to the whole simplifier environment; and the next
simplifier iteration will not force this thunk either, because the
line above is not strict in ty.
So instead our strategy is for the simplifier to fully evaluate
OutTypes when it emits them into the output Core program, for example
simplExpr env (Type ty) = do { ty' <- simplType env ty -- Good
; return (Type ty') }
where the only difference from above is that simplType calls seqType
on the result of substTy.
However, SimplCont can also contain OutTypes and it's not necessarily
a good idea to force types on the way in to SimplCont, because they
may end up not being used and forcing them could be a lot of wasted
work. T5631 is a good example of this.
- For ApplyToTy's sc_arg_ty, we force the type on the way in because
the type will almost certainly appear as a type argument in the
output program.
- For the hole types in Stop and ApplyToTy, we force the type when we
emit it into the output program, after obtaining it from
contResultType. (The hole type in ApplyToTy is only directly used
to form the result type in a new Stop continuation.)
-}
---------------------------------
-- Simplify a join point, adding the context.
-- Context goes *inside* the lambdas. IOW, if the join point has arity n, we do:
-- \x1 .. xn -> e => \x1 .. xn -> E[e]
-- Note that we need the arity of the join point, since e may be a lambda
-- (though this is unlikely). See Note [Case-of-case and join points].
simplJoinRhs :: SimplEnv -> InId -> InExpr -> SimplCont
-> SimplM OutExpr
simplJoinRhs env bndr expr cont
| Just arity <- isJoinId_maybe bndr
= do { let (join_bndrs, join_body) = collectNBinders arity expr
; (env', join_bndrs') <- simplLamBndrs env join_bndrs
; join_body' <- simplExprC env' join_body cont
; return $ mkLams join_bndrs' join_body' }
| otherwise
= pprPanic "simplJoinRhs" (ppr bndr)
---------------------------------
simplType :: SimplEnv -> InType -> SimplM OutType
-- Kept monadic just so we can do the seqType
-- See Note [Avoiding space leaks in OutType]
simplType env ty
= -- pprTrace "simplType" (ppr ty $$ ppr (seTvSubst env)) $
seqType new_ty `seq` return new_ty
where
new_ty = substTy env ty
---------------------------------
simplCoercionF :: SimplEnv -> InCoercion -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplCoercionF env co cont
= do { co' <- simplCoercion env co
; rebuild env (Coercion co') cont }
simplCoercion :: SimplEnv -> InCoercion -> SimplM OutCoercion
simplCoercion env co
= do { dflags <- getDynFlags
; let opt_co = optCoercion dflags (getTCvSubst env) co
; seqCo opt_co `seq` return opt_co }
-----------------------------------
-- | Push a TickIt context outwards past applications and cases, as
-- long as this is a non-scoping tick, to let case and application
-- optimisations apply.
simplTick :: SimplEnv -> Tickish Id -> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplTick env tickish expr cont
-- A scoped tick turns into a continuation, so that we can spot
-- (scc t (\x . e)) in simplLam and eliminate the scc. If we didn't do
-- it this way, then it would take two passes of the simplifier to
-- reduce ((scc t (\x . e)) e').
-- NB, don't do this with counting ticks, because if the expr is
-- bottom, then rebuildCall will discard the continuation.
-- XXX: we cannot do this, because the simplifier assumes that
-- the context can be pushed into a case with a single branch. e.g.
-- scc<f> case expensive of p -> e
-- becomes
-- case expensive of p -> scc<f> e
--
-- So I'm disabling this for now. It just means we will do more
-- simplifier iterations that necessary in some cases.
-- | tickishScoped tickish && not (tickishCounts tickish)
-- = simplExprF env expr (TickIt tickish cont)
-- For unscoped or soft-scoped ticks, we are allowed to float in new
-- cost, so we simply push the continuation inside the tick. This
-- has the effect of moving the tick to the outside of a case or
-- application context, allowing the normal case and application
-- optimisations to fire.
| tickish `tickishScopesLike` SoftScope
= do { (floats, expr') <- simplExprF env expr cont
; return (floats, mkTick tickish expr')
}
-- Push tick inside if the context looks like this will allow us to
-- do a case-of-case - see Note [case-of-scc-of-case]
| Select {} <- cont, Just expr' <- push_tick_inside
= simplExprF env expr' cont
-- We don't want to move the tick, but we might still want to allow
-- floats to pass through with appropriate wrapping (or not, see
-- wrap_floats below)
--- | not (tickishCounts tickish) || tickishCanSplit tickish
-- = wrap_floats
| otherwise
= no_floating_past_tick
where
-- Try to push tick inside a case, see Note [case-of-scc-of-case].
push_tick_inside =
case expr0 of
Case scrut bndr ty alts
-> Just $ Case (tickScrut scrut) bndr ty (map tickAlt alts)
_other -> Nothing
where (ticks, expr0) = stripTicksTop movable (Tick tickish expr)
movable t = not (tickishCounts t) ||
t `tickishScopesLike` NoScope ||
tickishCanSplit t
tickScrut e = foldr mkTick e ticks
-- Alternatives get annotated with all ticks that scope in some way,
-- but we don't want to count entries.
tickAlt (c,bs,e) = (c,bs, foldr mkTick e ts_scope)
ts_scope = map mkNoCount $
filter (not . (`tickishScopesLike` NoScope)) ticks
no_floating_past_tick =
do { let (inc,outc) = splitCont cont
; (floats, expr1) <- simplExprF env expr inc
; let expr2 = wrapFloats floats expr1
tickish' = simplTickish env tickish
; rebuild env (mkTick tickish' expr2) outc
}
-- Alternative version that wraps outgoing floats with the tick. This
-- results in ticks being duplicated, as we don't make any attempt to
-- eliminate the tick if we re-inline the binding (because the tick
-- semantics allows unrestricted inlining of HNFs), so I'm not doing
-- this any more. FloatOut will catch any real opportunities for
-- floating.
--
-- wrap_floats =
-- do { let (inc,outc) = splitCont cont
-- ; (env', expr') <- simplExprF (zapFloats env) expr inc
-- ; let tickish' = simplTickish env tickish
-- ; let wrap_float (b,rhs) = (zapIdStrictness (setIdArity b 0),
-- mkTick (mkNoCount tickish') rhs)
-- -- when wrapping a float with mkTick, we better zap the Id's
-- -- strictness info and arity, because it might be wrong now.
-- ; let env'' = addFloats env (mapFloats env' wrap_float)
-- ; rebuild env'' expr' (TickIt tickish' outc)
-- }
simplTickish env tickish
| Breakpoint n ids <- tickish
= Breakpoint n (map (getDoneId . substId env) ids)
| otherwise = tickish
-- Push type application and coercion inside a tick
splitCont :: SimplCont -> (SimplCont, SimplCont)
splitCont cont@(ApplyToTy { sc_cont = tail }) = (cont { sc_cont = inc }, outc)
where (inc,outc) = splitCont tail
splitCont (CastIt co c) = (CastIt co inc, outc)
where (inc,outc) = splitCont c
splitCont other = (mkBoringStop (contHoleType other), other)
getDoneId (DoneId id) = id
getDoneId (DoneEx e _) = getIdFromTrivialExpr e -- Note [substTickish] in CoreSubst
getDoneId other = pprPanic "getDoneId" (ppr other)
-- Note [case-of-scc-of-case]
-- It's pretty important to be able to transform case-of-case when
-- there's an SCC in the way. For example, the following comes up
-- in nofib/real/compress/Encode.hs:
--
-- case scctick<code_string.r1>
-- case $wcode_string_r13s wild_XC w1_s137 w2_s138 l_aje
-- of _ { (# ww1_s13f, ww2_s13g, ww3_s13h #) ->
-- (ww1_s13f, ww2_s13g, ww3_s13h)
-- }
-- of _ { (ww_s12Y, ww1_s12Z, ww2_s130) ->
-- tick<code_string.f1>
-- (ww_s12Y,
-- ww1_s12Z,
-- PTTrees.PT
-- @ GHC.Types.Char @ GHC.Types.Int wild2_Xj ww2_s130 r_ajf)
-- }
--
-- We really want this case-of-case to fire, because then the 3-tuple
-- will go away (indeed, the CPR optimisation is relying on this
-- happening). But the scctick is in the way - we need to push it
-- inside to expose the case-of-case. So we perform this
-- transformation on the inner case:
--
-- scctick c (case e of { p1 -> e1; ...; pn -> en })
-- ==>
-- case (scctick c e) of { p1 -> scc c e1; ...; pn -> scc c en }
--
-- So we've moved a constant amount of work out of the scc to expose
-- the case. We only do this when the continuation is interesting: in
-- for now, it has to be another Case (maybe generalise this later).
{-
************************************************************************
* *
\subsection{The main rebuilder}
* *
************************************************************************
-}
rebuild :: SimplEnv -> OutExpr -> SimplCont -> SimplM (SimplFloats, OutExpr)
-- At this point the substitution in the SimplEnv should be irrelevant;
-- only the in-scope set matters
rebuild env expr cont
= case cont of
Stop {} -> return (emptyFloats env, expr)
TickIt t cont -> rebuild env (mkTick t expr) cont
CastIt co cont -> rebuild env (mkCast expr co) cont
-- NB: mkCast implements the (Coercion co |> g) optimisation
Select { sc_bndr = bndr, sc_alts = alts, sc_env = se, sc_cont = cont }
-> rebuildCase (se `setInScopeFromE` env) expr bndr alts cont
StrictArg { sc_fun = fun, sc_cont = cont }
-> rebuildCall env (fun `addValArgTo` expr) cont
StrictBind { sc_bndr = b, sc_bndrs = bs, sc_body = body
, sc_env = se, sc_cont = cont }
-> do { (floats1, env') <- simplNonRecX (se `setInScopeFromE` env) b expr
-- expr satisfies let/app since it started life
-- in a call to simplNonRecE
; (floats2, expr') <- simplLam env' bs body cont
; return (floats1 `addFloats` floats2, expr') }
ApplyToTy { sc_arg_ty = ty, sc_cont = cont}
-> rebuild env (App expr (Type ty)) cont
ApplyToVal { sc_arg = arg, sc_env = se, sc_dup = dup_flag, sc_cont = cont}
-- See Note [Avoid redundant simplification]
-> do { (_, _, arg') <- simplArg env dup_flag se arg
; rebuild env (App expr arg') cont }
{-
************************************************************************
* *
\subsection{Lambdas}
* *
************************************************************************
-}
{- Note [Optimising reflexivity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's important (for compiler performance) to get rid of reflexivity as soon
as it appears. See Trac #11735, #14737, and #15019.
In particular, we want to behave well on
* e |> co1 |> co2
where the two happen to cancel out entirely. That is quite common;
e.g. a newtype wrapping and unwrapping cancel.
* (f |> co) @t1 @t2 ... @tn x1 .. xm
Here we wil use pushCoTyArg and pushCoValArg successively, which
build up NthCo stacks. Silly to do that if co is reflexive.
However, we don't want to call isReflexiveCo too much, because it uses
type equality which is expensive on big types (Trac #14737 comment:7).
A good compromise (determined experimentally) seems to be to call
isReflexiveCo
* when composing casts, and
* at the end
In investigating this I saw missed opportunities for on-the-fly
coercion shrinkage. See Trac #15090.
-}
simplCast :: SimplEnv -> InExpr -> Coercion -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplCast env body co0 cont0
= do { co1 <- {-#SCC "simplCast-simplCoercion" #-} simplCoercion env co0
; cont1 <- {-#SCC "simplCast-addCoerce" #-}
if isReflCo co1
then return cont0 -- See Note [Optimising reflexivity]
else addCoerce co1 cont0
; {-#SCC "simplCast-simplExprF" #-} simplExprF env body cont1 }
where
-- If the first parameter is MRefl, then simplifying revealed a
-- reflexive coercion. Omit.
addCoerceM :: MOutCoercion -> SimplCont -> SimplM SimplCont
addCoerceM MRefl cont = return cont
addCoerceM (MCo co) cont = addCoerce co cont
addCoerce :: OutCoercion -> SimplCont -> SimplM SimplCont
addCoerce co1 (CastIt co2 cont) -- See Note [Optimising reflexivity]
| isReflexiveCo co' = return cont
| otherwise = addCoerce co' cont
where
co' = mkTransCo co1 co2
addCoerce co cont@(ApplyToTy { sc_arg_ty = arg_ty, sc_cont = tail })
| Just (arg_ty', m_co') <- pushCoTyArg co arg_ty
= {-#SCC "addCoerce-pushCoTyArg" #-}
do { tail' <- addCoerceM m_co' tail
; return (cont { sc_arg_ty = arg_ty', sc_cont = tail' }) }
addCoerce co cont@(ApplyToVal { sc_arg = arg, sc_env = arg_se
, sc_dup = dup, sc_cont = tail })
| Just (co1, m_co2) <- pushCoValArg co
, Pair _ new_ty <- coercionKind co1
, not (isTypeLevPoly new_ty) -- Without this check, we get a lev-poly arg
-- See Note [Levity polymorphism invariants] in CoreSyn
-- test: typecheck/should_run/EtaExpandLevPoly
= {-#SCC "addCoerce-pushCoValArg" #-}
do { tail' <- addCoerceM m_co2 tail
; if isReflCo co1
then return (cont { sc_cont = tail' })
-- Avoid simplifying if possible;
-- See Note [Avoiding exponential behaviour]
else do
{ (dup', arg_se', arg') <- simplArg env dup arg_se arg
-- When we build the ApplyTo we can't mix the OutCoercion
-- 'co' with the InExpr 'arg', so we simplify
-- to make it all consistent. It's a bit messy.
-- But it isn't a common case.
-- Example of use: Trac #995
; return (ApplyToVal { sc_arg = mkCast arg' co1
, sc_env = arg_se'
, sc_dup = dup'
, sc_cont = tail' }) } }
addCoerce co cont
| isReflexiveCo co = return cont -- Having this at the end makes a huge
-- difference in T12227, for some reason
-- See Note [Optimising reflexivity]
| otherwise = return (CastIt co cont)
simplArg :: SimplEnv -> DupFlag -> StaticEnv -> CoreExpr
-> SimplM (DupFlag, StaticEnv, OutExpr)
simplArg env dup_flag arg_env arg
| isSimplified dup_flag
= return (dup_flag, arg_env, arg)
| otherwise
= do { arg' <- simplExpr (arg_env `setInScopeFromE` env) arg
; return (Simplified, zapSubstEnv arg_env, arg') }
{-
************************************************************************
* *
\subsection{Lambdas}
* *
************************************************************************
-}
simplLam :: SimplEnv -> [InId] -> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplLam env [] body cont
= simplExprF env body cont
simplLam env (bndr:bndrs) body (ApplyToTy { sc_arg_ty = arg_ty, sc_cont = cont })
= do { tick (BetaReduction bndr)
; simplLam (extendTvSubst env bndr arg_ty) bndrs body cont }
simplLam env (bndr:bndrs) body (ApplyToVal { sc_arg = arg, sc_env = arg_se
, sc_cont = cont, sc_dup = dup })
| isSimplified dup -- Don't re-simplify if we've simplified it once
-- See Note [Avoiding exponential behaviour]
= do { tick (BetaReduction bndr)
; (floats1, env') <- simplNonRecX env zapped_bndr arg
; (floats2, expr') <- simplLam env' bndrs body cont
; return (floats1 `addFloats` floats2, expr') }
| otherwise
= do { tick (BetaReduction bndr)
; simplNonRecE env zapped_bndr (arg, arg_se) (bndrs, body) cont }
where
zapped_bndr -- See Note [Zap unfolding when beta-reducing]
| isId bndr = zapStableUnfolding bndr
| otherwise = bndr
-- Discard a non-counting tick on a lambda. This may change the
-- cost attribution slightly (moving the allocation of the
-- lambda elsewhere), but we don't care: optimisation changes
-- cost attribution all the time.
simplLam env bndrs body (TickIt tickish cont)
| not (tickishCounts tickish)
= simplLam env bndrs body cont
-- Not enough args, so there are real lambdas left to put in the result
simplLam env bndrs body cont
= do { (env', bndrs') <- simplLamBndrs env bndrs
; body' <- simplExpr env' body
; new_lam <- mkLam env bndrs' body' cont
; rebuild env' new_lam cont }
-------------
simplLamBndr :: SimplEnv -> InBndr -> SimplM (SimplEnv, OutBndr)
-- Used for lambda binders. These sometimes have unfoldings added by
-- the worker/wrapper pass that must be preserved, because they can't
-- be reconstructed from context. For example:
-- f x = case x of (a,b) -> fw a b x
-- fw a b x{=(a,b)} = ...
-- The "{=(a,b)}" is an unfolding we can't reconstruct otherwise.
simplLamBndr env bndr
| isId bndr && isFragileUnfolding old_unf -- Special case
= do { (env1, bndr1) <- simplBinder env bndr
; unf' <- simplStableUnfolding env1 NotTopLevel Nothing bndr
old_unf (idType bndr1)
; let bndr2 = bndr1 `setIdUnfolding` unf'
; return (modifyInScope env1 bndr2, bndr2) }
| otherwise
= simplBinder env bndr -- Normal case
where
old_unf = idUnfolding bndr
simplLamBndrs :: SimplEnv -> [InBndr] -> SimplM (SimplEnv, [OutBndr])
simplLamBndrs env bndrs = mapAccumLM simplLamBndr env bndrs
------------------
simplNonRecE :: SimplEnv
-> InId -- The binder, always an Id
-- Never a join point
-> (InExpr, SimplEnv) -- Rhs of binding (or arg of lambda)
-> ([InBndr], InExpr) -- Body of the let/lambda
-- \xs.e
-> SimplCont
-> SimplM (SimplFloats, OutExpr)
-- simplNonRecE is used for
-- * non-top-level non-recursive non-join-point lets in expressions
-- * beta reduction
--
-- simplNonRec env b (rhs, rhs_se) (bs, body) k
-- = let env in
-- cont< let b = rhs_se(rhs) in \bs.body >
--
-- It deals with strict bindings, via the StrictBind continuation,
-- which may abort the whole process
--
-- Precondition: rhs satisfies the let/app invariant
-- Note [CoreSyn let/app invariant] in CoreSyn
--
-- The "body" of the binding comes as a pair of ([InId],InExpr)
-- representing a lambda; so we recurse back to simplLam
-- Why? Because of the binder-occ-info-zapping done before
-- the call to simplLam in simplExprF (Lam ...)
simplNonRecE env bndr (rhs, rhs_se) (bndrs, body) cont
| ASSERT( isId bndr && not (isJoinId bndr) ) True
, Just env' <- preInlineUnconditionally env NotTopLevel bndr rhs rhs_se
= do { tick (PreInlineUnconditionally bndr)
; -- pprTrace "preInlineUncond" (ppr bndr <+> ppr rhs) $
simplLam env' bndrs body cont }
-- Deal with strict bindings
| isStrictId bndr -- Includes coercions
, sm_case_case (getMode env)
= simplExprF (rhs_se `setInScopeFromE` env) rhs
(StrictBind { sc_bndr = bndr, sc_bndrs = bndrs, sc_body = body
, sc_env = env, sc_cont = cont, sc_dup = NoDup })
-- Deal with lazy bindings
| otherwise
= ASSERT( not (isTyVar bndr) )
do { (env1, bndr1) <- simplNonRecBndr env bndr
; (env2, bndr2) <- addBndrRules env1 bndr bndr1 Nothing
; (floats1, env3) <- simplLazyBind env2 NotTopLevel NonRecursive bndr bndr2 rhs rhs_se
; (floats2, expr') <- simplLam env3 bndrs body cont
; return (floats1 `addFloats` floats2, expr') }
------------------
simplRecE :: SimplEnv
-> [(InId, InExpr)]
-> InExpr
-> SimplCont
-> SimplM (SimplFloats, OutExpr)
-- simplRecE is used for
-- * non-top-level recursive lets in expressions
simplRecE env pairs body cont
= do { let bndrs = map fst pairs
; MASSERT(all (not . isJoinId) bndrs)
; env1 <- simplRecBndrs env bndrs
-- NB: bndrs' don't have unfoldings or rules
-- We add them as we go down
; (floats1, env2) <- simplRecBind env1 NotTopLevel Nothing pairs
; (floats2, expr') <- simplExprF env2 body cont
; return (floats1 `addFloats` floats2, expr') }
{- Note [Avoiding exponential behaviour]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
One way in which we can get exponential behaviour is if we simplify a
big expression, and the re-simplify it -- and then this happens in a
deeply-nested way. So we must be jolly careful about re-simplifying
an expression. That is why completeNonRecX does not try
preInlineUnconditionally.
Example:
f BIG, where f has a RULE
Then
* We simplify BIG before trying the rule; but the rule does not fire
* We inline f = \x. x True
* So if we did preInlineUnconditionally we'd re-simplify (BIG True)
However, if BIG has /not/ already been simplified, we'd /like/ to
simplify BIG True; maybe good things happen. That is why
* simplLam has
- a case for (isSimplified dup), which goes via simplNonRecX, and
- a case for the un-simplified case, which goes via simplNonRecE
* We go to some efforts to avoid unnecessarily simplifying ApplyToVal,
in at least two places
- In simplCast/addCoerce, where we check for isReflCo
- In rebuildCall we avoid simplifying arguments before we have to
(see Note [Trying rewrite rules])
Note [Zap unfolding when beta-reducing]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Lambda-bound variables can have stable unfoldings, such as
$j = \x. \b{Unf=Just x}. e
See Note [Case binders and join points] below; the unfolding for lets
us optimise e better. However when we beta-reduce it we want to
revert to using the actual value, otherwise we can end up in the
stupid situation of
let x = blah in
let b{Unf=Just x} = y
in ...b...
Here it'd be far better to drop the unfolding and use the actual RHS.
************************************************************************
* *
Join points
* *
********************************************************************* -}
{- Note [Rules and unfolding for join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
simplExpr (join j x = rhs ) cont
( {- RULE j (p:ps) = blah -} )
( {- StableUnfolding j = blah -} )
(in blah )
Then we will push 'cont' into the rhs of 'j'. But we should *also* push
'cont' into the RHS of
* Any RULEs for j, e.g. generated by SpecConstr
* Any stable unfolding for j, e.g. the result of an INLINE pragma
Simplifying rules and stable-unfoldings happens a bit after
simplifying the right-hand side, so we remember whether or not it
is a join point, and what 'cont' is, in a value of type MaybeJoinCont
Trac #13900 wsa caused by forgetting to push 'cont' into the RHS
of a SpecConstr-generated RULE for a join point.
-}
type MaybeJoinCont = Maybe SimplCont
-- Nothing => Not a join point
-- Just k => This is a join binding with continuation k
-- See Note [Rules and unfolding for join points]
simplNonRecJoinPoint :: SimplEnv -> InId -> InExpr
-> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplNonRecJoinPoint env bndr rhs body cont
| ASSERT( isJoinId bndr ) True
, Just env' <- preInlineUnconditionally env NotTopLevel bndr rhs env
= do { tick (PreInlineUnconditionally bndr)
; simplExprF env' body cont }
| otherwise
= wrapJoinCont env cont $ \ env cont ->
do { -- We push join_cont into the join RHS and the body;
-- and wrap wrap_cont around the whole thing
; let res_ty = contResultType cont
; (env1, bndr1) <- simplNonRecJoinBndr env res_ty bndr
; (env2, bndr2) <- addBndrRules env1 bndr bndr1 (Just cont)
; (floats1, env3) <- simplJoinBind env2 cont bndr bndr2 rhs env
; (floats2, body') <- simplExprF env3 body cont
; return (floats1 `addFloats` floats2, body') }
------------------
simplRecJoinPoint :: SimplEnv -> [(InId, InExpr)]
-> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplRecJoinPoint env pairs body cont
= wrapJoinCont env cont $ \ env cont ->
do { let bndrs = map fst pairs
res_ty = contResultType cont
; env1 <- simplRecJoinBndrs env res_ty bndrs
-- NB: bndrs' don't have unfoldings or rules
-- We add them as we go down
; (floats1, env2) <- simplRecBind env1 NotTopLevel (Just cont) pairs
; (floats2, body') <- simplExprF env2 body cont
; return (floats1 `addFloats` floats2, body') }
--------------------
wrapJoinCont :: SimplEnv -> SimplCont
-> (SimplEnv -> SimplCont -> SimplM (SimplFloats, OutExpr))
-> SimplM (SimplFloats, OutExpr)
-- Deal with making the continuation duplicable if necessary,
-- and with the no-case-of-case situation.
wrapJoinCont env cont thing_inside
| contIsStop cont -- Common case; no need for fancy footwork
= thing_inside env cont
| not (sm_case_case (getMode env))
-- See Note [Join points wih -fno-case-of-case]
= do { (floats1, expr1) <- thing_inside env (mkBoringStop (contHoleType cont))
; let (floats2, expr2) = wrapJoinFloatsX floats1 expr1
; (floats3, expr3) <- rebuild (env `setInScopeFromF` floats2) expr2 cont
; return (floats2 `addFloats` floats3, expr3) }
| otherwise
-- Normal case; see Note [Join points and case-of-case]
= do { (floats1, cont') <- mkDupableCont env cont
; (floats2, result) <- thing_inside (env `setInScopeFromF` floats1) cont'
; return (floats1 `addFloats` floats2, result) }
--------------------
trimJoinCont :: Id -> Maybe JoinArity -> SimplCont -> SimplCont
-- Drop outer context from join point invocation (jump)
-- See Note [Join points and case-of-case]
trimJoinCont _ Nothing cont
= cont -- Not a jump
trimJoinCont var (Just arity) cont
= trim arity cont
where
trim 0 cont@(Stop {})
= cont
trim 0 cont
= mkBoringStop (contResultType cont)
trim n cont@(ApplyToVal { sc_cont = k })
= cont { sc_cont = trim (n-1) k }
trim n cont@(ApplyToTy { sc_cont = k })
= cont { sc_cont = trim (n-1) k } -- join arity counts types!
trim _ cont
= pprPanic "completeCall" $ ppr var $$ ppr cont
{- Note [Join points and case-of-case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we perform the case-of-case transform (or otherwise push continuations
inward), we want to treat join points specially. Since they're always
tail-called and we want to maintain this invariant, we can do this (for any
evaluation context E):
E[join j = e
in case ... of
A -> jump j 1
B -> jump j 2
C -> f 3]
-->
join j = E[e]
in case ... of
A -> jump j 1
B -> jump j 2
C -> E[f 3]
As is evident from the example, there are two components to this behavior:
1. When entering the RHS of a join point, copy the context inside.
2. When a join point is invoked, discard the outer context.
We need to be very careful here to remain consistent---neither part is
optional!
We need do make the continuation E duplicable (since we are duplicating it)
with mkDuableCont.
Note [Join points wih -fno-case-of-case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Supose case-of-case is switched off, and we are simplifying
case (join j x = <j-rhs> in
case y of
A -> j 1
B -> j 2
C -> e) of <outer-alts>
Usually, we'd push the outer continuation (case . of <outer-alts>) into
both the RHS and the body of the join point j. But since we aren't doing
case-of-case we may then end up with this totally bogus result
join x = case <j-rhs> of <outer-alts> in
case (case y of
A -> j 1
B -> j 2
C -> e) of <outer-alts>
This would be OK in the language of the paper, but not in GHC: j is no longer
a join point. We can only do the "push contination into the RHS of the
join point j" if we also push the contination right down to the /jumps/ to
j, so that it can evaporate there. If we are doing case-of-case, we'll get to
join x = case <j-rhs> of <outer-alts> in
case y of
A -> j 1
B -> j 2
C -> case e of <outer-alts>
which is great.
Bottom line: if case-of-case is off, we must stop pushing the continuation
inwards altogether at any join point. Instead simplify the (join ... in ...)
with a Stop continuation, and wrap the original continuation around the
outside. Surprisingly tricky!
************************************************************************
* *
Variables
* *
************************************************************************
-}
simplVar :: SimplEnv -> InVar -> SimplM OutExpr
-- Look up an InVar in the environment
simplVar env var
| isTyVar var = return (Type (substTyVar env var))
| isCoVar var = return (Coercion (substCoVar env var))
| otherwise
= case substId env var of
ContEx tvs cvs ids e -> simplExpr (setSubstEnv env tvs cvs ids) e
DoneId var1 -> return (Var var1)
DoneEx e _ -> return e
simplIdF :: SimplEnv -> InId -> SimplCont -> SimplM (SimplFloats, OutExpr)
simplIdF env var cont
= case substId env var of
ContEx tvs cvs ids e -> simplExprF (setSubstEnv env tvs cvs ids) e cont
-- Don't trim; haven't already simplified e,
-- so the cont is not embodied in e
DoneId var1 -> completeCall env var1 (trimJoinCont var (isJoinId_maybe var1) cont)
DoneEx e mb_join -> simplExprF (zapSubstEnv env) e (trimJoinCont var mb_join cont)
-- Note [zapSubstEnv]
-- The template is already simplified, so don't re-substitute.
-- This is VITAL. Consider
-- let x = e in
-- let y = \z -> ...x... in
-- \ x -> ...y...
-- We'll clone the inner \x, adding x->x' in the id_subst
-- Then when we inline y, we must *not* replace x by x' in
-- the inlined copy!!
---------------------------------------------------------
-- Dealing with a call site
completeCall :: SimplEnv -> OutId -> SimplCont -> SimplM (SimplFloats, OutExpr)
completeCall env var cont
| Just expr <- callSiteInline dflags var active_unf
lone_variable arg_infos interesting_cont
-- Inline the variable's RHS
= do { checkedTick (UnfoldingDone var)
; dump_inline expr cont
; simplExprF (zapSubstEnv env) expr cont }
| otherwise
-- Don't inline; instead rebuild the call
= do { rule_base <- getSimplRules
; let info = mkArgInfo env var (getRules rule_base var)
n_val_args call_cont
; rebuildCall env info cont }
where
dflags = seDynFlags env
(lone_variable, arg_infos, call_cont) = contArgs cont
n_val_args = length arg_infos
interesting_cont = interestingCallContext env call_cont
active_unf = activeUnfolding (getMode env) var
dump_inline unfolding cont
| not (dopt Opt_D_dump_inlinings dflags) = return ()
| not (dopt Opt_D_verbose_core2core dflags)
= when (isExternalName (idName var)) $
liftIO $ printOutputForUser dflags alwaysQualify $
sep [text "Inlining done:", nest 4 (ppr var)]
| otherwise
= liftIO $ printOutputForUser dflags alwaysQualify $
sep [text "Inlining done: " <> ppr var,
nest 4 (vcat [text "Inlined fn: " <+> nest 2 (ppr unfolding),
text "Cont: " <+> ppr cont])]
rebuildCall :: SimplEnv
-> ArgInfo
-> SimplCont
-> SimplM (SimplFloats, OutExpr)
-- We decided not to inline, so
-- - simplify the arguments
-- - try rewrite rules
-- - and rebuild
---------- Bottoming applications --------------
rebuildCall env (ArgInfo { ai_fun = fun, ai_args = rev_args, ai_strs = [] }) cont
-- When we run out of strictness args, it means
-- that the call is definitely bottom; see SimplUtils.mkArgInfo
-- Then we want to discard the entire strict continuation. E.g.
-- * case (error "hello") of { ... }
-- * (error "Hello") arg
-- * f (error "Hello") where f is strict
-- etc
-- Then, especially in the first of these cases, we'd like to discard
-- the continuation, leaving just the bottoming expression. But the
-- type might not be right, so we may have to add a coerce.
| not (contIsTrivial cont) -- Only do this if there is a non-trivial
-- continuation to discard, else we do it
-- again and again!
= seqType cont_ty `seq` -- See Note [Avoiding space leaks in OutType]
return (emptyFloats env, castBottomExpr res cont_ty)
where
res = argInfoExpr fun rev_args
cont_ty = contResultType cont
---------- Try rewrite RULES --------------
-- See Note [Trying rewrite rules]
rebuildCall env info@(ArgInfo { ai_fun = fun, ai_args = rev_args
, ai_rules = Just (nr_wanted, rules) }) cont
| nr_wanted == 0 || no_more_args
, let info' = info { ai_rules = Nothing }
= -- We've accumulated a simplified call in <fun,rev_args>
-- so try rewrite rules; see Note [RULEs apply to simplified arguments]
-- See also Note [Rules for recursive functions]
do { mb_match <- tryRules env rules fun (reverse rev_args) cont
; case mb_match of
Just (env', rhs, cont') -> simplExprF env' rhs cont'
Nothing -> rebuildCall env info' cont }
where
no_more_args = case cont of
ApplyToTy {} -> False
ApplyToVal {} -> False
_ -> True
---------- Simplify applications and casts --------------
rebuildCall env info (CastIt co cont)
= rebuildCall env (addCastTo info co) cont
rebuildCall env info (ApplyToTy { sc_arg_ty = arg_ty, sc_cont = cont })
= rebuildCall env (addTyArgTo info arg_ty) cont
rebuildCall env info@(ArgInfo { ai_encl = encl_rules, ai_type = fun_ty
, ai_strs = str:strs, ai_discs = disc:discs })
(ApplyToVal { sc_arg = arg, sc_env = arg_se
, sc_dup = dup_flag, sc_cont = cont })
| isSimplified dup_flag -- See Note [Avoid redundant simplification]
= rebuildCall env (addValArgTo info' arg) cont
| str -- Strict argument
, sm_case_case (getMode env)
= -- pprTrace "Strict Arg" (ppr arg $$ ppr (seIdSubst env) $$ ppr (seInScope env)) $
simplExprF (arg_se `setInScopeFromE` env) arg
(StrictArg { sc_fun = info', sc_cci = cci_strict
, sc_dup = Simplified, sc_cont = cont })
-- Note [Shadowing]
| otherwise -- Lazy argument
-- DO NOT float anything outside, hence simplExprC
-- There is no benefit (unlike in a let-binding), and we'd
-- have to be very careful about bogus strictness through
-- floating a demanded let.
= do { arg' <- simplExprC (arg_se `setInScopeFromE` env) arg
(mkLazyArgStop arg_ty cci_lazy)
; rebuildCall env (addValArgTo info' arg') cont }
where
info' = info { ai_strs = strs, ai_discs = discs }
arg_ty = funArgTy fun_ty
-- Use this for lazy arguments
cci_lazy | encl_rules = RuleArgCtxt
| disc > 0 = DiscArgCtxt -- Be keener here
| otherwise = BoringCtxt -- Nothing interesting
-- ..and this for strict arguments
cci_strict | encl_rules = RuleArgCtxt
| disc > 0 = DiscArgCtxt
| otherwise = RhsCtxt
-- Why RhsCtxt? if we see f (g x) (h x), and f is strict, we
-- want to be a bit more eager to inline g, because it may
-- expose an eval (on x perhaps) that can be eliminated or
-- shared. I saw this in nofib 'boyer2', RewriteFuns.onewayunify1
-- It's worth an 18% improvement in allocation for this
-- particular benchmark; 5% on 'mate' and 1.3% on 'multiplier'
---------- No further useful info, revert to generic rebuild ------------
rebuildCall env (ArgInfo { ai_fun = fun, ai_args = rev_args }) cont
= rebuild env (argInfoExpr fun rev_args) cont
{- Note [Trying rewrite rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider an application (f e1 e2 e3) where the e1,e2,e3 are not yet
simplified. We want to simplify enough arguments to allow the rules
to apply, but it's more efficient to avoid simplifying e2,e3 if e1 alone
is sufficient. Example: class ops
(+) dNumInt e2 e3
If we rewrite ((+) dNumInt) to plusInt, we can take advantage of the
latter's strictness when simplifying e2, e3. Moreover, suppose we have
RULE f Int = \x. x True
Then given (f Int e1) we rewrite to
(\x. x True) e1
without simplifying e1. Now we can inline x into its unique call site,
and absorb the True into it all in the same pass. If we simplified
e1 first, we couldn't do that; see Note [Avoiding exponential behaviour].
So we try to apply rules if either
(a) no_more_args: we've run out of argument that the rules can "see"
(b) nr_wanted: none of the rules wants any more arguments
Note [RULES apply to simplified arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's very desirable to try RULES once the arguments have been simplified, because
doing so ensures that rule cascades work in one pass. Consider
{-# RULES g (h x) = k x
f (k x) = x #-}
...f (g (h x))...
Then we want to rewrite (g (h x)) to (k x) and only then try f's rules. If
we match f's rules against the un-simplified RHS, it won't match. This
makes a particularly big difference when superclass selectors are involved:
op ($p1 ($p2 (df d)))
We want all this to unravel in one sweep.
Note [Avoid redundant simplification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because RULES apply to simplified arguments, there's a danger of repeatedly
simplifying already-simplified arguments. An important example is that of
(>>=) d e1 e2
Here e1, e2 are simplified before the rule is applied, but don't really
participate in the rule firing. So we mark them as Simplified to avoid
re-simplifying them.
Note [Shadowing]
~~~~~~~~~~~~~~~~
This part of the simplifier may break the no-shadowing invariant
Consider
f (...(\a -> e)...) (case y of (a,b) -> e')
where f is strict in its second arg
If we simplify the innermost one first we get (...(\a -> e)...)
Simplifying the second arg makes us float the case out, so we end up with
case y of (a,b) -> f (...(\a -> e)...) e'
So the output does not have the no-shadowing invariant. However, there is
no danger of getting name-capture, because when the first arg was simplified
we used an in-scope set that at least mentioned all the variables free in its
static environment, and that is enough.
We can't just do innermost first, or we'd end up with a dual problem:
case x of (a,b) -> f e (...(\a -> e')...)
I spent hours trying to recover the no-shadowing invariant, but I just could
not think of an elegant way to do it. The simplifier is already knee-deep in
continuations. We have to keep the right in-scope set around; AND we have
to get the effect that finding (error "foo") in a strict arg position will
discard the entire application and replace it with (error "foo"). Getting
all this at once is TOO HARD!
************************************************************************
* *
Rewrite rules
* *
************************************************************************
-}
tryRules :: SimplEnv -> [CoreRule]
-> Id -> [ArgSpec]
-> SimplCont
-> SimplM (Maybe (SimplEnv, CoreExpr, SimplCont))
tryRules env rules fn args call_cont
| null rules
= return Nothing
{- Disabled until we fix #8326
| fn `hasKey` tagToEnumKey -- See Note [Optimising tagToEnum#]
, [_type_arg, val_arg] <- args
, Select dup bndr ((_,[],rhs1) : rest_alts) se cont <- call_cont
, isDeadBinder bndr
= do { let enum_to_tag :: CoreAlt -> CoreAlt
-- Takes K -> e into tagK# -> e
-- where tagK# is the tag of constructor K
enum_to_tag (DataAlt con, [], rhs)
= ASSERT( isEnumerationTyCon (dataConTyCon con) )
(LitAlt tag, [], rhs)
where
tag = mkMachInt dflags (toInteger (dataConTag con - fIRST_TAG))
enum_to_tag alt = pprPanic "tryRules: tagToEnum" (ppr alt)
new_alts = (DEFAULT, [], rhs1) : map enum_to_tag rest_alts
new_bndr = setIdType bndr intPrimTy
-- The binder is dead, but should have the right type
; return (Just (val_arg, Select dup new_bndr new_alts se cont)) }
-}
| Just (rule, rule_rhs) <- lookupRule dflags (getUnfoldingInRuleMatch env)
(activeRule (getMode env)) fn
(argInfoAppArgs args) rules
-- Fire a rule for the function
= do { checkedTick (RuleFired (ruleName rule))
; let cont' = pushSimplifiedArgs zapped_env
(drop (ruleArity rule) args)
call_cont
-- (ruleArity rule) says how
-- many args the rule consumed
occ_anald_rhs = occurAnalyseExpr rule_rhs
-- See Note [Occurrence-analyse after rule firing]
; dump rule rule_rhs
; return (Just (zapped_env, occ_anald_rhs, cont')) }
-- The occ_anald_rhs and cont' are all Out things
-- hence zapping the environment
| otherwise -- No rule fires
= do { nodump -- This ensures that an empty file is written
; return Nothing }
where
dflags = seDynFlags env
zapped_env = zapSubstEnv env -- See Note [zapSubstEnv]
printRuleModule rule
= parens (maybe (text "BUILTIN")
(pprModuleName . moduleName)
(ruleModule rule))
dump rule rule_rhs
| dopt Opt_D_dump_rule_rewrites dflags
= log_rule dflags Opt_D_dump_rule_rewrites "Rule fired" $ vcat
[ text "Rule:" <+> ftext (ruleName rule)
, text "Module:" <+> printRuleModule rule
, text "Before:" <+> hang (ppr fn) 2 (sep (map ppr args))
, text "After: " <+> pprCoreExpr rule_rhs
, text "Cont: " <+> ppr call_cont ]
| dopt Opt_D_dump_rule_firings dflags
= log_rule dflags Opt_D_dump_rule_firings "Rule fired:" $
ftext (ruleName rule)
<+> printRuleModule rule
| otherwise
= return ()
nodump
| dopt Opt_D_dump_rule_rewrites dflags
= liftIO $ dumpSDoc dflags alwaysQualify Opt_D_dump_rule_rewrites "" empty
| dopt Opt_D_dump_rule_firings dflags
= liftIO $ dumpSDoc dflags alwaysQualify Opt_D_dump_rule_firings "" empty
| otherwise
= return ()
log_rule dflags flag hdr details
= liftIO . dumpSDoc dflags alwaysQualify flag "" $
sep [text hdr, nest 4 details]
trySeqRules :: SimplEnv
-> OutExpr -> InExpr -- Scrutinee and RHS
-> SimplCont
-> SimplM (Maybe (SimplEnv, CoreExpr, SimplCont))
-- See Note [User-defined RULES for seq]
trySeqRules in_env scrut rhs cont
= do { rule_base <- getSimplRules
; tryRules in_env (getRules rule_base seqId) seqId out_args rule_cont }
where
no_cast_scrut = drop_casts scrut
scrut_ty = exprType no_cast_scrut
seq_id_ty = idType seqId
rhs_ty = substTy in_env (exprType rhs)
out_args = [ TyArg { as_arg_ty = scrut_ty
, as_hole_ty = seq_id_ty }
, TyArg { as_arg_ty = rhs_ty
, as_hole_ty = piResultTy seq_id_ty scrut_ty }
, ValArg no_cast_scrut]
rule_cont = ApplyToVal { sc_dup = NoDup, sc_arg = rhs
, sc_env = in_env, sc_cont = cont }
-- Lazily evaluated, so we don't do most of this
drop_casts (Cast e _) = drop_casts e
drop_casts e = e
{- Note [User-defined RULES for seq]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given
case (scrut |> co) of _ -> rhs
look for rules that match the expression
seq @t1 @t2 scrut
where scrut :: t1
rhs :: t2
If you find a match, rewrite it, and apply to 'rhs'.
Notice that we can simply drop casts on the fly here, which
makes it more likely that a rule will match.
See Note [User-defined RULES for seq] in MkId.
Note [Occurrence-analyse after rule firing]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After firing a rule, we occurrence-analyse the instantiated RHS before
simplifying it. Usually this doesn't make much difference, but it can
be huge. Here's an example (simplCore/should_compile/T7785)
map f (map f (map f xs)
= -- Use build/fold form of map, twice
map f (build (\cn. foldr (mapFB c f) n
(build (\cn. foldr (mapFB c f) n xs))))
= -- Apply fold/build rule
map f (build (\cn. (\cn. foldr (mapFB c f) n xs) (mapFB c f) n))
= -- Beta-reduce
-- Alas we have no occurrence-analysed, so we don't know
-- that c is used exactly once
map f (build (\cn. let c1 = mapFB c f in
foldr (mapFB c1 f) n xs))
= -- Use mapFB rule: mapFB (mapFB c f) g = mapFB c (f.g)
-- We can do this because (mapFB c n) is a PAP and hence expandable
map f (build (\cn. let c1 = mapFB c n in
foldr (mapFB c (f.f)) n x))
This is not too bad. But now do the same with the outer map, and
we get another use of mapFB, and t can interact with /both/ remaining
mapFB calls in the above expression. This is stupid because actually
that 'c1' binding is dead. The outer map introduces another c2. If
there is a deep stack of maps we get lots of dead bindings, and lots
of redundant work as we repeatedly simplify the result of firing rules.
The easy thing to do is simply to occurrence analyse the result of
the rule firing. Note that this occ-anals not only the RHS of the
rule, but also the function arguments, which by now are OutExprs.
E.g.
RULE f (g x) = x+1
Call f (g BIG) --> (\x. x+1) BIG
The rule binders are lambda-bound and applied to the OutExpr arguments
(here BIG) which lack all internal occurrence info.
Is this inefficient? Not really: we are about to walk over the result
of the rule firing to simplify it, so occurrence analysis is at most
a constant factor.
Possible improvement: occ-anal the rules when putting them in the
database; and in the simplifier just occ-anal the OutExpr arguments.
But that's more complicated and the rule RHS is usually tiny; so I'm
just doing the simple thing.
Historical note: previously we did occ-anal the rules in Rule.hs,
but failed to occ-anal the OutExpr arguments, which led to the
nasty performance problem described above.
Note [Optimising tagToEnum#]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have an enumeration data type:
data Foo = A | B | C
Then we want to transform
case tagToEnum# x of ==> case x of
A -> e1 DEFAULT -> e1
B -> e2 1# -> e2
C -> e3 2# -> e3
thereby getting rid of the tagToEnum# altogether. If there was a DEFAULT
alternative we retain it (remember it comes first). If not the case must
be exhaustive, and we reflect that in the transformed version by adding
a DEFAULT. Otherwise Lint complains that the new case is not exhaustive.
See #8317.
Note [Rules for recursive functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You might think that we shouldn't apply rules for a loop breaker:
doing so might give rise to an infinite loop, because a RULE is
rather like an extra equation for the function:
RULE: f (g x) y = x+y
Eqn: f a y = a-y
But it's too drastic to disable rules for loop breakers.
Even the foldr/build rule would be disabled, because foldr
is recursive, and hence a loop breaker:
foldr k z (build g) = g k z
So it's up to the programmer: rules can cause divergence
************************************************************************
* *
Rebuilding a case expression
* *
************************************************************************
Note [Case elimination]
~~~~~~~~~~~~~~~~~~~~~~~
The case-elimination transformation discards redundant case expressions.
Start with a simple situation:
case x# of ===> let y# = x# in e
y# -> e
(when x#, y# are of primitive type, of course). We can't (in general)
do this for algebraic cases, because we might turn bottom into
non-bottom!
The code in SimplUtils.prepareAlts has the effect of generalise this
idea to look for a case where we're scrutinising a variable, and we
know that only the default case can match. For example:
case x of
0# -> ...
DEFAULT -> ...(case x of
0# -> ...
DEFAULT -> ...) ...
Here the inner case is first trimmed to have only one alternative, the
DEFAULT, after which it's an instance of the previous case. This
really only shows up in eliminating error-checking code.
Note that SimplUtils.mkCase combines identical RHSs. So
case e of ===> case e of DEFAULT -> r
True -> r
False -> r
Now again the case may be elminated by the CaseElim transformation.
This includes things like (==# a# b#)::Bool so that we simplify
case ==# a# b# of { True -> x; False -> x }
to just
x
This particular example shows up in default methods for
comparison operations (e.g. in (>=) for Int.Int32)
Note [Case to let transformation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If a case over a lifted type has a single alternative, and is being
used as a strict 'let' (all isDeadBinder bndrs), we may want to do
this transformation:
case e of r ===> let r = e in ...r...
_ -> ...r...
We treat the unlifted and lifted cases separately:
* Unlifted case: 'e' satisfies exprOkForSpeculation
(ok-for-spec is needed to satisfy the let/app invariant).
This turns case a +# b of r -> ...r...
into let r = a +# b in ...r...
and thence .....(a +# b)....
However, if we have
case indexArray# a i of r -> ...r...
we might like to do the same, and inline the (indexArray# a i).
But indexArray# is not okForSpeculation, so we don't build a let
in rebuildCase (lest it get floated *out*), so the inlining doesn't
happen either. Annoying.
* Lifted case: we need to be sure that the expression is already
evaluated (exprIsHNF). If it's not already evaluated
- we risk losing exceptions, divergence or
user-specified thunk-forcing
- even if 'e' is guaranteed to converge, we don't want to
create a thunk (call by need) instead of evaluating it
right away (call by value)
However, we can turn the case into a /strict/ let if the 'r' is
used strictly in the body. Then we won't lose divergence; and
we won't build a thunk because the let is strict.
See also Note [Eliminating redundant seqs]
NB: absentError satisfies exprIsHNF: see Note [aBSENT_ERROR_ID] in MkCore.
We want to turn
case (absentError "foo") of r -> ...MkT r...
into
let r = absentError "foo" in ...MkT r...
Note [Eliminating redundant seqs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have this:
case x of r { _ -> ..r.. }
where 'r' is used strictly in (..r..), the case is effectively a 'seq'
on 'x', but since 'r' is used strictly anyway, we can safely transform to
(...x...)
Note that this can change the error behaviour. For example, we might
transform
case x of { _ -> error "bad" }
--> error "bad"
which is might be puzzling if 'x' currently lambda-bound, but later gets
let-bound to (error "good").
Nevertheless, the paper "A semantics for imprecise exceptions" allows
this transformation. If you want to fix the evaluation order, use
'pseq'. See Trac #8900 for an example where the loss of this
transformation bit us in practice.
See also Note [Empty case alternatives] in CoreSyn.
Just for reference, the original code (added Jan 13) looked like this:
|| case_bndr_evald_next rhs
case_bndr_evald_next :: CoreExpr -> Bool
-- See Note [Case binder next]
case_bndr_evald_next (Var v) = v == case_bndr
case_bndr_evald_next (Cast e _) = case_bndr_evald_next e
case_bndr_evald_next (App e _) = case_bndr_evald_next e
case_bndr_evald_next (Case e _ _ _) = case_bndr_evald_next e
case_bndr_evald_next _ = False
(This came up when fixing Trac #7542. See also Note [Eta reduction of
an eval'd function] in CoreUtils.)
Further notes about case elimination
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider: test :: Integer -> IO ()
test = print
Turns out that this compiles to:
Print.test
= \ eta :: Integer
eta1 :: Void# ->
case PrelNum.< eta PrelNum.zeroInteger of wild { __DEFAULT ->
case hPutStr stdout
(PrelNum.jtos eta ($w[] @ Char))
eta1
of wild1 { (# new_s, a4 #) -> PrelIO.lvl23 new_s }}
Notice the strange '<' which has no effect at all. This is a funny one.
It started like this:
f x y = if x < 0 then jtos x
else if y==0 then "" else jtos x
At a particular call site we have (f v 1). So we inline to get
if v < 0 then jtos x
else if 1==0 then "" else jtos x
Now simplify the 1==0 conditional:
if v<0 then jtos v else jtos v
Now common-up the two branches of the case:
case (v<0) of DEFAULT -> jtos v
Why don't we drop the case? Because it's strict in v. It's technically
wrong to drop even unnecessary evaluations, and in practice they
may be a result of 'seq' so we *definitely* don't want to drop those.
I don't really know how to improve this situation.
-}
---------------------------------------------------------
-- Eliminate the case if possible
rebuildCase, reallyRebuildCase
:: SimplEnv
-> OutExpr -- Scrutinee
-> InId -- Case binder
-> [InAlt] -- Alternatives (inceasing order)
-> SimplCont
-> SimplM (SimplFloats, OutExpr)
--------------------------------------------------
-- 1. Eliminate the case if there's a known constructor
--------------------------------------------------
rebuildCase env scrut case_bndr alts cont
| Lit lit <- scrut -- No need for same treatment as constructors
-- because literals are inlined more vigorously
, not (litIsLifted lit)
= do { tick (KnownBranch case_bndr)
; case findAlt (LitAlt lit) alts of
Nothing -> missingAlt env case_bndr alts cont
Just (_, bs, rhs) -> simple_rhs bs rhs }
| Just (con, ty_args, other_args) <- exprIsConApp_maybe (getUnfoldingInRuleMatch env) scrut
-- Works when the scrutinee is a variable with a known unfolding
-- as well as when it's an explicit constructor application
= do { tick (KnownBranch case_bndr)
; case findAlt (DataAlt con) alts of
Nothing -> missingAlt env case_bndr alts cont
Just (DEFAULT, bs, rhs) -> simple_rhs bs rhs
Just (_, bs, rhs) -> knownCon env scrut con ty_args other_args
case_bndr bs rhs cont
}
where
simple_rhs bs rhs = ASSERT( null bs )
do { (floats1, env') <- simplNonRecX env case_bndr scrut
-- scrut is a constructor application,
-- hence satisfies let/app invariant
; (floats2, expr') <- simplExprF env' rhs cont
; return (floats1 `addFloats` floats2, expr') }
--------------------------------------------------
-- 2. Eliminate the case if scrutinee is evaluated
--------------------------------------------------
rebuildCase env scrut case_bndr alts@[(_, bndrs, rhs)] cont
-- See if we can get rid of the case altogether
-- See Note [Case elimination]
-- mkCase made sure that if all the alternatives are equal,
-- then there is now only one (DEFAULT) rhs
-- 2a. Dropping the case altogether, if
-- a) it binds nothing (so it's really just a 'seq')
-- b) evaluating the scrutinee has no side effects
| is_plain_seq
, exprOkForSideEffects scrut
-- The entire case is dead, so we can drop it
-- if the scrutinee converges without having imperative
-- side effects or raising a Haskell exception
-- See Note [PrimOp can_fail and has_side_effects] in PrimOp
= simplExprF env rhs cont
-- 2b. Turn the case into a let, if
-- a) it binds only the case-binder
-- b) unlifted case: the scrutinee is ok-for-speculation
-- lifted case: the scrutinee is in HNF (or will later be demanded)
-- See Note [Case to let transformation]
| all_dead_bndrs
, if isUnliftedType (idType case_bndr)
then exprOkForSpeculation scrut
else exprIsHNF scrut || scrut_is_demanded_var scrut
= do { tick (CaseElim case_bndr)
; (floats1, env') <- simplNonRecX env case_bndr scrut
; (floats2, expr') <- simplExprF env' rhs cont
; return (floats1 `addFloats` floats2, expr') }
-- 2c. Try the seq rules if
-- a) it binds only the case binder
-- b) a rule for seq applies
-- See Note [User-defined RULES for seq] in MkId
| is_plain_seq
= do { mb_rule <- trySeqRules env scrut rhs cont
; case mb_rule of
Just (env', rule_rhs, cont') -> simplExprF env' rule_rhs cont'
Nothing -> reallyRebuildCase env scrut case_bndr alts cont }
where
all_dead_bndrs = all isDeadBinder bndrs -- bndrs are [InId]
is_plain_seq = all_dead_bndrs && isDeadBinder case_bndr -- Evaluation *only* for effect
scrut_is_demanded_var :: CoreExpr -> Bool
-- See Note [Eliminating redundant seqs]
scrut_is_demanded_var (Cast s _) = scrut_is_demanded_var s
scrut_is_demanded_var (Var _) = isStrictDmd (idDemandInfo case_bndr)
scrut_is_demanded_var _ = False
rebuildCase env scrut case_bndr alts cont
= reallyRebuildCase env scrut case_bndr alts cont
--------------------------------------------------
-- 3. Catch-all case
--------------------------------------------------
reallyRebuildCase env scrut case_bndr alts cont
| not (sm_case_case (getMode env))
= do { case_expr <- simplAlts env scrut case_bndr alts
(mkBoringStop (contHoleType cont))
; rebuild env case_expr cont }
| otherwise
= do { (floats, cont') <- mkDupableCaseCont env alts cont
; case_expr <- simplAlts (env `setInScopeFromF` floats)
scrut case_bndr alts cont'
; return (floats, case_expr) }
{-
simplCaseBinder checks whether the scrutinee is a variable, v. If so,
try to eliminate uses of v in the RHSs in favour of case_bndr; that
way, there's a chance that v will now only be used once, and hence
inlined.
Historical note: we use to do the "case binder swap" in the Simplifier
so there were additional complications if the scrutinee was a variable.
Now the binder-swap stuff is done in the occurrence analyser; see
OccurAnal Note [Binder swap].
Note [knownCon occ info]
~~~~~~~~~~~~~~~~~~~~~~~~
If the case binder is not dead, then neither are the pattern bound
variables:
case <any> of x { (a,b) ->
case x of { (p,q) -> p } }
Here (a,b) both look dead, but come alive after the inner case is eliminated.
The point is that we bring into the envt a binding
let x = (a,b)
after the outer case, and that makes (a,b) alive. At least we do unless
the case binder is guaranteed dead.
Note [Case alternative occ info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we are simply reconstructing a case (the common case), we always
zap the occurrence info on the binders in the alternatives. Even
if the case binder is dead, the scrutinee is usually a variable, and *that*
can bring the case-alternative binders back to life.
See Note [Add unfolding for scrutinee]
Note [Improving seq]
~~~~~~~~~~~~~~~~~~~
Consider
type family F :: * -> *
type instance F Int = Int
We'd like to transform
case e of (x :: F Int) { DEFAULT -> rhs }
===>
case e `cast` co of (x'::Int)
I# x# -> let x = x' `cast` sym co
in rhs
so that 'rhs' can take advantage of the form of x'. Notice that Note
[Case of cast] (in OccurAnal) may then apply to the result.
We'd also like to eliminate empty types (Trac #13468). So if
data Void
type instance F Bool = Void
then we'd like to transform
case (x :: F Bool) of { _ -> error "urk" }
===>
case (x |> co) of (x' :: Void) of {}
Nota Bene: we used to have a built-in rule for 'seq' that dropped
casts, so that
case (x |> co) of { _ -> blah }
dropped the cast; in order to improve the chances of trySeqRules
firing. But that works in the /opposite/ direction to Note [Improving
seq] so there's a danger of flip/flopping. Better to make trySeqRules
insensitive to the cast, which is now is.
The need for [Improving seq] showed up in Roman's experiments. Example:
foo :: F Int -> Int -> Int
foo t n = t `seq` bar n
where
bar 0 = 0
bar n = bar (n - case t of TI i -> i)
Here we'd like to avoid repeated evaluating t inside the loop, by
taking advantage of the `seq`.
At one point I did transformation in LiberateCase, but it's more
robust here. (Otherwise, there's a danger that we'll simply drop the
'seq' altogether, before LiberateCase gets to see it.)
-}
simplAlts :: SimplEnv
-> OutExpr -- Scrutinee
-> InId -- Case binder
-> [InAlt] -- Non-empty
-> SimplCont
-> SimplM OutExpr -- Returns the complete simplified case expression
simplAlts env0 scrut case_bndr alts cont'
= do { traceSmpl "simplAlts" (vcat [ ppr case_bndr
, text "cont':" <+> ppr cont'
, text "in_scope" <+> ppr (seInScope env0) ])
; (env1, case_bndr1) <- simplBinder env0 case_bndr
; let case_bndr2 = case_bndr1 `setIdUnfolding` evaldUnfolding
env2 = modifyInScope env1 case_bndr2
-- See Note [Case binder evaluated-ness]
; fam_envs <- getFamEnvs
; (alt_env', scrut', case_bndr') <- improveSeq fam_envs env2 scrut
case_bndr case_bndr2 alts
; (imposs_deflt_cons, in_alts) <- prepareAlts scrut' case_bndr' alts
-- NB: it's possible that the returned in_alts is empty: this is handled
-- by the caller (rebuildCase) in the missingAlt function
; alts' <- mapM (simplAlt alt_env' (Just scrut') imposs_deflt_cons case_bndr' cont') in_alts
; -- pprTrace "simplAlts" (ppr case_bndr $$ ppr alts_ty $$ ppr alts_ty' $$ ppr alts $$ ppr cont') $
; let alts_ty' = contResultType cont'
-- See Note [Avoiding space leaks in OutType]
; seqType alts_ty' `seq`
mkCase (seDynFlags env0) scrut' case_bndr' alts_ty' alts' }
------------------------------------
improveSeq :: (FamInstEnv, FamInstEnv) -> SimplEnv
-> OutExpr -> InId -> OutId -> [InAlt]
-> SimplM (SimplEnv, OutExpr, OutId)
-- Note [Improving seq]
improveSeq fam_envs env scrut case_bndr case_bndr1 [(DEFAULT,_,_)]
| Just (co, ty2) <- topNormaliseType_maybe fam_envs (idType case_bndr1)
= do { case_bndr2 <- newId (fsLit "nt") ty2
; let rhs = DoneEx (Var case_bndr2 `Cast` mkSymCo co) Nothing
env2 = extendIdSubst env case_bndr rhs
; return (env2, scrut `Cast` co, case_bndr2) }
improveSeq _ env scrut _ case_bndr1 _
= return (env, scrut, case_bndr1)
------------------------------------
simplAlt :: SimplEnv
-> Maybe OutExpr -- The scrutinee
-> [AltCon] -- These constructors can't be present when
-- matching the DEFAULT alternative
-> OutId -- The case binder
-> SimplCont
-> InAlt
-> SimplM OutAlt
simplAlt env _ imposs_deflt_cons case_bndr' cont' (DEFAULT, bndrs, rhs)
= ASSERT( null bndrs )
do { let env' = addBinderUnfolding env case_bndr'
(mkOtherCon imposs_deflt_cons)
-- Record the constructors that the case-binder *can't* be.
; rhs' <- simplExprC env' rhs cont'
; return (DEFAULT, [], rhs') }
simplAlt env scrut' _ case_bndr' cont' (LitAlt lit, bndrs, rhs)
= ASSERT( null bndrs )
do { env' <- addAltUnfoldings env scrut' case_bndr' (Lit lit)
; rhs' <- simplExprC env' rhs cont'
; return (LitAlt lit, [], rhs') }
simplAlt env scrut' _ case_bndr' cont' (DataAlt con, vs, rhs)
= do { -- See Note [Adding evaluatedness info to pattern-bound variables]
let vs_with_evals = addEvals scrut' con vs
; (env', vs') <- simplLamBndrs env vs_with_evals
-- Bind the case-binder to (con args)
; let inst_tys' = tyConAppArgs (idType case_bndr')
con_app :: OutExpr
con_app = mkConApp2 con inst_tys' vs'
; env'' <- addAltUnfoldings env' scrut' case_bndr' con_app
; rhs' <- simplExprC env'' rhs cont'
; return (DataAlt con, vs', rhs') }
{- Note [Adding evaluatedness info to pattern-bound variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
addEvals records the evaluated-ness of the bound variables of
a case pattern. This is *important*. Consider
data T = T !Int !Int
case x of { T a b -> T (a+1) b }
We really must record that b is already evaluated so that we don't
go and re-evaluate it when constructing the result.
See Note [Data-con worker strictness] in MkId.hs
NB: simplLamBinders preserves this eval info
In addition to handling data constructor fields with !s, addEvals
also records the fact that the result of seq# is always in WHNF.
See Note [seq# magic] in PrelRules. Example (Trac #15226):
case seq# v s of
(# s', v' #) -> E
we want the compiler to be aware that v' is in WHNF in E.
Open problem: we don't record that v itself is in WHNF (and we can't
do it here). The right thing is to do some kind of binder-swap;
see Trac #15226 for discussion.
-}
addEvals :: Maybe OutExpr -> DataCon -> [Id] -> [Id]
-- See Note [Adding evaluatedness info to pattern-bound variables]
addEvals scrut con vs
-- Deal with seq# applications
| Just scr <- scrut
, isUnboxedTupleCon con
, [s,x] <- vs
-- Use stripNArgs rather than collectArgsTicks to avoid building
-- a list of arguments only to throw it away immediately.
, Just (Var f) <- stripNArgs 4 scr
, Just SeqOp <- isPrimOpId_maybe f
, let x' = zapIdOccInfoAndSetEvald MarkedStrict x
= [s, x']
-- Deal with banged datacon fields
addEvals _scrut con vs = go vs the_strs
where
the_strs = dataConRepStrictness con
go [] [] = []
go (v:vs') strs | isTyVar v = v : go vs' strs
go (v:vs') (str:strs) = zapIdOccInfoAndSetEvald str v : go vs' strs
go _ _ = pprPanic "Simplify.addEvals"
(ppr con $$
ppr vs $$
ppr_with_length (map strdisp the_strs) $$
ppr_with_length (dataConRepArgTys con) $$
ppr_with_length (dataConRepStrictness con))
where
ppr_with_length list
= ppr list <+> parens (text "length =" <+> ppr (length list))
strdisp MarkedStrict = "MarkedStrict"
strdisp NotMarkedStrict = "NotMarkedStrict"
zapIdOccInfoAndSetEvald :: StrictnessMark -> Id -> Id
zapIdOccInfoAndSetEvald str v =
setCaseBndrEvald str $ -- Add eval'dness info
zapIdOccInfo v -- And kill occ info;
-- see Note [Case alternative occ info]
addAltUnfoldings :: SimplEnv -> Maybe OutExpr -> OutId -> OutExpr -> SimplM SimplEnv
addAltUnfoldings env scrut case_bndr con_app
= do { let con_app_unf = mk_simple_unf con_app
env1 = addBinderUnfolding env case_bndr con_app_unf
-- See Note [Add unfolding for scrutinee]
env2 = case scrut of
Just (Var v) -> addBinderUnfolding env1 v con_app_unf
Just (Cast (Var v) co) -> addBinderUnfolding env1 v $
mk_simple_unf (Cast con_app (mkSymCo co))
_ -> env1
; traceSmpl "addAltUnf" (vcat [ppr case_bndr <+> ppr scrut, ppr con_app])
; return env2 }
where
mk_simple_unf = mkSimpleUnfolding (seDynFlags env)
addBinderUnfolding :: SimplEnv -> Id -> Unfolding -> SimplEnv
addBinderUnfolding env bndr unf
| debugIsOn, Just tmpl <- maybeUnfoldingTemplate unf
= WARN( not (eqType (idType bndr) (exprType tmpl)),
ppr bndr $$ ppr (idType bndr) $$ ppr tmpl $$ ppr (exprType tmpl) )
modifyInScope env (bndr `setIdUnfolding` unf)
| otherwise
= modifyInScope env (bndr `setIdUnfolding` unf)
zapBndrOccInfo :: Bool -> Id -> Id
-- Consider case e of b { (a,b) -> ... }
-- Then if we bind b to (a,b) in "...", and b is not dead,
-- then we must zap the deadness info on a,b
zapBndrOccInfo keep_occ_info pat_id
| keep_occ_info = pat_id
| otherwise = zapIdOccInfo pat_id
{- Note [Case binder evaluated-ness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We pin on a (OtherCon []) unfolding to the case-binder of a Case,
even though it'll be over-ridden in every case alternative with a more
informative unfolding. Why? Because suppose a later, less clever, pass
simply replaces all occurrences of the case binder with the binder itself;
then Lint may complain about the let/app invariant. Example
case e of b { DEFAULT -> let v = reallyUnsafePtrEq# b y in ....
; K -> blah }
The let/app invariant requires that y is evaluated in the call to
reallyUnsafePtrEq#, which it is. But we still want that to be true if we
propagate binders to occurrences.
This showed up in Trac #13027.
Note [Add unfolding for scrutinee]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general it's unlikely that a variable scrutinee will appear
in the case alternatives case x of { ...x unlikely to appear... }
because the binder-swap in OccAnal has got rid of all such occurrences
See Note [Binder swap] in OccAnal.
BUT it is still VERY IMPORTANT to add a suitable unfolding for a
variable scrutinee, in simplAlt. Here's why
case x of y
(a,b) -> case b of c
I# v -> ...(f y)...
There is no occurrence of 'b' in the (...(f y)...). But y gets
the unfolding (a,b), and *that* mentions b. If f has a RULE
RULE f (p, I# q) = ...
we want that rule to match, so we must extend the in-scope env with a
suitable unfolding for 'y'. It's *essential* for rule matching; but
it's also good for case-elimintation -- suppose that 'f' was inlined
and did multi-level case analysis, then we'd solve it in one
simplifier sweep instead of two.
Exactly the same issue arises in SpecConstr;
see Note [Add scrutinee to ValueEnv too] in SpecConstr
HOWEVER, given
case x of y { Just a -> r1; Nothing -> r2 }
we do not want to add the unfolding x -> y to 'x', which might seem cool,
since 'y' itself has different unfoldings in r1 and r2. Reason: if we
did that, we'd have to zap y's deadness info and that is a very useful
piece of information.
So instead we add the unfolding x -> Just a, and x -> Nothing in the
respective RHSs.
************************************************************************
* *
\subsection{Known constructor}
* *
************************************************************************
We are a bit careful with occurrence info. Here's an example
(\x* -> case x of (a*, b) -> f a) (h v, e)
where the * means "occurs once". This effectively becomes
case (h v, e) of (a*, b) -> f a)
and then
let a* = h v; b = e in f a
and then
f (h v)
All this should happen in one sweep.
-}
knownCon :: SimplEnv
-> OutExpr -- The scrutinee
-> DataCon -> [OutType] -> [OutExpr] -- The scrutinee (in pieces)
-> InId -> [InBndr] -> InExpr -- The alternative
-> SimplCont
-> SimplM (SimplFloats, OutExpr)
knownCon env scrut dc dc_ty_args dc_args bndr bs rhs cont
= do { (floats1, env1) <- bind_args env bs dc_args
; (floats2, env2) <- bind_case_bndr env1
; (floats3, expr') <- simplExprF env2 rhs cont
; return (floats1 `addFloats` floats2 `addFloats` floats3, expr') }
where
zap_occ = zapBndrOccInfo (isDeadBinder bndr) -- bndr is an InId
-- Ugh!
bind_args env' [] _ = return (emptyFloats env', env')
bind_args env' (b:bs') (Type ty : args)
= ASSERT( isTyVar b )
bind_args (extendTvSubst env' b ty) bs' args
bind_args env' (b:bs') (Coercion co : args)
= ASSERT( isCoVar b )
bind_args (extendCvSubst env' b co) bs' args
bind_args env' (b:bs') (arg : args)
= ASSERT( isId b )
do { let b' = zap_occ b
-- Note that the binder might be "dead", because it doesn't
-- occur in the RHS; and simplNonRecX may therefore discard
-- it via postInlineUnconditionally.
-- Nevertheless we must keep it if the case-binder is alive,
-- because it may be used in the con_app. See Note [knownCon occ info]
; (floats1, env2) <- simplNonRecX env' b' arg -- arg satisfies let/app invariant
; (floats2, env3) <- bind_args env2 bs' args
; return (floats1 `addFloats` floats2, env3) }
bind_args _ _ _ =
pprPanic "bind_args" $ ppr dc $$ ppr bs $$ ppr dc_args $$
text "scrut:" <+> ppr scrut
-- It's useful to bind bndr to scrut, rather than to a fresh
-- binding x = Con arg1 .. argn
-- because very often the scrut is a variable, so we avoid
-- creating, and then subsequently eliminating, a let-binding
-- BUT, if scrut is a not a variable, we must be careful
-- about duplicating the arg redexes; in that case, make
-- a new con-app from the args
bind_case_bndr env
| isDeadBinder bndr = return (emptyFloats env, env)
| exprIsTrivial scrut = return (emptyFloats env
, extendIdSubst env bndr (DoneEx scrut Nothing))
| otherwise = do { dc_args <- mapM (simplVar env) bs
-- dc_ty_args are aready OutTypes,
-- but bs are InBndrs
; let con_app = Var (dataConWorkId dc)
`mkTyApps` dc_ty_args
`mkApps` dc_args
; simplNonRecX env bndr con_app }
-------------------
missingAlt :: SimplEnv -> Id -> [InAlt] -> SimplCont
-> SimplM (SimplFloats, OutExpr)
-- This isn't strictly an error, although it is unusual.
-- It's possible that the simplifier might "see" that
-- an inner case has no accessible alternatives before
-- it "sees" that the entire branch of an outer case is
-- inaccessible. So we simply put an error case here instead.
missingAlt env case_bndr _ cont
= WARN( True, text "missingAlt" <+> ppr case_bndr )
-- See Note [Avoiding space leaks in OutType]
let cont_ty = contResultType cont
in seqType cont_ty `seq`
return (emptyFloats env, mkImpossibleExpr cont_ty)
{-
************************************************************************
* *
\subsection{Duplicating continuations}
* *
************************************************************************
Consider
let x* = case e of { True -> e1; False -> e2 }
in b
where x* is a strict binding. Then mkDupableCont will be given
the continuation
case [] of { True -> e1; False -> e2 } ; let x* = [] in b ; stop
and will split it into
dupable: case [] of { True -> $j1; False -> $j2 } ; stop
join floats: $j1 = e1, $j2 = e2
non_dupable: let x* = [] in b; stop
Putting this back together would give
let x* = let { $j1 = e1; $j2 = e2 } in
case e of { True -> $j1; False -> $j2 }
in b
(Of course we only do this if 'e' wants to duplicate that continuation.)
Note how important it is that the new join points wrap around the
inner expression, and not around the whole thing.
In contrast, any let-bindings introduced by mkDupableCont can wrap
around the entire thing.
Note [Bottom alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~
When we have
case (case x of { A -> error .. ; B -> e; C -> error ..)
of alts
then we can just duplicate those alts because the A and C cases
will disappear immediately. This is more direct than creating
join points and inlining them away. See Trac #4930.
-}
--------------------
mkDupableCaseCont :: SimplEnv -> [InAlt] -> SimplCont
-> SimplM (SimplFloats, SimplCont)
mkDupableCaseCont env alts cont
| altsWouldDup alts = mkDupableCont env cont
| otherwise = return (emptyFloats env, cont)
altsWouldDup :: [InAlt] -> Bool -- True iff strictly > 1 non-bottom alternative
altsWouldDup [] = False -- See Note [Bottom alternatives]
altsWouldDup [_] = False
altsWouldDup (alt:alts)
| is_bot_alt alt = altsWouldDup alts
| otherwise = not (all is_bot_alt alts)
where
is_bot_alt (_,_,rhs) = exprIsBottom rhs
-------------------------
mkDupableCont :: SimplEnv -> SimplCont
-> SimplM ( SimplFloats -- Incoming SimplEnv augmented with
-- extra let/join-floats and in-scope variables
, SimplCont) -- dup_cont: duplicable continuation
mkDupableCont env cont
| contIsDupable cont
= return (emptyFloats env, cont)
mkDupableCont _ (Stop {}) = panic "mkDupableCont" -- Handled by previous eqn
mkDupableCont env (CastIt ty cont)
= do { (floats, cont') <- mkDupableCont env cont
; return (floats, CastIt ty cont') }
-- Duplicating ticks for now, not sure if this is good or not
mkDupableCont env (TickIt t cont)
= do { (floats, cont') <- mkDupableCont env cont
; return (floats, TickIt t cont') }
mkDupableCont env (StrictBind { sc_bndr = bndr, sc_bndrs = bndrs
, sc_body = body, sc_env = se, sc_cont = cont})
-- See Note [Duplicating StrictBind]
= do { let sb_env = se `setInScopeFromE` env
; (sb_env1, bndr') <- simplBinder sb_env bndr
; (floats1, join_inner) <- simplLam sb_env1 bndrs body cont
-- No need to use mkDupableCont before simplLam; we
-- use cont once here, and then share the result if necessary
; let join_body = wrapFloats floats1 join_inner
res_ty = contResultType cont
; (floats2, body2)
<- if exprIsDupable (seDynFlags env) join_body
then return (emptyFloats env, join_body)
else do { join_bndr <- newJoinId [bndr'] res_ty
; let join_call = App (Var join_bndr) (Var bndr')
join_rhs = Lam (setOneShotLambda bndr') join_body
join_bind = NonRec join_bndr join_rhs
floats = emptyFloats env `extendFloats` join_bind
; return (floats, join_call) }
; return ( floats2
, StrictBind { sc_bndr = bndr', sc_bndrs = []
, sc_body = body2
, sc_env = zapSubstEnv se `setInScopeFromF` floats2
-- See Note [StaticEnv invariant] in SimplUtils
, sc_dup = OkToDup
, sc_cont = mkBoringStop res_ty } ) }
mkDupableCont env (StrictArg { sc_fun = info, sc_cci = cci, sc_cont = cont })
-- See Note [Duplicating StrictArg]
-- NB: sc_dup /= OkToDup; that is caught earlier by contIsDupable
= do { (floats1, cont') <- mkDupableCont env cont
; (floats_s, args') <- mapAndUnzipM (makeTrivialArg (getMode env))
(ai_args info)
; return ( foldl' addLetFloats floats1 floats_s
, StrictArg { sc_fun = info { ai_args = args' }
, sc_cci = cci
, sc_cont = cont'
, sc_dup = OkToDup} ) }
mkDupableCont env (ApplyToTy { sc_cont = cont
, sc_arg_ty = arg_ty, sc_hole_ty = hole_ty })
= do { (floats, cont') <- mkDupableCont env cont
; return (floats, ApplyToTy { sc_cont = cont'
, sc_arg_ty = arg_ty, sc_hole_ty = hole_ty }) }
mkDupableCont env (ApplyToVal { sc_arg = arg, sc_dup = dup
, sc_env = se, sc_cont = cont })
= -- e.g. [...hole...] (...arg...)
-- ==>
-- let a = ...arg...
-- in [...hole...] a
-- NB: sc_dup /= OkToDup; that is caught earlier by contIsDupable
do { (floats1, cont') <- mkDupableCont env cont
; let env' = env `setInScopeFromF` floats1
; (_, se', arg') <- simplArg env' dup se arg
; (let_floats2, arg'') <- makeTrivial (getMode env) NotTopLevel (fsLit "karg") arg'
; let all_floats = floats1 `addLetFloats` let_floats2
; return ( all_floats
, ApplyToVal { sc_arg = arg''
, sc_env = se' `setInScopeFromF` all_floats
-- Ensure that sc_env includes the free vars of
-- arg'' in its in-scope set, even if makeTrivial
-- has turned arg'' into a fresh variable
-- See Note [StaticEnv invariant] in SimplUtils
, sc_dup = OkToDup, sc_cont = cont' }) }
mkDupableCont env (Select { sc_bndr = case_bndr, sc_alts = alts
, sc_env = se, sc_cont = cont })
= -- e.g. (case [...hole...] of { pi -> ei })
-- ===>
-- let ji = \xij -> ei
-- in case [...hole...] of { pi -> ji xij }
-- NB: sc_dup /= OkToDup; that is caught earlier by contIsDupable
do { tick (CaseOfCase case_bndr)
; (floats, alt_cont) <- mkDupableCaseCont env alts cont
-- NB: We call mkDupableCaseCont here to make cont duplicable
-- (if necessary, depending on the number of alts)
-- And this is important: see Note [Fusing case continuations]
; let alt_env = se `setInScopeFromF` floats
; (alt_env', case_bndr') <- simplBinder alt_env case_bndr
; alts' <- mapM (simplAlt alt_env' Nothing [] case_bndr' alt_cont) alts
-- Safe to say that there are no handled-cons for the DEFAULT case
-- NB: simplBinder does not zap deadness occ-info, so
-- a dead case_bndr' will still advertise its deadness
-- This is really important because in
-- case e of b { (# p,q #) -> ... }
-- b is always dead, and indeed we are not allowed to bind b to (# p,q #),
-- which might happen if e was an explicit unboxed pair and b wasn't marked dead.
-- In the new alts we build, we have the new case binder, so it must retain
-- its deadness.
-- NB: we don't use alt_env further; it has the substEnv for
-- the alternatives, and we don't want that
; (join_floats, alts'') <- mapAccumLM (mkDupableAlt (seDynFlags env) case_bndr')
emptyJoinFloats alts'
; let all_floats = floats `addJoinFloats` join_floats
-- Note [Duplicated env]
; return (all_floats
, Select { sc_dup = OkToDup
, sc_bndr = case_bndr'
, sc_alts = alts''
, sc_env = zapSubstEnv se `setInScopeFromF` all_floats
-- See Note [StaticEnv invariant] in SimplUtils
, sc_cont = mkBoringStop (contResultType cont) } ) }
mkDupableAlt :: DynFlags -> OutId
-> JoinFloats -> OutAlt
-> SimplM (JoinFloats, OutAlt)
mkDupableAlt dflags case_bndr jfloats (con, bndrs', rhs')
| exprIsDupable dflags rhs' -- Note [Small alternative rhs]
= return (jfloats, (con, bndrs', rhs'))
| otherwise
= do { let rhs_ty' = exprType rhs'
scrut_ty = idType case_bndr
case_bndr_w_unf
= case con of
DEFAULT -> case_bndr
DataAlt dc -> setIdUnfolding case_bndr unf
where
-- See Note [Case binders and join points]
unf = mkInlineUnfolding rhs
rhs = mkConApp2 dc (tyConAppArgs scrut_ty) bndrs'
LitAlt {} -> WARN( True, text "mkDupableAlt"
<+> ppr case_bndr <+> ppr con )
case_bndr
-- The case binder is alive but trivial, so why has
-- it not been substituted away?
final_bndrs'
| isDeadBinder case_bndr = filter abstract_over bndrs'
| otherwise = bndrs' ++ [case_bndr_w_unf]
abstract_over bndr
| isTyVar bndr = True -- Abstract over all type variables just in case
| otherwise = not (isDeadBinder bndr)
-- The deadness info on the new Ids is preserved by simplBinders
final_args = varsToCoreExprs final_bndrs'
-- Note [Join point abstraction]
-- We make the lambdas into one-shot-lambdas. The
-- join point is sure to be applied at most once, and doing so
-- prevents the body of the join point being floated out by
-- the full laziness pass
really_final_bndrs = map one_shot final_bndrs'
one_shot v | isId v = setOneShotLambda v
| otherwise = v
join_rhs = mkLams really_final_bndrs rhs'
; join_bndr <- newJoinId final_bndrs' rhs_ty'
; let join_call = mkApps (Var join_bndr) final_args
alt' = (con, bndrs', join_call)
; return ( jfloats `addJoinFlts` unitJoinFloat (NonRec join_bndr join_rhs)
, alt') }
-- See Note [Duplicated env]
{-
Note [Fusing case continuations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's important to fuse two successive case continuations when the
first has one alternative. That's why we call prepareCaseCont here.
Consider this, which arises from thunk splitting (see Note [Thunk
splitting] in WorkWrap):
let
x* = case (case v of {pn -> rn}) of
I# a -> I# a
in body
The simplifier will find
(Var v) with continuation
Select (pn -> rn) (
Select [I# a -> I# a] (
StrictBind body Stop
So we'll call mkDupableCont on
Select [I# a -> I# a] (StrictBind body Stop)
There is just one alternative in the first Select, so we want to
simplify the rhs (I# a) with continuation (StrictBind body Stop)
Supposing that body is big, we end up with
let $j a = <let x = I# a in body>
in case v of { pn -> case rn of
I# a -> $j a }
This is just what we want because the rn produces a box that
the case rn cancels with.
See Trac #4957 a fuller example.
Note [Case binders and join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
case (case .. ) of c {
I# c# -> ....c....
If we make a join point with c but not c# we get
$j = \c -> ....c....
But if later inlining scrutinises the c, thus
$j = \c -> ... case c of { I# y -> ... } ...
we won't see that 'c' has already been scrutinised. This actually
happens in the 'tabulate' function in wave4main, and makes a significant
difference to allocation.
An alternative plan is this:
$j = \c# -> let c = I# c# in ...c....
but that is bad if 'c' is *not* later scrutinised.
So instead we do both: we pass 'c' and 'c#' , and record in c's inlining
(a stable unfolding) that it's really I# c#, thus
$j = \c# -> \c[=I# c#] -> ...c....
Absence analysis may later discard 'c'.
NB: take great care when doing strictness analysis;
see Note [Lambda-bound unfoldings] in DmdAnal.
Also note that we can still end up passing stuff that isn't used. Before
strictness analysis we have
let $j x y c{=(x,y)} = (h c, ...)
in ...
After strictness analysis we see that h is strict, we end up with
let $j x y c{=(x,y)} = ($wh x y, ...)
and c is unused.
Note [Duplicated env]
~~~~~~~~~~~~~~~~~~~~~
Some of the alternatives are simplified, but have not been turned into a join point
So they *must* have a zapped subst-env. So we can't use completeNonRecX to
bind the join point, because it might to do PostInlineUnconditionally, and
we'd lose that when zapping the subst-env. We could have a per-alt subst-env,
but zapping it (as we do in mkDupableCont, the Select case) is safe, and
at worst delays the join-point inlining.
Note [Small alternative rhs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is worth checking for a small RHS because otherwise we
get extra let bindings that may cause an extra iteration of the simplifier to
inline back in place. Quite often the rhs is just a variable or constructor.
The Ord instance of Maybe in PrelMaybe.hs, for example, took several extra
iterations because the version with the let bindings looked big, and so wasn't
inlined, but after the join points had been inlined it looked smaller, and so
was inlined.
NB: we have to check the size of rhs', not rhs.
Duplicating a small InAlt might invalidate occurrence information
However, if it *is* dupable, we return the *un* simplified alternative,
because otherwise we'd need to pair it up with an empty subst-env....
but we only have one env shared between all the alts.
(Remember we must zap the subst-env before re-simplifying something).
Rather than do this we simply agree to re-simplify the original (small) thing later.
Note [Funky mkLamTypes]
~~~~~~~~~~~~~~~~~~~~~~
Notice the funky mkLamTypes. If the constructor has existentials
it's possible that the join point will be abstracted over
type variables as well as term variables.
Example: Suppose we have
data T = forall t. C [t]
Then faced with
case (case e of ...) of
C t xs::[t] -> rhs
We get the join point
let j :: forall t. [t] -> ...
j = /\t \xs::[t] -> rhs
in
case (case e of ...) of
C t xs::[t] -> j t xs
Note [Duplicating StrictArg]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We make a StrictArg duplicable simply by making all its
stored-up arguments (in sc_fun) trivial, by let-binding
them. Thus:
f E [..hole..]
==> let a = E
in f a [..hole..]
Now if the thing in the hole is a case expression (which is when
we'll call mkDupableCont), we'll push the function call into the
branches, which is what we want. Now RULES for f may fire, and
call-pattern specialisation. Here's an example from Trac #3116
go (n+1) (case l of
1 -> bs'
_ -> Chunk p fpc (o+1) (l-1) bs')
If we can push the call for 'go' inside the case, we get
call-pattern specialisation for 'go', which is *crucial* for
this program.
Here is the (&&) example:
&& E (case x of { T -> F; F -> T })
==> let a = E in
case x of { T -> && a F; F -> && a T }
Much better!
Notice that
* Arguments to f *after* the strict one are handled by
the ApplyToVal case of mkDupableCont. Eg
f [..hole..] E
* We can only do the let-binding of E because the function
part of a StrictArg continuation is an explicit syntax
tree. In earlier versions we represented it as a function
(CoreExpr -> CoreEpxr) which we couldn't take apart.
Historical aide: previously we did this (where E is a
big argument:
f E [..hole..]
==> let $j = \a -> f E a
in $j [..hole..]
But this is terrible! Here's an example:
&& E (case x of { T -> F; F -> T })
Now, && is strict so we end up simplifying the case with
an ArgOf continuation. If we let-bind it, we get
let $j = \v -> && E v
in simplExpr (case x of { T -> F; F -> T })
(ArgOf (\r -> $j r)
And after simplifying more we get
let $j = \v -> && E v
in case x of { T -> $j F; F -> $j T }
Which is a Very Bad Thing
Note [Duplicating StrictBind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We make a StrictBind duplicable in a very similar way to
that for case expressions. After all,
let x* = e in b is similar to case e of x -> b
So we potentially make a join-point for the body, thus:
let x = [] in b ==> join j x = b
in let x = [] in j x
Note [Join point abstraction] Historical note
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NB: This note is now historical, describing how (in the past) we used
to add a void argument to nullary join points. But now that "join
point" is not a fuzzy concept but a formal syntactic construct (as
distinguished by the JoinId constructor of IdDetails), each of these
concerns is handled separately, with no need for a vestigial extra
argument.
Join points always have at least one value argument,
for several reasons
* If we try to lift a primitive-typed something out
for let-binding-purposes, we will *caseify* it (!),
with potentially-disastrous strictness results. So
instead we turn it into a function: \v -> e
where v::Void#. The value passed to this function is void,
which generates (almost) no code.
* CPR. We used to say "&& isUnliftedType rhs_ty'" here, but now
we make the join point into a function whenever used_bndrs'
is empty. This makes the join-point more CPR friendly.
Consider: let j = if .. then I# 3 else I# 4
in case .. of { A -> j; B -> j; C -> ... }
Now CPR doesn't w/w j because it's a thunk, so
that means that the enclosing function can't w/w either,
which is a lose. Here's the example that happened in practice:
kgmod :: Int -> Int -> Int
kgmod x y = if x > 0 && y < 0 || x < 0 && y > 0
then 78
else 5
* Let-no-escape. We want a join point to turn into a let-no-escape
so that it is implemented as a jump, and one of the conditions
for LNE is that it's not updatable. In CoreToStg, see
Note [What is a non-escaping let]
* Floating. Since a join point will be entered once, no sharing is
gained by floating out, but something might be lost by doing
so because it might be allocated.
I have seen a case alternative like this:
True -> \v -> ...
It's a bit silly to add the realWorld dummy arg in this case, making
$j = \s v -> ...
True -> $j s
(the \v alone is enough to make CPR happy) but I think it's rare
There's a slight infelicity here: we pass the overall
case_bndr to all the join points if it's used in *any* RHS,
because we don't know its usage in each RHS separately
************************************************************************
* *
Unfoldings
* *
************************************************************************
-}
simplLetUnfolding :: SimplEnv-> TopLevelFlag
-> MaybeJoinCont
-> InId
-> OutExpr -> OutType
-> Unfolding -> SimplM Unfolding
simplLetUnfolding env top_lvl cont_mb id new_rhs rhs_ty unf
| isStableUnfolding unf
= simplStableUnfolding env top_lvl cont_mb id unf rhs_ty
| isExitJoinId id
= return noUnfolding -- See Note [Do not inline exit join points] in Exitify
| otherwise
= mkLetUnfolding (seDynFlags env) top_lvl InlineRhs id new_rhs
-------------------
mkLetUnfolding :: DynFlags -> TopLevelFlag -> UnfoldingSource
-> InId -> OutExpr -> SimplM Unfolding
mkLetUnfolding dflags top_lvl src id new_rhs
= is_bottoming `seq` -- See Note [Force bottoming field]
return (mkUnfolding dflags src is_top_lvl is_bottoming new_rhs)
-- We make an unfolding *even for loop-breakers*.
-- Reason: (a) It might be useful to know that they are WHNF
-- (b) In TidyPgm we currently assume that, if we want to
-- expose the unfolding then indeed we *have* an unfolding
-- to expose. (We could instead use the RHS, but currently
-- we don't.) The simple thing is always to have one.
where
is_top_lvl = isTopLevel top_lvl
is_bottoming = isBottomingId id
-------------------
simplStableUnfolding :: SimplEnv -> TopLevelFlag
-> MaybeJoinCont -- Just k => a join point with continuation k
-> InId
-> Unfolding -> OutType -> SimplM Unfolding
-- Note [Setting the new unfolding]
simplStableUnfolding env top_lvl mb_cont id unf rhs_ty
= case unf of
NoUnfolding -> return unf
BootUnfolding -> return unf
OtherCon {} -> return unf
DFunUnfolding { df_bndrs = bndrs, df_con = con, df_args = args }
-> do { (env', bndrs') <- simplBinders unf_env bndrs
; args' <- mapM (simplExpr env') args
; return (mkDFunUnfolding bndrs' con args') }
CoreUnfolding { uf_tmpl = expr, uf_src = src, uf_guidance = guide }
| isStableSource src
-> do { expr' <- case mb_cont of -- See Note [Rules and unfolding for join points]
Just cont -> simplJoinRhs unf_env id expr cont
Nothing -> simplExprC unf_env expr (mkBoringStop rhs_ty)
; case guide of
UnfWhen { ug_arity = arity, ug_unsat_ok = sat_ok } -- Happens for INLINE things
-> let guide' = UnfWhen { ug_arity = arity, ug_unsat_ok = sat_ok
, ug_boring_ok = inlineBoringOk expr' }
-- Refresh the boring-ok flag, in case expr'
-- has got small. This happens, notably in the inlinings
-- for dfuns for single-method classes; see
-- Note [Single-method classes] in TcInstDcls.
-- A test case is Trac #4138
in return (mkCoreUnfolding src is_top_lvl expr' guide')
-- See Note [Top-level flag on inline rules] in CoreUnfold
_other -- Happens for INLINABLE things
-> mkLetUnfolding dflags top_lvl src id expr' }
-- If the guidance is UnfIfGoodArgs, this is an INLINABLE
-- unfolding, and we need to make sure the guidance is kept up
-- to date with respect to any changes in the unfolding.
| otherwise -> return noUnfolding -- Discard unstable unfoldings
where
dflags = seDynFlags env
is_top_lvl = isTopLevel top_lvl
act = idInlineActivation id
unf_env = updMode (updModeForStableUnfoldings act) env
-- See Note [Simplifying inside stable unfoldings] in SimplUtils
{-
Note [Force bottoming field]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to force bottoming, or the new unfolding holds
on to the old unfolding (which is part of the id).
Note [Setting the new unfolding]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* If there's an INLINE pragma, we simplify the RHS gently. Maybe we
should do nothing at all, but simplifying gently might get rid of
more crap.
* If not, we make an unfolding from the new RHS. But *only* for
non-loop-breakers. Making loop breakers not have an unfolding at all
means that we can avoid tests in exprIsConApp, for example. This is
important: if exprIsConApp says 'yes' for a recursive thing, then we
can get into an infinite loop
If there's a stable unfolding on a loop breaker (which happens for
INLINABLE), we hang on to the inlining. It's pretty dodgy, but the
user did say 'INLINE'. May need to revisit this choice.
************************************************************************
* *
Rules
* *
************************************************************************
Note [Rules in a letrec]
~~~~~~~~~~~~~~~~~~~~~~~~
After creating fresh binders for the binders of a letrec, we
substitute the RULES and add them back onto the binders; this is done
*before* processing any of the RHSs. This is important. Manuel found
cases where he really, really wanted a RULE for a recursive function
to apply in that function's own right-hand side.
See Note [Forming Rec groups] in OccurAnal
-}
addBndrRules :: SimplEnv -> InBndr -> OutBndr
-> MaybeJoinCont -- Just k for a join point binder
-- Nothing otherwise
-> SimplM (SimplEnv, OutBndr)
-- Rules are added back into the bin
addBndrRules env in_id out_id mb_cont
| null old_rules
= return (env, out_id)
| otherwise
= do { new_rules <- simplRules env (Just out_id) old_rules mb_cont
; let final_id = out_id `setIdSpecialisation` mkRuleInfo new_rules
; return (modifyInScope env final_id, final_id) }
where
old_rules = ruleInfoRules (idSpecialisation in_id)
simplRules :: SimplEnv -> Maybe OutId -> [CoreRule]
-> MaybeJoinCont -> SimplM [CoreRule]
simplRules env mb_new_id rules mb_cont
= mapM simpl_rule rules
where
simpl_rule rule@(BuiltinRule {})
= return rule
simpl_rule rule@(Rule { ru_bndrs = bndrs, ru_args = args
, ru_fn = fn_name, ru_rhs = rhs })
= do { (env', bndrs') <- simplBinders env bndrs
; let rhs_ty = substTy env' (exprType rhs)
rhs_cont = case mb_cont of -- See Note [Rules and unfolding for join points]
Nothing -> mkBoringStop rhs_ty
Just cont -> ASSERT2( join_ok, bad_join_msg )
cont
rule_env = updMode updModeForRules env'
fn_name' = case mb_new_id of
Just id -> idName id
Nothing -> fn_name
-- join_ok is an assertion check that the join-arity of the
-- binder matches that of the rule, so that pushing the
-- continuation into the RHS makes sense
join_ok = case mb_new_id of
Just id | Just join_arity <- isJoinId_maybe id
-> length args == join_arity
_ -> False
bad_join_msg = vcat [ ppr mb_new_id, ppr rule
, ppr (fmap isJoinId_maybe mb_new_id) ]
; args' <- mapM (simplExpr rule_env) args
; rhs' <- simplExprC rule_env rhs rhs_cont
; return (rule { ru_bndrs = bndrs'
, ru_fn = fn_name'
, ru_args = args'
, ru_rhs = rhs' }) }
|