1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
|
%
% (c) The AQUA Project, Glasgow University, 1993-1998
%
\section[Simplify]{The main module of the simplifier}
\begin{code}
module Simplify ( simplTopBinds, simplExpr ) where
#include "HsVersions.h"
import DynFlags
import SimplMonad
import Type hiding ( substTy, extendTvSubst )
import SimplEnv
import SimplUtils
import FamInstEnv ( FamInstEnv )
import Id
import MkId ( mkImpossibleExpr, seqId )
import Var
import IdInfo
import Coercion
import FamInstEnv ( topNormaliseType )
import DataCon ( dataConRepStrictness, dataConUnivTyVars )
import CoreSyn
import NewDemand ( isStrictDmd, splitStrictSig )
import PprCore ( pprParendExpr, pprCoreExpr )
import CoreUnfold ( mkUnfolding, callSiteInline, CallCtxt(..) )
import CoreUtils
import CoreArity ( exprArity )
import Rules ( lookupRule, getRules )
import BasicTypes ( isMarkedStrict, Arity )
import CostCentre ( currentCCS )
import TysPrim ( realWorldStatePrimTy )
import PrelInfo ( realWorldPrimId )
import BasicTypes ( TopLevelFlag(..), isTopLevel,
RecFlag(..), isNonRuleLoopBreaker )
import Maybes ( orElse )
import Data.List ( mapAccumL )
import Outputable
import FastString
\end{code}
The guts of the simplifier is in this module, but the driver loop for
the simplifier is in SimplCore.lhs.
-----------------------------------------
*** IMPORTANT NOTE ***
-----------------------------------------
The simplifier used to guarantee that the output had no shadowing, but
it does not do so any more. (Actually, it never did!) The reason is
documented with simplifyArgs.
-----------------------------------------
*** IMPORTANT NOTE ***
-----------------------------------------
Many parts of the simplifier return a bunch of "floats" as well as an
expression. This is wrapped as a datatype SimplUtils.FloatsWith.
All "floats" are let-binds, not case-binds, but some non-rec lets may
be unlifted (with RHS ok-for-speculation).
-----------------------------------------
ORGANISATION OF FUNCTIONS
-----------------------------------------
simplTopBinds
- simplify all top-level binders
- for NonRec, call simplRecOrTopPair
- for Rec, call simplRecBind
------------------------------
simplExpr (applied lambda) ==> simplNonRecBind
simplExpr (Let (NonRec ...) ..) ==> simplNonRecBind
simplExpr (Let (Rec ...) ..) ==> simplify binders; simplRecBind
------------------------------
simplRecBind [binders already simplfied]
- use simplRecOrTopPair on each pair in turn
simplRecOrTopPair [binder already simplified]
Used for: recursive bindings (top level and nested)
top-level non-recursive bindings
Returns:
- check for PreInlineUnconditionally
- simplLazyBind
simplNonRecBind
Used for: non-top-level non-recursive bindings
beta reductions (which amount to the same thing)
Because it can deal with strict arts, it takes a
"thing-inside" and returns an expression
- check for PreInlineUnconditionally
- simplify binder, including its IdInfo
- if strict binding
simplStrictArg
mkAtomicArgs
completeNonRecX
else
simplLazyBind
addFloats
simplNonRecX: [given a *simplified* RHS, but an *unsimplified* binder]
Used for: binding case-binder and constr args in a known-constructor case
- check for PreInLineUnconditionally
- simplify binder
- completeNonRecX
------------------------------
simplLazyBind: [binder already simplified, RHS not]
Used for: recursive bindings (top level and nested)
top-level non-recursive bindings
non-top-level, but *lazy* non-recursive bindings
[must not be strict or unboxed]
Returns floats + an augmented environment, not an expression
- substituteIdInfo and add result to in-scope
[so that rules are available in rec rhs]
- simplify rhs
- mkAtomicArgs
- float if exposes constructor or PAP
- completeBind
completeNonRecX: [binder and rhs both simplified]
- if the the thing needs case binding (unlifted and not ok-for-spec)
build a Case
else
completeBind
addFloats
completeBind: [given a simplified RHS]
[used for both rec and non-rec bindings, top level and not]
- try PostInlineUnconditionally
- add unfolding [this is the only place we add an unfolding]
- add arity
Right hand sides and arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In many ways we want to treat
(a) the right hand side of a let(rec), and
(b) a function argument
in the same way. But not always! In particular, we would
like to leave these arguments exactly as they are, so they
will match a RULE more easily.
f (g x, h x)
g (+ x)
It's harder to make the rule match if we ANF-ise the constructor,
or eta-expand the PAP:
f (let { a = g x; b = h x } in (a,b))
g (\y. + x y)
On the other hand if we see the let-defns
p = (g x, h x)
q = + x
then we *do* want to ANF-ise and eta-expand, so that p and q
can be safely inlined.
Even floating lets out is a bit dubious. For let RHS's we float lets
out if that exposes a value, so that the value can be inlined more vigorously.
For example
r = let x = e in (x,x)
Here, if we float the let out we'll expose a nice constructor. We did experiments
that showed this to be a generally good thing. But it was a bad thing to float
lets out unconditionally, because that meant they got allocated more often.
For function arguments, there's less reason to expose a constructor (it won't
get inlined). Just possibly it might make a rule match, but I'm pretty skeptical.
So for the moment we don't float lets out of function arguments either.
Eta expansion
~~~~~~~~~~~~~~
For eta expansion, we want to catch things like
case e of (a,b) -> \x -> case a of (p,q) -> \y -> r
If the \x was on the RHS of a let, we'd eta expand to bring the two
lambdas together. And in general that's a good thing to do. Perhaps
we should eta expand wherever we find a (value) lambda? Then the eta
expansion at a let RHS can concentrate solely on the PAP case.
%************************************************************************
%* *
\subsection{Bindings}
%* *
%************************************************************************
\begin{code}
simplTopBinds :: SimplEnv -> [InBind] -> SimplM [OutBind]
simplTopBinds env0 binds0
= do { -- Put all the top-level binders into scope at the start
-- so that if a transformation rule has unexpectedly brought
-- anything into scope, then we don't get a complaint about that.
-- It's rather as if the top-level binders were imported.
; env1 <- simplRecBndrs env0 (bindersOfBinds binds0)
; dflags <- getDOptsSmpl
; let dump_flag = dopt Opt_D_dump_inlinings dflags ||
dopt Opt_D_dump_rule_firings dflags
; env2 <- simpl_binds dump_flag env1 binds0
; freeTick SimplifierDone
; return (getFloats env2) }
where
-- We need to track the zapped top-level binders, because
-- they should have their fragile IdInfo zapped (notably occurrence info)
-- That's why we run down binds and bndrs' simultaneously.
--
-- The dump-flag emits a trace for each top-level binding, which
-- helps to locate the tracing for inlining and rule firing
simpl_binds :: Bool -> SimplEnv -> [InBind] -> SimplM SimplEnv
simpl_binds _ env [] = return env
simpl_binds dump env (bind:binds) = do { env' <- trace_bind dump bind $
simpl_bind env bind
; simpl_binds dump env' binds }
trace_bind True bind = pprTrace "SimplBind" (ppr (bindersOf bind))
trace_bind False _ = \x -> x
simpl_bind env (Rec pairs) = simplRecBind env TopLevel pairs
simpl_bind env (NonRec b r) = simplRecOrTopPair env' TopLevel b b' r
where
(env', b') = addBndrRules env b (lookupRecBndr env b)
\end{code}
%************************************************************************
%* *
\subsection{Lazy bindings}
%* *
%************************************************************************
simplRecBind is used for
* recursive bindings only
\begin{code}
simplRecBind :: SimplEnv -> TopLevelFlag
-> [(InId, InExpr)]
-> SimplM SimplEnv
simplRecBind env0 top_lvl pairs0
= do { let (env_with_info, triples) = mapAccumL add_rules env0 pairs0
; env1 <- go (zapFloats env_with_info) triples
; return (env0 `addRecFloats` env1) }
-- addFloats adds the floats from env1,
-- _and_ updates env0 with the in-scope set from env1
where
add_rules :: SimplEnv -> (InBndr,InExpr) -> (SimplEnv, (InBndr, OutBndr, InExpr))
-- Add the (substituted) rules to the binder
add_rules env (bndr, rhs) = (env', (bndr, bndr', rhs))
where
(env', bndr') = addBndrRules env bndr (lookupRecBndr env bndr)
go env [] = return env
go env ((old_bndr, new_bndr, rhs) : pairs)
= do { env' <- simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
; go env' pairs }
\end{code}
simplOrTopPair is used for
* recursive bindings (whether top level or not)
* top-level non-recursive bindings
It assumes the binder has already been simplified, but not its IdInfo.
\begin{code}
simplRecOrTopPair :: SimplEnv
-> TopLevelFlag
-> InId -> OutBndr -> InExpr -- Binder and rhs
-> SimplM SimplEnv -- Returns an env that includes the binding
simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
| preInlineUnconditionally env top_lvl old_bndr rhs -- Check for unconditional inline
= do { tick (PreInlineUnconditionally old_bndr)
; return (extendIdSubst env old_bndr (mkContEx env rhs)) }
| otherwise
= simplLazyBind env top_lvl Recursive old_bndr new_bndr rhs env
-- May not actually be recursive, but it doesn't matter
\end{code}
simplLazyBind is used for
* [simplRecOrTopPair] recursive bindings (whether top level or not)
* [simplRecOrTopPair] top-level non-recursive bindings
* [simplNonRecE] non-top-level *lazy* non-recursive bindings
Nota bene:
1. It assumes that the binder is *already* simplified,
and is in scope, and its IdInfo too, except unfolding
2. It assumes that the binder type is lifted.
3. It does not check for pre-inline-unconditionallly;
that should have been done already.
\begin{code}
simplLazyBind :: SimplEnv
-> TopLevelFlag -> RecFlag
-> InId -> OutId -- Binder, both pre-and post simpl
-- The OutId has IdInfo, except arity, unfolding
-> InExpr -> SimplEnv -- The RHS and its environment
-> SimplM SimplEnv
simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se
= do { let rhs_env = rhs_se `setInScope` env
(tvs, body) = case collectTyBinders rhs of
(tvs, body) | not_lam body -> (tvs,body)
| otherwise -> ([], rhs)
not_lam (Lam _ _) = False
not_lam _ = True
-- Do not do the "abstract tyyvar" thing if there's
-- a lambda inside, becuase it defeats eta-reduction
-- f = /\a. \x. g a x
-- should eta-reduce
; (body_env, tvs') <- simplBinders rhs_env tvs
-- See Note [Floating and type abstraction] in SimplUtils
-- Simplify the RHS
; (body_env1, body1) <- simplExprF body_env body mkBoringStop
-- ANF-ise a constructor or PAP rhs
; (body_env2, body2) <- prepareRhs body_env1 body1
; (env', rhs')
<- if not (doFloatFromRhs top_lvl is_rec False body2 body_env2)
then -- No floating, just wrap up!
do { rhs' <- mkLam env tvs' (wrapFloats body_env2 body2)
; return (env, rhs') }
else if null tvs then -- Simple floating
do { tick LetFloatFromLet
; return (addFloats env body_env2, body2) }
else -- Do type-abstraction first
do { tick LetFloatFromLet
; (poly_binds, body3) <- abstractFloats tvs' body_env2 body2
; rhs' <- mkLam env tvs' body3
; let env' = foldl (addPolyBind top_lvl) env poly_binds
; return (env', rhs') }
; completeBind env' top_lvl bndr bndr1 rhs' }
\end{code}
A specialised variant of simplNonRec used when the RHS is already simplified,
notably in knownCon. It uses case-binding where necessary.
\begin{code}
simplNonRecX :: SimplEnv
-> InId -- Old binder
-> OutExpr -- Simplified RHS
-> SimplM SimplEnv
simplNonRecX env bndr new_rhs
| isDeadBinder bndr -- Not uncommon; e.g. case (a,b) of b { (p,q) -> p }
= return env -- Here b is dead, and we avoid creating
| otherwise -- the binding b = (a,b)
= do { (env', bndr') <- simplBinder env bndr
; completeNonRecX env' (isStrictId bndr) bndr bndr' new_rhs }
completeNonRecX :: SimplEnv
-> Bool
-> InId -- Old binder
-> OutId -- New binder
-> OutExpr -- Simplified RHS
-> SimplM SimplEnv
completeNonRecX env is_strict old_bndr new_bndr new_rhs
= do { (env1, rhs1) <- prepareRhs (zapFloats env) new_rhs
; (env2, rhs2) <-
if doFloatFromRhs NotTopLevel NonRecursive is_strict rhs1 env1
then do { tick LetFloatFromLet
; return (addFloats env env1, rhs1) } -- Add the floats to the main env
else return (env, wrapFloats env1 rhs1) -- Wrap the floats around the RHS
; completeBind env2 NotTopLevel old_bndr new_bndr rhs2 }
\end{code}
{- No, no, no! Do not try preInlineUnconditionally in completeNonRecX
Doing so risks exponential behaviour, because new_rhs has been simplified once already
In the cases described by the folowing commment, postInlineUnconditionally will
catch many of the relevant cases.
-- This happens; for example, the case_bndr during case of
-- known constructor: case (a,b) of x { (p,q) -> ... }
-- Here x isn't mentioned in the RHS, so we don't want to
-- create the (dead) let-binding let x = (a,b) in ...
--
-- Similarly, single occurrences can be inlined vigourously
-- e.g. case (f x, g y) of (a,b) -> ....
-- If a,b occur once we can avoid constructing the let binding for them.
Furthermore in the case-binding case preInlineUnconditionally risks extra thunks
-- Consider case I# (quotInt# x y) of
-- I# v -> let w = J# v in ...
-- If we gaily inline (quotInt# x y) for v, we end up building an
-- extra thunk:
-- let w = J# (quotInt# x y) in ...
-- because quotInt# can fail.
| preInlineUnconditionally env NotTopLevel bndr new_rhs
= thing_inside (extendIdSubst env bndr (DoneEx new_rhs))
-}
----------------------------------
prepareRhs takes a putative RHS, checks whether it's a PAP or
constructor application and, if so, converts it to ANF, so that the
resulting thing can be inlined more easily. Thus
x = (f a, g b)
becomes
t1 = f a
t2 = g b
x = (t1,t2)
We also want to deal well cases like this
v = (f e1 `cast` co) e2
Here we want to make e1,e2 trivial and get
x1 = e1; x2 = e2; v = (f x1 `cast` co) v2
That's what the 'go' loop in prepareRhs does
\begin{code}
prepareRhs :: SimplEnv -> OutExpr -> SimplM (SimplEnv, OutExpr)
-- Adds new floats to the env iff that allows us to return a good RHS
prepareRhs env (Cast rhs co) -- Note [Float coercions]
| (ty1, _ty2) <- coercionKind co -- Do *not* do this if rhs has an unlifted type
, not (isUnLiftedType ty1) -- see Note [Float coercions (unlifted)]
= do { (env', rhs') <- makeTrivial env rhs
; return (env', Cast rhs' co) }
prepareRhs env0 rhs0
= do { (_is_val, env1, rhs1) <- go 0 env0 rhs0
; return (env1, rhs1) }
where
go n_val_args env (Cast rhs co)
= do { (is_val, env', rhs') <- go n_val_args env rhs
; return (is_val, env', Cast rhs' co) }
go n_val_args env (App fun (Type ty))
= do { (is_val, env', rhs') <- go n_val_args env fun
; return (is_val, env', App rhs' (Type ty)) }
go n_val_args env (App fun arg)
= do { (is_val, env', fun') <- go (n_val_args+1) env fun
; case is_val of
True -> do { (env'', arg') <- makeTrivial env' arg
; return (True, env'', App fun' arg') }
False -> return (False, env, App fun arg) }
go n_val_args env (Var fun)
= return (is_val, env, Var fun)
where
is_val = n_val_args > 0 -- There is at least one arg
-- ...and the fun a constructor or PAP
&& (isConLikeId fun || n_val_args < idArity fun)
go _ env other
= return (False, env, other)
\end{code}
Note [Float coercions]
~~~~~~~~~~~~~~~~~~~~~~
When we find the binding
x = e `cast` co
we'd like to transform it to
x' = e
x = x `cast` co -- A trivial binding
There's a chance that e will be a constructor application or function, or something
like that, so moving the coerion to the usage site may well cancel the coersions
and lead to further optimisation. Example:
data family T a :: *
data instance T Int = T Int
foo :: Int -> Int -> Int
foo m n = ...
where
x = T m
go 0 = 0
go n = case x of { T m -> go (n-m) }
-- This case should optimise
Note [Float coercions (unlifted)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
BUT don't do [Float coercions] if 'e' has an unlifted type.
This *can* happen:
foo :: Int = (error (# Int,Int #) "urk")
`cast` CoUnsafe (# Int,Int #) Int
If do the makeTrivial thing to the error call, we'll get
foo = case error (# Int,Int #) "urk" of v -> v `cast` ...
But 'v' isn't in scope!
These strange casts can happen as a result of case-of-case
bar = case (case x of { T -> (# 2,3 #); F -> error "urk" }) of
(# p,q #) -> p+q
\begin{code}
makeTrivial :: SimplEnv -> OutExpr -> SimplM (SimplEnv, OutExpr)
-- Binds the expression to a variable, if it's not trivial, returning the variable
makeTrivial env expr
| exprIsTrivial expr
= return (env, expr)
| otherwise -- See Note [Take care] below
= do { var <- newId (fsLit "a") (exprType expr)
; env' <- completeNonRecX env False var var expr
-- pprTrace "makeTrivial" (vcat [ppr var <+> ppr (exprArity (substExpr env' (Var var)))
-- , ppr expr
-- , ppr (substExpr env' (Var var))
-- , ppr (idArity (fromJust (lookupInScope (seInScope env') var))) ]) $
; return (env', substExpr env' (Var var)) }
-- The substitution is needed becase we're constructing a new binding
-- a = rhs
-- And if rhs is of form (rhs1 |> co), then we might get
-- a1 = rhs1
-- a = a1 |> co
-- and now a's RHS is trivial and can be substituted out, and that
-- is what completeNonRecX will do
\end{code}
%************************************************************************
%* *
\subsection{Completing a lazy binding}
%* *
%************************************************************************
completeBind
* deals only with Ids, not TyVars
* takes an already-simplified binder and RHS
* is used for both recursive and non-recursive bindings
* is used for both top-level and non-top-level bindings
It does the following:
- tries discarding a dead binding
- tries PostInlineUnconditionally
- add unfolding [this is the only place we add an unfolding]
- add arity
It does *not* attempt to do let-to-case. Why? Because it is used for
- top-level bindings (when let-to-case is impossible)
- many situations where the "rhs" is known to be a WHNF
(so let-to-case is inappropriate).
Nor does it do the atomic-argument thing
\begin{code}
completeBind :: SimplEnv
-> TopLevelFlag -- Flag stuck into unfolding
-> InId -- Old binder
-> OutId -> OutExpr -- New binder and RHS
-> SimplM SimplEnv
-- completeBind may choose to do its work
-- * by extending the substitution (e.g. let x = y in ...)
-- * or by adding to the floats in the envt
completeBind env top_lvl old_bndr new_bndr new_rhs
| postInlineUnconditionally env top_lvl new_bndr occ_info new_rhs unfolding
-- Inline and discard the binding
= do { tick (PostInlineUnconditionally old_bndr)
; -- pprTrace "postInlineUnconditionally" (ppr old_bndr <+> ppr new_bndr <+> ppr new_rhs) $
return (extendIdSubst env old_bndr (DoneEx new_rhs)) }
-- Use the substitution to make quite, quite sure that the
-- substitution will happen, since we are going to discard the binding
| otherwise
= return (addNonRecWithUnf env new_bndr new_rhs unfolding wkr)
where
unfolding | omit_unfolding = NoUnfolding
| otherwise = mkUnfolding (isTopLevel top_lvl) new_rhs
old_info = idInfo old_bndr
occ_info = occInfo old_info
wkr = substWorker env (workerInfo old_info)
omit_unfolding = isNonRuleLoopBreaker occ_info
-- or not (activeInline env old_bndr)
-- Do *not* trim the unfolding in SimplGently, else
-- the specialiser can't see it!
-----------------
addPolyBind :: TopLevelFlag -> SimplEnv -> OutBind -> SimplEnv
-- Add a new binding to the environment, complete with its unfolding
-- but *do not* do postInlineUnconditionally, because we have already
-- processed some of the scope of the binding
-- We still want the unfolding though. Consider
-- let
-- x = /\a. let y = ... in Just y
-- in body
-- Then we float the y-binding out (via abstractFloats and addPolyBind)
-- but 'x' may well then be inlined in 'body' in which case we'd like the
-- opportunity to inline 'y' too.
addPolyBind top_lvl env (NonRec poly_id rhs)
= addNonRecWithUnf env poly_id rhs unfolding NoWorker
where
unfolding | not (activeInline env poly_id) = NoUnfolding
| otherwise = mkUnfolding (isTopLevel top_lvl) rhs
-- addNonRecWithInfo adds the new binding in the
-- proper way (ie complete with unfolding etc),
-- and extends the in-scope set
addPolyBind _ env bind@(Rec _) = extendFloats env bind
-- Hack: letrecs are more awkward, so we extend "by steam"
-- without adding unfoldings etc. At worst this leads to
-- more simplifier iterations
-----------------
addNonRecWithUnf :: SimplEnv
-> OutId -> OutExpr -- New binder and RHS
-> Unfolding -> WorkerInfo -- and unfolding
-> SimplEnv
-- Add suitable IdInfo to the Id, add the binding to the floats, and extend the in-scope set
addNonRecWithUnf env new_bndr rhs unfolding wkr
= ASSERT( isId new_bndr )
WARN( new_arity < old_arity || new_arity < dmd_arity,
(ptext (sLit "Arity decrease:") <+> ppr final_id <+> ppr old_arity
<+> ppr new_arity <+> ppr dmd_arity) $$ ppr rhs )
-- Note [Arity decrease]
final_id `seq` -- This seq forces the Id, and hence its IdInfo,
-- and hence any inner substitutions
addNonRec env final_id rhs
-- The addNonRec adds it to the in-scope set too
where
dmd_arity = length $ fst $ splitStrictSig $ idNewStrictness new_bndr
old_arity = idArity new_bndr
-- Arity info
new_arity = exprArity rhs
new_bndr_info = idInfo new_bndr `setArityInfo` new_arity
-- Unfolding info
-- Add the unfolding *only* for non-loop-breakers
-- Making loop breakers not have an unfolding at all
-- means that we can avoid tests in exprIsConApp, for example.
-- This is important: if exprIsConApp says 'yes' for a recursive
-- thing, then we can get into an infinite loop
-- Demand info
-- If the unfolding is a value, the demand info may
-- go pear-shaped, so we nuke it. Example:
-- let x = (a,b) in
-- case x of (p,q) -> h p q x
-- Here x is certainly demanded. But after we've nuked
-- the case, we'll get just
-- let x = (a,b) in h a b x
-- and now x is not demanded (I'm assuming h is lazy)
-- This really happens. Similarly
-- let f = \x -> e in ...f..f...
-- After inlining f at some of its call sites the original binding may
-- (for example) be no longer strictly demanded.
-- The solution here is a bit ad hoc...
info_w_unf = new_bndr_info `setUnfoldingInfo` unfolding
`setWorkerInfo` wkr
final_info | isEvaldUnfolding unfolding = zapDemandInfo info_w_unf `orElse` info_w_unf
| otherwise = info_w_unf
final_id = new_bndr `setIdInfo` final_info
\end{code}
Note [Arity decrease]
~~~~~~~~~~~~~~~~~~~~~
Generally speaking the arity of a binding should not decrease. But it *can*
legitimately happen becuase of RULES. Eg
f = g Int
where g has arity 2, will have arity 2. But if there's a rewrite rule
g Int --> h
where h has arity 1, then f's arity will decrease. Here's a real-life example,
which is in the output of Specialise:
Rec {
$dm {Arity 2} = \d.\x. op d
{-# RULES forall d. $dm Int d = $s$dm #-}
dInt = MkD .... opInt ...
opInt {Arity 1} = $dm dInt
$s$dm {Arity 0} = \x. op dInt }
Here opInt has arity 1; but when we apply the rule its arity drops to 0.
That's why Specialise goes to a little trouble to pin the right arity
on specialised functions too.
%************************************************************************
%* *
\subsection[Simplify-simplExpr]{The main function: simplExpr}
%* *
%************************************************************************
The reason for this OutExprStuff stuff is that we want to float *after*
simplifying a RHS, not before. If we do so naively we get quadratic
behaviour as things float out.
To see why it's important to do it after, consider this (real) example:
let t = f x
in fst t
==>
let t = let a = e1
b = e2
in (a,b)
in fst t
==>
let a = e1
b = e2
t = (a,b)
in
a -- Can't inline a this round, cos it appears twice
==>
e1
Each of the ==> steps is a round of simplification. We'd save a
whole round if we float first. This can cascade. Consider
let f = g d
in \x -> ...f...
==>
let f = let d1 = ..d.. in \y -> e
in \x -> ...f...
==>
let d1 = ..d..
in \x -> ...(\y ->e)...
Only in this second round can the \y be applied, and it
might do the same again.
\begin{code}
simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr
simplExpr env expr = simplExprC env expr mkBoringStop
simplExprC :: SimplEnv -> CoreExpr -> SimplCont -> SimplM CoreExpr
-- Simplify an expression, given a continuation
simplExprC env expr cont
= -- pprTrace "simplExprC" (ppr expr $$ ppr cont {- $$ ppr (seIdSubst env) -} $$ ppr (seFloats env) ) $
do { (env', expr') <- simplExprF (zapFloats env) expr cont
; -- pprTrace "simplExprC ret" (ppr expr $$ ppr expr') $
-- pprTrace "simplExprC ret3" (ppr (seInScope env')) $
-- pprTrace "simplExprC ret4" (ppr (seFloats env')) $
return (wrapFloats env' expr') }
--------------------------------------------------
simplExprF :: SimplEnv -> InExpr -> SimplCont
-> SimplM (SimplEnv, OutExpr)
simplExprF env e cont
= -- pprTrace "simplExprF" (ppr e $$ ppr cont $$ ppr (seTvSubst env) $$ ppr (seIdSubst env) {- $$ ppr (seFloats env) -} ) $
simplExprF' env e cont
simplExprF' :: SimplEnv -> InExpr -> SimplCont
-> SimplM (SimplEnv, OutExpr)
simplExprF' env (Var v) cont = simplVar env v cont
simplExprF' env (Lit lit) cont = rebuild env (Lit lit) cont
simplExprF' env (Note n expr) cont = simplNote env n expr cont
simplExprF' env (Cast body co) cont = simplCast env body co cont
simplExprF' env (App fun arg) cont = simplExprF env fun $
ApplyTo NoDup arg env cont
simplExprF' env expr@(Lam _ _) cont
= simplLam env (map zap bndrs) body cont
-- The main issue here is under-saturated lambdas
-- (\x1. \x2. e) arg1
-- Here x1 might have "occurs-once" occ-info, because occ-info
-- is computed assuming that a group of lambdas is applied
-- all at once. If there are too few args, we must zap the
-- occ-info.
where
n_args = countArgs cont
n_params = length bndrs
(bndrs, body) = collectBinders expr
zap | n_args >= n_params = \b -> b
| otherwise = \b -> if isTyVar b then b
else zapLamIdInfo b
-- NB: we count all the args incl type args
-- so we must count all the binders (incl type lambdas)
simplExprF' env (Type ty) cont
= ASSERT( contIsRhsOrArg cont )
do { ty' <- simplType env ty
; rebuild env (Type ty') cont }
simplExprF' env (Case scrut bndr _ alts) cont
| not (switchIsOn (getSwitchChecker env) NoCaseOfCase)
= -- Simplify the scrutinee with a Select continuation
simplExprF env scrut (Select NoDup bndr alts env cont)
| otherwise
= -- If case-of-case is off, simply simplify the case expression
-- in a vanilla Stop context, and rebuild the result around it
do { case_expr' <- simplExprC env scrut case_cont
; rebuild env case_expr' cont }
where
case_cont = Select NoDup bndr alts env mkBoringStop
simplExprF' env (Let (Rec pairs) body) cont
= do { env' <- simplRecBndrs env (map fst pairs)
-- NB: bndrs' don't have unfoldings or rules
-- We add them as we go down
; env'' <- simplRecBind env' NotTopLevel pairs
; simplExprF env'' body cont }
simplExprF' env (Let (NonRec bndr rhs) body) cont
= simplNonRecE env bndr (rhs, env) ([], body) cont
---------------------------------
simplType :: SimplEnv -> InType -> SimplM OutType
-- Kept monadic just so we can do the seqType
simplType env ty
= -- pprTrace "simplType" (ppr ty $$ ppr (seTvSubst env)) $
seqType new_ty `seq` return new_ty
where
new_ty = substTy env ty
\end{code}
%************************************************************************
%* *
\subsection{The main rebuilder}
%* *
%************************************************************************
\begin{code}
rebuild :: SimplEnv -> OutExpr -> SimplCont -> SimplM (SimplEnv, OutExpr)
-- At this point the substitution in the SimplEnv should be irrelevant
-- only the in-scope set and floats should matter
rebuild env expr cont0
= -- pprTrace "rebuild" (ppr expr $$ ppr cont0 $$ ppr (seFloats env)) $
case cont0 of
Stop {} -> return (env, expr)
CoerceIt co cont -> rebuild env (mkCoerce co expr) cont
Select _ bndr alts se cont -> rebuildCase (se `setFloats` env) expr bndr alts cont
StrictArg fun _ info cont -> rebuildCall env (fun `App` expr) info cont
StrictBind b bs body se cont -> do { env' <- simplNonRecX (se `setFloats` env) b expr
; simplLam env' bs body cont }
ApplyTo _ arg se cont -> do { arg' <- simplExpr (se `setInScope` env) arg
; rebuild env (App expr arg') cont }
\end{code}
%************************************************************************
%* *
\subsection{Lambdas}
%* *
%************************************************************************
\begin{code}
simplCast :: SimplEnv -> InExpr -> Coercion -> SimplCont
-> SimplM (SimplEnv, OutExpr)
simplCast env body co0 cont0
= do { co1 <- simplType env co0
; simplExprF env body (addCoerce co1 cont0) }
where
addCoerce co cont = add_coerce co (coercionKind co) cont
add_coerce _co (s1, k1) cont -- co :: ty~ty
| s1 `coreEqType` k1 = cont -- is a no-op
add_coerce co1 (s1, _k2) (CoerceIt co2 cont)
| (_l1, t1) <- coercionKind co2
-- e |> (g1 :: S1~L) |> (g2 :: L~T1)
-- ==>
-- e, if T1=T2
-- e |> (g1 . g2 :: T1~T2) otherwise
--
-- For example, in the initial form of a worker
-- we may find (coerce T (coerce S (\x.e))) y
-- and we'd like it to simplify to e[y/x] in one round
-- of simplification
, s1 `coreEqType` t1 = cont -- The coerces cancel out
| otherwise = CoerceIt (mkTransCoercion co1 co2) cont
add_coerce co (s1s2, _t1t2) (ApplyTo dup (Type arg_ty) arg_se cont)
-- (f |> g) ty ---> (f ty) |> (g @ ty)
-- This implements the PushT rule from the paper
| Just (tyvar,_) <- splitForAllTy_maybe s1s2
, not (isCoVar tyvar)
= ApplyTo dup (Type ty') (zapSubstEnv env) (addCoerce (mkInstCoercion co ty') cont)
where
ty' = substTy (arg_se `setInScope` env) arg_ty
-- ToDo: the PushC rule is not implemented at all
add_coerce co (s1s2, _t1t2) (ApplyTo dup arg arg_se cont)
| not (isTypeArg arg) -- This implements the Push rule from the paper
, isFunTy s1s2 -- t1t2 must be a function type, becuase it's applied
-- (e |> (g :: s1s2 ~ t1->t2)) f
-- ===>
-- (e (f |> (arg g :: t1~s1))
-- |> (res g :: s2->t2)
--
-- t1t2 must be a function type, t1->t2, because it's applied
-- to something but s1s2 might conceivably not be
--
-- When we build the ApplyTo we can't mix the out-types
-- with the InExpr in the argument, so we simply substitute
-- to make it all consistent. It's a bit messy.
-- But it isn't a common case.
--
-- Example of use: Trac #995
= ApplyTo dup new_arg (zapSubstEnv env) (addCoerce co2 cont)
where
-- we split coercion t1->t2 ~ s1->s2 into t1 ~ s1 and
-- t2 ~ s2 with left and right on the curried form:
-- (->) t1 t2 ~ (->) s1 s2
[co1, co2] = decomposeCo 2 co
new_arg = mkCoerce (mkSymCoercion co1) arg'
arg' = substExpr (arg_se `setInScope` env) arg
add_coerce co _ cont = CoerceIt co cont
\end{code}
%************************************************************************
%* *
\subsection{Lambdas}
%* *
%************************************************************************
\begin{code}
simplLam :: SimplEnv -> [InId] -> InExpr -> SimplCont
-> SimplM (SimplEnv, OutExpr)
simplLam env [] body cont = simplExprF env body cont
-- Beta reduction
simplLam env (bndr:bndrs) body (ApplyTo _ arg arg_se cont)
= do { tick (BetaReduction bndr)
; simplNonRecE env bndr (arg, arg_se) (bndrs, body) cont }
-- Not enough args, so there are real lambdas left to put in the result
simplLam env bndrs body cont
= do { (env', bndrs') <- simplLamBndrs env bndrs
; body' <- simplExpr env' body
; new_lam <- mkLam env' bndrs' body'
; rebuild env' new_lam cont }
------------------
simplNonRecE :: SimplEnv
-> InId -- The binder
-> (InExpr, SimplEnv) -- Rhs of binding (or arg of lambda)
-> ([InBndr], InExpr) -- Body of the let/lambda
-- \xs.e
-> SimplCont
-> SimplM (SimplEnv, OutExpr)
-- simplNonRecE is used for
-- * non-top-level non-recursive lets in expressions
-- * beta reduction
--
-- It deals with strict bindings, via the StrictBind continuation,
-- which may abort the whole process
--
-- The "body" of the binding comes as a pair of ([InId],InExpr)
-- representing a lambda; so we recurse back to simplLam
-- Why? Because of the binder-occ-info-zapping done before
-- the call to simplLam in simplExprF (Lam ...)
-- First deal with type applications and type lets
-- (/\a. e) (Type ty) and (let a = Type ty in e)
simplNonRecE env bndr (Type ty_arg, rhs_se) (bndrs, body) cont
= ASSERT( isTyVar bndr )
do { ty_arg' <- simplType (rhs_se `setInScope` env) ty_arg
; simplLam (extendTvSubst env bndr ty_arg') bndrs body cont }
simplNonRecE env bndr (rhs, rhs_se) (bndrs, body) cont
| preInlineUnconditionally env NotTopLevel bndr rhs
= do { tick (PreInlineUnconditionally bndr)
; simplLam (extendIdSubst env bndr (mkContEx rhs_se rhs)) bndrs body cont }
| isStrictId bndr
= do { simplExprF (rhs_se `setFloats` env) rhs
(StrictBind bndr bndrs body env cont) }
| otherwise
= ASSERT( not (isTyVar bndr) )
do { (env1, bndr1) <- simplNonRecBndr env bndr
; let (env2, bndr2) = addBndrRules env1 bndr bndr1
; env3 <- simplLazyBind env2 NotTopLevel NonRecursive bndr bndr2 rhs rhs_se
; simplLam env3 bndrs body cont }
\end{code}
%************************************************************************
%* *
\subsection{Notes}
%* *
%************************************************************************
\begin{code}
-- Hack alert: we only distinguish subsumed cost centre stacks for the
-- purposes of inlining. All other CCCSs are mapped to currentCCS.
simplNote :: SimplEnv -> Note -> CoreExpr -> SimplCont
-> SimplM (SimplEnv, OutExpr)
simplNote env (SCC cc) e cont
= do { e' <- simplExpr (setEnclosingCC env currentCCS) e
; rebuild env (mkSCC cc e') cont }
-- See notes with SimplMonad.inlineMode
simplNote env InlineMe e cont
| Just (inside, outside) <- splitInlineCont cont -- Boring boring continuation; see notes above
= do { -- Don't inline inside an INLINE expression
e' <- simplExprC (setMode inlineMode env) e inside
; rebuild env (mkInlineMe e') outside }
| otherwise -- Dissolve the InlineMe note if there's
-- an interesting context of any kind to combine with
-- (even a type application -- anything except Stop)
= simplExprF env e cont
simplNote env (CoreNote s) e cont = do
e' <- simplExpr env e
rebuild env (Note (CoreNote s) e') cont
\end{code}
%************************************************************************
%* *
\subsection{Dealing with calls}
%* *
%************************************************************************
\begin{code}
simplVar :: SimplEnv -> Id -> SimplCont -> SimplM (SimplEnv, OutExpr)
simplVar env var cont
= case substId env var of
DoneEx e -> simplExprF (zapSubstEnv env) e cont
ContEx tvs ids e -> simplExprF (setSubstEnv env tvs ids) e cont
DoneId var1 -> completeCall (zapSubstEnv env) var1 cont
-- Note [zapSubstEnv]
-- The template is already simplified, so don't re-substitute.
-- This is VITAL. Consider
-- let x = e in
-- let y = \z -> ...x... in
-- \ x -> ...y...
-- We'll clone the inner \x, adding x->x' in the id_subst
-- Then when we inline y, we must *not* replace x by x' in
-- the inlined copy!!
---------------------------------------------------------
-- Dealing with a call site
completeCall :: SimplEnv -> Id -> SimplCont -> SimplM (SimplEnv, OutExpr)
completeCall env var cont
= do { let (args,call_cont) = contArgs cont
-- The args are OutExprs, obtained by *lazily* substituting
-- in the args found in cont. These args are only examined
-- to limited depth (unless a rule fires). But we must do
-- the substitution; rule matching on un-simplified args would
-- be bogus
------------- First try rules ----------------
-- Do this before trying inlining. Some functions have
-- rules *and* are strict; in this case, we don't want to
-- inline the wrapper of the non-specialised thing; better
-- to call the specialised thing instead.
--
-- We used to use the black-listing mechanism to ensure that inlining of
-- the wrapper didn't occur for things that have specialisations till a
-- later phase, so but now we just try RULES first
--
-- See also Note [Rules for recursive functions]
; mb_rule <- tryRules env var args call_cont
; case mb_rule of {
Just (n_args, rule_rhs) -> simplExprF env rule_rhs (dropArgs n_args cont) ;
-- The ruleArity says how many args the rule consumed
; Nothing -> do -- No rules
------------- Next try inlining ----------------
{ dflags <- getDOptsSmpl
; let arg_infos = [interestingArg arg | arg <- args, isValArg arg]
n_val_args = length arg_infos
interesting_cont = interestingCallContext call_cont
active_inline = activeInline env var
maybe_inline = callSiteInline dflags active_inline var
(null args) arg_infos interesting_cont
; case maybe_inline of {
Just unfolding -- There is an inlining!
-> do { tick (UnfoldingDone var)
; (if dopt Opt_D_dump_inlinings dflags then
pprTrace ("Inlining done: " ++ showSDoc (ppr var)) (vcat [
text "Before:" <+> ppr var <+> sep (map pprParendExpr args),
text "Inlined fn: " <+> nest 2 (ppr unfolding),
text "Cont: " <+> ppr call_cont])
else
id)
simplExprF env unfolding cont }
; Nothing -> -- No inlining!
------------- No inlining! ----------------
-- Next, look for rules or specialisations that match
--
rebuildCall env (Var var)
(mkArgInfo var n_val_args call_cont) cont
}}}}
rebuildCall :: SimplEnv
-> OutExpr -- Function
-> ArgInfo
-> SimplCont
-> SimplM (SimplEnv, OutExpr)
rebuildCall env fun (ArgInfo { ai_strs = [] }) cont
-- When we run out of strictness args, it means
-- that the call is definitely bottom; see SimplUtils.mkArgInfo
-- Then we want to discard the entire strict continuation. E.g.
-- * case (error "hello") of { ... }
-- * (error "Hello") arg
-- * f (error "Hello") where f is strict
-- etc
-- Then, especially in the first of these cases, we'd like to discard
-- the continuation, leaving just the bottoming expression. But the
-- type might not be right, so we may have to add a coerce.
| not (contIsTrivial cont) -- Only do this if there is a non-trivial
= return (env, mk_coerce fun) -- contination to discard, else we do it
where -- again and again!
fun_ty = exprType fun
cont_ty = contResultType env fun_ty cont
co = mkUnsafeCoercion fun_ty cont_ty
mk_coerce expr | cont_ty `coreEqType` fun_ty = expr
| otherwise = mkCoerce co expr
rebuildCall env fun info (ApplyTo _ (Type arg_ty) se cont)
= do { ty' <- simplType (se `setInScope` env) arg_ty
; rebuildCall env (fun `App` Type ty') info cont }
rebuildCall env fun
(ArgInfo { ai_rules = has_rules, ai_strs = str:strs, ai_discs = disc:discs })
(ApplyTo _ arg arg_se cont)
| str -- Strict argument
= -- pprTrace "Strict Arg" (ppr arg $$ ppr (seIdSubst env) $$ ppr (seInScope env)) $
simplExprF (arg_se `setFloats` env) arg
(StrictArg fun cci arg_info' cont)
-- Note [Shadowing]
| otherwise -- Lazy argument
-- DO NOT float anything outside, hence simplExprC
-- There is no benefit (unlike in a let-binding), and we'd
-- have to be very careful about bogus strictness through
-- floating a demanded let.
= do { arg' <- simplExprC (arg_se `setInScope` env) arg
(mkLazyArgStop cci)
; rebuildCall env (fun `App` arg') arg_info' cont }
where
arg_info' = ArgInfo { ai_rules = has_rules, ai_strs = strs, ai_discs = discs }
cci | has_rules || disc > 0 = ArgCtxt has_rules disc -- Be keener here
| otherwise = BoringCtxt -- Nothing interesting
rebuildCall env fun _ cont
= rebuild env fun cont
\end{code}
Note [Shadowing]
~~~~~~~~~~~~~~~~
This part of the simplifier may break the no-shadowing invariant
Consider
f (...(\a -> e)...) (case y of (a,b) -> e')
where f is strict in its second arg
If we simplify the innermost one first we get (...(\a -> e)...)
Simplifying the second arg makes us float the case out, so we end up with
case y of (a,b) -> f (...(\a -> e)...) e'
So the output does not have the no-shadowing invariant. However, there is
no danger of getting name-capture, because when the first arg was simplified
we used an in-scope set that at least mentioned all the variables free in its
static environment, and that is enough.
We can't just do innermost first, or we'd end up with a dual problem:
case x of (a,b) -> f e (...(\a -> e')...)
I spent hours trying to recover the no-shadowing invariant, but I just could
not think of an elegant way to do it. The simplifier is already knee-deep in
continuations. We have to keep the right in-scope set around; AND we have
to get the effect that finding (error "foo") in a strict arg position will
discard the entire application and replace it with (error "foo"). Getting
all this at once is TOO HARD!
%************************************************************************
%* *
Rewrite rules
%* *
%************************************************************************
\begin{code}
tryRules :: SimplEnv -> Id -> [OutExpr] -> SimplCont
-> SimplM (Maybe (Arity, CoreExpr)) -- The arity is the number of
-- args consumed by the rule
tryRules env fn args call_cont
= do { dflags <- getDOptsSmpl
; rule_base <- getSimplRules
; let in_scope = getInScope env
rules = getRules rule_base fn
maybe_rule = case activeRule dflags env of
Nothing -> Nothing -- No rules apply
Just act_fn -> lookupRule act_fn in_scope
fn args rules
; case (rules, maybe_rule) of {
([], _) -> return Nothing ;
(_, Nothing) -> return Nothing ;
(_, Just (rule, rule_rhs)) -> do
{ tick (RuleFired (ru_name rule))
; (if dopt Opt_D_dump_rule_firings dflags then
pprTrace "Rule fired" (vcat [
text "Rule:" <+> ftext (ru_name rule),
text "Before:" <+> ppr fn <+> sep (map pprParendExpr args),
text "After: " <+> pprCoreExpr rule_rhs,
text "Cont: " <+> ppr call_cont])
else
id) $
return (Just (ruleArity rule, rule_rhs)) }}}
\end{code}
Note [Rules for recursive functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You might think that we shouldn't apply rules for a loop breaker:
doing so might give rise to an infinite loop, because a RULE is
rather like an extra equation for the function:
RULE: f (g x) y = x+y
Eqn: f a y = a-y
But it's too drastic to disable rules for loop breakers.
Even the foldr/build rule would be disabled, because foldr
is recursive, and hence a loop breaker:
foldr k z (build g) = g k z
So it's up to the programmer: rules can cause divergence
%************************************************************************
%* *
Rebuilding a cse expression
%* *
%************************************************************************
Note [Case elimination]
~~~~~~~~~~~~~~~~~~~~~~~
The case-elimination transformation discards redundant case expressions.
Start with a simple situation:
case x# of ===> e[x#/y#]
y# -> e
(when x#, y# are of primitive type, of course). We can't (in general)
do this for algebraic cases, because we might turn bottom into
non-bottom!
The code in SimplUtils.prepareAlts has the effect of generalise this
idea to look for a case where we're scrutinising a variable, and we
know that only the default case can match. For example:
case x of
0# -> ...
DEFAULT -> ...(case x of
0# -> ...
DEFAULT -> ...) ...
Here the inner case is first trimmed to have only one alternative, the
DEFAULT, after which it's an instance of the previous case. This
really only shows up in eliminating error-checking code.
We also make sure that we deal with this very common case:
case e of
x -> ...x...
Here we are using the case as a strict let; if x is used only once
then we want to inline it. We have to be careful that this doesn't
make the program terminate when it would have diverged before, so we
check that
- e is already evaluated (it may so if e is a variable)
- x is used strictly, or
Lastly, the code in SimplUtils.mkCase combines identical RHSs. So
case e of ===> case e of DEFAULT -> r
True -> r
False -> r
Now again the case may be elminated by the CaseElim transformation.
Further notes about case elimination
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider: test :: Integer -> IO ()
test = print
Turns out that this compiles to:
Print.test
= \ eta :: Integer
eta1 :: State# RealWorld ->
case PrelNum.< eta PrelNum.zeroInteger of wild { __DEFAULT ->
case hPutStr stdout
(PrelNum.jtos eta ($w[] @ Char))
eta1
of wild1 { (# new_s, a4 #) -> PrelIO.lvl23 new_s }}
Notice the strange '<' which has no effect at all. This is a funny one.
It started like this:
f x y = if x < 0 then jtos x
else if y==0 then "" else jtos x
At a particular call site we have (f v 1). So we inline to get
if v < 0 then jtos x
else if 1==0 then "" else jtos x
Now simplify the 1==0 conditional:
if v<0 then jtos v else jtos v
Now common-up the two branches of the case:
case (v<0) of DEFAULT -> jtos v
Why don't we drop the case? Because it's strict in v. It's technically
wrong to drop even unnecessary evaluations, and in practice they
may be a result of 'seq' so we *definitely* don't want to drop those.
I don't really know how to improve this situation.
\begin{code}
---------------------------------------------------------
-- Eliminate the case if possible
rebuildCase, reallyRebuildCase
:: SimplEnv
-> OutExpr -- Scrutinee
-> InId -- Case binder
-> [InAlt] -- Alternatives (inceasing order)
-> SimplCont
-> SimplM (SimplEnv, OutExpr)
--------------------------------------------------
-- 1. Eliminate the case if there's a known constructor
--------------------------------------------------
rebuildCase env scrut case_bndr alts cont
| Just (con,args) <- exprIsConApp_maybe scrut
-- Works when the scrutinee is a variable with a known unfolding
-- as well as when it's an explicit constructor application
= knownCon env scrut (DataAlt con) args case_bndr alts cont
| Lit lit <- scrut -- No need for same treatment as constructors
-- because literals are inlined more vigorously
= knownCon env scrut (LitAlt lit) [] case_bndr alts cont
--------------------------------------------------
-- 2. Eliminate the case if scrutinee is evaluated
--------------------------------------------------
rebuildCase env scrut case_bndr [(_, bndrs, rhs)] cont
-- See if we can get rid of the case altogether
-- See Note [Case eliminiation]
-- mkCase made sure that if all the alternatives are equal,
-- then there is now only one (DEFAULT) rhs
| all isDeadBinder bndrs -- bndrs are [InId]
-- Check that the scrutinee can be let-bound instead of case-bound
, exprOkForSpeculation scrut
-- OK not to evaluate it
-- This includes things like (==# a# b#)::Bool
-- so that we simplify
-- case ==# a# b# of { True -> x; False -> x }
-- to just
-- x
-- This particular example shows up in default methods for
-- comparision operations (e.g. in (>=) for Int.Int32)
|| exprIsHNF scrut -- It's already evaluated
|| var_demanded_later scrut -- It'll be demanded later
-- || not opt_SimplPedanticBottoms) -- Or we don't care!
-- We used to allow improving termination by discarding cases, unless -fpedantic-bottoms was on,
-- but that breaks badly for the dataToTag# primop, which relies on a case to evaluate
-- its argument: case x of { y -> dataToTag# y }
-- Here we must *not* discard the case, because dataToTag# just fetches the tag from
-- the info pointer. So we'll be pedantic all the time, and see if that gives any
-- other problems
-- Also we don't want to discard 'seq's
= do { tick (CaseElim case_bndr)
; env' <- simplNonRecX env case_bndr scrut
; simplExprF env' rhs cont }
where
-- The case binder is going to be evaluated later,
-- and the scrutinee is a simple variable
var_demanded_later (Var v) = isStrictDmd (idNewDemandInfo case_bndr)
&& not (isTickBoxOp v)
-- ugly hack; covering this case is what
-- exprOkForSpeculation was intended for.
var_demanded_later _ = False
rebuildCase env scrut case_bndr alts@[(_, bndrs, rhs)] cont
| all isDeadBinder (case_bndr : bndrs) -- So this is just 'seq'
= -- For this case, see Note [Rules for seq] in MkId
do { let rhs' = substExpr env rhs
out_args = [Type (substTy env (idType case_bndr)),
Type (exprType rhs'), scrut, rhs']
-- Lazily evaluated, so we don't do most of this
; mb_rule <- tryRules env seqId out_args cont
; case mb_rule of
Just (n_args, res) -> simplExprF (zapSubstEnv env)
(mkApps res (drop n_args out_args))
cont
Nothing -> reallyRebuildCase env scrut case_bndr alts cont }
rebuildCase env scrut case_bndr alts cont
= reallyRebuildCase env scrut case_bndr alts cont
--------------------------------------------------
-- 3. Catch-all case
--------------------------------------------------
reallyRebuildCase env scrut case_bndr alts cont
= do { -- Prepare the continuation;
-- The new subst_env is in place
(env', dup_cont, nodup_cont) <- prepareCaseCont env alts cont
-- Simplify the alternatives
; (scrut', case_bndr', alts') <- simplAlts env' scrut case_bndr alts dup_cont
-- Check for empty alternatives
; if null alts' then missingAlt env case_bndr alts cont
else do
{ case_expr <- mkCase scrut' case_bndr' alts'
-- Notice that rebuild gets the in-scope set from env, not alt_env
-- The case binder *not* scope over the whole returned case-expression
; rebuild env' case_expr nodup_cont } }
\end{code}
simplCaseBinder checks whether the scrutinee is a variable, v. If so,
try to eliminate uses of v in the RHSs in favour of case_bndr; that
way, there's a chance that v will now only be used once, and hence
inlined.
Historical note: we use to do the "case binder swap" in the Simplifier
so there were additional complications if the scrutinee was a variable.
Now the binder-swap stuff is done in the occurrence analyer; see
OccurAnal Note [Binder swap].
Note [zapOccInfo]
~~~~~~~~~~~~~~~~~
If the case binder is not dead, then neither are the pattern bound
variables:
case <any> of x { (a,b) ->
case x of { (p,q) -> p } }
Here (a,b) both look dead, but come alive after the inner case is eliminated.
The point is that we bring into the envt a binding
let x = (a,b)
after the outer case, and that makes (a,b) alive. At least we do unless
the case binder is guaranteed dead.
Note [Improving seq]
~~~~~~~~~~~~~~~~~~~
Consider
type family F :: * -> *
type instance F Int = Int
... case e of x { DEFAULT -> rhs } ...
where x::F Int. Then we'd like to rewrite (F Int) to Int, getting
case e `cast` co of x'::Int
I# x# -> let x = x' `cast` sym co
in rhs
so that 'rhs' can take advantage of the form of x'. Notice that Note
[Case of cast] may then apply to the result.
This showed up in Roman's experiments. Example:
foo :: F Int -> Int -> Int
foo t n = t `seq` bar n
where
bar 0 = 0
bar n = bar (n - case t of TI i -> i)
Here we'd like to avoid repeated evaluating t inside the loop, by
taking advantage of the `seq`.
At one point I did transformation in LiberateCase, but it's more robust here.
(Otherwise, there's a danger that we'll simply drop the 'seq' altogether, before
LiberateCase gets to see it.)
\begin{code}
improveSeq :: (FamInstEnv, FamInstEnv) -> SimplEnv
-> OutExpr -> InId -> OutId -> [InAlt]
-> SimplM (SimplEnv, OutExpr, OutId)
-- Note [Improving seq]
improveSeq fam_envs env scrut case_bndr case_bndr1 [(DEFAULT,_,_)]
| Just (co, ty2) <- topNormaliseType fam_envs (idType case_bndr1)
= do { case_bndr2 <- newId (fsLit "nt") ty2
; let rhs = DoneEx (Var case_bndr2 `Cast` mkSymCoercion co)
env2 = extendIdSubst env case_bndr rhs
; return (env2, scrut `Cast` co, case_bndr2) }
improveSeq _ env scrut _ case_bndr1 _
= return (env, scrut, case_bndr1)
{-
improve_case_bndr env scrut case_bndr
-- See Note [no-case-of-case]
-- | switchIsOn (getSwitchChecker env) NoCaseOfCase
-- = (env, case_bndr)
| otherwise -- Failed try; see Note [Suppressing the case binder-swap]
-- not (isEvaldUnfolding (idUnfolding v))
= case scrut of
Var v -> (modifyInScope env1 v case_bndr', case_bndr')
-- Note about using modifyInScope for v here
-- We could extend the substitution instead, but it would be
-- a hack because then the substitution wouldn't be idempotent
-- any more (v is an OutId). And this does just as well.
Cast (Var v) co -> (addBinderUnfolding env1 v rhs, case_bndr')
where
rhs = Cast (Var case_bndr') (mkSymCoercion co)
_ -> (env, case_bndr)
where
case_bndr' = zapIdOccInfo case_bndr
env1 = modifyInScope env case_bndr case_bndr'
-}
\end{code}
simplAlts does two things:
1. Eliminate alternatives that cannot match, including the
DEFAULT alternative.
2. If the DEFAULT alternative can match only one possible constructor,
then make that constructor explicit.
e.g.
case e of x { DEFAULT -> rhs }
===>
case e of x { (a,b) -> rhs }
where the type is a single constructor type. This gives better code
when rhs also scrutinises x or e.
Here "cannot match" includes knowledge from GADTs
It's a good idea do do this stuff before simplifying the alternatives, to
avoid simplifying alternatives we know can't happen, and to come up with
the list of constructors that are handled, to put into the IdInfo of the
case binder, for use when simplifying the alternatives.
Eliminating the default alternative in (1) isn't so obvious, but it can
happen:
data Colour = Red | Green | Blue
f x = case x of
Red -> ..
Green -> ..
DEFAULT -> h x
h y = case y of
Blue -> ..
DEFAULT -> [ case y of ... ]
If we inline h into f, the default case of the inlined h can't happen.
If we don't notice this, we may end up filtering out *all* the cases
of the inner case y, which give us nowhere to go!
\begin{code}
simplAlts :: SimplEnv
-> OutExpr
-> InId -- Case binder
-> [InAlt] -- Non-empty
-> SimplCont
-> SimplM (OutExpr, OutId, [OutAlt]) -- Includes the continuation
-- Like simplExpr, this just returns the simplified alternatives;
-- it not return an environment
simplAlts env scrut case_bndr alts cont'
= -- pprTrace "simplAlts" (ppr alts $$ ppr (seIdSubst env)) $
do { let env0 = zapFloats env
; (env1, case_bndr1) <- simplBinder env0 case_bndr
; fam_envs <- getFamEnvs
; (alt_env', scrut', case_bndr') <- improveSeq fam_envs env1 scrut
case_bndr case_bndr1 alts
; (imposs_deflt_cons, in_alts) <- prepareAlts alt_env' scrut' case_bndr' alts
; alts' <- mapM (simplAlt alt_env' imposs_deflt_cons case_bndr' cont') in_alts
; return (scrut', case_bndr', alts') }
------------------------------------
simplAlt :: SimplEnv
-> [AltCon] -- These constructors can't be present when
-- matching the DEFAULT alternative
-> OutId -- The case binder
-> SimplCont
-> InAlt
-> SimplM OutAlt
simplAlt env imposs_deflt_cons case_bndr' cont' (DEFAULT, bndrs, rhs)
= ASSERT( null bndrs )
do { let env' = addBinderOtherCon env case_bndr' imposs_deflt_cons
-- Record the constructors that the case-binder *can't* be.
; rhs' <- simplExprC env' rhs cont'
; return (DEFAULT, [], rhs') }
simplAlt env _ case_bndr' cont' (LitAlt lit, bndrs, rhs)
= ASSERT( null bndrs )
do { let env' = addBinderUnfolding env case_bndr' (Lit lit)
; rhs' <- simplExprC env' rhs cont'
; return (LitAlt lit, [], rhs') }
simplAlt env _ case_bndr' cont' (DataAlt con, vs, rhs)
= do { -- Deal with the pattern-bound variables
-- Mark the ones that are in ! positions in the
-- data constructor as certainly-evaluated.
-- NB: simplLamBinders preserves this eval info
let vs_with_evals = add_evals (dataConRepStrictness con)
; (env', vs') <- simplLamBndrs env vs_with_evals
-- Bind the case-binder to (con args)
; let inst_tys' = tyConAppArgs (idType case_bndr')
con_args = map Type inst_tys' ++ varsToCoreExprs vs'
env'' = addBinderUnfolding env' case_bndr'
(mkConApp con con_args)
; rhs' <- simplExprC env'' rhs cont'
; return (DataAlt con, vs', rhs') }
where
-- add_evals records the evaluated-ness of the bound variables of
-- a case pattern. This is *important*. Consider
-- data T = T !Int !Int
--
-- case x of { T a b -> T (a+1) b }
--
-- We really must record that b is already evaluated so that we don't
-- go and re-evaluate it when constructing the result.
-- See Note [Data-con worker strictness] in MkId.lhs
add_evals the_strs
= go vs the_strs
where
go [] [] = []
go (v:vs') strs | isTyVar v = v : go vs' strs
go (v:vs') (str:strs)
| isMarkedStrict str = evald_v : go vs' strs
| otherwise = zapped_v : go vs' strs
where
zapped_v = zap_occ_info v
evald_v = zapped_v `setIdUnfolding` evaldUnfolding
go _ _ = pprPanic "cat_evals" (ppr con $$ ppr vs $$ ppr the_strs)
-- See Note [zapOccInfo]
-- zap_occ_info: if the case binder is alive, then we add the unfolding
-- case_bndr = C vs
-- to the envt; so vs are now very much alive
-- Note [Aug06] I can't see why this actually matters, but it's neater
-- case e of t { (a,b) -> ...(case t of (p,q) -> p)... }
-- ==> case e of t { (a,b) -> ...(a)... }
-- Look, Ma, a is alive now.
zap_occ_info = zapCasePatIdOcc case_bndr'
addBinderUnfolding :: SimplEnv -> Id -> CoreExpr -> SimplEnv
addBinderUnfolding env bndr rhs
= modifyInScope env (bndr `setIdUnfolding` mkUnfolding False rhs)
addBinderOtherCon :: SimplEnv -> Id -> [AltCon] -> SimplEnv
addBinderOtherCon env bndr cons
= modifyInScope env (bndr `setIdUnfolding` mkOtherCon cons)
zapCasePatIdOcc :: Id -> Id -> Id
-- Consider case e of b { (a,b) -> ... }
-- Then if we bind b to (a,b) in "...", and b is not dead,
-- then we must zap the deadness info on a,b
zapCasePatIdOcc case_bndr
| isDeadBinder case_bndr = \ pat_id -> pat_id
| otherwise = \ pat_id -> zapIdOccInfo pat_id
\end{code}
%************************************************************************
%* *
\subsection{Known constructor}
%* *
%************************************************************************
We are a bit careful with occurrence info. Here's an example
(\x* -> case x of (a*, b) -> f a) (h v, e)
where the * means "occurs once". This effectively becomes
case (h v, e) of (a*, b) -> f a)
and then
let a* = h v; b = e in f a
and then
f (h v)
All this should happen in one sweep.
\begin{code}
knownCon :: SimplEnv -> OutExpr -> AltCon
-> [OutExpr] -- Args *including* the universal args
-> InId -> [InAlt] -> SimplCont
-> SimplM (SimplEnv, OutExpr)
knownCon env scrut con args bndr alts cont
= do { tick (KnownBranch bndr)
; case findAlt con alts of
Nothing -> missingAlt env bndr alts cont
Just alt -> knownAlt env scrut args bndr alt cont
}
-------------------
knownAlt :: SimplEnv -> OutExpr -> [OutExpr]
-> InId -> InAlt -> SimplCont
-> SimplM (SimplEnv, OutExpr)
knownAlt env scrut the_args bndr (DataAlt dc, bs, rhs) cont
= do { let n_drop_tys = length (dataConUnivTyVars dc)
; env' <- bind_args env bs (drop n_drop_tys the_args)
; let
-- It's useful to bind bndr to scrut, rather than to a fresh
-- binding x = Con arg1 .. argn
-- because very often the scrut is a variable, so we avoid
-- creating, and then subsequently eliminating, a let-binding
-- BUT, if scrut is a not a variable, we must be careful
-- about duplicating the arg redexes; in that case, make
-- a new con-app from the args
bndr_rhs = case scrut of
Var _ -> scrut
_ -> con_app
con_app = mkConApp dc (take n_drop_tys the_args ++ con_args)
con_args = [substExpr env' (varToCoreExpr b) | b <- bs]
-- args are aready OutExprs, but bs are InIds
; env'' <- simplNonRecX env' bndr bndr_rhs
; simplExprF env'' rhs cont }
where
zap_occ = zapCasePatIdOcc bndr -- bndr is an InId
-- Ugh!
bind_args env' [] _ = return env'
bind_args env' (b:bs') (Type ty : args)
= ASSERT( isTyVar b )
bind_args (extendTvSubst env' b ty) bs' args
bind_args env' (b:bs') (arg : args)
= ASSERT( isId b )
do { let b' = zap_occ b
-- Note that the binder might be "dead", because it doesn't
-- occur in the RHS; and simplNonRecX may therefore discard
-- it via postInlineUnconditionally.
-- Nevertheless we must keep it if the case-binder is alive,
-- because it may be used in the con_app. See Note [zapOccInfo]
; env'' <- simplNonRecX env' b' arg
; bind_args env'' bs' args }
bind_args _ _ _ =
pprPanic "bind_args" $ ppr dc $$ ppr bs $$ ppr the_args $$
text "scrut:" <+> ppr scrut
knownAlt env scrut _ bndr (_, bs, rhs) cont
= ASSERT( null bs ) -- Works for LitAlt and DEFAULT
do { env' <- simplNonRecX env bndr scrut
; simplExprF env' rhs cont }
-------------------
missingAlt :: SimplEnv -> Id -> [InAlt] -> SimplCont -> SimplM (SimplEnv, OutExpr)
-- This isn't strictly an error, although it is unusual.
-- It's possible that the simplifer might "see" that
-- an inner case has no accessible alternatives before
-- it "sees" that the entire branch of an outer case is
-- inaccessible. So we simply put an error case here instead.
missingAlt env case_bndr alts cont
= WARN( True, ptext (sLit "missingAlt") <+> ppr case_bndr )
return (env, mkImpossibleExpr res_ty)
where
res_ty = contResultType env (substTy env (coreAltsType alts)) cont
\end{code}
%************************************************************************
%* *
\subsection{Duplicating continuations}
%* *
%************************************************************************
\begin{code}
prepareCaseCont :: SimplEnv
-> [InAlt] -> SimplCont
-> SimplM (SimplEnv, SimplCont,SimplCont)
-- Return a duplicatable continuation, a non-duplicable part
-- plus some extra bindings (that scope over the entire
-- continunation)
-- No need to make it duplicatable if there's only one alternative
prepareCaseCont env [_] cont = return (env, cont, mkBoringStop)
prepareCaseCont env _ cont = mkDupableCont env cont
\end{code}
\begin{code}
mkDupableCont :: SimplEnv -> SimplCont
-> SimplM (SimplEnv, SimplCont, SimplCont)
mkDupableCont env cont
| contIsDupable cont
= return (env, cont, mkBoringStop)
mkDupableCont _ (Stop {}) = panic "mkDupableCont" -- Handled by previous eqn
mkDupableCont env (CoerceIt ty cont)
= do { (env', dup, nodup) <- mkDupableCont env cont
; return (env', CoerceIt ty dup, nodup) }
mkDupableCont env cont@(StrictBind {})
= return (env, mkBoringStop, cont)
-- See Note [Duplicating StrictBind]
mkDupableCont env (StrictArg fun cci ai cont)
-- See Note [Duplicating StrictArg]
= do { (env', dup, nodup) <- mkDupableCont env cont
; (env'', fun') <- mk_dupable_call env' fun
; return (env'', StrictArg fun' cci ai dup, nodup) }
where
mk_dupable_call env (Var v) = return (env, Var v)
mk_dupable_call env (App fun arg) = do { (env', fun') <- mk_dupable_call env fun
; (env'', arg') <- makeTrivial env' arg
; return (env'', fun' `App` arg') }
mk_dupable_call _ other = pprPanic "mk_dupable_call" (ppr other)
-- The invariant of StrictArg is that the first arg is always an App chain
mkDupableCont env (ApplyTo _ arg se cont)
= -- e.g. [...hole...] (...arg...)
-- ==>
-- let a = ...arg...
-- in [...hole...] a
do { (env', dup_cont, nodup_cont) <- mkDupableCont env cont
; arg' <- simplExpr (se `setInScope` env') arg
; (env'', arg'') <- makeTrivial env' arg'
; let app_cont = ApplyTo OkToDup arg'' (zapSubstEnv env'') dup_cont
; return (env'', app_cont, nodup_cont) }
mkDupableCont env cont@(Select _ case_bndr [(_, bs, _rhs)] _ _)
-- See Note [Single-alternative case]
-- | not (exprIsDupable rhs && contIsDupable case_cont)
-- | not (isDeadBinder case_bndr)
| all isDeadBinder bs -- InIds
&& not (isUnLiftedType (idType case_bndr))
-- Note [Single-alternative-unlifted]
= return (env, mkBoringStop, cont)
mkDupableCont env (Select _ case_bndr alts se cont)
= -- e.g. (case [...hole...] of { pi -> ei })
-- ===>
-- let ji = \xij -> ei
-- in case [...hole...] of { pi -> ji xij }
do { tick (CaseOfCase case_bndr)
; (env', dup_cont, nodup_cont) <- mkDupableCont env cont
-- NB: call mkDupableCont here, *not* prepareCaseCont
-- We must make a duplicable continuation, whereas prepareCaseCont
-- doesn't when there is a single case branch
; let alt_env = se `setInScope` env'
; (alt_env', case_bndr') <- simplBinder alt_env case_bndr
; alts' <- mapM (simplAlt alt_env' [] case_bndr' dup_cont) alts
-- Safe to say that there are no handled-cons for the DEFAULT case
-- NB: simplBinder does not zap deadness occ-info, so
-- a dead case_bndr' will still advertise its deadness
-- This is really important because in
-- case e of b { (# p,q #) -> ... }
-- b is always dead, and indeed we are not allowed to bind b to (# p,q #),
-- which might happen if e was an explicit unboxed pair and b wasn't marked dead.
-- In the new alts we build, we have the new case binder, so it must retain
-- its deadness.
-- NB: we don't use alt_env further; it has the substEnv for
-- the alternatives, and we don't want that
; (env'', alts'') <- mkDupableAlts env' case_bndr' alts'
; return (env'', -- Note [Duplicated env]
Select OkToDup case_bndr' alts'' (zapSubstEnv env'') mkBoringStop,
nodup_cont) }
mkDupableAlts :: SimplEnv -> OutId -> [InAlt]
-> SimplM (SimplEnv, [InAlt])
-- Absorbs the continuation into the new alternatives
mkDupableAlts env case_bndr' the_alts
= go env the_alts
where
go env0 [] = return (env0, [])
go env0 (alt:alts)
= do { (env1, alt') <- mkDupableAlt env0 case_bndr' alt
; (env2, alts') <- go env1 alts
; return (env2, alt' : alts' ) }
mkDupableAlt :: SimplEnv -> OutId -> (AltCon, [CoreBndr], CoreExpr)
-> SimplM (SimplEnv, (AltCon, [CoreBndr], CoreExpr))
mkDupableAlt env case_bndr' (con, bndrs', rhs')
| exprIsDupable rhs' -- Note [Small alternative rhs]
= return (env, (con, bndrs', rhs'))
| otherwise
= do { let rhs_ty' = exprType rhs'
used_bndrs' = filter abstract_over (case_bndr' : bndrs')
abstract_over bndr
| isTyVar bndr = True -- Abstract over all type variables just in case
| otherwise = not (isDeadBinder bndr)
-- The deadness info on the new Ids is preserved by simplBinders
; (final_bndrs', final_args) -- Note [Join point abstraction]
<- if (any isId used_bndrs')
then return (used_bndrs', varsToCoreExprs used_bndrs')
else do { rw_id <- newId (fsLit "w") realWorldStatePrimTy
; return ([rw_id], [Var realWorldPrimId]) }
; join_bndr <- newId (fsLit "$j") (mkPiTypes final_bndrs' rhs_ty')
-- Note [Funky mkPiTypes]
; let -- We make the lambdas into one-shot-lambdas. The
-- join point is sure to be applied at most once, and doing so
-- prevents the body of the join point being floated out by
-- the full laziness pass
really_final_bndrs = map one_shot final_bndrs'
one_shot v | isId v = setOneShotLambda v
| otherwise = v
join_rhs = mkLams really_final_bndrs rhs'
join_call = mkApps (Var join_bndr) final_args
; return (addPolyBind NotTopLevel env (NonRec join_bndr join_rhs), (con, bndrs', join_call)) }
-- See Note [Duplicated env]
\end{code}
Note [Duplicated env]
~~~~~~~~~~~~~~~~~~~~~
Some of the alternatives are simplified, but have not been turned into a join point
So they *must* have an zapped subst-env. So we can't use completeNonRecX to
bind the join point, because it might to do PostInlineUnconditionally, and
we'd lose that when zapping the subst-env. We could have a per-alt subst-env,
but zapping it (as we do in mkDupableCont, the Select case) is safe, and
at worst delays the join-point inlining.
Note [Small alternative rhs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is worth checking for a small RHS because otherwise we
get extra let bindings that may cause an extra iteration of the simplifier to
inline back in place. Quite often the rhs is just a variable or constructor.
The Ord instance of Maybe in PrelMaybe.lhs, for example, took several extra
iterations because the version with the let bindings looked big, and so wasn't
inlined, but after the join points had been inlined it looked smaller, and so
was inlined.
NB: we have to check the size of rhs', not rhs.
Duplicating a small InAlt might invalidate occurrence information
However, if it *is* dupable, we return the *un* simplified alternative,
because otherwise we'd need to pair it up with an empty subst-env....
but we only have one env shared between all the alts.
(Remember we must zap the subst-env before re-simplifying something).
Rather than do this we simply agree to re-simplify the original (small) thing later.
Note [Funky mkPiTypes]
~~~~~~~~~~~~~~~~~~~~~~
Notice the funky mkPiTypes. If the contructor has existentials
it's possible that the join point will be abstracted over
type varaibles as well as term variables.
Example: Suppose we have
data T = forall t. C [t]
Then faced with
case (case e of ...) of
C t xs::[t] -> rhs
We get the join point
let j :: forall t. [t] -> ...
j = /\t \xs::[t] -> rhs
in
case (case e of ...) of
C t xs::[t] -> j t xs
Note [Join point abstaction]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we try to lift a primitive-typed something out
for let-binding-purposes, we will *caseify* it (!),
with potentially-disastrous strictness results. So
instead we turn it into a function: \v -> e
where v::State# RealWorld#. The value passed to this function
is realworld#, which generates (almost) no code.
There's a slight infelicity here: we pass the overall
case_bndr to all the join points if it's used in *any* RHS,
because we don't know its usage in each RHS separately
We used to say "&& isUnLiftedType rhs_ty'" here, but now
we make the join point into a function whenever used_bndrs'
is empty. This makes the join-point more CPR friendly.
Consider: let j = if .. then I# 3 else I# 4
in case .. of { A -> j; B -> j; C -> ... }
Now CPR doesn't w/w j because it's a thunk, so
that means that the enclosing function can't w/w either,
which is a lose. Here's the example that happened in practice:
kgmod :: Int -> Int -> Int
kgmod x y = if x > 0 && y < 0 || x < 0 && y > 0
then 78
else 5
I have seen a case alternative like this:
True -> \v -> ...
It's a bit silly to add the realWorld dummy arg in this case, making
$j = \s v -> ...
True -> $j s
(the \v alone is enough to make CPR happy) but I think it's rare
Note [Duplicating StrictArg]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The original plan had (where E is a big argument)
e.g. f E [..hole..]
==> let $j = \a -> f E a
in $j [..hole..]
But this is terrible! Here's an example:
&& E (case x of { T -> F; F -> T })
Now, && is strict so we end up simplifying the case with
an ArgOf continuation. If we let-bind it, we get
let $j = \v -> && E v
in simplExpr (case x of { T -> F; F -> T })
(ArgOf (\r -> $j r)
And after simplifying more we get
let $j = \v -> && E v
in case x of { T -> $j F; F -> $j T }
Which is a Very Bad Thing
What we do now is this
f E [..hole..]
==> let a = E
in f a [..hole..]
Now if the thing in the hole is a case expression (which is when
we'll call mkDupableCont), we'll push the function call into the
branches, which is what we want. Now RULES for f may fire, and
call-pattern specialisation. Here's an example from Trac #3116
go (n+1) (case l of
1 -> bs'
_ -> Chunk p fpc (o+1) (l-1) bs')
If we can push the call for 'go' inside the case, we get
call-pattern specialisation for 'go', which is *crucial* for
this program.
Here is the (&&) example:
&& E (case x of { T -> F; F -> T })
==> let a = E in
case x of { T -> && a F; F -> && a T }
Much better!
Notice that
* Arguments to f *after* the strict one are handled by
the ApplyTo case of mkDupableCont. Eg
f [..hole..] E
* We can only do the let-binding of E because the function
part of a StrictArg continuation is an explicit syntax
tree. In earlier versions we represented it as a function
(CoreExpr -> CoreEpxr) which we couldn't take apart.
Do *not* duplicate StrictBind and StritArg continuations. We gain
nothing by propagating them into the expressions, and we do lose a
lot.
The desire not to duplicate is the entire reason that
mkDupableCont returns a pair of continuations.
Note [Duplicating StrictBind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Unlike StrictArg, there doesn't seem anything to gain from
duplicating a StrictBind continuation, so we don't.
The desire not to duplicate is the entire reason that
mkDupableCont returns a pair of continuations.
Note [Single-alternative cases]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This case is just like the ArgOf case. Here's an example:
data T a = MkT !a
...(MkT (abs x))...
Then we get
case (case x of I# x' ->
case x' <# 0# of
True -> I# (negate# x')
False -> I# x') of y {
DEFAULT -> MkT y
Because the (case x) has only one alternative, we'll transform to
case x of I# x' ->
case (case x' <# 0# of
True -> I# (negate# x')
False -> I# x') of y {
DEFAULT -> MkT y
But now we do *NOT* want to make a join point etc, giving
case x of I# x' ->
let $j = \y -> MkT y
in case x' <# 0# of
True -> $j (I# (negate# x'))
False -> $j (I# x')
In this case the $j will inline again, but suppose there was a big
strict computation enclosing the orginal call to MkT. Then, it won't
"see" the MkT any more, because it's big and won't get duplicated.
And, what is worse, nothing was gained by the case-of-case transform.
When should use this case of mkDupableCont?
However, matching on *any* single-alternative case is a *disaster*;
e.g. case (case ....) of (a,b) -> (# a,b #)
We must push the outer case into the inner one!
Other choices:
* Match [(DEFAULT,_,_)], but in the common case of Int,
the alternative-filling-in code turned the outer case into
case (...) of y { I# _ -> MkT y }
* Match on single alternative plus (not (isDeadBinder case_bndr))
Rationale: pushing the case inwards won't eliminate the construction.
But there's a risk of
case (...) of y { (a,b) -> let z=(a,b) in ... }
Now y looks dead, but it'll come alive again. Still, this
seems like the best option at the moment.
* Match on single alternative plus (all (isDeadBinder bndrs))
Rationale: this is essentially seq.
* Match when the rhs is *not* duplicable, and hence would lead to a
join point. This catches the disaster-case above. We can test
the *un-simplified* rhs, which is fine. It might get bigger or
smaller after simplification; if it gets smaller, this case might
fire next time round. NB also that we must test contIsDupable
case_cont *btoo, because case_cont might be big!
HOWEVER: I found that this version doesn't work well, because
we can get let x = case (...) of { small } in ...case x...
When x is inlined into its full context, we find that it was a bad
idea to have pushed the outer case inside the (...) case.
Note [Single-alternative-unlifted]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here's another single-alternative where we really want to do case-of-case:
data Mk1 = Mk1 Int#
data Mk1 = Mk2 Int#
M1.f =
\r [x_s74 y_s6X]
case
case y_s6X of tpl_s7m {
M1.Mk1 ipv_s70 -> ipv_s70;
M1.Mk2 ipv_s72 -> ipv_s72;
}
of
wild_s7c
{ __DEFAULT ->
case
case x_s74 of tpl_s7n {
M1.Mk1 ipv_s77 -> ipv_s77;
M1.Mk2 ipv_s79 -> ipv_s79;
}
of
wild1_s7b
{ __DEFAULT -> ==# [wild1_s7b wild_s7c];
};
};
So the outer case is doing *nothing at all*, other than serving as a
join-point. In this case we really want to do case-of-case and decide
whether to use a real join point or just duplicate the continuation.
Hence: check whether the case binder's type is unlifted, because then
the outer case is *not* a seq.
|