1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
|
%
% (c) The AQUA Project, Glasgow University, 1993-1998
%
\section[Simplify]{The main module of the simplifier}
\begin{code}
module Simplify ( simplTopBinds, simplExpr ) where
#include "HsVersions.h"
import DynFlags ( dopt, DynFlag(Opt_D_dump_inlinings),
SimplifierSwitch(..)
)
import SimplMonad
import SimplEnv
import SimplUtils ( mkCase, mkLam, prepareAlts,
SimplCont(..), DupFlag(..), LetRhsFlag(..),
mkRhsStop, mkBoringStop, pushContArgs,
contResultType, countArgs, contIsDupable, contIsRhsOrArg,
getContArgs, interestingCallContext, interestingArg, isStrictType,
preInlineUnconditionally, postInlineUnconditionally,
inlineMode, activeInline, activeRule
)
import Id ( Id, idType, idInfo, idArity, isDataConWorkId,
setIdUnfolding, isDeadBinder,
idNewDemandInfo, setIdInfo,
setIdOccInfo, zapLamIdInfo, setOneShotLambda
)
import MkId ( eRROR_ID )
import Literal ( mkStringLit )
import IdInfo ( OccInfo(..), isLoopBreaker,
setArityInfo, zapDemandInfo,
setUnfoldingInfo,
occInfo
)
import NewDemand ( isStrictDmd )
import Unify ( coreRefineTys )
import DataCon ( dataConTyCon, dataConRepStrictness, isVanillaDataCon )
import TyCon ( tyConArity )
import CoreSyn
import PprCore ( pprParendExpr, pprCoreExpr )
import CoreUnfold ( mkUnfolding, callSiteInline )
import CoreUtils ( exprIsDupable, exprIsTrivial, needsCaseBinding,
exprIsConApp_maybe, mkPiTypes, findAlt,
exprType, exprIsHNF,
exprOkForSpeculation, exprArity,
mkCoerce, mkCoerce2, mkSCC, mkInlineMe, applyTypeToArg
)
import Rules ( lookupRule )
import BasicTypes ( isMarkedStrict )
import CostCentre ( currentCCS )
import Type ( TvSubstEnv, isUnLiftedType, seqType, tyConAppArgs, funArgTy,
splitFunTy_maybe, splitFunTy, coreEqType
)
import VarEnv ( elemVarEnv, emptyVarEnv )
import TysPrim ( realWorldStatePrimTy )
import PrelInfo ( realWorldPrimId )
import BasicTypes ( TopLevelFlag(..), isTopLevel,
RecFlag(..), isNonRec
)
import StaticFlags ( opt_PprStyle_Debug )
import OrdList
import Maybes ( orElse )
import Outputable
import Util ( notNull )
\end{code}
The guts of the simplifier is in this module, but the driver loop for
the simplifier is in SimplCore.lhs.
-----------------------------------------
*** IMPORTANT NOTE ***
-----------------------------------------
The simplifier used to guarantee that the output had no shadowing, but
it does not do so any more. (Actually, it never did!) The reason is
documented with simplifyArgs.
-----------------------------------------
*** IMPORTANT NOTE ***
-----------------------------------------
Many parts of the simplifier return a bunch of "floats" as well as an
expression. This is wrapped as a datatype SimplUtils.FloatsWith.
All "floats" are let-binds, not case-binds, but some non-rec lets may
be unlifted (with RHS ok-for-speculation).
-----------------------------------------
ORGANISATION OF FUNCTIONS
-----------------------------------------
simplTopBinds
- simplify all top-level binders
- for NonRec, call simplRecOrTopPair
- for Rec, call simplRecBind
------------------------------
simplExpr (applied lambda) ==> simplNonRecBind
simplExpr (Let (NonRec ...) ..) ==> simplNonRecBind
simplExpr (Let (Rec ...) ..) ==> simplify binders; simplRecBind
------------------------------
simplRecBind [binders already simplfied]
- use simplRecOrTopPair on each pair in turn
simplRecOrTopPair [binder already simplified]
Used for: recursive bindings (top level and nested)
top-level non-recursive bindings
Returns:
- check for PreInlineUnconditionally
- simplLazyBind
simplNonRecBind
Used for: non-top-level non-recursive bindings
beta reductions (which amount to the same thing)
Because it can deal with strict arts, it takes a
"thing-inside" and returns an expression
- check for PreInlineUnconditionally
- simplify binder, including its IdInfo
- if strict binding
simplStrictArg
mkAtomicArgs
completeNonRecX
else
simplLazyBind
addFloats
simplNonRecX: [given a *simplified* RHS, but an *unsimplified* binder]
Used for: binding case-binder and constr args in a known-constructor case
- check for PreInLineUnconditionally
- simplify binder
- completeNonRecX
------------------------------
simplLazyBind: [binder already simplified, RHS not]
Used for: recursive bindings (top level and nested)
top-level non-recursive bindings
non-top-level, but *lazy* non-recursive bindings
[must not be strict or unboxed]
Returns floats + an augmented environment, not an expression
- substituteIdInfo and add result to in-scope
[so that rules are available in rec rhs]
- simplify rhs
- mkAtomicArgs
- float if exposes constructor or PAP
- completeLazyBind
completeNonRecX: [binder and rhs both simplified]
- if the the thing needs case binding (unlifted and not ok-for-spec)
build a Case
else
completeLazyBind
addFloats
completeLazyBind: [given a simplified RHS]
[used for both rec and non-rec bindings, top level and not]
- try PostInlineUnconditionally
- add unfolding [this is the only place we add an unfolding]
- add arity
Right hand sides and arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In many ways we want to treat
(a) the right hand side of a let(rec), and
(b) a function argument
in the same way. But not always! In particular, we would
like to leave these arguments exactly as they are, so they
will match a RULE more easily.
f (g x, h x)
g (+ x)
It's harder to make the rule match if we ANF-ise the constructor,
or eta-expand the PAP:
f (let { a = g x; b = h x } in (a,b))
g (\y. + x y)
On the other hand if we see the let-defns
p = (g x, h x)
q = + x
then we *do* want to ANF-ise and eta-expand, so that p and q
can be safely inlined.
Even floating lets out is a bit dubious. For let RHS's we float lets
out if that exposes a value, so that the value can be inlined more vigorously.
For example
r = let x = e in (x,x)
Here, if we float the let out we'll expose a nice constructor. We did experiments
that showed this to be a generally good thing. But it was a bad thing to float
lets out unconditionally, because that meant they got allocated more often.
For function arguments, there's less reason to expose a constructor (it won't
get inlined). Just possibly it might make a rule match, but I'm pretty skeptical.
So for the moment we don't float lets out of function arguments either.
Eta expansion
~~~~~~~~~~~~~~
For eta expansion, we want to catch things like
case e of (a,b) -> \x -> case a of (p,q) -> \y -> r
If the \x was on the RHS of a let, we'd eta expand to bring the two
lambdas together. And in general that's a good thing to do. Perhaps
we should eta expand wherever we find a (value) lambda? Then the eta
expansion at a let RHS can concentrate solely on the PAP case.
%************************************************************************
%* *
\subsection{Bindings}
%* *
%************************************************************************
\begin{code}
simplTopBinds :: SimplEnv -> [InBind] -> SimplM [OutBind]
simplTopBinds env binds
= -- Put all the top-level binders into scope at the start
-- so that if a transformation rule has unexpectedly brought
-- anything into scope, then we don't get a complaint about that.
-- It's rather as if the top-level binders were imported.
simplRecBndrs env (bindersOfBinds binds) `thenSmpl` \ (env, bndrs') ->
simpl_binds env binds bndrs' `thenSmpl` \ (floats, _) ->
freeTick SimplifierDone `thenSmpl_`
returnSmpl (floatBinds floats)
where
-- We need to track the zapped top-level binders, because
-- they should have their fragile IdInfo zapped (notably occurrence info)
-- That's why we run down binds and bndrs' simultaneously.
simpl_binds :: SimplEnv -> [InBind] -> [OutId] -> SimplM (FloatsWith ())
simpl_binds env [] bs = ASSERT( null bs ) returnSmpl (emptyFloats env, ())
simpl_binds env (bind:binds) bs = simpl_bind env bind bs `thenSmpl` \ (floats,env) ->
addFloats env floats $ \env ->
simpl_binds env binds (drop_bs bind bs)
drop_bs (NonRec _ _) (_ : bs) = bs
drop_bs (Rec prs) bs = drop (length prs) bs
simpl_bind env bind bs
= getDOptsSmpl `thenSmpl` \ dflags ->
if dopt Opt_D_dump_inlinings dflags then
pprTrace "SimplBind" (ppr (bindersOf bind)) $ simpl_bind1 env bind bs
else
simpl_bind1 env bind bs
simpl_bind1 env (NonRec b r) (b':_) = simplRecOrTopPair env TopLevel b b' r
simpl_bind1 env (Rec pairs) bs' = simplRecBind env TopLevel pairs bs'
\end{code}
%************************************************************************
%* *
\subsection{simplNonRec}
%* *
%************************************************************************
simplNonRecBind is used for
* non-top-level non-recursive lets in expressions
* beta reduction
It takes
* An unsimplified (binder, rhs) pair
* The env for the RHS. It may not be the same as the
current env because the bind might occur via (\x.E) arg
It uses the CPS form because the binding might be strict, in which
case we might discard the continuation:
let x* = error "foo" in (...x...)
It needs to turn unlifted bindings into a @case@. They can arise
from, say: (\x -> e) (4# + 3#)
\begin{code}
simplNonRecBind :: SimplEnv
-> InId -- Binder
-> InExpr -> SimplEnv -- Arg, with its subst-env
-> OutType -- Type of thing computed by the context
-> (SimplEnv -> SimplM FloatsWithExpr) -- The body
-> SimplM FloatsWithExpr
#ifdef DEBUG
simplNonRecBind env bndr rhs rhs_se cont_ty thing_inside
| isTyVar bndr
= pprPanic "simplNonRecBind" (ppr bndr <+> ppr rhs)
#endif
simplNonRecBind env bndr rhs rhs_se cont_ty thing_inside
= simplNonRecBind' env bndr rhs rhs_se cont_ty thing_inside
simplNonRecBind' env bndr rhs rhs_se cont_ty thing_inside
| preInlineUnconditionally env NotTopLevel bndr rhs
= tick (PreInlineUnconditionally bndr) `thenSmpl_`
thing_inside (extendIdSubst env bndr (mkContEx rhs_se rhs))
| isStrictDmd (idNewDemandInfo bndr) || isStrictType bndr_ty -- A strict let
= -- Don't use simplBinder because that doesn't keep
-- fragile occurrence info in the substitution
simplNonRecBndr env bndr `thenSmpl` \ (env, bndr1) ->
simplStrictArg AnRhs env rhs rhs_se (idType bndr1) cont_ty $ \ env1 rhs1 ->
-- Now complete the binding and simplify the body
let
(env2,bndr2) = addLetIdInfo env1 bndr bndr1
in
if needsCaseBinding bndr_ty rhs1
then
thing_inside env2 `thenSmpl` \ (floats, body) ->
returnSmpl (emptyFloats env2, Case rhs1 bndr2 (exprType body)
[(DEFAULT, [], wrapFloats floats body)])
else
completeNonRecX env2 True {- strict -} bndr bndr2 rhs1 thing_inside
| otherwise -- Normal, lazy case
= -- Don't use simplBinder because that doesn't keep
-- fragile occurrence info in the substitution
simplNonRecBndr env bndr `thenSmpl` \ (env, bndr') ->
simplLazyBind env NotTopLevel NonRecursive
bndr bndr' rhs rhs_se `thenSmpl` \ (floats, env) ->
addFloats env floats thing_inside
where
bndr_ty = idType bndr
\end{code}
A specialised variant of simplNonRec used when the RHS is already simplified, notably
in knownCon. It uses case-binding where necessary.
\begin{code}
simplNonRecX :: SimplEnv
-> InId -- Old binder
-> OutExpr -- Simplified RHS
-> (SimplEnv -> SimplM FloatsWithExpr)
-> SimplM FloatsWithExpr
simplNonRecX env bndr new_rhs thing_inside
| needsCaseBinding (idType bndr) new_rhs
-- Make this test *before* the preInlineUnconditionally
-- Consider case I# (quotInt# x y) of
-- I# v -> let w = J# v in ...
-- If we gaily inline (quotInt# x y) for v, we end up building an
-- extra thunk:
-- let w = J# (quotInt# x y) in ...
-- because quotInt# can fail.
= simplBinder env bndr `thenSmpl` \ (env, bndr') ->
thing_inside env `thenSmpl` \ (floats, body) ->
let body' = wrapFloats floats body in
returnSmpl (emptyFloats env, Case new_rhs bndr' (exprType body') [(DEFAULT, [], body')])
| preInlineUnconditionally env NotTopLevel bndr new_rhs
-- This happens; for example, the case_bndr during case of
-- known constructor: case (a,b) of x { (p,q) -> ... }
-- Here x isn't mentioned in the RHS, so we don't want to
-- create the (dead) let-binding let x = (a,b) in ...
--
-- Similarly, single occurrences can be inlined vigourously
-- e.g. case (f x, g y) of (a,b) -> ....
-- If a,b occur once we can avoid constructing the let binding for them.
= thing_inside (extendIdSubst env bndr (DoneEx new_rhs))
| otherwise
= simplBinder env bndr `thenSmpl` \ (env, bndr') ->
completeNonRecX env False {- Non-strict; pessimistic -}
bndr bndr' new_rhs thing_inside
completeNonRecX env is_strict old_bndr new_bndr new_rhs thing_inside
= mkAtomicArgs is_strict
True {- OK to float unlifted -}
new_rhs `thenSmpl` \ (aux_binds, rhs2) ->
-- Make the arguments atomic if necessary,
-- adding suitable bindings
addAtomicBindsE env (fromOL aux_binds) $ \ env ->
completeLazyBind env NotTopLevel
old_bndr new_bndr rhs2 `thenSmpl` \ (floats, env) ->
addFloats env floats thing_inside
\end{code}
%************************************************************************
%* *
\subsection{Lazy bindings}
%* *
%************************************************************************
simplRecBind is used for
* recursive bindings only
\begin{code}
simplRecBind :: SimplEnv -> TopLevelFlag
-> [(InId, InExpr)] -> [OutId]
-> SimplM (FloatsWith SimplEnv)
simplRecBind env top_lvl pairs bndrs'
= go env pairs bndrs' `thenSmpl` \ (floats, env) ->
returnSmpl (flattenFloats floats, env)
where
go env [] _ = returnSmpl (emptyFloats env, env)
go env ((bndr, rhs) : pairs) (bndr' : bndrs')
= simplRecOrTopPair env top_lvl bndr bndr' rhs `thenSmpl` \ (floats, env) ->
addFloats env floats (\env -> go env pairs bndrs')
\end{code}
simplRecOrTopPair is used for
* recursive bindings (whether top level or not)
* top-level non-recursive bindings
It assumes the binder has already been simplified, but not its IdInfo.
\begin{code}
simplRecOrTopPair :: SimplEnv
-> TopLevelFlag
-> InId -> OutId -- Binder, both pre-and post simpl
-> InExpr -- The RHS and its environment
-> SimplM (FloatsWith SimplEnv)
simplRecOrTopPair env top_lvl bndr bndr' rhs
| preInlineUnconditionally env top_lvl bndr rhs -- Check for unconditional inline
= tick (PreInlineUnconditionally bndr) `thenSmpl_`
returnSmpl (emptyFloats env, extendIdSubst env bndr (mkContEx env rhs))
| otherwise
= simplLazyBind env top_lvl Recursive bndr bndr' rhs env
-- May not actually be recursive, but it doesn't matter
\end{code}
simplLazyBind is used for
* recursive bindings (whether top level or not)
* top-level non-recursive bindings
* non-top-level *lazy* non-recursive bindings
[Thus it deals with the lazy cases from simplNonRecBind, and all cases
from SimplRecOrTopBind]
Nota bene:
1. It assumes that the binder is *already* simplified,
and is in scope, but not its IdInfo
2. It assumes that the binder type is lifted.
3. It does not check for pre-inline-unconditionallly;
that should have been done already.
\begin{code}
simplLazyBind :: SimplEnv
-> TopLevelFlag -> RecFlag
-> InId -> OutId -- Binder, both pre-and post simpl
-> InExpr -> SimplEnv -- The RHS and its environment
-> SimplM (FloatsWith SimplEnv)
simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se
= let
(env1,bndr2) = addLetIdInfo env bndr bndr1
rhs_env = setInScope rhs_se env1
is_top_level = isTopLevel top_lvl
ok_float_unlifted = not is_top_level && isNonRec is_rec
rhs_cont = mkRhsStop (idType bndr2)
in
-- Simplify the RHS; note the mkRhsStop, which tells
-- the simplifier that this is the RHS of a let.
simplExprF rhs_env rhs rhs_cont `thenSmpl` \ (floats, rhs1) ->
-- If any of the floats can't be floated, give up now
-- (The allLifted predicate says True for empty floats.)
if (not ok_float_unlifted && not (allLifted floats)) then
completeLazyBind env1 top_lvl bndr bndr2
(wrapFloats floats rhs1)
else
-- ANF-ise a constructor or PAP rhs
mkAtomicArgs False {- Not strict -}
ok_float_unlifted rhs1 `thenSmpl` \ (aux_binds, rhs2) ->
-- If the result is a PAP, float the floats out, else wrap them
-- By this time it's already been ANF-ised (if necessary)
if isEmptyFloats floats && isNilOL aux_binds then -- Shortcut a common case
completeLazyBind env1 top_lvl bndr bndr2 rhs2
else if is_top_level || exprIsTrivial rhs2 || exprIsHNF rhs2 then
-- WARNING: long dodgy argument coming up
-- WANTED: a better way to do this
--
-- We can't use "exprIsCheap" instead of exprIsHNF,
-- because that causes a strictness bug.
-- x = let y* = E in case (scc y) of { T -> F; F -> T}
-- The case expression is 'cheap', but it's wrong to transform to
-- y* = E; x = case (scc y) of {...}
-- Either we must be careful not to float demanded non-values, or
-- we must use exprIsHNF for the test, which ensures that the
-- thing is non-strict. So exprIsHNF => bindings are non-strict
-- I think. The WARN below tests for this.
--
-- We use exprIsTrivial here because we want to reveal lone variables.
-- E.g. let { x = letrec { y = E } in y } in ...
-- Here we definitely want to float the y=E defn.
-- exprIsHNF definitely isn't right for that.
--
-- Again, the floated binding can't be strict; if it's recursive it'll
-- be non-strict; if it's non-recursive it'd be inlined.
--
-- Note [SCC-and-exprIsTrivial]
-- If we have
-- y = let { x* = E } in scc "foo" x
-- then we do *not* want to float out the x binding, because
-- it's strict! Fortunately, exprIsTrivial replies False to
-- (scc "foo" x).
-- There's a subtlety here. There may be a binding (x* = e) in the
-- floats, where the '*' means 'will be demanded'. So is it safe
-- to float it out? Answer no, but it won't matter because
-- we only float if (a) arg' is a WHNF, or (b) it's going to top level
-- and so there can't be any 'will be demanded' bindings in the floats.
-- Hence the warning
ASSERT2( is_top_level || not (any demanded_float (floatBinds floats)),
ppr (filter demanded_float (floatBinds floats)) )
tick LetFloatFromLet `thenSmpl_` (
addFloats env1 floats $ \ env2 ->
addAtomicBinds env2 (fromOL aux_binds) $ \ env3 ->
completeLazyBind env3 top_lvl bndr bndr2 rhs2)
else
completeLazyBind env1 top_lvl bndr bndr2 (wrapFloats floats rhs1)
#ifdef DEBUG
demanded_float (NonRec b r) = isStrictDmd (idNewDemandInfo b) && not (isUnLiftedType (idType b))
-- Unlifted-type (cheap-eagerness) lets may well have a demanded flag on them
demanded_float (Rec _) = False
#endif
\end{code}
%************************************************************************
%* *
\subsection{Completing a lazy binding}
%* *
%************************************************************************
completeLazyBind
* deals only with Ids, not TyVars
* takes an already-simplified binder and RHS
* is used for both recursive and non-recursive bindings
* is used for both top-level and non-top-level bindings
It does the following:
- tries discarding a dead binding
- tries PostInlineUnconditionally
- add unfolding [this is the only place we add an unfolding]
- add arity
It does *not* attempt to do let-to-case. Why? Because it is used for
- top-level bindings (when let-to-case is impossible)
- many situations where the "rhs" is known to be a WHNF
(so let-to-case is inappropriate).
\begin{code}
completeLazyBind :: SimplEnv
-> TopLevelFlag -- Flag stuck into unfolding
-> InId -- Old binder
-> OutId -- New binder
-> OutExpr -- Simplified RHS
-> SimplM (FloatsWith SimplEnv)
-- We return a new SimplEnv, because completeLazyBind may choose to do its work
-- by extending the substitution (e.g. let x = y in ...)
-- The new binding (if any) is returned as part of the floats.
-- NB: the returned SimplEnv has the right SubstEnv, but you should
-- (as usual) use the in-scope-env from the floats
completeLazyBind env top_lvl old_bndr new_bndr new_rhs
| postInlineUnconditionally env top_lvl new_bndr occ_info new_rhs unfolding
= -- Drop the binding
tick (PostInlineUnconditionally old_bndr) `thenSmpl_`
returnSmpl (emptyFloats env, extendIdSubst env old_bndr (DoneEx new_rhs))
-- Use the substitution to make quite, quite sure that the substitution
-- will happen, since we are going to discard the binding
| otherwise
= let
-- Add arity info
new_bndr_info = idInfo new_bndr `setArityInfo` exprArity new_rhs
-- Add the unfolding *only* for non-loop-breakers
-- Making loop breakers not have an unfolding at all
-- means that we can avoid tests in exprIsConApp, for example.
-- This is important: if exprIsConApp says 'yes' for a recursive
-- thing, then we can get into an infinite loop
-- If the unfolding is a value, the demand info may
-- go pear-shaped, so we nuke it. Example:
-- let x = (a,b) in
-- case x of (p,q) -> h p q x
-- Here x is certainly demanded. But after we've nuked
-- the case, we'll get just
-- let x = (a,b) in h a b x
-- and now x is not demanded (I'm assuming h is lazy)
-- This really happens. Similarly
-- let f = \x -> e in ...f..f...
-- After inling f at some of its call sites the original binding may
-- (for example) be no longer strictly demanded.
-- The solution here is a bit ad hoc...
info_w_unf = new_bndr_info `setUnfoldingInfo` unfolding
final_info | loop_breaker = new_bndr_info
| isEvaldUnfolding unfolding = zapDemandInfo info_w_unf `orElse` info_w_unf
| otherwise = info_w_unf
final_id = new_bndr `setIdInfo` final_info
in
-- These seqs forces the Id, and hence its IdInfo,
-- and hence any inner substitutions
final_id `seq`
returnSmpl (unitFloat env final_id new_rhs, env)
where
unfolding = mkUnfolding (isTopLevel top_lvl) new_rhs
loop_breaker = isLoopBreaker occ_info
old_info = idInfo old_bndr
occ_info = occInfo old_info
\end{code}
%************************************************************************
%* *
\subsection[Simplify-simplExpr]{The main function: simplExpr}
%* *
%************************************************************************
The reason for this OutExprStuff stuff is that we want to float *after*
simplifying a RHS, not before. If we do so naively we get quadratic
behaviour as things float out.
To see why it's important to do it after, consider this (real) example:
let t = f x
in fst t
==>
let t = let a = e1
b = e2
in (a,b)
in fst t
==>
let a = e1
b = e2
t = (a,b)
in
a -- Can't inline a this round, cos it appears twice
==>
e1
Each of the ==> steps is a round of simplification. We'd save a
whole round if we float first. This can cascade. Consider
let f = g d
in \x -> ...f...
==>
let f = let d1 = ..d.. in \y -> e
in \x -> ...f...
==>
let d1 = ..d..
in \x -> ...(\y ->e)...
Only in this second round can the \y be applied, and it
might do the same again.
\begin{code}
simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr
simplExpr env expr = simplExprC env expr (mkBoringStop expr_ty')
where
expr_ty' = substTy env (exprType expr)
-- The type in the Stop continuation, expr_ty', is usually not used
-- It's only needed when discarding continuations after finding
-- a function that returns bottom.
-- Hence the lazy substitution
simplExprC :: SimplEnv -> CoreExpr -> SimplCont -> SimplM CoreExpr
-- Simplify an expression, given a continuation
simplExprC env expr cont
= simplExprF env expr cont `thenSmpl` \ (floats, expr) ->
returnSmpl (wrapFloats floats expr)
simplExprF :: SimplEnv -> InExpr -> SimplCont -> SimplM FloatsWithExpr
-- Simplify an expression, returning floated binds
simplExprF env (Var v) cont = simplVar env v cont
simplExprF env (Lit lit) cont = rebuild env (Lit lit) cont
simplExprF env expr@(Lam _ _) cont = simplLam env expr cont
simplExprF env (Note note expr) cont = simplNote env note expr cont
simplExprF env (App fun arg) cont = simplExprF env fun (ApplyTo NoDup arg env cont)
simplExprF env (Type ty) cont
= ASSERT( contIsRhsOrArg cont )
simplType env ty `thenSmpl` \ ty' ->
rebuild env (Type ty') cont
simplExprF env (Case scrut bndr case_ty alts) cont
| not (switchIsOn (getSwitchChecker env) NoCaseOfCase)
= -- Simplify the scrutinee with a Select continuation
simplExprF env scrut (Select NoDup bndr alts env cont)
| otherwise
= -- If case-of-case is off, simply simplify the case expression
-- in a vanilla Stop context, and rebuild the result around it
simplExprC env scrut case_cont `thenSmpl` \ case_expr' ->
rebuild env case_expr' cont
where
case_cont = Select NoDup bndr alts env (mkBoringStop case_ty')
case_ty' = substTy env case_ty -- c.f. defn of simplExpr
simplExprF env (Let (Rec pairs) body) cont
= simplRecBndrs env (map fst pairs) `thenSmpl` \ (env, bndrs') ->
-- NB: bndrs' don't have unfoldings or rules
-- We add them as we go down
simplRecBind env NotTopLevel pairs bndrs' `thenSmpl` \ (floats, env) ->
addFloats env floats $ \ env ->
simplExprF env body cont
-- A non-recursive let is dealt with by simplNonRecBind
simplExprF env (Let (NonRec bndr rhs) body) cont
= simplNonRecBind env bndr rhs env (contResultType cont) $ \ env ->
simplExprF env body cont
---------------------------------
simplType :: SimplEnv -> InType -> SimplM OutType
-- Kept monadic just so we can do the seqType
simplType env ty
= seqType new_ty `seq` returnSmpl new_ty
where
new_ty = substTy env ty
\end{code}
%************************************************************************
%* *
\subsection{Lambdas}
%* *
%************************************************************************
\begin{code}
simplLam env fun cont
= go env fun cont
where
zap_it = mkLamBndrZapper fun (countArgs cont)
cont_ty = contResultType cont
-- Type-beta reduction
go env (Lam bndr body) (ApplyTo _ (Type ty_arg) arg_se body_cont)
= ASSERT( isTyVar bndr )
tick (BetaReduction bndr) `thenSmpl_`
simplType (setInScope arg_se env) ty_arg `thenSmpl` \ ty_arg' ->
go (extendTvSubst env bndr ty_arg') body body_cont
-- Ordinary beta reduction
go env (Lam bndr body) cont@(ApplyTo _ arg arg_se body_cont)
= tick (BetaReduction bndr) `thenSmpl_`
simplNonRecBind env (zap_it bndr) arg arg_se cont_ty $ \ env ->
go env body body_cont
-- Not enough args, so there are real lambdas left to put in the result
go env lam@(Lam _ _) cont
= simplLamBndrs env bndrs `thenSmpl` \ (env, bndrs') ->
simplExpr env body `thenSmpl` \ body' ->
mkLam env bndrs' body' cont `thenSmpl` \ (floats, new_lam) ->
addFloats env floats $ \ env ->
rebuild env new_lam cont
where
(bndrs,body) = collectBinders lam
-- Exactly enough args
go env expr cont = simplExprF env expr cont
mkLamBndrZapper :: CoreExpr -- Function
-> Int -- Number of args supplied, *including* type args
-> Id -> Id -- Use this to zap the binders
mkLamBndrZapper fun n_args
| n_args >= n_params fun = \b -> b -- Enough args
| otherwise = \b -> zapLamIdInfo b
where
-- NB: we count all the args incl type args
-- so we must count all the binders (incl type lambdas)
n_params (Note _ e) = n_params e
n_params (Lam b e) = 1 + n_params e
n_params other = 0::Int
\end{code}
%************************************************************************
%* *
\subsection{Notes}
%* *
%************************************************************************
\begin{code}
simplNote env (Coerce to from) body cont
= let
addCoerce s1 k1 cont -- Drop redundant coerces. This can happen if a polymoprhic
-- (coerce a b e) is instantiated with a=ty1 b=ty2 and the
-- two are the same. This happens a lot in Happy-generated parsers
| s1 `coreEqType` k1 = cont
addCoerce s1 k1 (CoerceIt t1 cont)
-- coerce T1 S1 (coerce S1 K1 e)
-- ==>
-- e, if T1=K1
-- coerce T1 K1 e, otherwise
--
-- For example, in the initial form of a worker
-- we may find (coerce T (coerce S (\x.e))) y
-- and we'd like it to simplify to e[y/x] in one round
-- of simplification
| t1 `coreEqType` k1 = cont -- The coerces cancel out
| otherwise = CoerceIt t1 cont -- They don't cancel, but
-- the inner one is redundant
addCoerce t1t2 s1s2 (ApplyTo dup arg arg_se cont)
| not (isTypeArg arg), -- This whole case only works for value args
-- Could upgrade to have equiv thing for type apps too
Just (s1, s2) <- splitFunTy_maybe s1s2
-- (coerce (T1->T2) (S1->S2) F) E
-- ===>
-- coerce T2 S2 (F (coerce S1 T1 E))
--
-- t1t2 must be a function type, T1->T2, because it's applied to something
-- but s1s2 might conceivably not be
--
-- When we build the ApplyTo we can't mix the out-types
-- with the InExpr in the argument, so we simply substitute
-- to make it all consistent. It's a bit messy.
-- But it isn't a common case.
= let
(t1,t2) = splitFunTy t1t2
new_arg = mkCoerce2 s1 t1 (substExpr arg_env arg)
arg_env = setInScope arg_se env
in
ApplyTo dup new_arg (zapSubstEnv env) (addCoerce t2 s2 cont)
addCoerce to' _ cont = CoerceIt to' cont
in
simplType env to `thenSmpl` \ to' ->
simplType env from `thenSmpl` \ from' ->
simplExprF env body (addCoerce to' from' cont)
-- Hack: we only distinguish subsumed cost centre stacks for the purposes of
-- inlining. All other CCCSs are mapped to currentCCS.
simplNote env (SCC cc) e cont
= simplExpr (setEnclosingCC env currentCCS) e `thenSmpl` \ e' ->
rebuild env (mkSCC cc e') cont
simplNote env InlineCall e cont
= simplExprF env e (InlinePlease cont)
-- See notes with SimplMonad.inlineMode
simplNote env InlineMe e cont
| contIsRhsOrArg cont -- Totally boring continuation; see notes above
= -- Don't inline inside an INLINE expression
simplExpr (setMode inlineMode env ) e `thenSmpl` \ e' ->
rebuild env (mkInlineMe e') cont
| otherwise -- Dissolve the InlineMe note if there's
-- an interesting context of any kind to combine with
-- (even a type application -- anything except Stop)
= simplExprF env e cont
simplNote env (CoreNote s) e cont
= simplExpr env e `thenSmpl` \ e' ->
rebuild env (Note (CoreNote s) e') cont
\end{code}
%************************************************************************
%* *
\subsection{Dealing with calls}
%* *
%************************************************************************
\begin{code}
simplVar env var cont
= case substId env var of
DoneEx e -> simplExprF (zapSubstEnv env) e cont
ContEx tvs ids e -> simplExprF (setSubstEnv env tvs ids) e cont
DoneId var1 occ -> completeCall (zapSubstEnv env) var1 occ cont
-- Note [zapSubstEnv]
-- The template is already simplified, so don't re-substitute.
-- This is VITAL. Consider
-- let x = e in
-- let y = \z -> ...x... in
-- \ x -> ...y...
-- We'll clone the inner \x, adding x->x' in the id_subst
-- Then when we inline y, we must *not* replace x by x' in
-- the inlined copy!!
---------------------------------------------------------
-- Dealing with a call site
completeCall env var occ_info cont
= -- Simplify the arguments
getDOptsSmpl `thenSmpl` \ dflags ->
let
chkr = getSwitchChecker env
(args, call_cont, inline_call) = getContArgs chkr var cont
fn_ty = idType var
in
simplifyArgs env fn_ty args (contResultType call_cont) $ \ env args ->
-- Next, look for rules or specialisations that match
--
-- It's important to simplify the args first, because the rule-matcher
-- doesn't do substitution as it goes. We don't want to use subst_args
-- (defined in the 'where') because that throws away useful occurrence info,
-- and perhaps-very-important specialisations.
--
-- Some functions have specialisations *and* are strict; in this case,
-- we don't want to inline the wrapper of the non-specialised thing; better
-- to call the specialised thing instead.
-- We used to use the black-listing mechanism to ensure that inlining of
-- the wrapper didn't occur for things that have specialisations till a
-- later phase, so but now we just try RULES first
--
-- You might think that we shouldn't apply rules for a loop breaker:
-- doing so might give rise to an infinite loop, because a RULE is
-- rather like an extra equation for the function:
-- RULE: f (g x) y = x+y
-- Eqn: f a y = a-y
--
-- But it's too drastic to disable rules for loop breakers.
-- Even the foldr/build rule would be disabled, because foldr
-- is recursive, and hence a loop breaker:
-- foldr k z (build g) = g k z
-- So it's up to the programmer: rules can cause divergence
let
in_scope = getInScope env
rules = getRules env
maybe_rule = case activeRule env of
Nothing -> Nothing -- No rules apply
Just act_fn -> lookupRule act_fn in_scope rules var args
in
case maybe_rule of {
Just (rule_name, rule_rhs) ->
tick (RuleFired rule_name) `thenSmpl_`
(if dopt Opt_D_dump_inlinings dflags then
pprTrace "Rule fired" (vcat [
text "Rule:" <+> ftext rule_name,
text "Before:" <+> ppr var <+> sep (map pprParendExpr args),
text "After: " <+> pprCoreExpr rule_rhs,
text "Cont: " <+> ppr call_cont])
else
id) $
simplExprF env rule_rhs call_cont ;
Nothing -> -- No rules
-- Next, look for an inlining
let
arg_infos = [ interestingArg arg | arg <- args, isValArg arg]
interesting_cont = interestingCallContext (notNull args)
(notNull arg_infos)
call_cont
active_inline = activeInline env var occ_info
maybe_inline = callSiteInline dflags active_inline inline_call occ_info
var arg_infos interesting_cont
in
case maybe_inline of {
Just unfolding -- There is an inlining!
-> tick (UnfoldingDone var) `thenSmpl_`
(if dopt Opt_D_dump_inlinings dflags then
pprTrace "Inlining done" (vcat [
text "Before:" <+> ppr var <+> sep (map pprParendExpr args),
text "Inlined fn: " <+> ppr unfolding,
text "Cont: " <+> ppr call_cont])
else
id) $
makeThatCall env var unfolding args call_cont
;
Nothing -> -- No inlining!
-- Done
rebuild env (mkApps (Var var) args) call_cont
}}
makeThatCall :: SimplEnv
-> Id
-> InExpr -- Inlined function rhs
-> [OutExpr] -- Arguments, already simplified
-> SimplCont -- After the call
-> SimplM FloatsWithExpr
-- Similar to simplLam, but this time
-- the arguments are already simplified
makeThatCall orig_env var fun@(Lam _ _) args cont
= go orig_env fun args
where
zap_it = mkLamBndrZapper fun (length args)
-- Type-beta reduction
go env (Lam bndr body) (Type ty_arg : args)
= ASSERT( isTyVar bndr )
tick (BetaReduction bndr) `thenSmpl_`
go (extendTvSubst env bndr ty_arg) body args
-- Ordinary beta reduction
go env (Lam bndr body) (arg : args)
= tick (BetaReduction bndr) `thenSmpl_`
simplNonRecX env (zap_it bndr) arg $ \ env ->
go env body args
-- Not enough args, so there are real lambdas left to put in the result
go env fun args
= simplExprF env fun (pushContArgs orig_env args cont)
-- NB: orig_env; the correct environment to capture with
-- the arguments.... env has been augmented with substitutions
-- from the beta reductions.
makeThatCall env var fun args cont
= simplExprF env fun (pushContArgs env args cont)
\end{code}
%************************************************************************
%* *
\subsection{Arguments}
%* *
%************************************************************************
\begin{code}
---------------------------------------------------------
-- Simplifying the arguments of a call
simplifyArgs :: SimplEnv
-> OutType -- Type of the function
-> [(InExpr, SimplEnv, Bool)] -- Details of the arguments
-> OutType -- Type of the continuation
-> (SimplEnv -> [OutExpr] -> SimplM FloatsWithExpr)
-> SimplM FloatsWithExpr
-- [CPS-like because of strict arguments]
-- Simplify the arguments to a call.
-- This part of the simplifier may break the no-shadowing invariant
-- Consider
-- f (...(\a -> e)...) (case y of (a,b) -> e')
-- where f is strict in its second arg
-- If we simplify the innermost one first we get (...(\a -> e)...)
-- Simplifying the second arg makes us float the case out, so we end up with
-- case y of (a,b) -> f (...(\a -> e)...) e'
-- So the output does not have the no-shadowing invariant. However, there is
-- no danger of getting name-capture, because when the first arg was simplified
-- we used an in-scope set that at least mentioned all the variables free in its
-- static environment, and that is enough.
--
-- We can't just do innermost first, or we'd end up with a dual problem:
-- case x of (a,b) -> f e (...(\a -> e')...)
--
-- I spent hours trying to recover the no-shadowing invariant, but I just could
-- not think of an elegant way to do it. The simplifier is already knee-deep in
-- continuations. We have to keep the right in-scope set around; AND we have
-- to get the effect that finding (error "foo") in a strict arg position will
-- discard the entire application and replace it with (error "foo"). Getting
-- all this at once is TOO HARD!
simplifyArgs env fn_ty args cont_ty thing_inside
= go env fn_ty args thing_inside
where
go env fn_ty [] thing_inside = thing_inside env []
go env fn_ty (arg:args) thing_inside = simplifyArg env fn_ty arg cont_ty $ \ env arg' ->
go env (applyTypeToArg fn_ty arg') args $ \ env args' ->
thing_inside env (arg':args')
simplifyArg env fn_ty (Type ty_arg, se, _) cont_ty thing_inside
= simplType (setInScope se env) ty_arg `thenSmpl` \ new_ty_arg ->
thing_inside env (Type new_ty_arg)
simplifyArg env fn_ty (val_arg, arg_se, is_strict) cont_ty thing_inside
| is_strict
= simplStrictArg AnArg env val_arg arg_se arg_ty cont_ty thing_inside
| otherwise -- Lazy argument
-- DO NOT float anything outside, hence simplExprC
-- There is no benefit (unlike in a let-binding), and we'd
-- have to be very careful about bogus strictness through
-- floating a demanded let.
= simplExprC (setInScope arg_se env) val_arg
(mkBoringStop arg_ty) `thenSmpl` \ arg1 ->
thing_inside env arg1
where
arg_ty = funArgTy fn_ty
simplStrictArg :: LetRhsFlag
-> SimplEnv -- The env of the call
-> InExpr -> SimplEnv -- The arg plus its env
-> OutType -- arg_ty: type of the argument
-> OutType -- cont_ty: Type of thing computed by the context
-> (SimplEnv -> OutExpr -> SimplM FloatsWithExpr)
-- Takes an expression of type rhs_ty,
-- returns an expression of type cont_ty
-- The env passed to this continuation is the
-- env of the call, plus any new in-scope variables
-> SimplM FloatsWithExpr -- An expression of type cont_ty
simplStrictArg is_rhs call_env arg arg_env arg_ty cont_ty thing_inside
= simplExprF (setInScope arg_env call_env) arg
(ArgOf is_rhs arg_ty cont_ty (\ new_env -> thing_inside (setInScope call_env new_env)))
-- Notice the way we use arg_env (augmented with in-scope vars from call_env)
-- to simplify the argument
-- and call-env (augmented with in-scope vars from the arg) to pass to the continuation
\end{code}
%************************************************************************
%* *
\subsection{mkAtomicArgs}
%* *
%************************************************************************
mkAtomicArgs takes a putative RHS, checks whether it's a PAP or
constructor application and, if so, converts it to ANF, so that the
resulting thing can be inlined more easily. Thus
x = (f a, g b)
becomes
t1 = f a
t2 = g b
x = (t1,t2)
There are three sorts of binding context, specified by the two
boolean arguments
Strict
OK-unlifted
N N Top-level or recursive Only bind args of lifted type
N Y Non-top-level and non-recursive, Bind args of lifted type, or
but lazy unlifted-and-ok-for-speculation
Y Y Non-top-level, non-recursive, Bind all args
and strict (demanded)
For example, given
x = MkC (y div# z)
there is no point in transforming to
x = case (y div# z) of r -> MkC r
because the (y div# z) can't float out of the let. But if it was
a *strict* let, then it would be a good thing to do. Hence the
context information.
\begin{code}
mkAtomicArgs :: Bool -- A strict binding
-> Bool -- OK to float unlifted args
-> OutExpr
-> SimplM (OrdList (OutId,OutExpr), -- The floats (unusually) may include
OutExpr) -- things that need case-binding,
-- if the strict-binding flag is on
mkAtomicArgs is_strict ok_float_unlifted rhs
| (Var fun, args) <- collectArgs rhs, -- It's an application
isDataConWorkId fun || valArgCount args < idArity fun -- And it's a constructor or PAP
= go fun nilOL [] args -- Have a go
| otherwise = bale_out -- Give up
where
bale_out = returnSmpl (nilOL, rhs)
go fun binds rev_args []
= returnSmpl (binds, mkApps (Var fun) (reverse rev_args))
go fun binds rev_args (arg : args)
| exprIsTrivial arg -- Easy case
= go fun binds (arg:rev_args) args
| not can_float_arg -- Can't make this arg atomic
= bale_out -- ... so give up
| otherwise -- Don't forget to do it recursively
-- E.g. x = a:b:c:[]
= mkAtomicArgs is_strict ok_float_unlifted arg `thenSmpl` \ (arg_binds, arg') ->
newId FSLIT("a") arg_ty `thenSmpl` \ arg_id ->
go fun ((arg_binds `snocOL` (arg_id,arg')) `appOL` binds)
(Var arg_id : rev_args) args
where
arg_ty = exprType arg
can_float_arg = is_strict
|| not (isUnLiftedType arg_ty)
|| (ok_float_unlifted && exprOkForSpeculation arg)
addAtomicBinds :: SimplEnv -> [(OutId,OutExpr)]
-> (SimplEnv -> SimplM (FloatsWith a))
-> SimplM (FloatsWith a)
addAtomicBinds env [] thing_inside = thing_inside env
addAtomicBinds env ((v,r):bs) thing_inside = addAuxiliaryBind env (NonRec v r) $ \ env ->
addAtomicBinds env bs thing_inside
addAtomicBindsE :: SimplEnv -> [(OutId,OutExpr)]
-> (SimplEnv -> SimplM FloatsWithExpr)
-> SimplM FloatsWithExpr
-- Same again, but this time we're in an expression context,
-- and may need to do some case bindings
addAtomicBindsE env [] thing_inside
= thing_inside env
addAtomicBindsE env ((v,r):bs) thing_inside
| needsCaseBinding (idType v) r
= addAtomicBindsE (addNewInScopeIds env [v]) bs thing_inside `thenSmpl` \ (floats, expr) ->
WARN( exprIsTrivial expr, ppr v <+> pprCoreExpr expr )
(let body = wrapFloats floats expr in
returnSmpl (emptyFloats env, Case r v (exprType body) [(DEFAULT,[],body)]))
| otherwise
= addAuxiliaryBind env (NonRec v r) $ \ env ->
addAtomicBindsE env bs thing_inside
\end{code}
%************************************************************************
%* *
\subsection{The main rebuilder}
%* *
%************************************************************************
\begin{code}
rebuild :: SimplEnv -> OutExpr -> SimplCont -> SimplM FloatsWithExpr
rebuild env expr (Stop _ _ _) = rebuildDone env expr
rebuild env expr (ArgOf _ _ _ cont_fn) = cont_fn env expr
rebuild env expr (CoerceIt to_ty cont) = rebuild env (mkCoerce to_ty expr) cont
rebuild env expr (InlinePlease cont) = rebuild env (Note InlineCall expr) cont
rebuild env expr (Select _ bndr alts se cont) = rebuildCase (setInScope se env) expr bndr alts cont
rebuild env expr (ApplyTo _ arg se cont) = rebuildApp (setInScope se env) expr arg cont
rebuildApp env fun arg cont
= simplExpr env arg `thenSmpl` \ arg' ->
rebuild env (App fun arg') cont
rebuildDone env expr = returnSmpl (emptyFloats env, expr)
\end{code}
%************************************************************************
%* *
\subsection{Functions dealing with a case}
%* *
%************************************************************************
Blob of helper functions for the "case-of-something-else" situation.
\begin{code}
---------------------------------------------------------
-- Eliminate the case if possible
rebuildCase :: SimplEnv
-> OutExpr -- Scrutinee
-> InId -- Case binder
-> [InAlt] -- Alternatives (inceasing order)
-> SimplCont
-> SimplM FloatsWithExpr
rebuildCase env scrut case_bndr alts cont
| Just (con,args) <- exprIsConApp_maybe scrut
-- Works when the scrutinee is a variable with a known unfolding
-- as well as when it's an explicit constructor application
= knownCon env (DataAlt con) args case_bndr alts cont
| Lit lit <- scrut -- No need for same treatment as constructors
-- because literals are inlined more vigorously
= knownCon env (LitAlt lit) [] case_bndr alts cont
| otherwise
= -- Prepare the alternatives.
prepareAlts scrut case_bndr alts `thenSmpl` \ (better_alts, handled_cons) ->
-- Prepare the continuation;
-- The new subst_env is in place
prepareCaseCont env better_alts cont `thenSmpl` \ (floats, (dup_cont, nondup_cont)) ->
addFloats env floats $ \ env ->
let
-- The case expression is annotated with the result type of the continuation
-- This may differ from the type originally on the case. For example
-- case(T) (case(Int#) a of { True -> 1#; False -> 0# }) of
-- a# -> <blob>
-- ===>
-- let j a# = <blob>
-- in case(T) a of { True -> j 1#; False -> j 0# }
-- Note that the case that scrutinises a now returns a T not an Int#
res_ty' = contResultType dup_cont
in
-- Deal with case binder
simplCaseBinder env scrut case_bndr `thenSmpl` \ (alt_env, case_bndr') ->
-- Deal with the case alternatives
simplAlts alt_env handled_cons
case_bndr' better_alts dup_cont `thenSmpl` \ alts' ->
-- Put the case back together
mkCase scrut case_bndr' res_ty' alts' `thenSmpl` \ case_expr ->
-- Notice that rebuildDone returns the in-scope set from env, not alt_env
-- The case binder *not* scope over the whole returned case-expression
rebuild env case_expr nondup_cont
\end{code}
simplCaseBinder checks whether the scrutinee is a variable, v. If so,
try to eliminate uses of v in the RHSs in favour of case_bndr; that
way, there's a chance that v will now only be used once, and hence
inlined.
Note 1
~~~~~~
There is a time we *don't* want to do that, namely when
-fno-case-of-case is on. This happens in the first simplifier pass,
and enhances full laziness. Here's the bad case:
f = \ y -> ...(case x of I# v -> ...(case x of ...) ... )
If we eliminate the inner case, we trap it inside the I# v -> arm,
which might prevent some full laziness happening. I've seen this
in action in spectral/cichelli/Prog.hs:
[(m,n) | m <- [1..max], n <- [1..max]]
Hence the check for NoCaseOfCase.
Note 2
~~~~~~
There is another situation when we don't want to do it. If we have
case x of w1 { DEFAULT -> case x of w2 { A -> e1; B -> e2 }
...other cases .... }
We'll perform the binder-swap for the outer case, giving
case x of w1 { DEFAULT -> case w1 of w2 { A -> e1; B -> e2 }
...other cases .... }
But there is no point in doing it for the inner case, because w1 can't
be inlined anyway. Furthermore, doing the case-swapping involves
zapping w2's occurrence info (see paragraphs that follow), and that
forces us to bind w2 when doing case merging. So we get
case x of w1 { A -> let w2 = w1 in e1
B -> let w2 = w1 in e2
...other cases .... }
This is plain silly in the common case where w2 is dead.
Even so, I can't see a good way to implement this idea. I tried
not doing the binder-swap if the scrutinee was already evaluated
but that failed big-time:
data T = MkT !Int
case v of w { MkT x ->
case x of x1 { I# y1 ->
case x of x2 { I# y2 -> ...
Notice that because MkT is strict, x is marked "evaluated". But to
eliminate the last case, we must either make sure that x (as well as
x1) has unfolding MkT y1. THe straightforward thing to do is to do
the binder-swap. So this whole note is a no-op.
Note 3
~~~~~~
If we replace the scrutinee, v, by tbe case binder, then we have to nuke
any occurrence info (eg IAmDead) in the case binder, because the
case-binder now effectively occurs whenever v does. AND we have to do
the same for the pattern-bound variables! Example:
(case x of { (a,b) -> a }) (case x of { (p,q) -> q })
Here, b and p are dead. But when we move the argment inside the first
case RHS, and eliminate the second case, we get
case x of { (a,b) -> a b }
Urk! b is alive! Reason: the scrutinee was a variable, and case elimination
happened.
Indeed, this can happen anytime the case binder isn't dead:
case <any> of x { (a,b) ->
case x of { (p,q) -> p } }
Here (a,b) both look dead, but come alive after the inner case is eliminated.
The point is that we bring into the envt a binding
let x = (a,b)
after the outer case, and that makes (a,b) alive. At least we do unless
the case binder is guaranteed dead.
\begin{code}
simplCaseBinder env (Var v) case_bndr
| not (switchIsOn (getSwitchChecker env) NoCaseOfCase)
-- Failed try [see Note 2 above]
-- not (isEvaldUnfolding (idUnfolding v))
= simplBinder env (zap case_bndr) `thenSmpl` \ (env, case_bndr') ->
returnSmpl (modifyInScope env v case_bndr', case_bndr')
-- We could extend the substitution instead, but it would be
-- a hack because then the substitution wouldn't be idempotent
-- any more (v is an OutId). And this does just as well.
where
zap b = b `setIdOccInfo` NoOccInfo
simplCaseBinder env other_scrut case_bndr
= simplBinder env case_bndr `thenSmpl` \ (env, case_bndr') ->
returnSmpl (env, case_bndr')
\end{code}
\begin{code}
simplAlts :: SimplEnv
-> [AltCon] -- Alternatives the scrutinee can't be
-- in the default case
-> OutId -- Case binder
-> [InAlt] -> SimplCont
-> SimplM [OutAlt] -- Includes the continuation
simplAlts env handled_cons case_bndr' alts cont'
= do { mb_alts <- mapSmpl simpl_alt alts
; return [alt' | Just (_, alt') <- mb_alts] }
-- Filter out the alternatives that are inaccessible
where
simpl_alt alt = simplAlt env handled_cons case_bndr' alt cont'
simplAlt :: SimplEnv -> [AltCon] -> OutId -> InAlt -> SimplCont
-> SimplM (Maybe (TvSubstEnv, OutAlt))
-- Simplify an alternative, returning the type refinement for the
-- alternative, if the alternative does any refinement at all
-- Nothing => the alternative is inaccessible
simplAlt env handled_cons case_bndr' (DEFAULT, bndrs, rhs) cont'
= ASSERT( null bndrs )
simplExprC env' rhs cont' `thenSmpl` \ rhs' ->
returnSmpl (Just (emptyVarEnv, (DEFAULT, [], rhs')))
where
env' = mk_rhs_env env case_bndr' (mkOtherCon handled_cons)
-- Record the constructors that the case-binder *can't* be.
simplAlt env handled_cons case_bndr' (LitAlt lit, bndrs, rhs) cont'
= ASSERT( null bndrs )
simplExprC env' rhs cont' `thenSmpl` \ rhs' ->
returnSmpl (Just (emptyVarEnv, (LitAlt lit, [], rhs')))
where
env' = mk_rhs_env env case_bndr' (mkUnfolding False (Lit lit))
simplAlt env handled_cons case_bndr' (DataAlt con, vs, rhs) cont'
| isVanillaDataCon con
= -- Deal with the pattern-bound variables
-- Mark the ones that are in ! positions in the data constructor
-- as certainly-evaluated.
-- NB: it happens that simplBinders does *not* erase the OtherCon
-- form of unfolding, so it's ok to add this info before
-- doing simplBinders
simplBinders env (add_evals con vs) `thenSmpl` \ (env, vs') ->
-- Bind the case-binder to (con args)
let unf = mkUnfolding False (mkConApp con con_args)
inst_tys' = tyConAppArgs (idType case_bndr')
con_args = map Type inst_tys' ++ map varToCoreExpr vs'
env' = mk_rhs_env env case_bndr' unf
in
simplExprC env' rhs cont' `thenSmpl` \ rhs' ->
returnSmpl (Just (emptyVarEnv, (DataAlt con, vs', rhs')))
| otherwise -- GADT case
= let
(tvs,ids) = span isTyVar vs
in
simplBinders env tvs `thenSmpl` \ (env1, tvs') ->
case coreRefineTys con tvs' (idType case_bndr') of {
Nothing -- Inaccessible
| opt_PprStyle_Debug -- Hack: if debugging is on, generate an error case
-- so we can see it
-> let rhs' = mkApps (Var eRROR_ID)
[Type (substTy env (exprType rhs)),
Lit (mkStringLit "Impossible alternative (GADT)")]
in
simplBinders env1 ids `thenSmpl` \ (env2, ids') ->
returnSmpl (Just (emptyVarEnv, (DataAlt con, tvs' ++ ids', rhs')))
| otherwise -- Filter out the inaccessible branch
-> return Nothing ;
Just refine@(tv_subst_env, _) -> -- The normal case
let
env2 = refineSimplEnv env1 refine
-- Simplify the Ids in the refined environment, so their types
-- reflect the refinement. Usually this doesn't matter, but it helps
-- in mkDupableAlt, when we want to float a lambda that uses these binders
-- Furthermore, it means the binders contain maximal type information
in
simplBinders env2 (add_evals con ids) `thenSmpl` \ (env3, ids') ->
let unf = mkUnfolding False con_app
con_app = mkConApp con con_args
con_args = map varToCoreExpr vs' -- NB: no inst_tys'
env_w_unf = mk_rhs_env env3 case_bndr' unf
vs' = tvs' ++ ids'
in
simplExprC env_w_unf rhs cont' `thenSmpl` \ rhs' ->
returnSmpl (Just (tv_subst_env, (DataAlt con, vs', rhs'))) }
where
-- add_evals records the evaluated-ness of the bound variables of
-- a case pattern. This is *important*. Consider
-- data T = T !Int !Int
--
-- case x of { T a b -> T (a+1) b }
--
-- We really must record that b is already evaluated so that we don't
-- go and re-evaluate it when constructing the result.
add_evals dc vs = cat_evals dc vs (dataConRepStrictness dc)
cat_evals dc vs strs
= go vs strs
where
go [] [] = []
go (v:vs) strs | isTyVar v = v : go vs strs
go (v:vs) (str:strs)
| isMarkedStrict str = evald_v : go vs strs
| otherwise = zapped_v : go vs strs
where
zapped_v = zap_occ_info v
evald_v = zapped_v `setIdUnfolding` evaldUnfolding
go _ _ = pprPanic "cat_evals" (ppr dc $$ ppr vs $$ ppr strs)
-- If the case binder is alive, then we add the unfolding
-- case_bndr = C vs
-- to the envt; so vs are now very much alive
zap_occ_info | isDeadBinder case_bndr' = \id -> id
| otherwise = \id -> id `setIdOccInfo` NoOccInfo
mk_rhs_env env case_bndr' case_bndr_unf
= modifyInScope env case_bndr' (case_bndr' `setIdUnfolding` case_bndr_unf)
\end{code}
%************************************************************************
%* *
\subsection{Known constructor}
%* *
%************************************************************************
We are a bit careful with occurrence info. Here's an example
(\x* -> case x of (a*, b) -> f a) (h v, e)
where the * means "occurs once". This effectively becomes
case (h v, e) of (a*, b) -> f a)
and then
let a* = h v; b = e in f a
and then
f (h v)
All this should happen in one sweep.
\begin{code}
knownCon :: SimplEnv -> AltCon -> [OutExpr]
-> InId -> [InAlt] -> SimplCont
-> SimplM FloatsWithExpr
knownCon env con args bndr alts cont
= tick (KnownBranch bndr) `thenSmpl_`
case findAlt con alts of
(DEFAULT, bs, rhs) -> ASSERT( null bs )
simplNonRecX env bndr scrut $ \ env ->
-- This might give rise to a binding with non-atomic args
-- like x = Node (f x) (g x)
-- but no harm will be done
simplExprF env rhs cont
where
scrut = case con of
LitAlt lit -> Lit lit
DataAlt dc -> mkConApp dc args
(LitAlt lit, bs, rhs) -> ASSERT( null bs )
simplNonRecX env bndr (Lit lit) $ \ env ->
simplExprF env rhs cont
(DataAlt dc, bs, rhs)
-> ASSERT( n_drop_tys + length bs == length args )
bind_args env bs (drop n_drop_tys args) $ \ env ->
let
con_app = mkConApp dc (take n_drop_tys args ++ con_args)
con_args = [substExpr env (varToCoreExpr b) | b <- bs]
-- args are aready OutExprs, but bs are InIds
in
simplNonRecX env bndr con_app $ \ env ->
simplExprF env rhs cont
where
n_drop_tys | isVanillaDataCon dc = tyConArity (dataConTyCon dc)
| otherwise = 0
-- Vanilla data constructors lack type arguments in the pattern
-- Ugh!
bind_args env [] _ thing_inside = thing_inside env
bind_args env (b:bs) (Type ty : args) thing_inside
= ASSERT( isTyVar b )
bind_args (extendTvSubst env b ty) bs args thing_inside
bind_args env (b:bs) (arg : args) thing_inside
= ASSERT( isId b )
simplNonRecX env b arg $ \ env ->
bind_args env bs args thing_inside
\end{code}
%************************************************************************
%* *
\subsection{Duplicating continuations}
%* *
%************************************************************************
\begin{code}
prepareCaseCont :: SimplEnv
-> [InAlt] -> SimplCont
-> SimplM (FloatsWith (SimplCont,SimplCont))
-- Return a duplicatable continuation, a non-duplicable part
-- plus some extra bindings
-- No need to make it duplicatable if there's only one alternative
prepareCaseCont env [alt] cont = returnSmpl (emptyFloats env, (cont, mkBoringStop (contResultType cont)))
prepareCaseCont env alts cont = mkDupableCont env cont
\end{code}
\begin{code}
mkDupableCont :: SimplEnv -> SimplCont
-> SimplM (FloatsWith (SimplCont, SimplCont))
mkDupableCont env cont
| contIsDupable cont
= returnSmpl (emptyFloats env, (cont, mkBoringStop (contResultType cont)))
mkDupableCont env (CoerceIt ty cont)
= mkDupableCont env cont `thenSmpl` \ (floats, (dup_cont, nondup_cont)) ->
returnSmpl (floats, (CoerceIt ty dup_cont, nondup_cont))
mkDupableCont env (InlinePlease cont)
= mkDupableCont env cont `thenSmpl` \ (floats, (dup_cont, nondup_cont)) ->
returnSmpl (floats, (InlinePlease dup_cont, nondup_cont))
mkDupableCont env cont@(ArgOf _ arg_ty _ _)
= returnSmpl (emptyFloats env, (mkBoringStop arg_ty, cont))
-- Do *not* duplicate an ArgOf continuation
-- Because ArgOf continuations are opaque, we gain nothing by
-- propagating them into the expressions, and we do lose a lot.
-- Here's an example:
-- && (case x of { T -> F; F -> T }) E
-- Now, && is strict so we end up simplifying the case with
-- an ArgOf continuation. If we let-bind it, we get
--
-- let $j = \v -> && v E
-- in simplExpr (case x of { T -> F; F -> T })
-- (ArgOf (\r -> $j r)
-- And after simplifying more we get
--
-- let $j = \v -> && v E
-- in case of { T -> $j F; F -> $j T }
-- Which is a Very Bad Thing
--
-- The desire not to duplicate is the entire reason that
-- mkDupableCont returns a pair of continuations.
--
-- The original plan had:
-- e.g. (...strict-fn...) [...hole...]
-- ==>
-- let $j = \a -> ...strict-fn...
-- in $j [...hole...]
mkDupableCont env (ApplyTo _ arg se cont)
= -- e.g. [...hole...] (...arg...)
-- ==>
-- let a = ...arg...
-- in [...hole...] a
simplExpr (setInScope se env) arg `thenSmpl` \ arg' ->
mkDupableCont env cont `thenSmpl` \ (floats, (dup_cont, nondup_cont)) ->
addFloats env floats $ \ env ->
if exprIsDupable arg' then
returnSmpl (emptyFloats env, (ApplyTo OkToDup arg' (zapSubstEnv se) dup_cont, nondup_cont))
else
newId FSLIT("a") (exprType arg') `thenSmpl` \ arg_id ->
tick (CaseOfCase arg_id) `thenSmpl_`
-- Want to tick here so that we go round again,
-- and maybe copy or inline the code.
-- Not strictly CaseOfCase, but never mind
returnSmpl (unitFloat env arg_id arg',
(ApplyTo OkToDup (Var arg_id) (zapSubstEnv se) dup_cont,
nondup_cont))
-- But what if the arg should be case-bound?
-- This has been this way for a long time, so I'll leave it,
-- but I can't convince myself that it's right.
mkDupableCont env (Select _ case_bndr alts se cont)
= -- e.g. (case [...hole...] of { pi -> ei })
-- ===>
-- let ji = \xij -> ei
-- in case [...hole...] of { pi -> ji xij }
tick (CaseOfCase case_bndr) `thenSmpl_`
let
alt_env = setInScope se env
in
prepareCaseCont alt_env alts cont `thenSmpl` \ (floats1, (dup_cont, nondup_cont)) ->
addFloats alt_env floats1 $ \ alt_env ->
simplBinder alt_env case_bndr `thenSmpl` \ (alt_env, case_bndr') ->
-- NB: simplBinder does not zap deadness occ-info, so
-- a dead case_bndr' will still advertise its deadness
-- This is really important because in
-- case e of b { (# a,b #) -> ... }
-- b is always dead, and indeed we are not allowed to bind b to (# a,b #),
-- which might happen if e was an explicit unboxed pair and b wasn't marked dead.
-- In the new alts we build, we have the new case binder, so it must retain
-- its deadness.
mkDupableAlts alt_env case_bndr' alts dup_cont `thenSmpl` \ (floats2, alts') ->
addFloats alt_env floats2 $ \ alt_env ->
returnSmpl (emptyFloats alt_env,
(Select OkToDup case_bndr' alts' (zapSubstEnv se)
(mkBoringStop (contResultType dup_cont)),
nondup_cont))
mkDupableAlts :: SimplEnv -> OutId -> [InAlt] -> SimplCont
-> SimplM (FloatsWith [InAlt])
-- Absorbs the continuation into the new alternatives
mkDupableAlts env case_bndr' alts dupable_cont
= go env alts
where
go env [] = returnSmpl (emptyFloats env, [])
go env (alt:alts)
= do { (floats1, mb_alt') <- mkDupableAlt env case_bndr' dupable_cont alt
; addFloats env floats1 $ \ env -> do
{ (floats2, alts') <- go env alts
; returnSmpl (floats2, case mb_alt' of
Just alt' -> alt' : alts'
Nothing -> alts'
)}}
mkDupableAlt env case_bndr' cont alt
= simplAlt env [] case_bndr' alt cont `thenSmpl` \ mb_stuff ->
case mb_stuff of {
Nothing -> returnSmpl (emptyFloats env, Nothing) ;
Just (reft, (con, bndrs', rhs')) ->
-- Safe to say that there are no handled-cons for the DEFAULT case
if exprIsDupable rhs' then
returnSmpl (emptyFloats env, Just (con, bndrs', rhs'))
-- It is worth checking for a small RHS because otherwise we
-- get extra let bindings that may cause an extra iteration of the simplifier to
-- inline back in place. Quite often the rhs is just a variable or constructor.
-- The Ord instance of Maybe in PrelMaybe.lhs, for example, took several extra
-- iterations because the version with the let bindings looked big, and so wasn't
-- inlined, but after the join points had been inlined it looked smaller, and so
-- was inlined.
--
-- NB: we have to check the size of rhs', not rhs.
-- Duplicating a small InAlt might invalidate occurrence information
-- However, if it *is* dupable, we return the *un* simplified alternative,
-- because otherwise we'd need to pair it up with an empty subst-env....
-- but we only have one env shared between all the alts.
-- (Remember we must zap the subst-env before re-simplifying something).
-- Rather than do this we simply agree to re-simplify the original (small) thing later.
else
let
rhs_ty' = exprType rhs'
used_bndrs' = filter abstract_over (case_bndr' : bndrs')
abstract_over bndr
| isTyVar bndr = not (bndr `elemVarEnv` reft)
-- Don't abstract over tyvar binders which are refined away
-- See Note [Refinement] below
| otherwise = not (isDeadBinder bndr)
-- The deadness info on the new Ids is preserved by simplBinders
in
-- If we try to lift a primitive-typed something out
-- for let-binding-purposes, we will *caseify* it (!),
-- with potentially-disastrous strictness results. So
-- instead we turn it into a function: \v -> e
-- where v::State# RealWorld#. The value passed to this function
-- is realworld#, which generates (almost) no code.
-- There's a slight infelicity here: we pass the overall
-- case_bndr to all the join points if it's used in *any* RHS,
-- because we don't know its usage in each RHS separately
-- We used to say "&& isUnLiftedType rhs_ty'" here, but now
-- we make the join point into a function whenever used_bndrs'
-- is empty. This makes the join-point more CPR friendly.
-- Consider: let j = if .. then I# 3 else I# 4
-- in case .. of { A -> j; B -> j; C -> ... }
--
-- Now CPR doesn't w/w j because it's a thunk, so
-- that means that the enclosing function can't w/w either,
-- which is a lose. Here's the example that happened in practice:
-- kgmod :: Int -> Int -> Int
-- kgmod x y = if x > 0 && y < 0 || x < 0 && y > 0
-- then 78
-- else 5
--
-- I have seen a case alternative like this:
-- True -> \v -> ...
-- It's a bit silly to add the realWorld dummy arg in this case, making
-- $j = \s v -> ...
-- True -> $j s
-- (the \v alone is enough to make CPR happy) but I think it's rare
( if not (any isId used_bndrs')
then newId FSLIT("w") realWorldStatePrimTy `thenSmpl` \ rw_id ->
returnSmpl ([rw_id], [Var realWorldPrimId])
else
returnSmpl (used_bndrs', map varToCoreExpr used_bndrs')
) `thenSmpl` \ (final_bndrs', final_args) ->
-- See comment about "$j" name above
newId FSLIT("$j") (mkPiTypes final_bndrs' rhs_ty') `thenSmpl` \ join_bndr ->
-- Notice the funky mkPiTypes. If the contructor has existentials
-- it's possible that the join point will be abstracted over
-- type varaibles as well as term variables.
-- Example: Suppose we have
-- data T = forall t. C [t]
-- Then faced with
-- case (case e of ...) of
-- C t xs::[t] -> rhs
-- We get the join point
-- let j :: forall t. [t] -> ...
-- j = /\t \xs::[t] -> rhs
-- in
-- case (case e of ...) of
-- C t xs::[t] -> j t xs
let
-- We make the lambdas into one-shot-lambdas. The
-- join point is sure to be applied at most once, and doing so
-- prevents the body of the join point being floated out by
-- the full laziness pass
really_final_bndrs = map one_shot final_bndrs'
one_shot v | isId v = setOneShotLambda v
| otherwise = v
join_rhs = mkLams really_final_bndrs rhs'
join_call = mkApps (Var join_bndr) final_args
in
returnSmpl (unitFloat env join_bndr join_rhs, Just (con, bndrs', join_call)) }
\end{code}
Note [Refinement]
~~~~~~~~~~~~~~~~~
Consider
data T a where
MkT :: a -> b -> T a
f = /\a. \(w::a).
case (case ...) of
MkT a' b (p::a') (q::b) -> [p,w]
The danger is that we'll make a join point
j a' p = [p,w]
and that's ill-typed, because (p::a') but (w::a).
Solution so far: don't abstract over a', because the type refinement
maps [a' -> a] . Ultimately that won't work when real refinement goes on.
Then we must abstract over any refined free variables. Hmm. Maybe we
could just abstract over *all* free variables, thereby lambda-lifting
the join point? We should try this.
|