summaryrefslogtreecommitdiff
path: root/compiler/simplStg/RepType.hs
blob: d93d716b4b5e5ad6fb7c526febdc34634bb55fda (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}

module RepType
  (
    -- * Code generator views onto Types
    UnaryType, NvUnaryType, isNvUnaryType,
    unwrapType,

    -- * Predicates on types
    isVoidTy,

    -- * Type representation for the code generator
    typePrimRep, typePrimRep1,
    runtimeRepPrimRep, typePrimRepArgs,
    PrimRep(..), primRepToType,
    countFunRepArgs, countConRepArgs, tyConPrimRep, tyConPrimRep1,

    -- * Unboxed sum representation type
    ubxSumRepType, layoutUbxSum, typeSlotTy, SlotTy (..),
    slotPrimRep, primRepSlot
  ) where

#include "HsVersions.h"

import GhcPrelude

import BasicTypes (Arity, RepArity)
import DataCon
import Outputable
import PrelNames
import Coercion
import TyCon
import TyCoRep
import Type
import Util
import TysPrim
import {-# SOURCE #-} TysWiredIn ( anyTypeOfKind )

import Data.List (sort)
import qualified Data.IntSet as IS

{- **********************************************************************
*                                                                       *
                Representation types
*                                                                       *
********************************************************************** -}

type NvUnaryType = Type
type UnaryType   = Type
     -- Both are always a value type; i.e. its kind is TYPE rr
     -- for some rr; moreover the rr is never a variable.
     --
     --   NvUnaryType : never an unboxed tuple or sum, or void
     --
     --   UnaryType   : never an unboxed tuple or sum;
     --                 can be Void# or (# #)

isNvUnaryType :: Type -> Bool
isNvUnaryType ty
  | [_] <- typePrimRep ty
  = True
  | otherwise
  = False

-- INVARIANT: the result list is never empty.
typePrimRepArgs :: Type -> [PrimRep]
typePrimRepArgs ty
  | [] <- reps
  = [VoidRep]
  | otherwise
  = reps
  where
    reps = typePrimRep ty

-- | Gets rid of the stuff that prevents us from understanding the
-- runtime representation of a type. Including:
--   1. Casts
--   2. Newtypes
--   3. Foralls
--   4. Synonyms
-- But not type/data families, because we don't have the envs to hand.
unwrapType :: Type -> Type
unwrapType ty
  | Just (_, unwrapped)
      <- topNormaliseTypeX stepper mappend inner_ty
  = unwrapped
  | otherwise
  = inner_ty
  where
    inner_ty = go ty

    go t | Just t' <- coreView t = go t'
    go (ForAllTy _ t)            = go t
    go (CastTy t _)              = go t
    go t                         = t

     -- cf. Coercion.unwrapNewTypeStepper
    stepper rec_nts tc tys
      | Just (ty', _) <- instNewTyCon_maybe tc tys
      = case checkRecTc rec_nts tc of
          Just rec_nts' -> NS_Step rec_nts' (go ty') ()
          Nothing       -> NS_Abort   -- infinite newtypes
      | otherwise
      = NS_Done

countFunRepArgs :: Arity -> Type -> RepArity
countFunRepArgs 0 _
  = 0
countFunRepArgs n ty
  | FunTy _ arg res <- unwrapType ty
  = length (typePrimRepArgs arg) + countFunRepArgs (n - 1) res
  | otherwise
  = pprPanic "countFunRepArgs: arity greater than type can handle" (ppr (n, ty, typePrimRep ty))

countConRepArgs :: DataCon -> RepArity
countConRepArgs dc = go (dataConRepArity dc) (dataConRepType dc)
  where
    go :: Arity -> Type -> RepArity
    go 0 _
      = 0
    go n ty
      | FunTy _ arg res <- unwrapType ty
      = length (typePrimRep arg) + go (n - 1) res
      | otherwise
      = pprPanic "countConRepArgs: arity greater than type can handle" (ppr (n, ty, typePrimRep ty))

-- | True if the type has zero width.
isVoidTy :: Type -> Bool
isVoidTy = null . typePrimRep


{- **********************************************************************
*                                                                       *
                Unboxed sums
 See Note [Translating unboxed sums to unboxed tuples] in UnariseStg.hs
*                                                                       *
********************************************************************** -}

type SortedSlotTys = [SlotTy]

-- | Given the arguments of a sum type constructor application,
--   return the unboxed sum rep type.
--
-- E.g.
--
--   (# Int# | Maybe Int | (# Int#, Float# #) #)
--
-- We call `ubxSumRepType [ [IntRep], [LiftedRep], [IntRep, FloatRep] ]`,
-- which returns [WordSlot, PtrSlot, WordSlot, FloatSlot]
--
-- INVARIANT: Result slots are sorted (via Ord SlotTy), except that at the head
-- of the list we have the slot for the tag.
ubxSumRepType :: [[PrimRep]] -> [SlotTy]
ubxSumRepType constrs0
  -- These first two cases never classify an actual unboxed sum, which always
  -- has at least two disjuncts. But it could happen if a user writes, e.g.,
  -- forall (a :: TYPE (SumRep [IntRep])). ...
  -- which could never be instantiated. We still don't want to panic.
  | constrs0 `lengthLessThan` 2
  = [WordSlot]

  | otherwise
  = let
      combine_alts :: [SortedSlotTys]  -- slots of constructors
                   -> SortedSlotTys    -- final slots
      combine_alts constrs = foldl' merge [] constrs

      merge :: SortedSlotTys -> SortedSlotTys -> SortedSlotTys
      merge existing_slots []
        = existing_slots
      merge [] needed_slots
        = needed_slots
      merge (es : ess) (s : ss)
        | Just s' <- s `fitsIn` es
        = -- found a slot, use it
          s' : merge ess ss
        | s < es
        = -- we need a new slot and this is the right place for it
          s : merge (es : ess) ss
        | otherwise
        = -- keep searching for a slot
          es : merge ess (s : ss)

      -- Nesting unboxed tuples and sums is OK, so we need to flatten first.
      rep :: [PrimRep] -> SortedSlotTys
      rep ty = sort (map primRepSlot ty)

      sumRep = WordSlot : combine_alts (map rep constrs0)
               -- WordSlot: for the tag of the sum
    in
      sumRep

layoutUbxSum :: SortedSlotTys -- Layout of sum. Does not include tag.
                              -- We assume that they are in increasing order
             -> [SlotTy]      -- Slot types of things we want to map to locations in the
                              -- sum layout
             -> [Int]         -- Where to map 'things' in the sum layout
layoutUbxSum sum_slots0 arg_slots0 =
    go arg_slots0 IS.empty
  where
    go :: [SlotTy] -> IS.IntSet -> [Int]
    go [] _
      = []
    go (arg : args) used
      = let slot_idx = findSlot arg 0 sum_slots0 used
         in slot_idx : go args (IS.insert slot_idx used)

    findSlot :: SlotTy -> Int -> SortedSlotTys -> IS.IntSet -> Int
    findSlot arg slot_idx (slot : slots) useds
      | not (IS.member slot_idx useds)
      , Just slot == arg `fitsIn` slot
      = slot_idx
      | otherwise
      = findSlot arg (slot_idx + 1) slots useds
    findSlot _ _ [] _
      = pprPanic "findSlot" (text "Can't find slot" $$ ppr sum_slots0 $$ ppr arg_slots0)

--------------------------------------------------------------------------------

-- We have 3 kinds of slots:
--
--   - Pointer slot: Only shared between actual pointers to Haskell heap (i.e.
--     boxed objects)
--
--   - Word slots: Shared between IntRep, WordRep, Int64Rep, Word64Rep, AddrRep.
--
--   - Float slots: Shared between floating point types.
--
--   - Void slots: Shared between void types. Not used in sums.
--
-- TODO(michalt): We should probably introduce `SlotTy`s for 8-/16-/32-bit
-- values, so that we can pack things more tightly.
data SlotTy = PtrSlot | WordSlot | Word64Slot | FloatSlot | DoubleSlot
  deriving (Eq, Ord)
    -- Constructor order is important! If slot A could fit into slot B
    -- then slot A must occur first.  E.g.  FloatSlot before DoubleSlot
    --
    -- We are assuming that WordSlot is smaller than or equal to Word64Slot
    -- (would not be true on a 128-bit machine)

instance Outputable SlotTy where
  ppr PtrSlot    = text "PtrSlot"
  ppr Word64Slot = text "Word64Slot"
  ppr WordSlot   = text "WordSlot"
  ppr DoubleSlot = text "DoubleSlot"
  ppr FloatSlot  = text "FloatSlot"

typeSlotTy :: UnaryType -> Maybe SlotTy
typeSlotTy ty
  | isVoidTy ty
  = Nothing
  | otherwise
  = Just (primRepSlot (typePrimRep1 ty))

primRepSlot :: PrimRep -> SlotTy
primRepSlot VoidRep     = pprPanic "primRepSlot" (text "No slot for VoidRep")
primRepSlot LiftedRep   = PtrSlot
primRepSlot UnliftedRep = PtrSlot
primRepSlot IntRep      = WordSlot
primRepSlot Int8Rep     = WordSlot
primRepSlot Int16Rep    = WordSlot
primRepSlot Int64Rep    = Word64Slot
primRepSlot WordRep     = WordSlot
primRepSlot Word8Rep    = WordSlot
primRepSlot Word16Rep   = WordSlot
primRepSlot Word64Rep   = Word64Slot
primRepSlot AddrRep     = WordSlot
primRepSlot FloatRep    = FloatSlot
primRepSlot DoubleRep   = DoubleSlot
primRepSlot VecRep{}    = pprPanic "primRepSlot" (text "No slot for VecRep")

slotPrimRep :: SlotTy -> PrimRep
slotPrimRep PtrSlot     = LiftedRep   -- choice between lifted & unlifted seems arbitrary
slotPrimRep Word64Slot  = Word64Rep
slotPrimRep WordSlot    = WordRep
slotPrimRep DoubleSlot  = DoubleRep
slotPrimRep FloatSlot   = FloatRep

-- | Returns the bigger type if one fits into the other. (commutative)
fitsIn :: SlotTy -> SlotTy -> Maybe SlotTy
fitsIn ty1 ty2
  | isWordSlot ty1 && isWordSlot ty2
  = Just (max ty1 ty2)
  | isFloatSlot ty1 && isFloatSlot ty2
  = Just (max ty1 ty2)
  | isPtrSlot ty1 && isPtrSlot ty2
  = Just PtrSlot
  | otherwise
  = Nothing
  where
    isPtrSlot PtrSlot = True
    isPtrSlot _       = False

    isWordSlot Word64Slot = True
    isWordSlot WordSlot   = True
    isWordSlot _          = False

    isFloatSlot DoubleSlot = True
    isFloatSlot FloatSlot  = True
    isFloatSlot _          = False


{- **********************************************************************
*                                                                       *
                   PrimRep
*                                                                       *
********************************************************************** -}

-- | Discovers the primitive representation of a 'Type'. Returns
-- a list of 'PrimRep': it's a list because of the possibility of
-- no runtime representation (void) or multiple (unboxed tuple/sum)
typePrimRep :: HasDebugCallStack => Type -> [PrimRep]
typePrimRep ty = kindPrimRep (text "typePrimRep" <+>
                              parens (ppr ty <+> dcolon <+> ppr (typeKind ty)))
                             (typeKind ty)

-- | Like 'typePrimRep', but assumes that there is precisely one 'PrimRep' output;
-- an empty list of PrimReps becomes a VoidRep
typePrimRep1 :: HasDebugCallStack => UnaryType -> PrimRep
typePrimRep1 ty = case typePrimRep ty of
  []    -> VoidRep
  [rep] -> rep
  _     -> pprPanic "typePrimRep1" (ppr ty $$ ppr (typePrimRep ty))

-- | Find the runtime representation of a 'TyCon'. Defined here to
-- avoid module loops. Returns a list of the register shapes necessary.
tyConPrimRep :: HasDebugCallStack => TyCon -> [PrimRep]
tyConPrimRep tc
  = kindPrimRep (text "kindRep tc" <+> ppr tc $$ ppr res_kind)
                res_kind
  where
    res_kind = tyConResKind tc

-- | Like 'tyConPrimRep', but assumed that there is precisely zero or
-- one 'PrimRep' output
tyConPrimRep1 :: HasDebugCallStack => TyCon -> PrimRep
tyConPrimRep1 tc = case tyConPrimRep tc of
  []    -> VoidRep
  [rep] -> rep
  _     -> pprPanic "tyConPrimRep1" (ppr tc $$ ppr (tyConPrimRep tc))

-- | Take a kind (of shape @TYPE rr@) and produce the 'PrimRep's
-- of values of types of this kind.
kindPrimRep :: HasDebugCallStack => SDoc -> Kind -> [PrimRep]
kindPrimRep doc ki
  | Just ki' <- coreView ki
  = kindPrimRep doc ki'
kindPrimRep doc (TyConApp typ [runtime_rep])
  = ASSERT( typ `hasKey` tYPETyConKey )
    runtimeRepPrimRep doc runtime_rep
kindPrimRep doc ki
  = pprPanic "kindPrimRep" (ppr ki $$ doc)

-- | Take a type of kind RuntimeRep and extract the list of 'PrimRep' that
-- it encodes.
runtimeRepPrimRep :: HasDebugCallStack => SDoc -> Type -> [PrimRep]
runtimeRepPrimRep doc rr_ty
  | Just rr_ty' <- coreView rr_ty
  = runtimeRepPrimRep doc rr_ty'
  | TyConApp rr_dc args <- rr_ty
  , RuntimeRep fun <- tyConRuntimeRepInfo rr_dc
  = fun args
  | otherwise
  = pprPanic "runtimeRepPrimRep" (doc $$ ppr rr_ty)

-- | Convert a PrimRep back to a Type. Used only in the unariser to give types
-- to fresh Ids. Really, only the type's representation matters.
primRepToType :: PrimRep -> Type
primRepToType = anyTypeOfKind . tYPE . primRepToRuntimeRep