1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[CoreRules]{Transformation rules}
-}
{-# LANGUAGE CPP #-}
-- | Functions for collecting together and applying rewrite rules to a module.
-- The 'CoreRule' datatype itself is declared elsewhere.
module Rules (
-- ** Constructing
emptyRuleBase, mkRuleBase, extendRuleBaseList,
unionRuleBase, pprRuleBase,
-- ** Checking rule applications
ruleCheckProgram,
-- ** Manipulating 'RuleInfo' rules
mkRuleInfo, extendRuleInfo, addRuleInfo,
addIdSpecialisations,
-- * Misc. CoreRule helpers
rulesOfBinds, getRules, pprRulesForUser,
lookupRule, mkRule, roughTopNames
) where
#include "HsVersions.h"
import CoreSyn -- All of it
import Module ( Module, ModuleSet, elemModuleSet )
import CoreSubst
import OccurAnal ( occurAnalyseExpr )
import CoreFVs ( exprFreeVars, exprsFreeVars, bindFreeVars
, rulesFreeVarsDSet, exprsOrphNames )
import CoreUtils ( exprType, eqExpr, mkTick, mkTicks,
stripTicksTopT, stripTicksTopE )
import PprCore ( pprRules )
import Type ( Type, substTy, mkTCvSubst )
import TcType ( tcSplitTyConApp_maybe )
import TysPrim ( anyTypeOfKind )
import Coercion
import CoreTidy ( tidyRules )
import Id
import IdInfo ( RuleInfo( RuleInfo ) )
import Var
import VarEnv
import VarSet
import Name ( Name, NamedThing(..), nameIsLocalOrFrom )
import NameSet
import NameEnv
import Unify ( ruleMatchTyX )
import BasicTypes ( Activation, CompilerPhase, isActive, pprRuleName )
import StaticFlags ( opt_PprStyle_Debug )
import DynFlags ( DynFlags )
import Outputable
import FastString
import Maybes
import Bag
import Util
import Data.List
import Data.Ord
import Control.Monad ( guard )
{-
Note [Overall plumbing for rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* After the desugarer:
- The ModGuts initially contains mg_rules :: [CoreRule] of
locally-declared rules for imported Ids.
- Locally-declared rules for locally-declared Ids are attached to
the IdInfo for that Id. See Note [Attach rules to local ids] in
DsBinds
* TidyPgm strips off all the rules from local Ids and adds them to
mg_rules, so that the ModGuts has *all* the locally-declared rules.
* The HomePackageTable contains a ModDetails for each home package
module. Each contains md_rules :: [CoreRule] of rules declared in
that module. The HomePackageTable grows as ghc --make does its
up-sweep. In batch mode (ghc -c), the HPT is empty; all imported modules
are treated by the "external" route, discussed next, regardless of
which package they come from.
* The ExternalPackageState has a single eps_rule_base :: RuleBase for
Ids in other packages. This RuleBase simply grow monotonically, as
ghc --make compiles one module after another.
During simplification, interface files may get demand-loaded,
as the simplifier explores the unfoldings for Ids it has in
its hand. (Via an unsafePerformIO; the EPS is really a cache.)
That in turn may make the EPS rule-base grow. In contrast, the
HPT never grows in this way.
* The result of all this is that during Core-to-Core optimisation
there are four sources of rules:
(a) Rules in the IdInfo of the Id they are a rule for. These are
easy: fast to look up, and if you apply a substitution then
it'll be applied to the IdInfo as a matter of course.
(b) Rules declared in this module for imported Ids, kept in the
ModGuts. If you do a substitution, you'd better apply the
substitution to these. There are seldom many of these.
(c) Rules declared in the HomePackageTable. These never change.
(d) Rules in the ExternalPackageTable. These can grow in response
to lazy demand-loading of interfaces.
* At the moment (c) is carried in a reader-monad way by the CoreMonad.
The HomePackageTable doesn't have a single RuleBase because technically
we should only be able to "see" rules "below" this module; so we
generate a RuleBase for (c) by combing rules from all the modules
"below" us. That's why we can't just select the home-package RuleBase
from HscEnv.
[NB: we are inconsistent here. We should do the same for external
packages, but we don't. Same for type-class instances.]
* So in the outer simplifier loop, we combine (b-d) into a single
RuleBase, reading
(b) from the ModGuts,
(c) from the CoreMonad, and
(d) from its mutable variable
[Of coures this means that we won't see new EPS rules that come in
during a single simplifier iteration, but that probably does not
matter.]
************************************************************************
* *
\subsection[specialisation-IdInfo]{Specialisation info about an @Id@}
* *
************************************************************************
A @CoreRule@ holds details of one rule for an @Id@, which
includes its specialisations.
For example, if a rule for @f@ contains the mapping:
\begin{verbatim}
forall a b d. [Type (List a), Type b, Var d] ===> f' a b
\end{verbatim}
then when we find an application of f to matching types, we simply replace
it by the matching RHS:
\begin{verbatim}
f (List Int) Bool dict ===> f' Int Bool
\end{verbatim}
All the stuff about how many dictionaries to discard, and what types
to apply the specialised function to, are handled by the fact that the
Rule contains a template for the result of the specialisation.
There is one more exciting case, which is dealt with in exactly the same
way. If the specialised value is unboxed then it is lifted at its
definition site and unlifted at its uses. For example:
pi :: forall a. Num a => a
might have a specialisation
[Int#] ===> (case pi' of Lift pi# -> pi#)
where pi' :: Lift Int# is the specialised version of pi.
-}
mkRule :: Module -> Bool -> Bool -> RuleName -> Activation
-> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> CoreRule
-- ^ Used to make 'CoreRule' for an 'Id' defined in the module being
-- compiled. See also 'CoreSyn.CoreRule'
mkRule this_mod is_auto is_local name act fn bndrs args rhs
= Rule { ru_name = name, ru_fn = fn, ru_act = act,
ru_bndrs = bndrs, ru_args = args,
ru_rhs = occurAnalyseExpr rhs,
ru_rough = roughTopNames args,
ru_origin = this_mod,
ru_orphan = orph,
ru_auto = is_auto, ru_local = is_local }
where
-- Compute orphanhood. See Note [Orphans] in InstEnv
-- A rule is an orphan only if none of the variables
-- mentioned on its left-hand side are locally defined
lhs_names = nameSetElems (extendNameSet (exprsOrphNames args) fn)
-- Since rules get eventually attached to one of the free names
-- from the definition when compiling the ABI hash, we should make
-- it deterministic. This chooses the one with minimal OccName
-- as opposed to uniq value.
local_lhs_names = filter (nameIsLocalOrFrom this_mod) lhs_names
orph = chooseOrphanAnchor local_lhs_names
--------------
roughTopNames :: [CoreExpr] -> [Maybe Name]
-- ^ Find the \"top\" free names of several expressions.
-- Such names are either:
--
-- 1. The function finally being applied to in an application chain
-- (if that name is a GlobalId: see "Var#globalvslocal"), or
--
-- 2. The 'TyCon' if the expression is a 'Type'
--
-- This is used for the fast-match-check for rules;
-- if the top names don't match, the rest can't
roughTopNames args = map roughTopName args
roughTopName :: CoreExpr -> Maybe Name
roughTopName (Type ty) = case tcSplitTyConApp_maybe ty of
Just (tc,_) -> Just (getName tc)
Nothing -> Nothing
roughTopName (Coercion _) = Nothing
roughTopName (App f _) = roughTopName f
roughTopName (Var f) | isGlobalId f -- Note [Care with roughTopName]
, isDataConWorkId f || idArity f > 0
= Just (idName f)
roughTopName (Tick t e) | tickishFloatable t
= roughTopName e
roughTopName _ = Nothing
ruleCantMatch :: [Maybe Name] -> [Maybe Name] -> Bool
-- ^ @ruleCantMatch tpl actual@ returns True only if @actual@
-- definitely can't match @tpl@ by instantiating @tpl@.
-- It's only a one-way match; unlike instance matching we
-- don't consider unification.
--
-- Notice that [_$_]
-- @ruleCantMatch [Nothing] [Just n2] = False@
-- Reason: a template variable can be instantiated by a constant
-- Also:
-- @ruleCantMatch [Just n1] [Nothing] = False@
-- Reason: a local variable @v@ in the actuals might [_$_]
ruleCantMatch (Just n1 : ts) (Just n2 : as) = n1 /= n2 || ruleCantMatch ts as
ruleCantMatch (_ : ts) (_ : as) = ruleCantMatch ts as
ruleCantMatch _ _ = False
{-
Note [Care with roughTopName]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
module M where { x = a:b }
module N where { ...f x...
RULE f (p:q) = ... }
You'd expect the rule to match, because the matcher can
look through the unfolding of 'x'. So we must avoid roughTopName
returning 'M.x' for the call (f x), or else it'll say "can't match"
and we won't even try!!
However, suppose we have
RULE g (M.h x) = ...
foo = ...(g (M.k v))....
where k is a *function* exported by M. We never really match
functions (lambdas) except by name, so in this case it seems like
a good idea to treat 'M.k' as a roughTopName of the call.
-}
pprRulesForUser :: [CoreRule] -> SDoc
-- (a) tidy the rules
-- (b) sort them into order based on the rule name
-- (c) suppress uniques (unless -dppr-debug is on)
-- This combination makes the output stable so we can use in testing
-- It's here rather than in PprCore because it calls tidyRules
pprRulesForUser rules
= withPprStyle defaultUserStyle $
pprRules $
sortBy (comparing ru_name) $
tidyRules emptyTidyEnv rules
{-
************************************************************************
* *
RuleInfo: the rules in an IdInfo
* *
************************************************************************
-}
-- | Make a 'RuleInfo' containing a number of 'CoreRule's, suitable
-- for putting into an 'IdInfo'
mkRuleInfo :: [CoreRule] -> RuleInfo
mkRuleInfo rules = RuleInfo rules (rulesFreeVarsDSet rules)
extendRuleInfo :: RuleInfo -> [CoreRule] -> RuleInfo
extendRuleInfo (RuleInfo rs1 fvs1) rs2
= RuleInfo (rs2 ++ rs1) (rulesFreeVarsDSet rs2 `unionDVarSet` fvs1)
addRuleInfo :: RuleInfo -> RuleInfo -> RuleInfo
addRuleInfo (RuleInfo rs1 fvs1) (RuleInfo rs2 fvs2)
= RuleInfo (rs1 ++ rs2) (fvs1 `unionDVarSet` fvs2)
addIdSpecialisations :: Id -> [CoreRule] -> Id
addIdSpecialisations id []
= id
addIdSpecialisations id rules
= setIdSpecialisation id $
extendRuleInfo (idSpecialisation id) rules
-- | Gather all the rules for locally bound identifiers from the supplied bindings
rulesOfBinds :: [CoreBind] -> [CoreRule]
rulesOfBinds binds = concatMap (concatMap idCoreRules . bindersOf) binds
getRules :: RuleEnv -> Id -> [CoreRule]
-- See Note [Where rules are found]
getRules (RuleEnv { re_base = rule_base, re_visible_orphs = orphs }) fn
= idCoreRules fn ++ filter (ruleIsVisible orphs) imp_rules
where
imp_rules = lookupNameEnv rule_base (idName fn) `orElse` []
ruleIsVisible :: ModuleSet -> CoreRule -> Bool
ruleIsVisible _ BuiltinRule{} = True
ruleIsVisible vis_orphs Rule { ru_orphan = orph, ru_origin = origin }
= notOrphan orph || origin `elemModuleSet` vis_orphs
{-
Note [Where rules are found]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The rules for an Id come from two places:
(a) the ones it is born with, stored inside the Id iself (idCoreRules fn),
(b) rules added in other modules, stored in the global RuleBase (imp_rules)
It's tempting to think that
- LocalIds have only (a)
- non-LocalIds have only (b)
but that isn't quite right:
- PrimOps and ClassOps are born with a bunch of rules inside the Id,
even when they are imported
- The rules in PrelRules.builtinRules should be active even
in the module defining the Id (when it's a LocalId), but
the rules are kept in the global RuleBase
************************************************************************
* *
RuleBase
* *
************************************************************************
-}
-- RuleBase itself is defined in CoreSyn, along with CoreRule
emptyRuleBase :: RuleBase
emptyRuleBase = emptyNameEnv
mkRuleBase :: [CoreRule] -> RuleBase
mkRuleBase rules = extendRuleBaseList emptyRuleBase rules
extendRuleBaseList :: RuleBase -> [CoreRule] -> RuleBase
extendRuleBaseList rule_base new_guys
= foldl extendRuleBase rule_base new_guys
unionRuleBase :: RuleBase -> RuleBase -> RuleBase
unionRuleBase rb1 rb2 = plusNameEnv_C (++) rb1 rb2
extendRuleBase :: RuleBase -> CoreRule -> RuleBase
extendRuleBase rule_base rule
= extendNameEnv_Acc (:) singleton rule_base (ruleIdName rule) rule
pprRuleBase :: RuleBase -> SDoc
pprRuleBase rules = vcat [ pprRules (tidyRules emptyTidyEnv rs)
| rs <- nameEnvElts rules ]
{-
************************************************************************
* *
Matching
* *
************************************************************************
-}
-- | The main rule matching function. Attempts to apply all (active)
-- supplied rules to this instance of an application in a given
-- context, returning the rule applied and the resulting expression if
-- successful.
lookupRule :: DynFlags -> InScopeEnv
-> (Activation -> Bool) -- When rule is active
-> Id -> [CoreExpr]
-> [CoreRule] -> Maybe (CoreRule, CoreExpr)
-- See Note [Extra args in rule matching]
-- See comments on matchRule
lookupRule dflags in_scope is_active fn args rules
= -- pprTrace "matchRules" (ppr fn <+> ppr args $$ ppr rules ) $
case go [] rules of
[] -> Nothing
(m:ms) -> Just (findBest (fn,args') m ms)
where
rough_args = map roughTopName args
-- Strip ticks from arguments, see note [Tick annotations in RULE
-- matching]. We only collect ticks if a rule actually matches -
-- this matters for performance tests.
args' = map (stripTicksTopE tickishFloatable) args
ticks = concatMap (stripTicksTopT tickishFloatable) args
go :: [(CoreRule,CoreExpr)] -> [CoreRule] -> [(CoreRule,CoreExpr)]
go ms [] = ms
go ms (r:rs)
| Just e <- matchRule dflags in_scope is_active fn args' rough_args r
= go ((r,mkTicks ticks e):ms) rs
| otherwise
= -- pprTrace "match failed" (ppr r $$ ppr args $$
-- ppr [ (arg_id, unfoldingTemplate unf)
-- | Var arg_id <- args
-- , let unf = idUnfolding arg_id
-- , isCheapUnfolding unf] )
go ms rs
findBest :: (Id, [CoreExpr])
-> (CoreRule,CoreExpr) -> [(CoreRule,CoreExpr)] -> (CoreRule,CoreExpr)
-- All these pairs matched the expression
-- Return the pair the the most specific rule
-- The (fn,args) is just for overlap reporting
findBest _ (rule,ans) [] = (rule,ans)
findBest target (rule1,ans1) ((rule2,ans2):prs)
| rule1 `isMoreSpecific` rule2 = findBest target (rule1,ans1) prs
| rule2 `isMoreSpecific` rule1 = findBest target (rule2,ans2) prs
| debugIsOn = let pp_rule rule
| opt_PprStyle_Debug = ppr rule
| otherwise = doubleQuotes (ftext (ru_name rule))
in pprTrace "Rules.findBest: rule overlap (Rule 1 wins)"
(vcat [if opt_PprStyle_Debug then
text "Expression to match:" <+> ppr fn <+> sep (map ppr args)
else empty,
text "Rule 1:" <+> pp_rule rule1,
text "Rule 2:" <+> pp_rule rule2]) $
findBest target (rule1,ans1) prs
| otherwise = findBest target (rule1,ans1) prs
where
(fn,args) = target
isMoreSpecific :: CoreRule -> CoreRule -> Bool
-- This tests if one rule is more specific than another
-- We take the view that a BuiltinRule is less specific than
-- anything else, because we want user-define rules to "win"
-- In particular, class ops have a built-in rule, but we
-- any user-specific rules to win
-- eg (Trac #4397)
-- truncate :: (RealFrac a, Integral b) => a -> b
-- {-# RULES "truncate/Double->Int" truncate = double2Int #-}
-- double2Int :: Double -> Int
-- We want the specific RULE to beat the built-in class-op rule
isMoreSpecific (BuiltinRule {}) _ = False
isMoreSpecific (Rule {}) (BuiltinRule {}) = True
isMoreSpecific (Rule { ru_bndrs = bndrs1, ru_args = args1 })
(Rule { ru_bndrs = bndrs2, ru_args = args2, ru_name = rule_name2 })
= isJust (matchN (in_scope, id_unfolding_fun) rule_name2 bndrs2 args2 args1)
where
id_unfolding_fun _ = NoUnfolding -- Don't expand in templates
in_scope = mkInScopeSet (mkVarSet bndrs1)
-- Actually we should probably include the free vars
-- of rule1's args, but I can't be bothered
noBlackList :: Activation -> Bool
noBlackList _ = False -- Nothing is black listed
{-
Note [Extra args in rule matching]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we find a matching rule, we return (Just (rule, rhs)),
but the rule firing has only consumed as many of the input args
as the ruleArity says. It's up to the caller to keep track
of any left-over args. E.g. if you call
lookupRule ... f [e1, e2, e3]
and it returns Just (r, rhs), where r has ruleArity 2
then the real rewrite is
f e1 e2 e3 ==> rhs e3
You might think it'd be cleaner for lookupRule to deal with the
leftover arguments, by applying 'rhs' to them, but the main call
in the Simplifier works better as it is. Reason: the 'args' passed
to lookupRule are the result of a lazy substitution
-}
------------------------------------
matchRule :: DynFlags -> InScopeEnv -> (Activation -> Bool)
-> Id -> [CoreExpr] -> [Maybe Name]
-> CoreRule -> Maybe CoreExpr
-- If (matchRule rule args) returns Just (name,rhs)
-- then (f args) matches the rule, and the corresponding
-- rewritten RHS is rhs
--
-- The returned expression is occurrence-analysed
--
-- Example
--
-- The rule
-- forall f g x. map f (map g x) ==> map (f . g) x
-- is stored
-- CoreRule "map/map"
-- [f,g,x] -- tpl_vars
-- [f,map g x] -- tpl_args
-- map (f.g) x) -- rhs
--
-- Then the call: matchRule the_rule [e1,map e2 e3]
-- = Just ("map/map", (\f,g,x -> rhs) e1 e2 e3)
--
-- Any 'surplus' arguments in the input are simply put on the end
-- of the output.
matchRule dflags rule_env _is_active fn args _rough_args
(BuiltinRule { ru_try = match_fn })
-- Built-in rules can't be switched off, it seems
= case match_fn dflags rule_env fn args of
Nothing -> Nothing
Just expr -> Just (occurAnalyseExpr expr)
-- We could do this when putting things into the rulebase, I guess
matchRule _ in_scope is_active _ args rough_args
(Rule { ru_name = rule_name, ru_act = act, ru_rough = tpl_tops
, ru_bndrs = tpl_vars, ru_args = tpl_args, ru_rhs = rhs })
| not (is_active act) = Nothing
| ruleCantMatch tpl_tops rough_args = Nothing
| otherwise
= case matchN in_scope rule_name tpl_vars tpl_args args of
Nothing -> Nothing
Just (bind_wrapper, tpl_vals) -> Just (bind_wrapper $
rule_fn `mkApps` tpl_vals)
where
rule_fn = occurAnalyseExpr (mkLams tpl_vars rhs)
-- We could do this when putting things into the rulebase, I guess
---------------------------------------
matchN :: InScopeEnv
-> RuleName -> [Var] -> [CoreExpr]
-> [CoreExpr] -- ^ Target; can have more elements than the template
-> Maybe (BindWrapper, -- Floated bindings; see Note [Matching lets]
[CoreExpr])
-- For a given match template and context, find bindings to wrap around
-- the entire result and what should be substituted for each template variable.
-- Fail if there are two few actual arguments from the target to match the template
matchN (in_scope, id_unf) rule_name tmpl_vars tmpl_es target_es
= do { subst <- go init_menv emptyRuleSubst tmpl_es target_es
; let (_, matched_es) = mapAccumL lookup_tmpl subst tmpl_vars
; return (rs_binds subst, matched_es) }
where
init_rn_env = mkRnEnv2 (extendInScopeSetList in_scope tmpl_vars)
-- See Note [Template binders]
init_menv = RV { rv_tmpls = mkVarSet tmpl_vars, rv_lcl = init_rn_env
, rv_fltR = mkEmptySubst (rnInScopeSet init_rn_env)
, rv_unf = id_unf }
go _ subst [] _ = Just subst
go _ _ _ [] = Nothing -- Fail if too few actual args
go menv subst (t:ts) (e:es) = do { subst1 <- match menv subst t e
; go menv subst1 ts es }
lookup_tmpl :: RuleSubst -> Var -> (RuleSubst, CoreExpr)
lookup_tmpl rs@(RS { rs_tv_subst = tv_subst, rs_id_subst = id_subst }) tmpl_var
| isId tmpl_var
= case lookupVarEnv id_subst tmpl_var of
Just e -> (rs, e)
_ -> unbound tmpl_var
| otherwise
= case lookupVarEnv tv_subst tmpl_var of
Just ty -> (rs, Type ty)
Nothing -> (rs { rs_tv_subst = extendVarEnv tv_subst tmpl_var fake_ty }, Type fake_ty)
-- See Note [Unbound template type variables]
where
fake_ty = anyTypeOfKind kind
cv_subst = to_co_env id_subst
kind = Type.substTy (mkTCvSubst in_scope (tv_subst, cv_subst))
(tyVarKind tmpl_var)
to_co_env env = foldVarEnv_Directly to_co emptyVarEnv env
to_co uniq expr env
| Just co <- exprToCoercion_maybe expr
= extendVarEnv_Directly env uniq co
| otherwise
= env
unbound var = pprPanic "Template variable unbound in rewrite rule" $
vcat [ text "Variable:" <+> ppr var
, text "Rule" <+> pprRuleName rule_name
, text "Rule bndrs:" <+> ppr tmpl_vars
, text "LHS args:" <+> ppr tmpl_es
, text "Actual args:" <+> ppr target_es ]
{- Note [Unbound template type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Type synonyms with phantom args can give rise to unbound template type
variables. Consider this (Trac #10689, simplCore/should_compile/T10689):
type Foo a b = b
f :: Eq a => a -> Bool
f x = x==x
{-# RULES "foo" forall (x :: Foo a Char). f x = True #-}
finkle = f 'c'
The rule looks like
foall (a::*) (d::Eq Char) (x :: Foo a Char).
f (Foo a Char) d x = True
Matching the rule won't bind 'a', and legitimately so. We fudge by
pretending that 'a' is bound to (Any :: *).
Note [Template binders]
~~~~~~~~~~~~~~~~~~~~~~~
Consider the following match (example 1):
Template: forall x. f x
Target: f (x+1)
This should succeed, because the template variable 'x' has nothing to
do with the 'x' in the target.
Likewise this one (example 2):
Template: forall x. f (\x.x)
Target: f (\y.y)
We achieve this simply by:
* Adding forall'd template binders to the in-scope set
This works even if the template binder are already in scope
(in the target) because
* The RuleSubst rs_tv_subst, rs_id_subst maps LHS template vars to
the target world. It is not applied recursively.
* Having the template vars in the in-scope set ensures that in
example 2 above, the (\x.x) is cloned to (\x'. x').
In the past we used rnBndrL to clone the template variables if
they were already in scope. But (a) that's not necessary and (b)
it complicate the fancy footwork for Note [Unbound template type variables]
************************************************************************
* *
The main matcher
* *
********************************************************************* -}
-- * The domain of the TvSubstEnv and IdSubstEnv are the template
-- variables passed into the match.
--
-- * The BindWrapper in a RuleSubst are the bindings floated out
-- from nested matches; see the Let case of match, below
--
data RuleMatchEnv
= RV { rv_tmpls :: VarSet -- Template variables
, rv_lcl :: RnEnv2 -- Renamings for *local bindings*
-- (lambda/case)
, rv_fltR :: Subst -- Renamings for floated let-bindings
-- domain disjoint from envR of rv_lcl
-- See Note [Matching lets]
, rv_unf :: IdUnfoldingFun
}
rvInScopeEnv :: RuleMatchEnv -> InScopeEnv
rvInScopeEnv renv = (rnInScopeSet (rv_lcl renv), rv_unf renv)
data RuleSubst = RS { rs_tv_subst :: TvSubstEnv -- Range is the
, rs_id_subst :: IdSubstEnv -- template variables
, rs_binds :: BindWrapper -- Floated bindings
, rs_bndrs :: VarSet -- Variables bound by floated lets
}
type BindWrapper = CoreExpr -> CoreExpr
-- See Notes [Matching lets] and [Matching cases]
-- we represent the floated bindings as a core-to-core function
emptyRuleSubst :: RuleSubst
emptyRuleSubst = RS { rs_tv_subst = emptyVarEnv, rs_id_subst = emptyVarEnv
, rs_binds = \e -> e, rs_bndrs = emptyVarSet }
-- At one stage I tried to match even if there are more
-- template args than real args.
-- I now think this is probably a bad idea.
-- Should the template (map f xs) match (map g)? I think not.
-- For a start, in general eta expansion wastes work.
-- SLPJ July 99
match :: RuleMatchEnv
-> RuleSubst
-> CoreExpr -- Template
-> CoreExpr -- Target
-> Maybe RuleSubst
-- We look through certain ticks. See note [Tick annotations in RULE matching]
match renv subst e1 (Tick t e2)
| tickishFloatable t
= match renv subst' e1 e2
where subst' = subst { rs_binds = rs_binds subst . mkTick t }
match _ _ e@Tick{} _
= pprPanic "Tick in rule" (ppr e)
-- See the notes with Unify.match, which matches types
-- Everything is very similar for terms
-- Interesting examples:
-- Consider matching
-- \x->f against \f->f
-- When we meet the lambdas we must remember to rename f to f' in the
-- second expresion. The RnEnv2 does that.
--
-- Consider matching
-- forall a. \b->b against \a->3
-- We must rename the \a. Otherwise when we meet the lambdas we
-- might substitute [a/b] in the template, and then erroneously
-- succeed in matching what looks like the template variable 'a' against 3.
-- The Var case follows closely what happens in Unify.match
match renv subst (Var v1) e2 = match_var renv subst v1 e2
match renv subst e1 (Var v2) -- Note [Expanding variables]
| not (inRnEnvR rn_env v2) -- Note [Do not expand locally-bound variables]
, Just e2' <- expandUnfolding_maybe (rv_unf renv v2')
= match (renv { rv_lcl = nukeRnEnvR rn_env }) subst e1 e2'
where
v2' = lookupRnInScope rn_env v2
rn_env = rv_lcl renv
-- Notice that we look up v2 in the in-scope set
-- See Note [Lookup in-scope]
-- No need to apply any renaming first (hence no rnOccR)
-- because of the not-inRnEnvR
match renv subst e1 (Let bind e2)
| -- pprTrace "match:Let" (vcat [ppr bind, ppr $ okToFloat (rv_lcl renv) (bindFreeVars bind)]) $
okToFloat (rv_lcl renv) (bindFreeVars bind) -- See Note [Matching lets]
= match (renv { rv_fltR = flt_subst' })
(subst { rs_binds = rs_binds subst . Let bind'
, rs_bndrs = extendVarSetList (rs_bndrs subst) new_bndrs })
e1 e2
where
flt_subst = addInScopeSet (rv_fltR renv) (rs_bndrs subst)
(flt_subst', bind') = substBind flt_subst bind
new_bndrs = bindersOf bind'
{- Disabled: see Note [Matching cases] below
match renv (tv_subst, id_subst, binds) e1
(Case scrut case_bndr ty [(con, alt_bndrs, rhs)])
| exprOkForSpeculation scrut -- See Note [Matching cases]
, okToFloat rn_env bndrs (exprFreeVars scrut)
= match (renv { me_env = rn_env' })
(tv_subst, id_subst, binds . case_wrap)
e1 rhs
where
rn_env = me_env renv
rn_env' = extendRnInScopeList rn_env bndrs
bndrs = case_bndr : alt_bndrs
case_wrap rhs' = Case scrut case_bndr ty [(con, alt_bndrs, rhs')]
-}
match _ subst (Lit lit1) (Lit lit2)
| lit1 == lit2
= Just subst
match renv subst (App f1 a1) (App f2 a2)
= do { subst' <- match renv subst f1 f2
; match renv subst' a1 a2 }
match renv subst (Lam x1 e1) e2
| Just (x2, e2, ts) <- exprIsLambda_maybe (rvInScopeEnv renv) e2
= let renv' = renv { rv_lcl = rnBndr2 (rv_lcl renv) x1 x2
, rv_fltR = delBndr (rv_fltR renv) x2 }
subst' = subst { rs_binds = rs_binds subst . flip (foldr mkTick) ts }
in match renv' subst' e1 e2
match renv subst (Case e1 x1 ty1 alts1) (Case e2 x2 ty2 alts2)
= do { subst1 <- match_ty renv subst ty1 ty2
; subst2 <- match renv subst1 e1 e2
; let renv' = rnMatchBndr2 renv subst x1 x2
; match_alts renv' subst2 alts1 alts2 -- Alts are both sorted
}
match renv subst (Type ty1) (Type ty2)
= match_ty renv subst ty1 ty2
match renv subst (Coercion co1) (Coercion co2)
= match_co renv subst co1 co2
match renv subst (Cast e1 co1) (Cast e2 co2)
= do { subst1 <- match_co renv subst co1 co2
; match renv subst1 e1 e2 }
-- Everything else fails
match _ _ _e1 _e2 = -- pprTrace "Failing at" ((text "e1:" <+> ppr _e1) $$ (text "e2:" <+> ppr _e2)) $
Nothing
-------------
match_co :: RuleMatchEnv
-> RuleSubst
-> Coercion
-> Coercion
-> Maybe RuleSubst
match_co renv subst co1 co2
| Just cv <- getCoVar_maybe co1
= match_var renv subst cv (Coercion co2)
| Just (ty1, r1) <- isReflCo_maybe co1
= do { (ty2, r2) <- isReflCo_maybe co2
; guard (r1 == r2)
; match_ty renv subst ty1 ty2 }
match_co renv subst co1 co2
| Just (tc1, cos1) <- splitTyConAppCo_maybe co1
= case splitTyConAppCo_maybe co2 of
Just (tc2, cos2)
| tc1 == tc2
-> match_cos renv subst cos1 cos2
_ -> Nothing
match_co _ _ _co1 _co2
-- Currently just deals with CoVarCo, TyConAppCo and Refl
#ifdef DEBUG
= pprTrace "match_co: needs more cases" (ppr _co1 $$ ppr _co2) Nothing
#else
= Nothing
#endif
match_cos :: RuleMatchEnv
-> RuleSubst
-> [Coercion]
-> [Coercion]
-> Maybe RuleSubst
match_cos renv subst (co1:cos1) (co2:cos2) =
do { subst' <- match_co renv subst co1 co2
; match_cos renv subst' cos1 cos2 }
match_cos _ subst [] [] = Just subst
match_cos _ _ cos1 cos2 = pprTrace "match_cos: not same length" (ppr cos1 $$ ppr cos2) Nothing
-------------
rnMatchBndr2 :: RuleMatchEnv -> RuleSubst -> Var -> Var -> RuleMatchEnv
rnMatchBndr2 renv subst x1 x2
= renv { rv_lcl = rnBndr2 rn_env x1 x2
, rv_fltR = delBndr (rv_fltR renv) x2 }
where
rn_env = addRnInScopeSet (rv_lcl renv) (rs_bndrs subst)
-- Typically this is a no-op, but it may matter if
-- there are some floated let-bindings
------------------------------------------
match_alts :: RuleMatchEnv
-> RuleSubst
-> [CoreAlt] -- Template
-> [CoreAlt] -- Target
-> Maybe RuleSubst
match_alts _ subst [] []
= return subst
match_alts renv subst ((c1,vs1,r1):alts1) ((c2,vs2,r2):alts2)
| c1 == c2
= do { subst1 <- match renv' subst r1 r2
; match_alts renv subst1 alts1 alts2 }
where
renv' = foldl mb renv (vs1 `zip` vs2)
mb renv (v1,v2) = rnMatchBndr2 renv subst v1 v2
match_alts _ _ _ _
= Nothing
------------------------------------------
okToFloat :: RnEnv2 -> VarSet -> Bool
okToFloat rn_env bind_fvs
= foldVarSet ((&&) . not_captured) True bind_fvs
where
not_captured fv = not (inRnEnvR rn_env fv)
------------------------------------------
match_var :: RuleMatchEnv
-> RuleSubst
-> Var -- Template
-> CoreExpr -- Target
-> Maybe RuleSubst
match_var renv@(RV { rv_tmpls = tmpls, rv_lcl = rn_env, rv_fltR = flt_env })
subst v1 e2
| v1' `elemVarSet` tmpls
= match_tmpl_var renv subst v1' e2
| otherwise -- v1' is not a template variable; check for an exact match with e2
= case e2 of -- Remember, envR of rn_env is disjoint from rv_fltR
Var v2 | v1' == rnOccR rn_env v2
-> Just subst
| Var v2' <- lookupIdSubst (text "match_var") flt_env v2
, v1' == v2'
-> Just subst
_ -> Nothing
where
v1' = rnOccL rn_env v1
-- If the template is
-- forall x. f x (\x -> x) = ...
-- Then the x inside the lambda isn't the
-- template x, so we must rename first!
------------------------------------------
match_tmpl_var :: RuleMatchEnv
-> RuleSubst
-> Var -- Template
-> CoreExpr -- Target
-> Maybe RuleSubst
match_tmpl_var renv@(RV { rv_lcl = rn_env, rv_fltR = flt_env })
subst@(RS { rs_id_subst = id_subst, rs_bndrs = let_bndrs })
v1' e2
| any (inRnEnvR rn_env) (varSetElems (exprFreeVars e2))
= Nothing -- Occurs check failure
-- e.g. match forall a. (\x-> a x) against (\y. y y)
| Just e1' <- lookupVarEnv id_subst v1'
= if eqExpr (rnInScopeSet rn_env) e1' e2'
then Just subst
else Nothing
| otherwise
= -- Note [Matching variable types]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- However, we must match the *types*; e.g.
-- forall (c::Char->Int) (x::Char).
-- f (c x) = "RULE FIRED"
-- We must only match on args that have the right type
-- It's actually quite difficult to come up with an example that shows
-- you need type matching, esp since matching is left-to-right, so type
-- args get matched first. But it's possible (e.g. simplrun008) and
-- this is the Right Thing to do
do { subst' <- match_ty renv subst (idType v1') (exprType e2)
; return (subst' { rs_id_subst = id_subst' }) }
where
-- e2' is the result of applying flt_env to e2
e2' | isEmptyVarSet let_bndrs = e2
| otherwise = substExpr (text "match_tmpl_var") flt_env e2
id_subst' = extendVarEnv (rs_id_subst subst) v1' e2'
-- No further renaming to do on e2',
-- because no free var of e2' is in the rnEnvR of the envt
------------------------------------------
match_ty :: RuleMatchEnv
-> RuleSubst
-> Type -- Template
-> Type -- Target
-> Maybe RuleSubst
-- Matching Core types: use the matcher in TcType.
-- Notice that we treat newtypes as opaque. For example, suppose
-- we have a specialised version of a function at a newtype, say
-- newtype T = MkT Int
-- We only want to replace (f T) with f', not (f Int).
match_ty renv subst ty1 ty2
= do { tv_subst'
<- Unify.ruleMatchTyX (rv_tmpls renv) (rv_lcl renv) tv_subst ty1 ty2
; return (subst { rs_tv_subst = tv_subst' }) }
where
tv_subst = rs_tv_subst subst
{-
Note [Expanding variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is another Very Important rule: if the term being matched is a
variable, we expand it so long as its unfolding is "expandable". (Its
occurrence information is not necessarily up to date, so we don't use
it.) By "expandable" we mean a WHNF or a "constructor-like" application.
This is the key reason for "constructor-like" Ids. If we have
{-# NOINLINE [1] CONLIKE g #-}
{-# RULE f (g x) = h x #-}
then in the term
let v = g 3 in ....(f v)....
we want to make the rule fire, to replace (f v) with (h 3).
Note [Do not expand locally-bound variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Do *not* expand locally-bound variables, else there's a worry that the
unfolding might mention variables that are themselves renamed.
Example
case x of y { (p,q) -> ...y... }
Don't expand 'y' to (p,q) because p,q might themselves have been
renamed. Essentially we only expand unfoldings that are "outside"
the entire match.
Hence, (a) the guard (not (isLocallyBoundR v2))
(b) when we expand we nuke the renaming envt (nukeRnEnvR).
Note [Tick annotations in RULE matching]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to unconditionally look through Notes in both template and
expression being matched. This is actually illegal for counting or
cost-centre-scoped ticks, because we have no place to put them without
changing entry counts and/or costs. So now we just fail the match in
these cases.
On the other hand, where we are allowed to insert new cost into the
tick scope, we can float them upwards to the rule application site.
cf Note [Notes in call patterns] in SpecConstr
Note [Matching lets]
~~~~~~~~~~~~~~~~~~~~
Matching a let-expression. Consider
RULE forall x. f (g x) = <rhs>
and target expression
f (let { w=R } in g E))
Then we'd like the rule to match, to generate
let { w=R } in (\x. <rhs>) E
In effect, we want to float the let-binding outward, to enable
the match to happen. This is the WHOLE REASON for accumulating
bindings in the RuleSubst
We can only do this if the free variables of R are not bound by the
part of the target expression outside the let binding; e.g.
f (\v. let w = v+1 in g E)
Here we obviously cannot float the let-binding for w. Hence the
use of okToFloat.
There are a couple of tricky points.
(a) What if floating the binding captures a variable?
f (let v = x+1 in v) v
--> NOT!
let v = x+1 in f (x+1) v
(b) What if two non-nested let bindings bind the same variable?
f (let v = e1 in b1) (let v = e2 in b2)
--> NOT!
let v = e1 in let v = e2 in (f b2 b2)
See testsuite test "RuleFloatLet".
Our cunning plan is this:
* Along with the growing substitution for template variables
we maintain a growing set of floated let-bindings (rs_binds)
plus the set of variables thus bound.
* The RnEnv2 in the MatchEnv binds only the local binders
in the term (lambdas, case)
* When we encounter a let in the term to be matched, we
check that does not mention any locally bound (lambda, case)
variables. If so we fail
* We use CoreSubst.substBind to freshen the binding, using an
in-scope set that is the original in-scope variables plus the
rs_bndrs (currently floated let-bindings). So in (a) above
we'll freshen the 'v' binding; in (b) above we'll freshen
the *second* 'v' binding.
* We apply that freshening substitution, in a lexically-scoped
way to the term, although lazily; this is the rv_fltR field.
Note [Matching cases]
~~~~~~~~~~~~~~~~~~~~~
{- NOTE: This idea is currently disabled. It really only works if
the primops involved are OkForSpeculation, and, since
they have side effects readIntOfAddr and touch are not.
Maybe we'll get back to this later . -}
Consider
f (case readIntOffAddr# p# i# realWorld# of { (# s#, n# #) ->
case touch# fp s# of { _ ->
I# n# } } )
This happened in a tight loop generated by stream fusion that
Roman encountered. We'd like to treat this just like the let
case, because the primops concerned are ok-for-speculation.
That is, we'd like to behave as if it had been
case readIntOffAddr# p# i# realWorld# of { (# s#, n# #) ->
case touch# fp s# of { _ ->
f (I# n# } } )
Note [Lookup in-scope]
~~~~~~~~~~~~~~~~~~~~~~
Consider this example
foo :: Int -> Maybe Int -> Int
foo 0 (Just n) = n
foo m (Just n) = foo (m-n) (Just n)
SpecConstr sees this fragment:
case w_smT of wild_Xf [Just A] {
Data.Maybe.Nothing -> lvl_smf;
Data.Maybe.Just n_acT [Just S(L)] ->
case n_acT of wild1_ams [Just A] { GHC.Base.I# y_amr [Just L] ->
\$wfoo_smW (GHC.Prim.-# ds_Xmb y_amr) wild_Xf
}};
and correctly generates the rule
RULES: "SC:$wfoo1" [0] __forall {y_amr [Just L] :: GHC.Prim.Int#
sc_snn :: GHC.Prim.Int#}
\$wfoo_smW sc_snn (Data.Maybe.Just @ GHC.Base.Int (GHC.Base.I# y_amr))
= \$s\$wfoo_sno y_amr sc_snn ;]
BUT we must ensure that this rule matches in the original function!
Note that the call to \$wfoo is
\$wfoo_smW (GHC.Prim.-# ds_Xmb y_amr) wild_Xf
During matching we expand wild_Xf to (Just n_acT). But then we must also
expand n_acT to (I# y_amr). And we can only do that if we look up n_acT
in the in-scope set, because in wild_Xf's unfolding it won't have an unfolding
at all.
That is why the 'lookupRnInScope' call in the (Var v2) case of 'match'
is so important.
************************************************************************
* *
Rule-check the program
* *
************************************************************************
We want to know what sites have rules that could have fired but didn't.
This pass runs over the tree (without changing it) and reports such.
-}
-- | Report partial matches for rules beginning with the specified
-- string for the purposes of error reporting
ruleCheckProgram :: CompilerPhase -- ^ Rule activation test
-> String -- ^ Rule pattern
-> RuleEnv -- ^ Database of rules
-> CoreProgram -- ^ Bindings to check in
-> SDoc -- ^ Resulting check message
ruleCheckProgram phase rule_pat rule_base binds
| isEmptyBag results
= text "Rule check results: no rule application sites"
| otherwise
= vcat [text "Rule check results:",
line,
vcat [ p $$ line | p <- bagToList results ]
]
where
env = RuleCheckEnv { rc_is_active = isActive phase
, rc_id_unf = idUnfolding -- Not quite right
-- Should use activeUnfolding
, rc_pattern = rule_pat
, rc_rule_base = rule_base }
results = unionManyBags (map (ruleCheckBind env) binds)
line = text (replicate 20 '-')
data RuleCheckEnv = RuleCheckEnv {
rc_is_active :: Activation -> Bool,
rc_id_unf :: IdUnfoldingFun,
rc_pattern :: String,
rc_rule_base :: RuleEnv
}
ruleCheckBind :: RuleCheckEnv -> CoreBind -> Bag SDoc
-- The Bag returned has one SDoc for each call site found
ruleCheckBind env (NonRec _ r) = ruleCheck env r
ruleCheckBind env (Rec prs) = unionManyBags [ruleCheck env r | (_,r) <- prs]
ruleCheck :: RuleCheckEnv -> CoreExpr -> Bag SDoc
ruleCheck _ (Var _) = emptyBag
ruleCheck _ (Lit _) = emptyBag
ruleCheck _ (Type _) = emptyBag
ruleCheck _ (Coercion _) = emptyBag
ruleCheck env (App f a) = ruleCheckApp env (App f a) []
ruleCheck env (Tick _ e) = ruleCheck env e
ruleCheck env (Cast e _) = ruleCheck env e
ruleCheck env (Let bd e) = ruleCheckBind env bd `unionBags` ruleCheck env e
ruleCheck env (Lam _ e) = ruleCheck env e
ruleCheck env (Case e _ _ as) = ruleCheck env e `unionBags`
unionManyBags [ruleCheck env r | (_,_,r) <- as]
ruleCheckApp :: RuleCheckEnv -> Expr CoreBndr -> [Arg CoreBndr] -> Bag SDoc
ruleCheckApp env (App f a) as = ruleCheck env a `unionBags` ruleCheckApp env f (a:as)
ruleCheckApp env (Var f) as = ruleCheckFun env f as
ruleCheckApp env other _ = ruleCheck env other
ruleCheckFun :: RuleCheckEnv -> Id -> [CoreExpr] -> Bag SDoc
-- Produce a report for all rules matching the predicate
-- saying why it doesn't match the specified application
ruleCheckFun env fn args
| null name_match_rules = emptyBag
| otherwise = unitBag (ruleAppCheck_help env fn args name_match_rules)
where
name_match_rules = filter match (getRules (rc_rule_base env) fn)
match rule = (rc_pattern env) `isPrefixOf` unpackFS (ruleName rule)
ruleAppCheck_help :: RuleCheckEnv -> Id -> [CoreExpr] -> [CoreRule] -> SDoc
ruleAppCheck_help env fn args rules
= -- The rules match the pattern, so we want to print something
vcat [text "Expression:" <+> ppr (mkApps (Var fn) args),
vcat (map check_rule rules)]
where
n_args = length args
i_args = args `zip` [1::Int ..]
rough_args = map roughTopName args
check_rule rule = sdocWithDynFlags $ \dflags ->
rule_herald rule <> colon <+> rule_info dflags rule
rule_herald (BuiltinRule { ru_name = name })
= text "Builtin rule" <+> doubleQuotes (ftext name)
rule_herald (Rule { ru_name = name })
= text "Rule" <+> doubleQuotes (ftext name)
rule_info dflags rule
| Just _ <- matchRule dflags (emptyInScopeSet, rc_id_unf env)
noBlackList fn args rough_args rule
= text "matches (which is very peculiar!)"
rule_info _ (BuiltinRule {}) = text "does not match"
rule_info _ (Rule { ru_act = act,
ru_bndrs = rule_bndrs, ru_args = rule_args})
| not (rc_is_active env act) = text "active only in later phase"
| n_args < n_rule_args = text "too few arguments"
| n_mismatches == n_rule_args = text "no arguments match"
| n_mismatches == 0 = text "all arguments match (considered individually), but rule as a whole does not"
| otherwise = text "arguments" <+> ppr mismatches <+> text "do not match (1-indexing)"
where
n_rule_args = length rule_args
n_mismatches = length mismatches
mismatches = [i | (rule_arg, (arg,i)) <- rule_args `zip` i_args,
not (isJust (match_fn rule_arg arg))]
lhs_fvs = exprsFreeVars rule_args -- Includes template tyvars
match_fn rule_arg arg = match renv emptyRuleSubst rule_arg arg
where
in_scope = mkInScopeSet (lhs_fvs `unionVarSet` exprFreeVars arg)
renv = RV { rv_lcl = mkRnEnv2 in_scope
, rv_tmpls = mkVarSet rule_bndrs
, rv_fltR = mkEmptySubst in_scope
, rv_unf = rc_id_unf env }
|