1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
|
{-
ToDo [Oct 2013]
~~~~~~~~~~~~~~~
1. Nuke ForceSpecConstr for good (it is subsumed by GHC.Types.SPEC in ghc-prim)
2. Nuke NoSpecConstr
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[SpecConstr]{Specialise over constructors}
-}
{-# LANGUAGE CPP #-}
module SpecConstr(
specConstrProgram,
SpecConstrAnnotation(..)
) where
#include "HsVersions.h"
import GhcPrelude
import CoreSyn
import CoreSubst
import CoreUtils
import CoreUnfold ( couldBeSmallEnoughToInline )
import CoreFVs ( exprsFreeVarsList )
import CoreMonad
import Literal ( litIsLifted )
import HscTypes ( ModGuts(..) )
import WwLib ( isWorkerSmallEnough, mkWorkerArgs )
import DataCon
import Coercion hiding( substCo )
import Rules
import Type hiding ( substTy )
import TyCon ( tyConName )
import Id
import PprCore ( pprParendExpr )
import MkCore ( mkImpossibleExpr )
import VarEnv
import VarSet
import Name
import BasicTypes
import DynFlags ( DynFlags(..), GeneralFlag( Opt_SpecConstrKeen )
, gopt, hasPprDebug )
import Maybes ( orElse, catMaybes, isJust, isNothing )
import Demand
import GHC.Serialized ( deserializeWithData )
import Util
import Pair
import UniqSupply
import Outputable
import FastString
import UniqFM
import MonadUtils
import Control.Monad ( zipWithM )
import Data.List
import PrelNames ( specTyConName )
import Module
import TyCon ( TyCon )
import GHC.Exts( SpecConstrAnnotation(..) )
import Data.Ord( comparing )
{-
-----------------------------------------------------
Game plan
-----------------------------------------------------
Consider
drop n [] = []
drop 0 xs = []
drop n (x:xs) = drop (n-1) xs
After the first time round, we could pass n unboxed. This happens in
numerical code too. Here's what it looks like in Core:
drop n xs = case xs of
[] -> []
(y:ys) -> case n of
I# n# -> case n# of
0 -> []
_ -> drop (I# (n# -# 1#)) xs
Notice that the recursive call has an explicit constructor as argument.
Noticing this, we can make a specialised version of drop
RULE: drop (I# n#) xs ==> drop' n# xs
drop' n# xs = let n = I# n# in ...orig RHS...
Now the simplifier will apply the specialisation in the rhs of drop', giving
drop' n# xs = case xs of
[] -> []
(y:ys) -> case n# of
0 -> []
_ -> drop' (n# -# 1#) xs
Much better!
We'd also like to catch cases where a parameter is carried along unchanged,
but evaluated each time round the loop:
f i n = if i>0 || i>n then i else f (i*2) n
Here f isn't strict in n, but we'd like to avoid evaluating it each iteration.
In Core, by the time we've w/wd (f is strict in i) we get
f i# n = case i# ># 0 of
False -> I# i#
True -> case n of { I# n# ->
case i# ># n# of
False -> I# i#
True -> f (i# *# 2#) n
At the call to f, we see that the argument, n is known to be (I# n#),
and n is evaluated elsewhere in the body of f, so we can play the same
trick as above.
Note [Reboxing]
~~~~~~~~~~~~~~~
We must be careful not to allocate the same constructor twice. Consider
f p = (...(case p of (a,b) -> e)...p...,
...let t = (r,s) in ...t...(f t)...)
At the recursive call to f, we can see that t is a pair. But we do NOT want
to make a specialised copy:
f' a b = let p = (a,b) in (..., ...)
because now t is allocated by the caller, then r and s are passed to the
recursive call, which allocates the (r,s) pair again.
This happens if
(a) the argument p is used in other than a case-scrutinisation way.
(b) the argument to the call is not a 'fresh' tuple; you have to
look into its unfolding to see that it's a tuple
Hence the "OR" part of Note [Good arguments] below.
ALTERNATIVE 2: pass both boxed and unboxed versions. This no longer saves
allocation, but does perhaps save evals. In the RULE we'd have
something like
f (I# x#) = f' (I# x#) x#
If at the call site the (I# x) was an unfolding, then we'd have to
rely on CSE to eliminate the duplicate allocation.... This alternative
doesn't look attractive enough to pursue.
ALTERNATIVE 3: ignore the reboxing problem. The trouble is that
the conservative reboxing story prevents many useful functions from being
specialised. Example:
foo :: Maybe Int -> Int -> Int
foo (Just m) 0 = 0
foo x@(Just m) n = foo x (n-m)
Here the use of 'x' will clearly not require boxing in the specialised function.
The strictness analyser has the same problem, in fact. Example:
f p@(a,b) = ...
If we pass just 'a' and 'b' to the worker, it might need to rebox the
pair to create (a,b). A more sophisticated analysis might figure out
precisely the cases in which this could happen, but the strictness
analyser does no such analysis; it just passes 'a' and 'b', and hopes
for the best.
So my current choice is to make SpecConstr similarly aggressive, and
ignore the bad potential of reboxing.
Note [Good arguments]
~~~~~~~~~~~~~~~~~~~~~
So we look for
* A self-recursive function. Ignore mutual recursion for now,
because it's less common, and the code is simpler for self-recursion.
* EITHER
a) At a recursive call, one or more parameters is an explicit
constructor application
AND
That same parameter is scrutinised by a case somewhere in
the RHS of the function
OR
b) At a recursive call, one or more parameters has an unfolding
that is an explicit constructor application
AND
That same parameter is scrutinised by a case somewhere in
the RHS of the function
AND
Those are the only uses of the parameter (see Note [Reboxing])
What to abstract over
~~~~~~~~~~~~~~~~~~~~~
There's a bit of a complication with type arguments. If the call
site looks like
f p = ...f ((:) [a] x xs)...
then our specialised function look like
f_spec x xs = let p = (:) [a] x xs in ....as before....
This only makes sense if either
a) the type variable 'a' is in scope at the top of f, or
b) the type variable 'a' is an argument to f (and hence fs)
Actually, (a) may hold for value arguments too, in which case
we may not want to pass them. Suppose 'x' is in scope at f's
defn, but xs is not. Then we'd like
f_spec xs = let p = (:) [a] x xs in ....as before....
Similarly (b) may hold too. If x is already an argument at the
call, no need to pass it again.
Finally, if 'a' is not in scope at the call site, we could abstract
it as we do the term variables:
f_spec a x xs = let p = (:) [a] x xs in ...as before...
So the grand plan is:
* abstract the call site to a constructor-only pattern
e.g. C x (D (f p) (g q)) ==> C s1 (D s2 s3)
* Find the free variables of the abstracted pattern
* Pass these variables, less any that are in scope at
the fn defn. But see Note [Shadowing] below.
NOTICE that we only abstract over variables that are not in scope,
so we're in no danger of shadowing variables used in "higher up"
in f_spec's RHS.
Note [Shadowing]
~~~~~~~~~~~~~~~~
In this pass we gather up usage information that may mention variables
that are bound between the usage site and the definition site; or (more
seriously) may be bound to something different at the definition site.
For example:
f x = letrec g y v = let x = ...
in ...(g (a,b) x)...
Since 'x' is in scope at the call site, we may make a rewrite rule that
looks like
RULE forall a,b. g (a,b) x = ...
But this rule will never match, because it's really a different 'x' at
the call site -- and that difference will be manifest by the time the
simplifier gets to it. [A worry: the simplifier doesn't *guarantee*
no-shadowing, so perhaps it may not be distinct?]
Anyway, the rule isn't actually wrong, it's just not useful. One possibility
is to run deShadowBinds before running SpecConstr, but instead we run the
simplifier. That gives the simplest possible program for SpecConstr to
chew on; and it virtually guarantees no shadowing.
Note [Specialising for constant parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This one is about specialising on a *constant* (but not necessarily
constructor) argument
foo :: Int -> (Int -> Int) -> Int
foo 0 f = 0
foo m f = foo (f m) (+1)
It produces
lvl_rmV :: GHC.Base.Int -> GHC.Base.Int
lvl_rmV =
\ (ds_dlk :: GHC.Base.Int) ->
case ds_dlk of wild_alH { GHC.Base.I# x_alG ->
GHC.Base.I# (GHC.Prim.+# x_alG 1)
T.$wfoo :: GHC.Prim.Int# -> (GHC.Base.Int -> GHC.Base.Int) ->
GHC.Prim.Int#
T.$wfoo =
\ (ww_sme :: GHC.Prim.Int#) (w_smg :: GHC.Base.Int -> GHC.Base.Int) ->
case ww_sme of ds_Xlw {
__DEFAULT ->
case w_smg (GHC.Base.I# ds_Xlw) of w1_Xmo { GHC.Base.I# ww1_Xmz ->
T.$wfoo ww1_Xmz lvl_rmV
};
0 -> 0
}
The recursive call has lvl_rmV as its argument, so we could create a specialised copy
with that argument baked in; that is, not passed at all. Now it can perhaps be inlined.
When is this worth it? Call the constant 'lvl'
- If 'lvl' has an unfolding that is a constructor, see if the corresponding
parameter is scrutinised anywhere in the body.
- If 'lvl' has an unfolding that is a inlinable function, see if the corresponding
parameter is applied (...to enough arguments...?)
Also do this is if the function has RULES?
Also
Note [Specialising for lambda parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
foo :: Int -> (Int -> Int) -> Int
foo 0 f = 0
foo m f = foo (f m) (\n -> n-m)
This is subtly different from the previous one in that we get an
explicit lambda as the argument:
T.$wfoo :: GHC.Prim.Int# -> (GHC.Base.Int -> GHC.Base.Int) ->
GHC.Prim.Int#
T.$wfoo =
\ (ww_sm8 :: GHC.Prim.Int#) (w_sma :: GHC.Base.Int -> GHC.Base.Int) ->
case ww_sm8 of ds_Xlr {
__DEFAULT ->
case w_sma (GHC.Base.I# ds_Xlr) of w1_Xmf { GHC.Base.I# ww1_Xmq ->
T.$wfoo
ww1_Xmq
(\ (n_ad3 :: GHC.Base.Int) ->
case n_ad3 of wild_alB { GHC.Base.I# x_alA ->
GHC.Base.I# (GHC.Prim.-# x_alA ds_Xlr)
})
};
0 -> 0
}
I wonder if SpecConstr couldn't be extended to handle this? After all,
lambda is a sort of constructor for functions and perhaps it already
has most of the necessary machinery?
Furthermore, there's an immediate win, because you don't need to allocate the lambda
at the call site; and if perchance it's called in the recursive call, then you
may avoid allocating it altogether. Just like for constructors.
Looks cool, but probably rare...but it might be easy to implement.
Note [SpecConstr for casts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data family T a :: *
data instance T Int = T Int
foo n = ...
where
go (T 0) = 0
go (T n) = go (T (n-1))
The recursive call ends up looking like
go (T (I# ...) `cast` g)
So we want to spot the constructor application inside the cast.
That's why we have the Cast case in argToPat
Note [Local recursive groups]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For a *local* recursive group, we can see all the calls to the
function, so we seed the specialisation loop from the calls in the
body, not from the calls in the RHS. Consider:
bar m n = foo n (n,n) (n,n) (n,n) (n,n)
where
foo n p q r s
| n == 0 = m
| n > 3000 = case p of { (p1,p2) -> foo (n-1) (p2,p1) q r s }
| n > 2000 = case q of { (q1,q2) -> foo (n-1) p (q2,q1) r s }
| n > 1000 = case r of { (r1,r2) -> foo (n-1) p q (r2,r1) s }
| otherwise = case s of { (s1,s2) -> foo (n-1) p q r (s2,s1) }
If we start with the RHSs of 'foo', we get lots and lots of specialisations,
most of which are not needed. But if we start with the (single) call
in the rhs of 'bar' we get exactly one fully-specialised copy, and all
the recursive calls go to this fully-specialised copy. Indeed, the original
function is later collected as dead code. This is very important in
specialising the loops arising from stream fusion, for example in NDP where
we were getting literally hundreds of (mostly unused) specialisations of
a local function.
In a case like the above we end up never calling the original un-specialised
function. (Although we still leave its code around just in case.)
However, if we find any boring calls in the body, including *unsaturated*
ones, such as
letrec foo x y = ....foo...
in map foo xs
then we will end up calling the un-specialised function, so then we *should*
use the calls in the un-specialised RHS as seeds. We call these
"boring call patterns", and callsToPats reports if it finds any of these.
Note [Seeding top-level recursive groups]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This seeding is done in the binding for seed_calls in specRec.
1. If all the bindings in a top-level recursive group are local (not
exported), then all the calls are in the rest of the top-level
bindings. This means we can specialise with those call patterns
ONLY, and NOT with the RHSs of the recursive group (exactly like
Note [Local recursive groups])
2. But if any of the bindings are exported, the function may be called
with any old arguments, so (for lack of anything better) we specialise
based on
(a) the call patterns in the RHS
(b) the call patterns in the rest of the top-level bindings
NB: before Apr 15 we used (a) only, but Dimitrios had an example
where (b) was crucial, so I added that.
Adding (b) also improved nofib allocation results:
multiplier: 4% better
minimax: 2.8% better
Actually in case (2), instead of using the calls from the RHS, it
would be better to specialise in the importing module. We'd need to
add an INLINABLE pragma to the function, and then it can be
specialised in the importing scope, just as is done for type classes
in Specialise.specImports. This remains to be done (#10346).
Note [Top-level recursive groups]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To get the call usage information from "the rest of the top level
bindings" (c.f. Note [Seeding top-level recursive groups]), we work
backwards through the top-level bindings so we see the usage before we
get to the binding of the function. Before we can collect the usage
though, we go through all the bindings and add them to the
environment. This is necessary because usage is only tracked for
functions in the environment. These two passes are called
'go' and 'goEnv'
in specConstrProgram. (Looks a bit revolting to me.)
Note [Do not specialise diverging functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Specialising a function that just diverges is a waste of code.
Furthermore, it broke GHC (simpl014) thus:
{-# STR Sb #-}
f = \x. case x of (a,b) -> f x
If we specialise f we get
f = \x. case x of (a,b) -> fspec a b
But fspec doesn't have decent strictness info. As it happened,
(f x) :: IO t, so the state hack applied and we eta expanded fspec,
and hence f. But now f's strictness is less than its arity, which
breaks an invariant.
Note [Forcing specialisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With stream fusion and in other similar cases, we want to fully
specialise some (but not necessarily all!) loops regardless of their
size and the number of specialisations.
We allow a library to do this, in one of two ways (one which is
deprecated):
1) Add a parameter of type GHC.Types.SPEC (from ghc-prim) to the loop body.
2) (Deprecated) Annotate a type with ForceSpecConstr from GHC.Exts,
and then add *that* type as a parameter to the loop body
The reason #2 is deprecated is because it requires GHCi, which isn't
available for things like a cross compiler using stage1.
Here's a (simplified) example from the `vector` package. You may bring
the special 'force specialization' type into scope by saying:
import GHC.Types (SPEC(..))
or by defining your own type (again, deprecated):
data SPEC = SPEC | SPEC2
{-# ANN type SPEC ForceSpecConstr #-}
(Note this is the exact same definition of GHC.Types.SPEC, just
without the annotation.)
After that, you say:
foldl :: (a -> b -> a) -> a -> Stream b -> a
{-# INLINE foldl #-}
foldl f z (Stream step s _) = foldl_loop SPEC z s
where
foldl_loop !sPEC z s = case step s of
Yield x s' -> foldl_loop sPEC (f z x) s'
Skip -> foldl_loop sPEC z s'
Done -> z
SpecConstr will spot the SPEC parameter and always fully specialise
foldl_loop. Note that
* We have to prevent the SPEC argument from being removed by
w/w which is why (a) SPEC is a sum type, and (b) we have to seq on
the SPEC argument.
* And lastly, the SPEC argument is ultimately eliminated by
SpecConstr itself so there is no runtime overhead.
This is all quite ugly; we ought to come up with a better design.
ForceSpecConstr arguments are spotted in scExpr' and scTopBinds which then set
sc_force to True when calling specLoop. This flag does four things:
* Ignore specConstrThreshold, to specialise functions of arbitrary size
(see scTopBind)
* Ignore specConstrCount, to make arbitrary numbers of specialisations
(see specialise)
* Specialise even for arguments that are not scrutinised in the loop
(see argToPat; #4448)
* Only specialise on recursive types a finite number of times
(see is_too_recursive; #5550; Note [Limit recursive specialisation])
The flag holds only for specialising a single binding group, and NOT
for nested bindings. (So really it should be passed around explicitly
and not stored in ScEnv.) #14379 turned out to be caused by
f SPEC x = let g1 x = ...
in ...
We force-specialise f (because of the SPEC), but that generates a specialised
copy of g1 (as well as the original). Alas g1 has a nested binding g2; and
in each copy of g1 we get an unspecialised and specialised copy of g2; and so
on. Result, exponential. So the force-spec flag now only applies to one
level of bindings at a time.
Mechanism for this one-level-only thing:
- Switch it on at the call to specRec, in scExpr and scTopBinds
- Switch it off when doing the RHSs;
this can be done very conveniently in decreaseSpecCount
What alternatives did I consider?
* Annotating the loop itself doesn't work because (a) it is local and
(b) it will be w/w'ed and having w/w propagating annotations somehow
doesn't seem like a good idea. The types of the loop arguments
really seem to be the most persistent thing.
* Annotating the types that make up the loop state doesn't work,
either, because (a) it would prevent us from using types like Either
or tuples here, (b) we don't want to restrict the set of types that
can be used in Stream states and (c) some types are fixed by the
user (e.g., the accumulator here) but we still want to specialise as
much as possible.
Alternatives to ForceSpecConstr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Instead of giving the loop an extra argument of type SPEC, we
also considered *wrapping* arguments in SPEC, thus
data SPEC a = SPEC a | SPEC2
loop = \arg -> case arg of
SPEC state ->
case state of (x,y) -> ... loop (SPEC (x',y')) ...
S2 -> error ...
The idea is that a SPEC argument says "specialise this argument
regardless of whether the function case-analyses it". But this
doesn't work well:
* SPEC must still be a sum type, else the strictness analyser
eliminates it
* But that means that 'loop' won't be strict in its real payload
This loss of strictness in turn screws up specialisation, because
we may end up with calls like
loop (SPEC (case z of (p,q) -> (q,p)))
Without the SPEC, if 'loop' were strict, the case would move out
and we'd see loop applied to a pair. But if 'loop' isn't strict
this doesn't look like a specialisable call.
Note [Limit recursive specialisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is possible for ForceSpecConstr to cause an infinite loop of specialisation.
Because there is no limit on the number of specialisations, a recursive call with
a recursive constructor as an argument (for example, list cons) will generate
a specialisation for that constructor. If the resulting specialisation also
contains a recursive call with the constructor, this could proceed indefinitely.
For example, if ForceSpecConstr is on:
loop :: [Int] -> [Int] -> [Int]
loop z [] = z
loop z (x:xs) = loop (x:z) xs
this example will create a specialisation for the pattern
loop (a:b) c = loop' a b c
loop' a b [] = (a:b)
loop' a b (x:xs) = loop (x:(a:b)) xs
and a new pattern is found:
loop (a:(b:c)) d = loop'' a b c d
which can continue indefinitely.
Roman's suggestion to fix this was to stop after a couple of times on recursive types,
but still specialising on non-recursive types as much as possible.
To implement this, we count the number of times we have gone round the
"specialise recursively" loop ('go' in 'specRec'). Once have gone round
more than N times (controlled by -fspec-constr-recursive=N) we check
- If sc_force is off, and sc_count is (Just max) then we don't
need to do anything: trim_pats will limit the number of specs
- Otherwise check if any function has now got more than (sc_count env)
specialisations. If sc_count is "no limit" then we arbitrarily
choose 10 as the limit (ugh).
See #5550. Also #13623, where this test had become over-aggressive,
and we lost a wonderful specialisation that we really wanted!
Note [NoSpecConstr]
~~~~~~~~~~~~~~~~~~~
The ignoreDataCon stuff allows you to say
{-# ANN type T NoSpecConstr #-}
to mean "don't specialise on arguments of this type". It was added
before we had ForceSpecConstr. Lacking ForceSpecConstr we specialised
regardless of size; and then we needed a way to turn that *off*. Now
that we have ForceSpecConstr, this NoSpecConstr is probably redundant.
(Used only for PArray, TODO: remove?)
-----------------------------------------------------
Stuff not yet handled
-----------------------------------------------------
Here are notes arising from Roman's work that I don't want to lose.
Example 1
~~~~~~~~~
data T a = T !a
foo :: Int -> T Int -> Int
foo 0 t = 0
foo x t | even x = case t of { T n -> foo (x-n) t }
| otherwise = foo (x-1) t
SpecConstr does no specialisation, because the second recursive call
looks like a boxed use of the argument. A pity.
$wfoo_sFw :: GHC.Prim.Int# -> T.T GHC.Base.Int -> GHC.Prim.Int#
$wfoo_sFw =
\ (ww_sFo [Just L] :: GHC.Prim.Int#) (w_sFq [Just L] :: T.T GHC.Base.Int) ->
case ww_sFo of ds_Xw6 [Just L] {
__DEFAULT ->
case GHC.Prim.remInt# ds_Xw6 2 of wild1_aEF [Dead Just A] {
__DEFAULT -> $wfoo_sFw (GHC.Prim.-# ds_Xw6 1) w_sFq;
0 ->
case w_sFq of wild_Xy [Just L] { T.T n_ad5 [Just U(L)] ->
case n_ad5 of wild1_aET [Just A] { GHC.Base.I# y_aES [Just L] ->
$wfoo_sFw (GHC.Prim.-# ds_Xw6 y_aES) wild_Xy
} } };
0 -> 0
Example 2
~~~~~~~~~
data a :*: b = !a :*: !b
data T a = T !a
foo :: (Int :*: T Int) -> Int
foo (0 :*: t) = 0
foo (x :*: t) | even x = case t of { T n -> foo ((x-n) :*: t) }
| otherwise = foo ((x-1) :*: t)
Very similar to the previous one, except that the parameters are now in
a strict tuple. Before SpecConstr, we have
$wfoo_sG3 :: GHC.Prim.Int# -> T.T GHC.Base.Int -> GHC.Prim.Int#
$wfoo_sG3 =
\ (ww_sFU [Just L] :: GHC.Prim.Int#) (ww_sFW [Just L] :: T.T
GHC.Base.Int) ->
case ww_sFU of ds_Xws [Just L] {
__DEFAULT ->
case GHC.Prim.remInt# ds_Xws 2 of wild1_aEZ [Dead Just A] {
__DEFAULT ->
case ww_sFW of tpl_B2 [Just L] { T.T a_sFo [Just A] ->
$wfoo_sG3 (GHC.Prim.-# ds_Xws 1) tpl_B2 -- $wfoo1
};
0 ->
case ww_sFW of wild_XB [Just A] { T.T n_ad7 [Just S(L)] ->
case n_ad7 of wild1_aFd [Just L] { GHC.Base.I# y_aFc [Just L] ->
$wfoo_sG3 (GHC.Prim.-# ds_Xws y_aFc) wild_XB -- $wfoo2
} } };
0 -> 0 }
We get two specialisations:
"SC:$wfoo1" [0] __forall {a_sFB :: GHC.Base.Int sc_sGC :: GHC.Prim.Int#}
Foo.$wfoo sc_sGC (Foo.T @ GHC.Base.Int a_sFB)
= Foo.$s$wfoo1 a_sFB sc_sGC ;
"SC:$wfoo2" [0] __forall {y_aFp :: GHC.Prim.Int# sc_sGC :: GHC.Prim.Int#}
Foo.$wfoo sc_sGC (Foo.T @ GHC.Base.Int (GHC.Base.I# y_aFp))
= Foo.$s$wfoo y_aFp sc_sGC ;
But perhaps the first one isn't good. After all, we know that tpl_B2 is
a T (I# x) really, because T is strict and Int has one constructor. (We can't
unbox the strict fields, because T is polymorphic!)
************************************************************************
* *
\subsection{Top level wrapper stuff}
* *
************************************************************************
-}
specConstrProgram :: ModGuts -> CoreM ModGuts
specConstrProgram guts
= do
dflags <- getDynFlags
us <- getUniqueSupplyM
annos <- getFirstAnnotations deserializeWithData guts
this_mod <- getModule
let binds' = reverse $ fst $ initUs us $ do
-- Note [Top-level recursive groups]
(env, binds) <- goEnv (initScEnv dflags this_mod annos)
(mg_binds guts)
-- binds is identical to (mg_binds guts), except that the
-- binders on the LHS have been replaced by extendBndr
-- (SPJ this seems like overkill; I don't think the binders
-- will change at all; and we don't substitute in the RHSs anyway!!)
go env nullUsage (reverse binds)
return (guts { mg_binds = binds' })
where
-- See Note [Top-level recursive groups]
goEnv env [] = return (env, [])
goEnv env (bind:binds) = do (env', bind') <- scTopBindEnv env bind
(env'', binds') <- goEnv env' binds
return (env'', bind' : binds')
-- Arg list of bindings is in reverse order
go _ _ [] = return []
go env usg (bind:binds) = do (usg', bind') <- scTopBind env usg bind
binds' <- go env usg' binds
return (bind' : binds')
{-
************************************************************************
* *
\subsection{Environment: goes downwards}
* *
************************************************************************
Note [Work-free values only in environment]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The sc_vals field keeps track of in-scope value bindings, so
that if we come across (case x of Just y ->...) we can reduce the
case from knowing that x is bound to a pair.
But only *work-free* values are ok here. For example if the envt had
x -> Just (expensive v)
then we do NOT want to expand to
let y = expensive v in ...
because the x-binding still exists and we've now duplicated (expensive v).
This seldom happens because let-bound constructor applications are
ANF-ised, but it can happen as a result of on-the-fly transformations in
SpecConstr itself. Here is #7865:
let {
a'_shr =
case xs_af8 of _ {
[] -> acc_af6;
: ds_dgt [Dmd=<L,A>] ds_dgu [Dmd=<L,A>] ->
(expensive x_af7, x_af7
} } in
let {
ds_sht =
case a'_shr of _ { (p'_afd, q'_afe) ->
TSpecConstr_DoubleInline.recursive
(GHC.Types.: @ GHC.Types.Int x_af7 wild_X6) (q'_afe, p'_afd)
} } in
When processed knowing that xs_af8 was bound to a cons, we simplify to
a'_shr = (expensive x_af7, x_af7)
and we do NOT want to inline that at the occurrence of a'_shr in ds_sht.
(There are other occurrences of a'_shr.) No no no.
It would be possible to do some on-the-fly ANF-ising, so that a'_shr turned
into a work-free value again, thus
a1 = expensive x_af7
a'_shr = (a1, x_af7)
but that's more work, so until its shown to be important I'm going to
leave it for now.
Note [Making SpecConstr keener]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this, in (perf/should_run/T9339)
last (filter odd [1..1000])
After optimisation, including SpecConstr, we get:
f :: Int# -> Int -> Int
f x y = case case remInt# x 2# of
__DEFAULT -> case x of
__DEFAULT -> f (+# wild_Xp 1#) (I# x)
1000000# -> ...
0# -> case x of
__DEFAULT -> f (+# wild_Xp 1#) y
1000000# -> y
Not good! We build an (I# x) box every time around the loop.
SpecConstr (as described in the paper) does not specialise f, despite
the call (f ... (I# x)) because 'y' is not scrutinied in the body.
But it is much better to specialise f for the case where the argument
is of form (I# x); then we build the box only when returning y, which
is on the cold path.
Another example:
f x = ...(g x)....
Here 'x' is not scrutinised in f's body; but if we did specialise 'f'
then the call (g x) might allow 'g' to be specialised in turn.
So sc_keen controls whether or not we take account of whether argument is
scrutinised in the body. True <=> ignore that, and speicalise whenever
the function is applied to a data constructor.
-}
data ScEnv = SCE { sc_dflags :: DynFlags,
sc_module :: !Module,
sc_size :: Maybe Int, -- Size threshold
-- Nothing => no limit
sc_count :: Maybe Int, -- Max # of specialisations for any one fn
-- Nothing => no limit
-- See Note [Avoiding exponential blowup]
sc_recursive :: Int, -- Max # of specialisations over recursive type.
-- Stops ForceSpecConstr from diverging.
sc_keen :: Bool, -- Specialise on arguments that are known
-- constructors, even if they are not
-- scrutinised in the body. See
-- Note [Making SpecConstr keener]
sc_force :: Bool, -- Force specialisation?
-- See Note [Forcing specialisation]
sc_subst :: Subst, -- Current substitution
-- Maps InIds to OutExprs
sc_how_bound :: HowBoundEnv,
-- Binds interesting non-top-level variables
-- Domain is OutVars (*after* applying the substitution)
sc_vals :: ValueEnv,
-- Domain is OutIds (*after* applying the substitution)
-- Used even for top-level bindings (but not imported ones)
-- The range of the ValueEnv is *work-free* values
-- such as (\x. blah), or (Just v)
-- but NOT (Just (expensive v))
-- See Note [Work-free values only in environment]
sc_annotations :: UniqFM SpecConstrAnnotation
}
---------------------
type HowBoundEnv = VarEnv HowBound -- Domain is OutVars
---------------------
type ValueEnv = IdEnv Value -- Domain is OutIds
data Value = ConVal AltCon [CoreArg] -- _Saturated_ constructors
-- The AltCon is never DEFAULT
| LambdaVal -- Inlinable lambdas or PAPs
instance Outputable Value where
ppr (ConVal con args) = ppr con <+> interpp'SP args
ppr LambdaVal = text "<Lambda>"
---------------------
initScEnv :: DynFlags -> Module -> UniqFM SpecConstrAnnotation -> ScEnv
initScEnv dflags this_mod anns
= SCE { sc_dflags = dflags,
sc_module = this_mod,
sc_size = specConstrThreshold dflags,
sc_count = specConstrCount dflags,
sc_recursive = specConstrRecursive dflags,
sc_keen = gopt Opt_SpecConstrKeen dflags,
sc_force = False,
sc_subst = emptySubst,
sc_how_bound = emptyVarEnv,
sc_vals = emptyVarEnv,
sc_annotations = anns }
data HowBound = RecFun -- These are the recursive functions for which
-- we seek interesting call patterns
| RecArg -- These are those functions' arguments, or their sub-components;
-- we gather occurrence information for these
instance Outputable HowBound where
ppr RecFun = text "RecFun"
ppr RecArg = text "RecArg"
scForce :: ScEnv -> Bool -> ScEnv
scForce env b = env { sc_force = b }
lookupHowBound :: ScEnv -> Id -> Maybe HowBound
lookupHowBound env id = lookupVarEnv (sc_how_bound env) id
scSubstId :: ScEnv -> Id -> CoreExpr
scSubstId env v = lookupIdSubst (text "scSubstId") (sc_subst env) v
scSubstTy :: ScEnv -> Type -> Type
scSubstTy env ty = substTy (sc_subst env) ty
scSubstCo :: ScEnv -> Coercion -> Coercion
scSubstCo env co = substCo (sc_subst env) co
zapScSubst :: ScEnv -> ScEnv
zapScSubst env = env { sc_subst = zapSubstEnv (sc_subst env) }
extendScInScope :: ScEnv -> [Var] -> ScEnv
-- Bring the quantified variables into scope
extendScInScope env qvars = env { sc_subst = extendInScopeList (sc_subst env) qvars }
-- Extend the substitution
extendScSubst :: ScEnv -> Var -> OutExpr -> ScEnv
extendScSubst env var expr = env { sc_subst = extendSubst (sc_subst env) var expr }
extendScSubstList :: ScEnv -> [(Var,OutExpr)] -> ScEnv
extendScSubstList env prs = env { sc_subst = extendSubstList (sc_subst env) prs }
extendHowBound :: ScEnv -> [Var] -> HowBound -> ScEnv
extendHowBound env bndrs how_bound
= env { sc_how_bound = extendVarEnvList (sc_how_bound env)
[(bndr,how_bound) | bndr <- bndrs] }
extendBndrsWith :: HowBound -> ScEnv -> [Var] -> (ScEnv, [Var])
extendBndrsWith how_bound env bndrs
= (env { sc_subst = subst', sc_how_bound = hb_env' }, bndrs')
where
(subst', bndrs') = substBndrs (sc_subst env) bndrs
hb_env' = sc_how_bound env `extendVarEnvList`
[(bndr,how_bound) | bndr <- bndrs']
extendBndrWith :: HowBound -> ScEnv -> Var -> (ScEnv, Var)
extendBndrWith how_bound env bndr
= (env { sc_subst = subst', sc_how_bound = hb_env' }, bndr')
where
(subst', bndr') = substBndr (sc_subst env) bndr
hb_env' = extendVarEnv (sc_how_bound env) bndr' how_bound
extendRecBndrs :: ScEnv -> [Var] -> (ScEnv, [Var])
extendRecBndrs env bndrs = (env { sc_subst = subst' }, bndrs')
where
(subst', bndrs') = substRecBndrs (sc_subst env) bndrs
extendBndr :: ScEnv -> Var -> (ScEnv, Var)
extendBndr env bndr = (env { sc_subst = subst' }, bndr')
where
(subst', bndr') = substBndr (sc_subst env) bndr
extendValEnv :: ScEnv -> Id -> Maybe Value -> ScEnv
extendValEnv env _ Nothing = env
extendValEnv env id (Just cv)
| valueIsWorkFree cv -- Don't duplicate work!! #7865
= env { sc_vals = extendVarEnv (sc_vals env) id cv }
extendValEnv env _ _ = env
extendCaseBndrs :: ScEnv -> OutExpr -> OutId -> AltCon -> [Var] -> (ScEnv, [Var])
-- When we encounter
-- case scrut of b
-- C x y -> ...
-- we want to bind b, to (C x y)
-- NB1: Extends only the sc_vals part of the envt
-- NB2: Kill the dead-ness info on the pattern binders x,y, since
-- they are potentially made alive by the [b -> C x y] binding
extendCaseBndrs env scrut case_bndr con alt_bndrs
= (env2, alt_bndrs')
where
live_case_bndr = not (isDeadBinder case_bndr)
env1 | Var v <- stripTicksTopE (const True) scrut
= extendValEnv env v cval
| otherwise = env -- See Note [Add scrutinee to ValueEnv too]
env2 | live_case_bndr = extendValEnv env1 case_bndr cval
| otherwise = env1
alt_bndrs' | case scrut of { Var {} -> True; _ -> live_case_bndr }
= map zap alt_bndrs
| otherwise
= alt_bndrs
cval = case con of
DEFAULT -> Nothing
LitAlt {} -> Just (ConVal con [])
DataAlt {} -> Just (ConVal con vanilla_args)
where
vanilla_args = map Type (tyConAppArgs (idType case_bndr)) ++
varsToCoreExprs alt_bndrs
zap v | isTyVar v = v -- See NB2 above
| otherwise = zapIdOccInfo v
decreaseSpecCount :: ScEnv -> Int -> ScEnv
-- See Note [Avoiding exponential blowup]
decreaseSpecCount env n_specs
= env { sc_force = False -- See Note [Forcing specialisation]
, sc_count = case sc_count env of
Nothing -> Nothing
Just n -> Just (n `div` (n_specs + 1)) }
-- The "+1" takes account of the original function;
-- See Note [Avoiding exponential blowup]
---------------------------------------------------
-- See Note [Forcing specialisation]
ignoreType :: ScEnv -> Type -> Bool
ignoreDataCon :: ScEnv -> DataCon -> Bool
forceSpecBndr :: ScEnv -> Var -> Bool
ignoreDataCon env dc = ignoreTyCon env (dataConTyCon dc)
ignoreType env ty
= case tyConAppTyCon_maybe ty of
Just tycon -> ignoreTyCon env tycon
_ -> False
ignoreTyCon :: ScEnv -> TyCon -> Bool
ignoreTyCon env tycon
= lookupUFM (sc_annotations env) tycon == Just NoSpecConstr
forceSpecBndr env var = forceSpecFunTy env . snd . splitForAllTys . varType $ var
forceSpecFunTy :: ScEnv -> Type -> Bool
forceSpecFunTy env = any (forceSpecArgTy env) . fst . splitFunTys
forceSpecArgTy :: ScEnv -> Type -> Bool
forceSpecArgTy env ty
| Just ty' <- coreView ty = forceSpecArgTy env ty'
forceSpecArgTy env ty
| Just (tycon, tys) <- splitTyConApp_maybe ty
, tycon /= funTyCon
= tyConName tycon == specTyConName
|| lookupUFM (sc_annotations env) tycon == Just ForceSpecConstr
|| any (forceSpecArgTy env) tys
forceSpecArgTy _ _ = False
{-
Note [Add scrutinee to ValueEnv too]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
case x of y
(a,b) -> case b of c
I# v -> ...(f y)...
By the time we get to the call (f y), the ValueEnv
will have a binding for y, and for c
y -> (a,b)
c -> I# v
BUT that's not enough! Looking at the call (f y) we
see that y is pair (a,b), but we also need to know what 'b' is.
So in extendCaseBndrs we must *also* add the binding
b -> I# v
else we lose a useful specialisation for f. This is necessary even
though the simplifier has systematically replaced uses of 'x' with 'y'
and 'b' with 'c' in the code. The use of 'b' in the ValueEnv came
from outside the case. See #4908 for the live example.
Note [Avoiding exponential blowup]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The sc_count field of the ScEnv says how many times we are prepared to
duplicate a single function. But we must take care with recursive
specialisations. Consider
let $j1 = let $j2 = let $j3 = ...
in
...$j3...
in
...$j2...
in
...$j1...
If we specialise $j1 then in each specialisation (as well as the original)
we can specialise $j2, and similarly $j3. Even if we make just *one*
specialisation of each, because we also have the original we'll get 2^n
copies of $j3, which is not good.
So when recursively specialising we divide the sc_count by the number of
copies we are making at this level, including the original.
************************************************************************
* *
\subsection{Usage information: flows upwards}
* *
************************************************************************
-}
data ScUsage
= SCU {
scu_calls :: CallEnv, -- Calls
-- The functions are a subset of the
-- RecFuns in the ScEnv
scu_occs :: !(IdEnv ArgOcc) -- Information on argument occurrences
} -- The domain is OutIds
type CallEnv = IdEnv [Call]
data Call = Call Id [CoreArg] ValueEnv
-- The arguments of the call, together with the
-- env giving the constructor bindings at the call site
-- We keep the function mainly for debug output
instance Outputable ScUsage where
ppr (SCU { scu_calls = calls, scu_occs = occs })
= text "SCU" <+> braces (sep [ ptext (sLit "calls =") <+> ppr calls
, text "occs =" <+> ppr occs ])
instance Outputable Call where
ppr (Call fn args _) = ppr fn <+> fsep (map pprParendExpr args)
nullUsage :: ScUsage
nullUsage = SCU { scu_calls = emptyVarEnv, scu_occs = emptyVarEnv }
combineCalls :: CallEnv -> CallEnv -> CallEnv
combineCalls = plusVarEnv_C (++)
where
-- plus cs ds | length res > 1
-- = pprTrace "combineCalls" (vcat [ text "cs:" <+> ppr cs
-- , text "ds:" <+> ppr ds])
-- res
-- | otherwise = res
-- where
-- res = cs ++ ds
combineUsage :: ScUsage -> ScUsage -> ScUsage
combineUsage u1 u2 = SCU { scu_calls = combineCalls (scu_calls u1) (scu_calls u2),
scu_occs = plusVarEnv_C combineOcc (scu_occs u1) (scu_occs u2) }
combineUsages :: [ScUsage] -> ScUsage
combineUsages [] = nullUsage
combineUsages us = foldr1 combineUsage us
lookupOccs :: ScUsage -> [OutVar] -> (ScUsage, [ArgOcc])
lookupOccs (SCU { scu_calls = sc_calls, scu_occs = sc_occs }) bndrs
= (SCU {scu_calls = sc_calls, scu_occs = delVarEnvList sc_occs bndrs},
[lookupVarEnv sc_occs b `orElse` NoOcc | b <- bndrs])
data ArgOcc = NoOcc -- Doesn't occur at all; or a type argument
| UnkOcc -- Used in some unknown way
| ScrutOcc -- See Note [ScrutOcc]
(DataConEnv [ArgOcc]) -- How the sub-components are used
type DataConEnv a = UniqFM a -- Keyed by DataCon
{- Note [ScrutOcc]
~~~~~~~~~~~~~~~~~~~
An occurrence of ScrutOcc indicates that the thing, or a `cast` version of the thing,
is *only* taken apart or applied.
Functions, literal: ScrutOcc emptyUFM
Data constructors: ScrutOcc subs,
where (subs :: UniqFM [ArgOcc]) gives usage of the *pattern-bound* components,
The domain of the UniqFM is the Unique of the data constructor
The [ArgOcc] is the occurrences of the *pattern-bound* components
of the data structure. E.g.
data T a = forall b. MkT a b (b->a)
A pattern binds b, x::a, y::b, z::b->a, but not 'a'!
-}
instance Outputable ArgOcc where
ppr (ScrutOcc xs) = text "scrut-occ" <> ppr xs
ppr UnkOcc = text "unk-occ"
ppr NoOcc = text "no-occ"
evalScrutOcc :: ArgOcc
evalScrutOcc = ScrutOcc emptyUFM
-- Experimentally, this vesion of combineOcc makes ScrutOcc "win", so
-- that if the thing is scrutinised anywhere then we get to see that
-- in the overall result, even if it's also used in a boxed way
-- This might be too aggressive; see Note [Reboxing] Alternative 3
combineOcc :: ArgOcc -> ArgOcc -> ArgOcc
combineOcc NoOcc occ = occ
combineOcc occ NoOcc = occ
combineOcc (ScrutOcc xs) (ScrutOcc ys) = ScrutOcc (plusUFM_C combineOccs xs ys)
combineOcc UnkOcc (ScrutOcc ys) = ScrutOcc ys
combineOcc (ScrutOcc xs) UnkOcc = ScrutOcc xs
combineOcc UnkOcc UnkOcc = UnkOcc
combineOccs :: [ArgOcc] -> [ArgOcc] -> [ArgOcc]
combineOccs xs ys = zipWithEqual "combineOccs" combineOcc xs ys
setScrutOcc :: ScEnv -> ScUsage -> OutExpr -> ArgOcc -> ScUsage
-- _Overwrite_ the occurrence info for the scrutinee, if the scrutinee
-- is a variable, and an interesting variable
setScrutOcc env usg (Cast e _) occ = setScrutOcc env usg e occ
setScrutOcc env usg (Tick _ e) occ = setScrutOcc env usg e occ
setScrutOcc env usg (Var v) occ
| Just RecArg <- lookupHowBound env v = usg { scu_occs = extendVarEnv (scu_occs usg) v occ }
| otherwise = usg
setScrutOcc _env usg _other _occ -- Catch-all
= usg
{-
************************************************************************
* *
\subsection{The main recursive function}
* *
************************************************************************
The main recursive function gathers up usage information, and
creates specialised versions of functions.
-}
scExpr, scExpr' :: ScEnv -> CoreExpr -> UniqSM (ScUsage, CoreExpr)
-- The unique supply is needed when we invent
-- a new name for the specialised function and its args
scExpr env e = scExpr' env e
scExpr' env (Var v) = case scSubstId env v of
Var v' -> return (mkVarUsage env v' [], Var v')
e' -> scExpr (zapScSubst env) e'
scExpr' env (Type t) = return (nullUsage, Type (scSubstTy env t))
scExpr' env (Coercion c) = return (nullUsage, Coercion (scSubstCo env c))
scExpr' _ e@(Lit {}) = return (nullUsage, e)
scExpr' env (Tick t e) = do (usg, e') <- scExpr env e
return (usg, Tick t e')
scExpr' env (Cast e co) = do (usg, e') <- scExpr env e
return (usg, mkCast e' (scSubstCo env co))
-- Important to use mkCast here
-- See Note [SpecConstr call patterns]
scExpr' env e@(App _ _) = scApp env (collectArgs e)
scExpr' env (Lam b e) = do let (env', b') = extendBndr env b
(usg, e') <- scExpr env' e
return (usg, Lam b' e')
scExpr' env (Case scrut b ty alts)
= do { (scrut_usg, scrut') <- scExpr env scrut
; case isValue (sc_vals env) scrut' of
Just (ConVal con args) -> sc_con_app con args scrut'
_other -> sc_vanilla scrut_usg scrut'
}
where
sc_con_app con args scrut' -- Known constructor; simplify
= do { let (_, bs, rhs) = findAlt con alts
`orElse` (DEFAULT, [], mkImpossibleExpr ty)
alt_env' = extendScSubstList env ((b,scrut') : bs `zip` trimConArgs con args)
; scExpr alt_env' rhs }
sc_vanilla scrut_usg scrut' -- Normal case
= do { let (alt_env,b') = extendBndrWith RecArg env b
-- Record RecArg for the components
; (alt_usgs, alt_occs, alts')
<- mapAndUnzip3M (sc_alt alt_env scrut' b') alts
; let scrut_occ = foldr combineOcc NoOcc alt_occs
scrut_usg' = setScrutOcc env scrut_usg scrut' scrut_occ
-- The combined usage of the scrutinee is given
-- by scrut_occ, which is passed to scScrut, which
-- in turn treats a bare-variable scrutinee specially
; return (foldr combineUsage scrut_usg' alt_usgs,
Case scrut' b' (scSubstTy env ty) alts') }
sc_alt env scrut' b' (con,bs,rhs)
= do { let (env1, bs1) = extendBndrsWith RecArg env bs
(env2, bs2) = extendCaseBndrs env1 scrut' b' con bs1
; (usg, rhs') <- scExpr env2 rhs
; let (usg', b_occ:arg_occs) = lookupOccs usg (b':bs2)
scrut_occ = case con of
DataAlt dc -> ScrutOcc (unitUFM dc arg_occs)
_ -> ScrutOcc emptyUFM
; return (usg', b_occ `combineOcc` scrut_occ, (con, bs2, rhs')) }
scExpr' env (Let (NonRec bndr rhs) body)
| isTyVar bndr -- Type-lets may be created by doBeta
= scExpr' (extendScSubst env bndr rhs) body
| otherwise
= do { let (body_env, bndr') = extendBndr env bndr
; rhs_info <- scRecRhs env (bndr',rhs)
; let body_env2 = extendHowBound body_env [bndr'] RecFun
-- Note [Local let bindings]
rhs' = ri_new_rhs rhs_info
body_env3 = extendValEnv body_env2 bndr' (isValue (sc_vals env) rhs')
; (body_usg, body') <- scExpr body_env3 body
-- NB: For non-recursive bindings we inherit sc_force flag from
-- the parent function (see Note [Forcing specialisation])
; (spec_usg, specs) <- specNonRec env body_usg rhs_info
; return (body_usg { scu_calls = scu_calls body_usg `delVarEnv` bndr' }
`combineUsage` spec_usg, -- Note [spec_usg includes rhs_usg]
mkLets [NonRec b r | (b,r) <- ruleInfoBinds rhs_info specs] body')
}
-- A *local* recursive group: see Note [Local recursive groups]
scExpr' env (Let (Rec prs) body)
= do { let (bndrs,rhss) = unzip prs
(rhs_env1,bndrs') = extendRecBndrs env bndrs
rhs_env2 = extendHowBound rhs_env1 bndrs' RecFun
force_spec = any (forceSpecBndr env) bndrs'
-- Note [Forcing specialisation]
; rhs_infos <- mapM (scRecRhs rhs_env2) (bndrs' `zip` rhss)
; (body_usg, body') <- scExpr rhs_env2 body
-- NB: start specLoop from body_usg
; (spec_usg, specs) <- specRec NotTopLevel (scForce rhs_env2 force_spec)
body_usg rhs_infos
-- Do not unconditionally generate specialisations from rhs_usgs
-- Instead use them only if we find an unspecialised call
-- See Note [Local recursive groups]
; let all_usg = spec_usg `combineUsage` body_usg -- Note [spec_usg includes rhs_usg]
bind' = Rec (concat (zipWith ruleInfoBinds rhs_infos specs))
; return (all_usg { scu_calls = scu_calls all_usg `delVarEnvList` bndrs' },
Let bind' body') }
{-
Note [Local let bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~
It is not uncommon to find this
let $j = \x. <blah> in ...$j True...$j True...
Here $j is an arbitrary let-bound function, but it often comes up for
join points. We might like to specialise $j for its call patterns.
Notice the difference from a letrec, where we look for call patterns
in the *RHS* of the function. Here we look for call patterns in the
*body* of the let.
At one point I predicated this on the RHS mentioning the outer
recursive function, but that's not essential and might even be
harmful. I'm not sure.
-}
scApp :: ScEnv -> (InExpr, [InExpr]) -> UniqSM (ScUsage, CoreExpr)
scApp env (Var fn, args) -- Function is a variable
= ASSERT( not (null args) )
do { args_w_usgs <- mapM (scExpr env) args
; let (arg_usgs, args') = unzip args_w_usgs
arg_usg = combineUsages arg_usgs
; case scSubstId env fn of
fn'@(Lam {}) -> scExpr (zapScSubst env) (doBeta fn' args')
-- Do beta-reduction and try again
Var fn' -> return (arg_usg `combineUsage` mkVarUsage env fn' args',
mkApps (Var fn') args')
other_fn' -> return (arg_usg, mkApps other_fn' args') }
-- NB: doing this ignores any usage info from the substituted
-- function, but I don't think that matters. If it does
-- we can fix it.
where
doBeta :: OutExpr -> [OutExpr] -> OutExpr
-- ToDo: adjust for System IF
doBeta (Lam bndr body) (arg : args) = Let (NonRec bndr arg) (doBeta body args)
doBeta fn args = mkApps fn args
-- The function is almost always a variable, but not always.
-- In particular, if this pass follows float-in,
-- which it may, we can get
-- (let f = ...f... in f) arg1 arg2
scApp env (other_fn, args)
= do { (fn_usg, fn') <- scExpr env other_fn
; (arg_usgs, args') <- mapAndUnzipM (scExpr env) args
; return (combineUsages arg_usgs `combineUsage` fn_usg, mkApps fn' args') }
----------------------
mkVarUsage :: ScEnv -> Id -> [CoreExpr] -> ScUsage
mkVarUsage env fn args
= case lookupHowBound env fn of
Just RecFun -> SCU { scu_calls = unitVarEnv fn [Call fn args (sc_vals env)]
, scu_occs = emptyVarEnv }
Just RecArg -> SCU { scu_calls = emptyVarEnv
, scu_occs = unitVarEnv fn arg_occ }
Nothing -> nullUsage
where
-- I rather think we could use UnkOcc all the time
arg_occ | null args = UnkOcc
| otherwise = evalScrutOcc
----------------------
scTopBindEnv :: ScEnv -> CoreBind -> UniqSM (ScEnv, CoreBind)
scTopBindEnv env (Rec prs)
= do { let (rhs_env1,bndrs') = extendRecBndrs env bndrs
rhs_env2 = extendHowBound rhs_env1 bndrs RecFun
prs' = zip bndrs' rhss
; return (rhs_env2, Rec prs') }
where
(bndrs,rhss) = unzip prs
scTopBindEnv env (NonRec bndr rhs)
= do { let (env1, bndr') = extendBndr env bndr
env2 = extendValEnv env1 bndr' (isValue (sc_vals env) rhs)
; return (env2, NonRec bndr' rhs) }
----------------------
scTopBind :: ScEnv -> ScUsage -> CoreBind -> UniqSM (ScUsage, CoreBind)
{-
scTopBind _ usage _
| pprTrace "scTopBind_usage" (ppr (scu_calls usage)) False
= error "false"
-}
scTopBind env body_usage (Rec prs)
| Just threshold <- sc_size env
, not force_spec
, not (all (couldBeSmallEnoughToInline (sc_dflags env) threshold) rhss)
-- No specialisation
= -- pprTrace "scTopBind: nospec" (ppr bndrs) $
do { (rhs_usgs, rhss') <- mapAndUnzipM (scExpr env) rhss
; return (body_usage `combineUsage` combineUsages rhs_usgs, Rec (bndrs `zip` rhss')) }
| otherwise -- Do specialisation
= do { rhs_infos <- mapM (scRecRhs env) prs
; (spec_usage, specs) <- specRec TopLevel (scForce env force_spec)
body_usage rhs_infos
; return (body_usage `combineUsage` spec_usage,
Rec (concat (zipWith ruleInfoBinds rhs_infos specs))) }
where
(bndrs,rhss) = unzip prs
force_spec = any (forceSpecBndr env) bndrs
-- Note [Forcing specialisation]
scTopBind env usage (NonRec bndr rhs) -- Oddly, we don't seem to specialise top-level non-rec functions
= do { (rhs_usg', rhs') <- scExpr env rhs
; return (usage `combineUsage` rhs_usg', NonRec bndr rhs') }
----------------------
scRecRhs :: ScEnv -> (OutId, InExpr) -> UniqSM RhsInfo
scRecRhs env (bndr,rhs)
= do { let (arg_bndrs,body) = collectBinders rhs
(body_env, arg_bndrs') = extendBndrsWith RecArg env arg_bndrs
; (body_usg, body') <- scExpr body_env body
; let (rhs_usg, arg_occs) = lookupOccs body_usg arg_bndrs'
; return (RI { ri_rhs_usg = rhs_usg
, ri_fn = bndr, ri_new_rhs = mkLams arg_bndrs' body'
, ri_lam_bndrs = arg_bndrs, ri_lam_body = body
, ri_arg_occs = arg_occs }) }
-- The arg_occs says how the visible,
-- lambda-bound binders of the RHS are used
-- (including the TyVar binders)
-- Two pats are the same if they match both ways
----------------------
ruleInfoBinds :: RhsInfo -> SpecInfo -> [(Id,CoreExpr)]
ruleInfoBinds (RI { ri_fn = fn, ri_new_rhs = new_rhs })
(SI { si_specs = specs })
= [(id,rhs) | OS { os_id = id, os_rhs = rhs } <- specs] ++
-- First the specialised bindings
[(fn `addIdSpecialisations` rules, new_rhs)]
-- And now the original binding
where
rules = [r | OS { os_rule = r } <- specs]
{-
************************************************************************
* *
The specialiser itself
* *
************************************************************************
-}
data RhsInfo
= RI { ri_fn :: OutId -- The binder
, ri_new_rhs :: OutExpr -- The specialised RHS (in current envt)
, ri_rhs_usg :: ScUsage -- Usage info from specialising RHS
, ri_lam_bndrs :: [InVar] -- The *original* RHS (\xs.body)
, ri_lam_body :: InExpr -- Note [Specialise original body]
, ri_arg_occs :: [ArgOcc] -- Info on how the xs occur in body
}
data SpecInfo -- Info about specialisations for a particular Id
= SI { si_specs :: [OneSpec] -- The specialisations we have generated
, si_n_specs :: Int -- Length of si_specs; used for numbering them
, si_mb_unspec :: Maybe ScUsage -- Just cs => we have not yet used calls in the
} -- from calls in the *original* RHS as
-- seeds for new specialisations;
-- if you decide to do so, here is the
-- RHS usage (which has not yet been
-- unleashed)
-- Nothing => we have
-- See Note [Local recursive groups]
-- See Note [spec_usg includes rhs_usg]
-- One specialisation: Rule plus definition
data OneSpec =
OS { os_pat :: CallPat -- Call pattern that generated this specialisation
, os_rule :: CoreRule -- Rule connecting original id with the specialisation
, os_id :: OutId -- Spec id
, os_rhs :: OutExpr } -- Spec rhs
noSpecInfo :: SpecInfo
noSpecInfo = SI { si_specs = [], si_n_specs = 0, si_mb_unspec = Nothing }
----------------------
specNonRec :: ScEnv
-> ScUsage -- Body usage
-> RhsInfo -- Structure info usage info for un-specialised RHS
-> UniqSM (ScUsage, SpecInfo) -- Usage from RHSs (specialised and not)
-- plus details of specialisations
specNonRec env body_usg rhs_info
= specialise env (scu_calls body_usg) rhs_info
(noSpecInfo { si_mb_unspec = Just (ri_rhs_usg rhs_info) })
----------------------
specRec :: TopLevelFlag -> ScEnv
-> ScUsage -- Body usage
-> [RhsInfo] -- Structure info and usage info for un-specialised RHSs
-> UniqSM (ScUsage, [SpecInfo]) -- Usage from all RHSs (specialised and not)
-- plus details of specialisations
specRec top_lvl env body_usg rhs_infos
= go 1 seed_calls nullUsage init_spec_infos
where
(seed_calls, init_spec_infos) -- Note [Seeding top-level recursive groups]
| isTopLevel top_lvl
, any (isExportedId . ri_fn) rhs_infos -- Seed from body and RHSs
= (all_calls, [noSpecInfo | _ <- rhs_infos])
| otherwise -- Seed from body only
= (calls_in_body, [noSpecInfo { si_mb_unspec = Just (ri_rhs_usg ri) }
| ri <- rhs_infos])
calls_in_body = scu_calls body_usg
calls_in_rhss = foldr (combineCalls . scu_calls . ri_rhs_usg) emptyVarEnv rhs_infos
all_calls = calls_in_rhss `combineCalls` calls_in_body
-- Loop, specialising, until you get no new specialisations
go :: Int -- Which iteration of the "until no new specialisations"
-- loop we are on; first iteration is 1
-> CallEnv -- Seed calls
-- Two accumulating parameters:
-> ScUsage -- Usage from earlier specialisations
-> [SpecInfo] -- Details of specialisations so far
-> UniqSM (ScUsage, [SpecInfo])
go n_iter seed_calls usg_so_far spec_infos
| isEmptyVarEnv seed_calls
= -- pprTrace "specRec1" (vcat [ ppr (map ri_fn rhs_infos)
-- , ppr seed_calls
-- , ppr body_usg ]) $
return (usg_so_far, spec_infos)
-- Limit recursive specialisation
-- See Note [Limit recursive specialisation]
| n_iter > sc_recursive env -- Too many iterations of the 'go' loop
, sc_force env || isNothing (sc_count env)
-- If both of these are false, the sc_count
-- threshold will prevent non-termination
, any ((> the_limit) . si_n_specs) spec_infos
= -- pprTrace "specRec2" (ppr (map (map os_pat . si_specs) spec_infos)) $
return (usg_so_far, spec_infos)
| otherwise
= -- pprTrace "specRec3" (vcat [ text "bndrs" <+> ppr (map ri_fn rhs_infos)
-- , text "iteration" <+> int n_iter
-- , text "spec_infos" <+> ppr (map (map os_pat . si_specs) spec_infos)
-- ]) $
do { specs_w_usg <- zipWithM (specialise env seed_calls) rhs_infos spec_infos
; let (extra_usg_s, new_spec_infos) = unzip specs_w_usg
extra_usg = combineUsages extra_usg_s
all_usg = usg_so_far `combineUsage` extra_usg
; go (n_iter + 1) (scu_calls extra_usg) all_usg new_spec_infos }
-- See Note [Limit recursive specialisation]
the_limit = case sc_count env of
Nothing -> 10 -- Ugh!
Just max -> max
----------------------
specialise
:: ScEnv
-> CallEnv -- Info on newly-discovered calls to this function
-> RhsInfo
-> SpecInfo -- Original RHS plus patterns dealt with
-> UniqSM (ScUsage, SpecInfo) -- New specialised versions and their usage
-- See Note [spec_usg includes rhs_usg]
-- Note: this only generates *specialised* bindings
-- The original binding is added by ruleInfoBinds
--
-- Note: the rhs here is the optimised version of the original rhs
-- So when we make a specialised copy of the RHS, we're starting
-- from an RHS whose nested functions have been optimised already.
specialise env bind_calls (RI { ri_fn = fn, ri_lam_bndrs = arg_bndrs
, ri_lam_body = body, ri_arg_occs = arg_occs })
spec_info@(SI { si_specs = specs, si_n_specs = spec_count
, si_mb_unspec = mb_unspec })
| isBottomingId fn -- Note [Do not specialise diverging functions]
-- and do not generate specialisation seeds from its RHS
= -- pprTrace "specialise bot" (ppr fn) $
return (nullUsage, spec_info)
| isNeverActive (idInlineActivation fn) -- See Note [Transfer activation]
|| null arg_bndrs -- Only specialise functions
= -- pprTrace "specialise inactive" (ppr fn) $
case mb_unspec of -- Behave as if there was a single, boring call
Just rhs_usg -> return (rhs_usg, spec_info { si_mb_unspec = Nothing })
-- See Note [spec_usg includes rhs_usg]
Nothing -> return (nullUsage, spec_info)
| Just all_calls <- lookupVarEnv bind_calls fn
= -- pprTrace "specialise entry {" (ppr fn <+> ppr all_calls) $
do { (boring_call, new_pats) <- callsToNewPats env fn spec_info arg_occs all_calls
; let n_pats = length new_pats
-- ; if (not (null new_pats) || isJust mb_unspec) then
-- pprTrace "specialise" (vcat [ ppr fn <+> text "with" <+> int n_pats <+> text "good patterns"
-- , text "mb_unspec" <+> ppr (isJust mb_unspec)
-- , text "arg_occs" <+> ppr arg_occs
-- , text "good pats" <+> ppr new_pats]) $
-- return ()
-- else return ()
; let spec_env = decreaseSpecCount env n_pats
; (spec_usgs, new_specs) <- mapAndUnzipM (spec_one spec_env fn arg_bndrs body)
(new_pats `zip` [spec_count..])
-- See Note [Specialise original body]
; let spec_usg = combineUsages spec_usgs
-- If there were any boring calls among the seeds (= all_calls), then those
-- calls will call the un-specialised function. So we should use the seeds
-- from the _unspecialised_ function's RHS, which are in mb_unspec, by returning
-- then in new_usg.
(new_usg, mb_unspec')
= case mb_unspec of
Just rhs_usg | boring_call -> (spec_usg `combineUsage` rhs_usg, Nothing)
_ -> (spec_usg, mb_unspec)
-- ; pprTrace "specialise return }"
-- (vcat [ ppr fn
-- , text "boring_call:" <+> ppr boring_call
-- , text "new calls:" <+> ppr (scu_calls new_usg)]) $
-- return ()
; return (new_usg, SI { si_specs = new_specs ++ specs
, si_n_specs = spec_count + n_pats
, si_mb_unspec = mb_unspec' }) }
| otherwise -- No new seeds, so return nullUsage
= return (nullUsage, spec_info)
---------------------
spec_one :: ScEnv
-> OutId -- Function
-> [InVar] -- Lambda-binders of RHS; should match patterns
-> InExpr -- Body of the original function
-> (CallPat, Int)
-> UniqSM (ScUsage, OneSpec) -- Rule and binding
-- spec_one creates a specialised copy of the function, together
-- with a rule for using it. I'm very proud of how short this
-- function is, considering what it does :-).
{-
Example
In-scope: a, x::a
f = /\b \y::[(a,b)] -> ....f (b,c) ((:) (a,(b,c)) (x,v) (h w))...
[c::*, v::(b,c) are presumably bound by the (...) part]
==>
f_spec = /\ b c \ v::(b,c) hw::[(a,(b,c))] ->
(...entire body of f...) [b -> (b,c),
y -> ((:) (a,(b,c)) (x,v) hw)]
RULE: forall b::* c::*, -- Note, *not* forall a, x
v::(b,c),
hw::[(a,(b,c))] .
f (b,c) ((:) (a,(b,c)) (x,v) hw) = f_spec b c v hw
-}
spec_one env fn arg_bndrs body (call_pat@(qvars, pats), rule_number)
= do { spec_uniq <- getUniqueM
; let spec_env = extendScSubstList (extendScInScope env qvars)
(arg_bndrs `zip` pats)
fn_name = idName fn
fn_loc = nameSrcSpan fn_name
fn_occ = nameOccName fn_name
spec_occ = mkSpecOcc fn_occ
-- We use fn_occ rather than fn in the rule_name string
-- as we don't want the uniq to end up in the rule, and
-- hence in the ABI, as that can cause spurious ABI
-- changes (#4012).
rule_name = mkFastString ("SC:" ++ occNameString fn_occ ++ show rule_number)
spec_name = mkInternalName spec_uniq spec_occ fn_loc
-- ; pprTrace "{spec_one" (ppr (sc_count env) <+> ppr fn
-- <+> ppr pats <+> text "-->" <+> ppr spec_name) $
-- return ()
-- Specialise the body
; (spec_usg, spec_body) <- scExpr spec_env body
-- ; pprTrace "done spec_one}" (ppr fn) $
-- return ()
-- And build the results
; let (spec_lam_args, spec_call_args) = mkWorkerArgs (sc_dflags env)
qvars body_ty
-- Usual w/w hack to avoid generating
-- a spec_rhs of unlifted type and no args
spec_lam_args_str = handOutStrictnessInformation (fst (splitStrictSig spec_str)) spec_lam_args
-- Annotate the variables with the strictness information from
-- the function (see Note [Strictness information in worker binders])
spec_join_arity | isJoinId fn = Just (length spec_lam_args)
| otherwise = Nothing
spec_id = mkLocalIdOrCoVar spec_name
(mkLamTypes spec_lam_args body_ty)
-- See Note [Transfer strictness]
`setIdStrictness` spec_str
`setIdArity` count isId spec_lam_args
`asJoinId_maybe` spec_join_arity
spec_str = calcSpecStrictness fn spec_lam_args pats
-- Conditionally use result of new worker-wrapper transform
spec_rhs = mkLams spec_lam_args_str spec_body
body_ty = exprType spec_body
rule_rhs = mkVarApps (Var spec_id) spec_call_args
inline_act = idInlineActivation fn
this_mod = sc_module spec_env
rule = mkRule this_mod True {- Auto -} True {- Local -}
rule_name inline_act fn_name qvars pats rule_rhs
-- See Note [Transfer activation]
; return (spec_usg, OS { os_pat = call_pat, os_rule = rule
, os_id = spec_id
, os_rhs = spec_rhs }) }
-- See Note [Strictness information in worker binders]
handOutStrictnessInformation :: [Demand] -> [Var] -> [Var]
handOutStrictnessInformation = go
where
go _ [] = []
go [] vs = vs
go (d:dmds) (v:vs) | isId v = setIdDemandInfo v d : go dmds vs
go dmds (v:vs) = v : go dmds vs
calcSpecStrictness :: Id -- The original function
-> [Var] -> [CoreExpr] -- Call pattern
-> StrictSig -- Strictness of specialised thing
-- See Note [Transfer strictness]
calcSpecStrictness fn qvars pats
= mkClosedStrictSig spec_dmds topRes
where
spec_dmds = [ lookupVarEnv dmd_env qv `orElse` topDmd | qv <- qvars, isId qv ]
StrictSig (DmdType _ dmds _) = idStrictness fn
dmd_env = go emptyVarEnv dmds pats
go :: DmdEnv -> [Demand] -> [CoreExpr] -> DmdEnv
go env ds (Type {} : pats) = go env ds pats
go env ds (Coercion {} : pats) = go env ds pats
go env (d:ds) (pat : pats) = go (go_one env d pat) ds pats
go env _ _ = env
go_one :: DmdEnv -> Demand -> CoreExpr -> DmdEnv
go_one env d (Var v) = extendVarEnv_C bothDmd env v d
go_one env d e
| Just ds <- splitProdDmd_maybe d -- NB: d does not have to be strict
, (Var _, args) <- collectArgs e = go env ds args
go_one env _ _ = env
{-
Note [spec_usg includes rhs_usg]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In calls to 'specialise', the returned ScUsage must include the rhs_usg in
the passed-in SpecInfo, unless there are no calls at all to the function.
The caller can, indeed must, assume this. He should not combine in rhs_usg
himself, or he'll get rhs_usg twice -- and that can lead to an exponential
blowup of duplicates in the CallEnv. This is what gave rise to the massive
performance loss in #8852.
Note [Specialise original body]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The RhsInfo for a binding keeps the *original* body of the binding. We
must specialise that, *not* the result of applying specExpr to the RHS
(which is also kept in RhsInfo). Otherwise we end up specialising a
specialised RHS, and that can lead directly to exponential behaviour.
Note [Transfer activation]
~~~~~~~~~~~~~~~~~~~~~~~~~~
This note is for SpecConstr, but exactly the same thing
happens in the overloading specialiser; see
Note [Auto-specialisation and RULES] in Specialise.
In which phase should the specialise-constructor rules be active?
Originally I made them always-active, but Manuel found that this
defeated some clever user-written rules. Then I made them active only
in Phase 0; after all, currently, the specConstr transformation is
only run after the simplifier has reached Phase 0, but that meant
that specialisations didn't fire inside wrappers; see test
simplCore/should_compile/spec-inline.
So now I just use the inline-activation of the parent Id, as the
activation for the specialisation RULE, just like the main specialiser;
This in turn means there is no point in specialising NOINLINE things,
so we test for that.
Note [Transfer strictness]
~~~~~~~~~~~~~~~~~~~~~~~~~~
We must transfer strictness information from the original function to
the specialised one. Suppose, for example
f has strictness SS
and a RULE f (a:as) b = f_spec a as b
Now we want f_spec to have strictness LLS, otherwise we'll use call-by-need
when calling f_spec instead of call-by-value. And that can result in
unbounded worsening in space (cf the classic foldl vs foldl')
See #3437 for a good example.
The function calcSpecStrictness performs the calculation.
Note [Strictness information in worker binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After having calculated the strictness annotation for the worker (see Note
[Transfer strictness] above), we also want to have this information attached to
the worker’s arguments, for the benefit of later passes. The function
handOutStrictnessInformation decomposes the strictness annotation calculated by
calcSpecStrictness and attaches them to the variables.
************************************************************************
* *
\subsection{Argument analysis}
* *
************************************************************************
This code deals with analysing call-site arguments to see whether
they are constructor applications.
Note [Free type variables of the qvar types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a call (f @a x True), that we want to specialise, what variables should
we quantify over. Clearly over 'a' and 'x', but what about any type variables
free in x's type? In fact we don't need to worry about them because (f @a)
can only be a well-typed application if its type is compatible with x, so any
variables free in x's type must be free in (f @a), and hence either be gathered
via 'a' itself, or be in scope at f's defn. Hence we just take
(exprsFreeVars pats).
BUT phantom type synonyms can mess this reasoning up,
eg x::T b with type T b = Int
So we apply expandTypeSynonyms to the bound Ids.
See # 5458. Yuk.
Note [SpecConstr call patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A "call patterns" that we collect is going to become the LHS of a RULE.
It's important that it doesn't have
e |> Refl
or
e |> g1 |> g2
because both of these will be optimised by Simplify.simplRule. In the
former case such optimisation benign, because the rule will match more
terms; but in the latter we may lose a binding of 'g1' or 'g2', and
end up with a rule LHS that doesn't bind the template variables
(#10602).
The simplifier eliminates such things, but SpecConstr itself constructs
new terms by substituting. So the 'mkCast' in the Cast case of scExpr
is very important!
Note [Choosing patterns]
~~~~~~~~~~~~~~~~~~~~~~~~
If we get lots of patterns we may not want to make a specialisation
for each of them (code bloat), so we choose as follows, implemented
by trim_pats.
* The flag -fspec-constr-count-N sets the sc_count field
of the ScEnv to (Just n). This limits the total number
of specialisations for a given function to N.
* -fno-spec-constr-count sets the sc_count field to Nothing,
which switches of the limit.
* The ghastly ForceSpecConstr trick also switches of the limit
for a particular function
* Otherwise we sort the patterns to choose the most general
ones first; more general => more widely applicable.
Note [SpecConstr and casts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#14270) a call like
let f = e
in ... f (K @(a |> co)) ...
where 'co' is a coercion variable not in scope at f's definition site.
If we aren't caereful we'll get
let $sf a co = e (K @(a |> co))
RULE "SC:f" forall a co. f (K @(a |> co)) = $sf a co
f = e
in ...
But alas, when we match the call we won't bind 'co', because type-matching
(for good reasons) discards casts).
I don't know how to solve this, so for now I'm just discarding any
call patterns that
* Mentions a coercion variable in a type argument
* That is not in scope at the binding of the function
I think this is very rare.
It is important (e.g. #14936) that this /only/ applies to
coercions mentioned in casts. We don't want to be discombobulated
by casts in terms! For example, consider
f ((e1,e2) |> sym co)
where, say,
f :: Foo -> blah
co :: Foo ~R (Int,Int)
Here we definitely do want to specialise for that pair! We do not
match on the structre of the coercion; instead we just match on a
coercion variable, so the RULE looks like
forall (x::Int, y::Int, co :: (Int,Int) ~R Foo)
f ((x,y) |> co) = $sf x y co
Often the body of f looks like
f arg = ...(case arg |> co' of
(x,y) -> blah)...
so that the specialised f will turn into
$sf x y co = let arg = (x,y) |> co
in ...(case arg>| co' of
(x,y) -> blah)....
which will simplify to not use 'co' at all. But we can't guarantee
that co will end up unused, so we still pass it. Absence analysis
may remove it later.
Note that this /also/ discards the call pattern if we have a cast in a
/term/, although in fact Rules.match does make a very flaky and
fragile attempt to match coercions. e.g. a call like
f (Maybe Age) (Nothing |> co) blah
where co :: Maybe Int ~ Maybe Age
will be discarded. It's extremely fragile to match on the form of a
coercion, so I think it's better just not to try. A more complicated
alternative would be to discard calls that mention coercion variables
only in kind-casts, but I'm doing the simple thing for now.
-}
type CallPat = ([Var], [CoreExpr]) -- Quantified variables and arguments
-- See Note [SpecConstr call patterns]
callsToNewPats :: ScEnv -> Id
-> SpecInfo
-> [ArgOcc] -> [Call]
-> UniqSM (Bool, [CallPat])
-- Result has no duplicate patterns,
-- nor ones mentioned in done_pats
-- Bool indicates that there was at least one boring pattern
callsToNewPats env fn spec_info@(SI { si_specs = done_specs }) bndr_occs calls
= do { mb_pats <- mapM (callToPats env bndr_occs) calls
; let have_boring_call = any isNothing mb_pats
good_pats :: [CallPat]
good_pats = catMaybes mb_pats
-- Remove patterns we have already done
new_pats = filterOut is_done good_pats
is_done p = any (samePat p . os_pat) done_specs
-- Remove duplicates
non_dups = nubBy samePat new_pats
-- Remove ones that have too many worker variables
small_pats = filterOut too_big non_dups
too_big (vars,_) = not (isWorkerSmallEnough (sc_dflags env) vars)
-- We are about to construct w/w pair in 'spec_one'.
-- Omit specialisation leading to high arity workers.
-- See Note [Limit w/w arity] in WwLib
-- Discard specialisations if there are too many of them
trimmed_pats = trim_pats env fn spec_info small_pats
-- ; pprTrace "callsToPats" (vcat [ text "calls to" <+> ppr fn <> colon <+> ppr calls
-- , text "done_specs:" <+> ppr (map os_pat done_specs)
-- , text "good_pats:" <+> ppr good_pats ]) $
-- return ()
; return (have_boring_call, trimmed_pats) }
trim_pats :: ScEnv -> Id -> SpecInfo -> [CallPat] -> [CallPat]
-- See Note [Choosing patterns]
trim_pats env fn (SI { si_n_specs = done_spec_count }) pats
| sc_force env
|| isNothing mb_scc
|| n_remaining >= n_pats
= -- pprTrace "trim_pats: no-trim" (ppr (sc_force env) $$ ppr mb_scc $$ ppr n_remaining $$ ppr n_pats)
pats -- No need to trim
| otherwise
= emit_trace $ -- Need to trim, so keep the best ones
take n_remaining sorted_pats
where
n_pats = length pats
spec_count' = n_pats + done_spec_count
n_remaining = max_specs - done_spec_count
mb_scc = sc_count env
Just max_specs = mb_scc
sorted_pats = map fst $
sortBy (comparing snd) $
[(pat, pat_cons pat) | pat <- pats]
-- Sort in order of increasing number of constructors
-- (i.e. decreasing generality) and pick the initial
-- segment of this list
pat_cons :: CallPat -> Int
-- How many data constructors of literals are in
-- the pattern. More data-cons => less general
pat_cons (qs, ps) = foldr ((+) . n_cons) 0 ps
where
q_set = mkVarSet qs
n_cons (Var v) | v `elemVarSet` q_set = 0
| otherwise = 1
n_cons (Cast e _) = n_cons e
n_cons (App e1 e2) = n_cons e1 + n_cons e2
n_cons (Lit {}) = 1
n_cons _ = 0
emit_trace result
| debugIsOn || hasPprDebug (sc_dflags env)
-- Suppress this scary message for ordinary users! #5125
= pprTrace "SpecConstr" msg result
| otherwise
= result
msg = vcat [ sep [ text "Function" <+> quotes (ppr fn)
, nest 2 (text "has" <+>
speakNOf spec_count' (text "call pattern") <> comma <+>
text "but the limit is" <+> int max_specs) ]
, text "Use -fspec-constr-count=n to set the bound"
, text "done_spec_count =" <+> int done_spec_count
, text "Keeping " <+> int n_remaining <> text ", out of" <+> int n_pats
, text "Discarding:" <+> ppr (drop n_remaining sorted_pats) ]
callToPats :: ScEnv -> [ArgOcc] -> Call -> UniqSM (Maybe CallPat)
-- The [Var] is the variables to quantify over in the rule
-- Type variables come first, since they may scope
-- over the following term variables
-- The [CoreExpr] are the argument patterns for the rule
callToPats env bndr_occs call@(Call _ args con_env)
| args `ltLength` bndr_occs -- Check saturated
= return Nothing
| otherwise
= do { let in_scope = substInScope (sc_subst env)
; (interesting, pats) <- argsToPats env in_scope con_env args bndr_occs
; let pat_fvs = exprsFreeVarsList pats
-- To get determinism we need the list of free variables in
-- deterministic order. Otherwise we end up creating
-- lambdas with different argument orders. See
-- determinism/simplCore/should_compile/spec-inline-determ.hs
-- for an example. For explanation of determinism
-- considerations See Note [Unique Determinism] in Unique.
in_scope_vars = getInScopeVars in_scope
is_in_scope v = v `elemVarSet` in_scope_vars
qvars = filterOut is_in_scope pat_fvs
-- Quantify over variables that are not in scope
-- at the call site
-- See Note [Free type variables of the qvar types]
-- See Note [Shadowing] at the top
(ktvs, ids) = partition isTyVar qvars
qvars' = scopedSort ktvs ++ map sanitise ids
-- Order into kind variables, type variables, term variables
-- The kind of a type variable may mention a kind variable
-- and the type of a term variable may mention a type variable
sanitise id = id `setIdType` expandTypeSynonyms (idType id)
-- See Note [Free type variables of the qvar types]
-- Bad coercion variables: see Note [SpecConstr and casts]
bad_covars :: CoVarSet
bad_covars = mapUnionVarSet get_bad_covars pats
get_bad_covars :: CoreArg -> CoVarSet
get_bad_covars (Type ty)
= filterVarSet (\v -> isId v && not (is_in_scope v)) $
tyCoVarsOfType ty
get_bad_covars _
= emptyVarSet
; -- pprTrace "callToPats" (ppr args $$ ppr bndr_occs) $
WARN( not (isEmptyVarSet bad_covars)
, text "SpecConstr: bad covars:" <+> ppr bad_covars
$$ ppr call )
if interesting && isEmptyVarSet bad_covars
then return (Just (qvars', pats))
else return Nothing }
-- argToPat takes an actual argument, and returns an abstracted
-- version, consisting of just the "constructor skeleton" of the
-- argument, with non-constructor sub-expression replaced by new
-- placeholder variables. For example:
-- C a (D (f x) (g y)) ==> C p1 (D p2 p3)
argToPat :: ScEnv
-> InScopeSet -- What's in scope at the fn defn site
-> ValueEnv -- ValueEnv at the call site
-> CoreArg -- A call arg (or component thereof)
-> ArgOcc
-> UniqSM (Bool, CoreArg)
-- Returns (interesting, pat),
-- where pat is the pattern derived from the argument
-- interesting=True if the pattern is non-trivial (not a variable or type)
-- E.g. x:xs --> (True, x:xs)
-- f xs --> (False, w) where w is a fresh wildcard
-- (f xs, 'c') --> (True, (w, 'c')) where w is a fresh wildcard
-- \x. x+y --> (True, \x. x+y)
-- lvl7 --> (True, lvl7) if lvl7 is bound
-- somewhere further out
argToPat _env _in_scope _val_env arg@(Type {}) _arg_occ
= return (False, arg)
argToPat env in_scope val_env (Tick _ arg) arg_occ
= argToPat env in_scope val_env arg arg_occ
-- Note [Notes in call patterns]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Ignore Notes. In particular, we want to ignore any InlineMe notes
-- Perhaps we should not ignore profiling notes, but I'm going to
-- ride roughshod over them all for now.
--- See Note [Notes in RULE matching] in Rules
argToPat env in_scope val_env (Let _ arg) arg_occ
= argToPat env in_scope val_env arg arg_occ
-- See Note [Matching lets] in Rule.hs
-- Look through let expressions
-- e.g. f (let v = rhs in (v,w))
-- Here we can specialise for f (v,w)
-- because the rule-matcher will look through the let.
{- Disabled; see Note [Matching cases] in Rule.hs
argToPat env in_scope val_env (Case scrut _ _ [(_, _, rhs)]) arg_occ
| exprOkForSpeculation scrut -- See Note [Matching cases] in Rule.hhs
= argToPat env in_scope val_env rhs arg_occ
-}
argToPat env in_scope val_env (Cast arg co) arg_occ
| not (ignoreType env ty2)
= do { (interesting, arg') <- argToPat env in_scope val_env arg arg_occ
; if not interesting then
wildCardPat ty2
else do
{ -- Make a wild-card pattern for the coercion
uniq <- getUniqueM
; let co_name = mkSysTvName uniq (fsLit "sg")
co_var = mkCoVar co_name (mkCoercionType Representational ty1 ty2)
; return (interesting, Cast arg' (mkCoVarCo co_var)) } }
where
Pair ty1 ty2 = coercionKind co
{- Disabling lambda specialisation for now
It's fragile, and the spec_loop can be infinite
argToPat in_scope val_env arg arg_occ
| is_value_lam arg
= return (True, arg)
where
is_value_lam (Lam v e) -- Spot a value lambda, even if
| isId v = True -- it is inside a type lambda
| otherwise = is_value_lam e
is_value_lam other = False
-}
-- Check for a constructor application
-- NB: this *precedes* the Var case, so that we catch nullary constrs
argToPat env in_scope val_env arg arg_occ
| Just (ConVal (DataAlt dc) args) <- isValue val_env arg
, not (ignoreDataCon env dc) -- See Note [NoSpecConstr]
, Just arg_occs <- mb_scrut dc
= do { let (ty_args, rest_args) = splitAtList (dataConUnivTyVars dc) args
; (_, args') <- argsToPats env in_scope val_env rest_args arg_occs
; return (True,
mkConApp dc (ty_args ++ args')) }
where
mb_scrut dc = case arg_occ of
ScrutOcc bs | Just occs <- lookupUFM bs dc
-> Just (occs) -- See Note [Reboxing]
_other | sc_force env || sc_keen env
-> Just (repeat UnkOcc)
| otherwise
-> Nothing
-- Check if the argument is a variable that
-- (a) is used in an interesting way in the function body
-- (b) we know what its value is
-- In that case it counts as "interesting"
argToPat env in_scope val_env (Var v) arg_occ
| sc_force env || case arg_occ of { UnkOcc -> False; _other -> True }, -- (a)
is_value, -- (b)
-- Ignoring sc_keen here to avoid gratuitously incurring Note [Reboxing]
-- So sc_keen focused just on f (I# x), where we have freshly-allocated
-- box that we can eliminate in the caller
not (ignoreType env (varType v))
= return (True, Var v)
where
is_value
| isLocalId v = v `elemInScopeSet` in_scope
&& isJust (lookupVarEnv val_env v)
-- Local variables have values in val_env
| otherwise = isValueUnfolding (idUnfolding v)
-- Imports have unfoldings
-- I'm really not sure what this comment means
-- And by not wild-carding we tend to get forall'd
-- variables that are in scope, which in turn can
-- expose the weakness in let-matching
-- See Note [Matching lets] in Rules
-- Check for a variable bound inside the function.
-- Don't make a wild-card, because we may usefully share
-- e.g. f a = let x = ... in f (x,x)
-- NB: this case follows the lambda and con-app cases!!
-- argToPat _in_scope _val_env (Var v) _arg_occ
-- = return (False, Var v)
-- SLPJ : disabling this to avoid proliferation of versions
-- also works badly when thinking about seeding the loop
-- from the body of the let
-- f x y = letrec g z = ... in g (x,y)
-- We don't want to specialise for that *particular* x,y
-- The default case: make a wild-card
-- We use this for coercions too
argToPat _env _in_scope _val_env arg _arg_occ
= wildCardPat (exprType arg)
wildCardPat :: Type -> UniqSM (Bool, CoreArg)
wildCardPat ty
= do { uniq <- getUniqueM
; let id = mkSysLocalOrCoVar (fsLit "sc") uniq ty
; return (False, varToCoreExpr id) }
argsToPats :: ScEnv -> InScopeSet -> ValueEnv
-> [CoreArg] -> [ArgOcc] -- Should be same length
-> UniqSM (Bool, [CoreArg])
argsToPats env in_scope val_env args occs
= do { stuff <- zipWithM (argToPat env in_scope val_env) args occs
; let (interesting_s, args') = unzip stuff
; return (or interesting_s, args') }
isValue :: ValueEnv -> CoreExpr -> Maybe Value
isValue _env (Lit lit)
| litIsLifted lit = Nothing
| otherwise = Just (ConVal (LitAlt lit) [])
isValue env (Var v)
| Just cval <- lookupVarEnv env v
= Just cval -- You might think we could look in the idUnfolding here
-- but that doesn't take account of which branch of a
-- case we are in, which is the whole point
| not (isLocalId v) && isCheapUnfolding unf
= isValue env (unfoldingTemplate unf)
where
unf = idUnfolding v
-- However we do want to consult the unfolding
-- as well, for let-bound constructors!
isValue env (Lam b e)
| isTyVar b = case isValue env e of
Just _ -> Just LambdaVal
Nothing -> Nothing
| otherwise = Just LambdaVal
isValue env (Tick t e)
| not (tickishIsCode t)
= isValue env e
isValue _env expr -- Maybe it's a constructor application
| (Var fun, args, _) <- collectArgsTicks (not . tickishIsCode) expr
= case isDataConWorkId_maybe fun of
Just con | args `lengthAtLeast` dataConRepArity con
-- Check saturated; might be > because the
-- arity excludes type args
-> Just (ConVal (DataAlt con) args)
_other | valArgCount args < idArity fun
-- Under-applied function
-> Just LambdaVal -- Partial application
_other -> Nothing
isValue _env _expr = Nothing
valueIsWorkFree :: Value -> Bool
valueIsWorkFree LambdaVal = True
valueIsWorkFree (ConVal _ args) = all exprIsWorkFree args
samePat :: CallPat -> CallPat -> Bool
samePat (vs1, as1) (vs2, as2)
= all2 same as1 as2
where
same (Var v1) (Var v2)
| v1 `elem` vs1 = v2 `elem` vs2
| v2 `elem` vs2 = False
| otherwise = v1 == v2
same (Lit l1) (Lit l2) = l1==l2
same (App f1 a1) (App f2 a2) = same f1 f2 && same a1 a2
same (Type {}) (Type {}) = True -- Note [Ignore type differences]
same (Coercion {}) (Coercion {}) = True
same (Tick _ e1) e2 = same e1 e2 -- Ignore casts and notes
same (Cast e1 _) e2 = same e1 e2
same e1 (Tick _ e2) = same e1 e2
same e1 (Cast e2 _) = same e1 e2
same e1 e2 = WARN( bad e1 || bad e2, ppr e1 $$ ppr e2)
False -- Let, lambda, case should not occur
bad (Case {}) = True
bad (Let {}) = True
bad (Lam {}) = True
bad _other = False
{-
Note [Ignore type differences]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We do not want to generate specialisations where the call patterns
differ only in their type arguments! Not only is it utterly useless,
but it also means that (with polymorphic recursion) we can generate
an infinite number of specialisations. Example is Data.Sequence.adjustTree,
I think.
-}
|