summaryrefslogtreecommitdiff
path: root/compiler/specialise/Specialise.lhs
blob: 849b6006acc1150bf649668b4e1c1427aafc8fe3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
%
% (c) The GRASP/AQUA Project, Glasgow University, 1993-1998
%
\section[Specialise]{Stamping out overloading, and (optionally) polymorphism}

\begin{code}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details

module Specialise ( specProgram ) where

#include "HsVersions.h"

import Id
import TcType
import CoreSubst 
import CoreUnfold	( mkUnfolding, mkInlineRule )
import VarSet
import VarEnv
import CoreSyn
import Rules
import CoreUtils	( exprIsTrivial, applyTypeToArgs, mkPiTypes )
import CoreFVs		( exprFreeVars, exprsFreeVars, idFreeVars )
import UniqSupply	( UniqSupply, UniqSM, initUs_, MonadUnique(..) )
import Name
import MkId		( voidArgId, realWorldPrimId )
import FiniteMap
import Maybes		( catMaybes, isJust )
import BasicTypes	( isNeverActive, inlinePragmaActivation )
import Bag
import Util
import Outputable
import FastString

\end{code}

%************************************************************************
%*									*
\subsection[notes-Specialise]{Implementation notes [SLPJ, Aug 18 1993]}
%*									*
%************************************************************************

These notes describe how we implement specialisation to eliminate
overloading.

The specialisation pass works on Core
syntax, complete with all the explicit dictionary application,
abstraction and construction as added by the type checker.  The
existing type checker remains largely as it is.

One important thought: the {\em types} passed to an overloaded
function, and the {\em dictionaries} passed are mutually redundant.
If the same function is applied to the same type(s) then it is sure to
be applied to the same dictionary(s)---or rather to the same {\em
values}.  (The arguments might look different but they will evaluate
to the same value.)

Second important thought: we know that we can make progress by
treating dictionary arguments as static and worth specialising on.  So
we can do without binding-time analysis, and instead specialise on
dictionary arguments and no others.

The basic idea
~~~~~~~~~~~~~~
Suppose we have

	let f = <f_rhs>
	in <body>

and suppose f is overloaded.

STEP 1: CALL-INSTANCE COLLECTION

We traverse <body>, accumulating all applications of f to types and
dictionaries.

(Might there be partial applications, to just some of its types and
dictionaries?  In principle yes, but in practice the type checker only
builds applications of f to all its types and dictionaries, so partial
applications could only arise as a result of transformation, and even
then I think it's unlikely.  In any case, we simply don't accumulate such
partial applications.)


STEP 2: EQUIVALENCES

So now we have a collection of calls to f:
	f t1 t2 d1 d2
	f t3 t4 d3 d4
	...
Notice that f may take several type arguments.  To avoid ambiguity, we
say that f is called at type t1/t2 and t3/t4.

We take equivalence classes using equality of the *types* (ignoring
the dictionary args, which as mentioned previously are redundant).

STEP 3: SPECIALISATION

For each equivalence class, choose a representative (f t1 t2 d1 d2),
and create a local instance of f, defined thus:

	f@t1/t2 = <f_rhs> t1 t2 d1 d2

f_rhs presumably has some big lambdas and dictionary lambdas, so lots
of simplification will now result.  However we don't actually *do* that
simplification.  Rather, we leave it for the simplifier to do.  If we
*did* do it, though, we'd get more call instances from the specialised
RHS.  We can work out what they are by instantiating the call-instance
set from f's RHS with the types t1, t2.

Add this new id to f's IdInfo, to record that f has a specialised version.

Before doing any of this, check that f's IdInfo doesn't already
tell us about an existing instance of f at the required type/s.
(This might happen if specialisation was applied more than once, or
it might arise from user SPECIALIZE pragmas.)

Recursion
~~~~~~~~~
Wait a minute!  What if f is recursive?  Then we can't just plug in
its right-hand side, can we?

But it's ok.  The type checker *always* creates non-recursive definitions
for overloaded recursive functions.  For example:

	f x = f (x+x)		-- Yes I know its silly

becomes

	f a (d::Num a) = let p = +.sel a d
			 in
			 letrec fl (y::a) = fl (p y y)
			 in
			 fl

We still have recusion for non-overloaded functions which we
speciailise, but the recursive call should get specialised to the
same recursive version.


Polymorphism 1
~~~~~~~~~~~~~~

All this is crystal clear when the function is applied to *constant
types*; that is, types which have no type variables inside.  But what if
it is applied to non-constant types?  Suppose we find a call of f at type
t1/t2.  There are two possibilities:

(a) The free type variables of t1, t2 are in scope at the definition point
of f.  In this case there's no problem, we proceed just as before.  A common
example is as follows.  Here's the Haskell:

	g y = let f x = x+x
	      in f y + f y

After typechecking we have

	g a (d::Num a) (y::a) = let f b (d'::Num b) (x::b) = +.sel b d' x x
				in +.sel a d (f a d y) (f a d y)

Notice that the call to f is at type type "a"; a non-constant type.
Both calls to f are at the same type, so we can specialise to give:

	g a (d::Num a) (y::a) = let f@a (x::a) = +.sel a d x x
				in +.sel a d (f@a y) (f@a y)


(b) The other case is when the type variables in the instance types
are *not* in scope at the definition point of f.  The example we are
working with above is a good case.  There are two instances of (+.sel a d),
but "a" is not in scope at the definition of +.sel.  Can we do anything?
Yes, we can "common them up", a sort of limited common sub-expression deal.
This would give:

	g a (d::Num a) (y::a) = let +.sel@a = +.sel a d
				    f@a (x::a) = +.sel@a x x
				in +.sel@a (f@a y) (f@a y)

This can save work, and can't be spotted by the type checker, because
the two instances of +.sel weren't originally at the same type.

Further notes on (b)

* There are quite a few variations here.  For example, the defn of
  +.sel could be floated ouside the \y, to attempt to gain laziness.
  It certainly mustn't be floated outside the \d because the d has to
  be in scope too.

* We don't want to inline f_rhs in this case, because
that will duplicate code.  Just commoning up the call is the point.

* Nothing gets added to +.sel's IdInfo.

* Don't bother unless the equivalence class has more than one item!

Not clear whether this is all worth it.  It is of course OK to
simply discard call-instances when passing a big lambda.

Polymorphism 2 -- Overloading
~~~~~~~~~~~~~~
Consider a function whose most general type is

	f :: forall a b. Ord a => [a] -> b -> b

There is really no point in making a version of g at Int/Int and another
at Int/Bool, because it's only instancing the type variable "a" which
buys us any efficiency. Since g is completely polymorphic in b there
ain't much point in making separate versions of g for the different
b types.

That suggests that we should identify which of g's type variables
are constrained (like "a") and which are unconstrained (like "b").
Then when taking equivalence classes in STEP 2, we ignore the type args
corresponding to unconstrained type variable.  In STEP 3 we make
polymorphic versions.  Thus:

	f@t1/ = /\b -> <f_rhs> t1 b d1 d2

We do this.


Dictionary floating
~~~~~~~~~~~~~~~~~~~
Consider this

	f a (d::Num a) = let g = ...
			 in
			 ...(let d1::Ord a = Num.Ord.sel a d in g a d1)...

Here, g is only called at one type, but the dictionary isn't in scope at the
definition point for g.  Usually the type checker would build a
definition for d1 which enclosed g, but the transformation system
might have moved d1's defn inward.  Solution: float dictionary bindings
outwards along with call instances.

Consider

	f x = let g p q = p==q
		  h r s = (r+s, g r s)
	      in
	      h x x


Before specialisation, leaving out type abstractions we have

	f df x = let g :: Eq a => a -> a -> Bool
		     g dg p q = == dg p q
		     h :: Num a => a -> a -> (a, Bool)
		     h dh r s = let deq = eqFromNum dh
				in (+ dh r s, g deq r s)
	      in
	      h df x x

After specialising h we get a specialised version of h, like this:

		    h' r s = let deq = eqFromNum df
			     in (+ df r s, g deq r s)

But we can't naively make an instance for g from this, because deq is not in scope
at the defn of g.  Instead, we have to float out the (new) defn of deq
to widen its scope.  Notice that this floating can't be done in advance -- it only
shows up when specialisation is done.

User SPECIALIZE pragmas
~~~~~~~~~~~~~~~~~~~~~~~
Specialisation pragmas can be digested by the type checker, and implemented
by adding extra definitions along with that of f, in the same way as before

	f@t1/t2 = <f_rhs> t1 t2 d1 d2

Indeed the pragmas *have* to be dealt with by the type checker, because
only it knows how to build the dictionaries d1 and d2!  For example

	g :: Ord a => [a] -> [a]
	{-# SPECIALIZE f :: [Tree Int] -> [Tree Int] #-}

Here, the specialised version of g is an application of g's rhs to the
Ord dictionary for (Tree Int), which only the type checker can conjure
up.  There might not even *be* one, if (Tree Int) is not an instance of
Ord!  (All the other specialision has suitable dictionaries to hand
from actual calls.)

Problem.  The type checker doesn't have to hand a convenient <f_rhs>, because
it is buried in a complex (as-yet-un-desugared) binding group.
Maybe we should say

	f@t1/t2 = f* t1 t2 d1 d2

where f* is the Id f with an IdInfo which says "inline me regardless!".
Indeed all the specialisation could be done in this way.
That in turn means that the simplifier has to be prepared to inline absolutely
any in-scope let-bound thing.


Again, the pragma should permit polymorphism in unconstrained variables:

	h :: Ord a => [a] -> b -> b
	{-# SPECIALIZE h :: [Int] -> b -> b #-}

We *insist* that all overloaded type variables are specialised to ground types,
(and hence there can be no context inside a SPECIALIZE pragma).
We *permit* unconstrained type variables to be specialised to
	- a ground type
	- or left as a polymorphic type variable
but nothing in between.  So

	{-# SPECIALIZE h :: [Int] -> [c] -> [c] #-}

is *illegal*.  (It can be handled, but it adds complication, and gains the
programmer nothing.)


SPECIALISING INSTANCE DECLARATIONS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

	instance Foo a => Foo [a] where
		...
	{-# SPECIALIZE instance Foo [Int] #-}

The original instance decl creates a dictionary-function
definition:

	dfun.Foo.List :: forall a. Foo a -> Foo [a]

The SPECIALIZE pragma just makes a specialised copy, just as for
ordinary function definitions:

	dfun.Foo.List@Int :: Foo [Int]
	dfun.Foo.List@Int = dfun.Foo.List Int dFooInt

The information about what instance of the dfun exist gets added to
the dfun's IdInfo in the same way as a user-defined function too.


Automatic instance decl specialisation?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Can instance decls be specialised automatically?  It's tricky.
We could collect call-instance information for each dfun, but
then when we specialised their bodies we'd get new call-instances
for ordinary functions; and when we specialised their bodies, we might get
new call-instances of the dfuns, and so on.  This all arises because of
the unrestricted mutual recursion between instance decls and value decls.

Still, there's no actual problem; it just means that we may not do all
the specialisation we could theoretically do.

Furthermore, instance decls are usually exported and used non-locally,
so we'll want to compile enough to get those specialisations done.

Lastly, there's no such thing as a local instance decl, so we can
survive solely by spitting out *usage* information, and then reading that
back in as a pragma when next compiling the file.  So for now,
we only specialise instance decls in response to pragmas.


SPITTING OUT USAGE INFORMATION
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To spit out usage information we need to traverse the code collecting
call-instance information for all imported (non-prelude?) functions
and data types. Then we equivalence-class it and spit it out.

This is done at the top-level when all the call instances which escape
must be for imported functions and data types.

*** Not currently done ***


Partial specialisation by pragmas
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
What about partial specialisation:

	k :: (Ord a, Eq b) => [a] -> b -> b -> [a]
	{-# SPECIALIZE k :: Eq b => [Int] -> b -> b -> [a] #-}

or even

	{-# SPECIALIZE k :: Eq b => [Int] -> [b] -> [b] -> [a] #-}

Seems quite reasonable.  Similar things could be done with instance decls:

	instance (Foo a, Foo b) => Foo (a,b) where
		...
	{-# SPECIALIZE instance Foo a => Foo (a,Int) #-}
	{-# SPECIALIZE instance Foo b => Foo (Int,b) #-}

Ho hum.  Things are complex enough without this.  I pass.


Requirements for the simplifer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The simplifier has to be able to take advantage of the specialisation.

* When the simplifier finds an application of a polymorphic f, it looks in
f's IdInfo in case there is a suitable instance to call instead.  This converts

	f t1 t2 d1 d2 	===>   f_t1_t2

Note that the dictionaries get eaten up too!

* Dictionary selection operations on constant dictionaries must be
  short-circuited:

	+.sel Int d	===>  +Int

The obvious way to do this is in the same way as other specialised
calls: +.sel has inside it some IdInfo which tells that if it's applied
to the type Int then it should eat a dictionary and transform to +Int.

In short, dictionary selectors need IdInfo inside them for constant
methods.

* Exactly the same applies if a superclass dictionary is being
  extracted:

	Eq.sel Int d   ===>   dEqInt

* Something similar applies to dictionary construction too.  Suppose
dfun.Eq.List is the function taking a dictionary for (Eq a) to
one for (Eq [a]).  Then we want

	dfun.Eq.List Int d	===> dEq.List_Int

Where does the Eq [Int] dictionary come from?  It is built in
response to a SPECIALIZE pragma on the Eq [a] instance decl.

In short, dfun Ids need IdInfo with a specialisation for each
constant instance of their instance declaration.

All this uses a single mechanism: the SpecEnv inside an Id


What does the specialisation IdInfo look like?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The SpecEnv of an Id maps a list of types (the template) to an expression

	[Type]  |->  Expr

For example, if f has this SpecInfo:

	[Int, a]  ->  \d:Ord Int. f' a

it means that we can replace the call

	f Int t  ===>  (\d. f' t)

This chucks one dictionary away and proceeds with the
specialised version of f, namely f'.


What can't be done this way?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is no way, post-typechecker, to get a dictionary for (say)
Eq a from a dictionary for Eq [a].  So if we find

	==.sel [t] d

we can't transform to

	eqList (==.sel t d')

where
	eqList :: (a->a->Bool) -> [a] -> [a] -> Bool

Of course, we currently have no way to automatically derive
eqList, nor to connect it to the Eq [a] instance decl, but you
can imagine that it might somehow be possible.  Taking advantage
of this is permanently ruled out.

Still, this is no great hardship, because we intend to eliminate
overloading altogether anyway!

A note about non-tyvar dictionaries
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some Ids have types like

	forall a,b,c. Eq a -> Ord [a] -> tau

This seems curious at first, because we usually only have dictionary
args whose types are of the form (C a) where a is a type variable.
But this doesn't hold for the functions arising from instance decls,
which sometimes get arguements with types of form (C (T a)) for some
type constructor T.

Should we specialise wrt this compound-type dictionary?  We used to say
"no", saying:
	"This is a heuristic judgement, as indeed is the fact that we 
	specialise wrt only dictionaries.  We choose *not* to specialise
	wrt compound dictionaries because at the moment the only place
	they show up is in instance decls, where they are simply plugged
	into a returned dictionary.  So nothing is gained by specialising
	wrt them."

But it is simpler and more uniform to specialise wrt these dicts too;
and in future GHC is likely to support full fledged type signatures 
like
	f :: Eq [(a,b)] => ...


%************************************************************************
%*									*
\subsubsection{The new specialiser}
%*									*
%************************************************************************

Our basic game plan is this.  For let(rec) bound function
	f :: (C a, D c) => (a,b,c,d) -> Bool

* Find any specialised calls of f, (f ts ds), where 
  ts are the type arguments t1 .. t4, and
  ds are the dictionary arguments d1 .. d2.

* Add a new definition for f1 (say):

	f1 = /\ b d -> (..body of f..) t1 b t3 d d1 d2

  Note that we abstract over the unconstrained type arguments.

* Add the mapping

	[t1,b,t3,d]  |->  \d1 d2 -> f1 b d

  to the specialisations of f.  This will be used by the
  simplifier to replace calls 
		(f t1 t2 t3 t4) da db
  by
		(\d1 d1 -> f1 t2 t4) da db

  All the stuff about how many dictionaries to discard, and what types
  to apply the specialised function to, are handled by the fact that the
  SpecEnv contains a template for the result of the specialisation.

We don't build *partial* specialisations for f.  For example:

  f :: Eq a => a -> a -> Bool
  {-# SPECIALISE f :: (Eq b, Eq c) => (b,c) -> (b,c) -> Bool #-}

Here, little is gained by making a specialised copy of f.
There's a distinct danger that the specialised version would
first build a dictionary for (Eq b, Eq c), and then select the (==) 
method from it!  Even if it didn't, not a great deal is saved.

We do, however, generate polymorphic, but not overloaded, specialisations:

  f :: Eq a => [a] -> b -> b -> b
  {#- SPECIALISE f :: [Int] -> b -> b -> b #-}

Hence, the invariant is this: 

	*** no specialised version is overloaded ***


%************************************************************************
%*									*
\subsubsection{The exported function}
%*									*
%************************************************************************

\begin{code}
specProgram :: UniqSupply -> [CoreBind] -> [CoreBind]
specProgram us binds = initSM us $
                       do { (binds', uds') <- go binds
			  ; return (wrapDictBinds (ud_binds uds') binds') }
  where
	-- We need to start with a Subst that knows all the things
	-- that are in scope, so that the substitution engine doesn't
	-- accidentally re-use a unique that's already in use
	-- Easiest thing is to do it all at once, as if all the top-level
	-- decls were mutually recursive
    top_subst       = mkEmptySubst (mkInScopeSet (mkVarSet (bindersOfBinds binds)))

    go []           = return ([], emptyUDs)
    go (bind:binds) = do (binds', uds) <- go binds
                         (bind', uds') <- specBind top_subst bind uds
                         return (bind' ++ binds', uds')
\end{code}

%************************************************************************
%*									*
\subsubsection{@specExpr@: the main function}
%*									*
%************************************************************************

\begin{code}
specVar :: Subst -> Id -> CoreExpr
specVar subst v = lookupIdSubst (text "specVar") subst v

specExpr :: Subst -> CoreExpr -> SpecM (CoreExpr, UsageDetails)
-- We carry a substitution down:
--	a) we must clone any binding that might float outwards,
--	   to avoid name clashes
--	b) we carry a type substitution to use when analysing
--	   the RHS of specialised bindings (no type-let!)

---------------- First the easy cases --------------------
specExpr subst (Type ty) = return (Type (CoreSubst.substTy subst ty), emptyUDs)
specExpr subst (Var v)   = return (specVar subst v,         emptyUDs)
specExpr _     (Lit lit) = return (Lit lit,                 emptyUDs)
specExpr subst (Cast e co) = do
    (e', uds) <- specExpr subst e
    return ((Cast e' (CoreSubst.substTy subst co)), uds)
specExpr subst (Note note body) = do
    (body', uds) <- specExpr subst body
    return (Note (specNote subst note) body', uds)


---------------- Applications might generate a call instance --------------------
specExpr subst expr@(App {})
  = go expr []
  where
    go (App fun arg) args = do (arg', uds_arg) <- specExpr subst arg
                               (fun', uds_app) <- go fun (arg':args)
                               return (App fun' arg', uds_arg `plusUDs` uds_app)

    go (Var f)       args = case specVar subst f of
                                Var f' -> return (Var f', mkCallUDs f' args)
                                e'     -> return (e', emptyUDs)	-- I don't expect this!
    go other	     _    = specExpr subst other

---------------- Lambda/case require dumping of usage details --------------------
specExpr subst e@(Lam _ _) = do
    (body', uds) <- specExpr subst' body
    let (free_uds, dumped_dbs) = dumpUDs bndrs' uds 
    return (mkLams bndrs' (wrapDictBindsE dumped_dbs body'), free_uds)
  where
    (bndrs, body) = collectBinders e
    (subst', bndrs') = substBndrs subst bndrs
	-- More efficient to collect a group of binders together all at once
	-- and we don't want to split a lambda group with dumped bindings

specExpr subst (Case scrut case_bndr ty alts) = do
    (scrut', uds_scrut) <- specExpr subst scrut
    (alts', uds_alts) <- mapAndCombineSM spec_alt alts
    return (Case scrut' case_bndr' (CoreSubst.substTy subst ty) alts', 
            uds_scrut `plusUDs` uds_alts)
  where
    (subst_alt, case_bndr') = substBndr subst case_bndr
	-- No need to clone case binder; it can't float like a let(rec)

    spec_alt (con, args, rhs) = do
          (rhs', uds) <- specExpr subst_rhs rhs
          let (free_uds, dumped_dbs) = dumpUDs args' uds
          return ((con, args', wrapDictBindsE dumped_dbs rhs'), free_uds)
        where
          (subst_rhs, args') = substBndrs subst_alt args

---------------- Finally, let is the interesting case --------------------
specExpr subst (Let bind body) = do
   	-- Clone binders
    (rhs_subst, body_subst, bind') <- cloneBindSM subst bind

        -- Deal with the body
    (body', body_uds) <- specExpr body_subst body

        -- Deal with the bindings
    (binds', uds) <- specBind rhs_subst bind' body_uds

        -- All done
    return (foldr Let body' binds', uds)

-- Must apply the type substitution to coerceions
specNote :: Subst -> Note -> Note
specNote _ note = note
\end{code}

%************************************************************************
%*									*
\subsubsection{Dealing with a binding}
%*									*
%************************************************************************

\begin{code}
specBind :: Subst			-- Use this for RHSs
	 -> CoreBind
	 -> UsageDetails		-- Info on how the scope of the binding
	 -> SpecM ([CoreBind],		-- New bindings
		   UsageDetails)	-- And info to pass upstream

-- Returned UsageDetails:
--    No calls for binders of this bind
specBind rhs_subst (NonRec fn rhs) body_uds
  = do { (rhs', rhs_uds) <- specExpr rhs_subst rhs
       ; (fn', spec_defns, body_uds1) <- specDefn rhs_subst body_uds fn rhs

       ; let pairs = spec_defns ++ [(fn', rhs')]
	 		-- fn' mentions the spec_defns in its rules, 
			-- so put the latter first

             combined_uds = body_uds1 `plusUDs` rhs_uds
		-- This way round a call in rhs_uds of a function f
		-- at type T will override a call of f at T in body_uds1; and
		-- that is good because it'll tend to keep "earlier" calls
		-- See Note [Specialisation of dictionary functions]

	     (free_uds, dump_dbs, float_all) = dumpBindUDs [fn] combined_uds
	        -- See Note [From non-recursive to recursive]

             final_binds | isEmptyBag dump_dbs = [NonRec b r | (b,r) <- pairs]
                         | otherwise = [Rec (flattenDictBinds dump_dbs pairs)]

	 ; if float_all then
	     -- Rather than discard the calls mentioning the bound variables
	     -- we float this binding along with the others
	      return ([], free_uds `snocDictBinds` final_binds)
           else
	     -- No call in final_uds mentions bound variables, 
	     -- so we can just leave the binding here
	      return (final_binds, free_uds) }


specBind rhs_subst (Rec pairs) body_uds
       -- Note [Specialising a recursive group]
  = do { let (bndrs,rhss) = unzip pairs
       ; (rhss', rhs_uds) <- mapAndCombineSM (specExpr rhs_subst) rhss
       ; let scope_uds = body_uds `plusUDs` rhs_uds
       	     	       -- Includes binds and calls arising from rhss

       ; (bndrs1, spec_defns1, uds1) <- specDefns rhs_subst scope_uds pairs

       ; (bndrs3, spec_defns3, uds3)
             <- if null spec_defns1  -- Common case: no specialisation
	        then return (bndrs1, [], uds1)
		else do {      	     -- Specialisation occurred; do it again
                          (bndrs2, spec_defns2, uds2)
                              <- specDefns rhs_subst uds1 (bndrs1 `zip` rhss)
                        ; return (bndrs2, spec_defns2 ++ spec_defns1, uds2) }

       ; let (final_uds, dumped_dbs, float_all) = dumpBindUDs bndrs uds3
             bind = Rec (flattenDictBinds dumped_dbs $
                         spec_defns3 ++ zip bndrs3 rhss')
             
       ; if float_all then
	      return ([], final_uds `snocDictBind` bind)
           else
	      return ([bind], final_uds) }


---------------------------
specDefns :: Subst
	  -> UsageDetails		-- Info on how it is used in its scope
	  -> [(Id,CoreExpr)]		-- The things being bound and their un-processed RHS
	  -> SpecM ([Id],		-- Original Ids with RULES added
	     	    [(Id,CoreExpr)],	-- Extra, specialised bindings
		    UsageDetails)	-- Stuff to fling upwards from the specialised versions

-- Specialise a list of bindings (the contents of a Rec), but flowing usages
-- upwards binding by binding.  Example: { f = ...g ...; g = ...f .... }
-- Then if the input CallDetails has a specialised call for 'g', whose specialisation
-- in turn generates a specialised call for 'f', we catch that in this one sweep.
-- But not vice versa (it's a fixpoint problem).

specDefns _subst uds []
  = return ([], [], uds)
specDefns subst uds ((bndr,rhs):pairs)
  = do { (bndrs1, spec_defns1, uds1) <- specDefns subst uds pairs
       ; (bndr1, spec_defns2, uds2)  <- specDefn subst uds1 bndr rhs
       ; return (bndr1 : bndrs1, spec_defns1 ++ spec_defns2, uds2) }

---------------------------
specDefn :: Subst
	 -> UsageDetails		-- Info on how it is used in its scope
	 -> Id -> CoreExpr		-- The thing being bound and its un-processed RHS
	 -> SpecM (Id,			-- Original Id with added RULES
		   [(Id,CoreExpr)],	-- Extra, specialised bindings
	    	   UsageDetails)	-- Stuff to fling upwards from the specialised versions

specDefn subst body_uds fn rhs
	-- The first case is the interesting one
  |  rhs_tyvars `lengthIs`     n_tyvars -- Rhs of fn's defn has right number of big lambdas
  && rhs_ids    `lengthAtLeast` n_dicts	-- and enough dict args
  && notNull calls_for_me		-- And there are some calls to specialise
  && not (isNeverActive (idInlineActivation fn))
	-- Don't specialise NOINLINE things
	-- See Note [Auto-specialisation and RULES]

--   && not (certainlyWillInline (idUnfolding fn))	-- And it's not small
--	See Note [Inline specialisation] for why we do not 
--	switch off specialisation for inline functions

  = do {       -- Make a specialised version for each call in calls_for_me
         stuff <- mapM spec_call calls_for_me
       ; let (spec_defns, spec_uds, spec_rules) = unzip3 (catMaybes stuff)
             fn' = addIdSpecialisations fn spec_rules
             final_uds = body_uds_without_me `plusUDs` plusUDList spec_uds 
		-- It's important that the `plusUDs` is this way
		-- round, because body_uds_without_me may bind
		-- dictionaries that are used in calls_for_me passed
		-- to specDefn.  So the dictionary bindings in
		-- spec_uds may mention dictionaries bound in
		-- body_uds_without_me

       ; return (fn', spec_defns, final_uds) }

  | otherwise	-- No calls or RHS doesn't fit our preconceptions
  = WARN( notNull calls_for_me, ptext (sLit "Missed specialisation opportunity for") <+> ppr fn )
	  -- Note [Specialisation shape]
    return (fn, [], body_uds_without_me)
  
  where
    fn_type	       = idType fn
    fn_arity	       = idArity fn
    fn_unf             = realIdUnfolding fn	-- Ignore loop-breaker-ness here
    (tyvars, theta, _) = tcSplitSigmaTy fn_type
    n_tyvars	       = length tyvars
    n_dicts	       = length theta
    inl_act            = inlinePragmaActivation (idInlinePragma fn)

	-- Figure out whether the function has an INLINE pragma
	-- See Note [Inline specialisations]
    fn_has_inline_rule :: Maybe Bool	-- Derive sat-flag from existing thing
    fn_has_inline_rule = case isInlineRule_maybe fn_unf of
                           Just (_,sat) -> Just sat
			   Nothing      -> Nothing

    spec_arity = unfoldingArity fn_unf - n_dicts  -- Arity of the *specialised* inline rule

    (rhs_tyvars, rhs_ids, rhs_body) = collectTyAndValBinders rhs

    (body_uds_without_me, calls_for_me) = callsForMe fn body_uds

    rhs_dict_ids = take n_dicts rhs_ids
    body         = mkLams (drop n_dicts rhs_ids) rhs_body
		-- Glue back on the non-dict lambdas

    already_covered :: [CoreExpr] -> Bool
    already_covered args	  -- Note [Specialisations already covered]
       = isJust (lookupRule (const True) realIdUnfolding 
                            (substInScope subst) 
       	 		    fn args (idCoreRules fn))

    mk_ty_args :: [Maybe Type] -> [CoreExpr]
    mk_ty_args call_ts = zipWithEqual "spec_call" mk_ty_arg rhs_tyvars call_ts
    	       where
	          mk_ty_arg rhs_tyvar Nothing   = Type (mkTyVarTy rhs_tyvar)
		  mk_ty_arg _	      (Just ty) = Type ty

    ----------------------------------------------------------
	-- Specialise to one particular call pattern
    spec_call :: CallInfo                         -- Call instance
              -> SpecM (Maybe ((Id,CoreExpr),	  -- Specialised definition
	                       UsageDetails, 	  -- Usage details from specialised body
			       CoreRule))	  -- Info for the Id's SpecEnv
    spec_call (CallKey call_ts, (call_ds, _))
      = ASSERT( call_ts `lengthIs` n_tyvars  && call_ds `lengthIs` n_dicts )
	
	-- Suppose f's defn is 	f = /\ a b c -> \ d1 d2 -> rhs	
        -- Supppose the call is for f [Just t1, Nothing, Just t3] [dx1, dx2]

	-- Construct the new binding
	-- 	f1 = SUBST[a->t1,c->t3, d1->d1', d2->d2'] (/\ b -> rhs)
	-- PLUS the usage-details
	--	{ d1' = dx1; d2' = dx2 }
	-- where d1', d2' are cloned versions of d1,d2, with the type substitution
	-- applied.  These auxiliary bindings just avoid duplication of dx1, dx2
	--
	-- Note that the substitution is applied to the whole thing.
	-- This is convenient, but just slightly fragile.  Notably:
	--	* There had better be no name clashes in a/b/c
        do { let
		-- poly_tyvars = [b] in the example above
		-- spec_tyvars = [a,c] 
		-- ty_args     = [t1,b,t3]
		poly_tyvars   = [tv | (tv, Nothing) <- rhs_tyvars `zip` call_ts]
           	spec_tv_binds = [(tv,ty) | (tv, Just ty) <- rhs_tyvars `zip` call_ts]
		spec_ty_args  = map snd spec_tv_binds
	   	ty_args       = mk_ty_args call_ts
	   	rhs_subst     = CoreSubst.extendTvSubstList subst spec_tv_binds

	   ; (rhs_subst1, inst_dict_ids) <- newDictBndrs rhs_subst rhs_dict_ids
	     		  -- Clone rhs_dicts, including instantiating their types

	   ; let (rhs_subst2, dx_binds) = bindAuxiliaryDicts rhs_subst1 $
	     	 	      		  (my_zipEqual rhs_dict_ids inst_dict_ids call_ds)
	         inst_args = ty_args ++ map Var inst_dict_ids

	   ; if already_covered inst_args then
	        return Nothing
	     else do
	   {	-- Figure out the type of the specialised function
	     let body_ty = applyTypeToArgs rhs fn_type inst_args
	         (lam_args, app_args) 		-- Add a dummy argument if body_ty is unlifted
		   | isUnLiftedType body_ty	-- C.f. WwLib.mkWorkerArgs
		   = (poly_tyvars ++ [voidArgId], poly_tyvars ++ [realWorldPrimId])
		   | otherwise = (poly_tyvars, poly_tyvars)
	         spec_id_ty = mkPiTypes lam_args body_ty
	
           ; spec_f <- newSpecIdSM fn spec_id_ty
           ; (spec_rhs, rhs_uds) <- specExpr rhs_subst2 (mkLams lam_args body)
	   ; let
		-- The rule to put in the function's specialisation is:
		--	forall b, d1',d2'.  f t1 b t3 d1' d2' = f1 b  
	        rule_name = mkFastString ("SPEC " ++ showSDoc (ppr fn <+> ppr spec_ty_args))
  		spec_env_rule = mkLocalRule
			          rule_name
				  inl_act 	-- Note [Auto-specialisation and RULES]
			 	  (idName fn)
			          (poly_tyvars ++ inst_dict_ids)
				  inst_args 
				  (mkVarApps (Var spec_f) app_args)

		-- Add the { d1' = dx1; d2' = dx2 } usage stuff
	   	final_uds = foldr consDictBind rhs_uds dx_binds

		-- Adding arity information just propagates it a bit faster
		-- 	See Note [Arity decrease] in Simplify
		-- Copy InlinePragma information from the parent Id.
		-- So if f has INLINE[1] so does spec_f
  	        spec_f_w_arity = spec_f `setIdArity`          max 0 (fn_arity - n_dicts)
                                        `setInlineActivation` inl_act

		-- Add an InlineRule if the parent has one
		-- See Note [Inline specialisations]
		final_spec_f 
                  | Just sat <- fn_has_inline_rule
		  = let 
                       mb_spec_arity = if sat then Just spec_arity else Nothing
                    in 
                    spec_f_w_arity `setIdUnfolding` mkInlineRule spec_rhs mb_spec_arity
		  | otherwise 
		  = spec_f_w_arity

	   ; return (Just ((final_spec_f, spec_rhs), final_uds, spec_env_rule)) } }
      where
	my_zipEqual xs ys zs
	 | debugIsOn && not (equalLength xs ys && equalLength ys zs)
             = pprPanic "my_zipEqual" (vcat [ ppr xs, ppr ys
					    , ppr fn <+> ppr call_ts
					    , ppr (idType fn), ppr theta
					    , ppr n_dicts, ppr rhs_dict_ids 
					    , ppr rhs])
    	 | otherwise = zip3 xs ys zs

bindAuxiliaryDicts
	:: Subst
	-> [(DictId,DictId,CoreExpr)]	-- (orig_dict, inst_dict, dx)
	-> (Subst,			-- Substitute for all orig_dicts
	    [CoreBind])			-- Auxiliary bindings
-- Bind any dictionary arguments to fresh names, to preserve sharing
-- Substitution already substitutes orig_dict -> inst_dict
bindAuxiliaryDicts subst triples = go subst [] triples
  where
    go subst binds []    = (subst, binds)
    go subst binds ((d, dx_id, dx) : pairs)
      | exprIsTrivial dx = go (extendIdSubst subst d dx) binds pairs
             -- No auxiliary binding necessary
	     -- Note that we bind the *original* dict in the substitution,
	     -- overriding any d->dx_id binding put there by substBndrs

      | otherwise        = go subst_w_unf (NonRec dx_id dx : binds) pairs
      where
        dx_id1 = dx_id `setIdUnfolding` mkUnfolding False False dx
	subst_w_unf = extendIdSubst subst d (Var dx_id1)
       	     -- Important!  We're going to substitute dx_id1 for d
	     -- and we want it to look "interesting", else we won't gather *any*
	     -- consequential calls. E.g.
	     --	    f d = ...g d....
	     -- If we specialise f for a call (f (dfun dNumInt)), we'll get 
	     -- a consequent call (g d') with an auxiliary definition
	     --	    d' = df dNumInt
  	     -- We want that consequent call to look interesting
	     --
	     -- Again, note that we bind the *original* dict in the substitution,
	     -- overriding any d->dx_id binding put there by substBndrs
\end{code}

Note [From non-recursive to recursive]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even in the non-recursive case, if any dict-binds depend on 'fn' we might 
have built a recursive knot

      f a d x = <blah>
      MkUD { ud_binds = d7 = MkD ..f..
           , ud_calls = ...(f T d7)... }

The we generate

      Rec { fs x = <blah>[T/a, d7/d]
            f a d x = <blah>
               RULE f T _ = fs
            d7 = ...f... }

Here the recursion is only through the RULE.

 
Note [Specialisation of dictionary functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is a nasty example that bit us badly: see Trac #3591

     dfun a d = MkD a d (meth d)
     d4 = <blah>
     d2 = dfun T d4
     d1 = $p1 d2
     d3 = dfun T d1

None of these definitions is recursive. What happened was that we 
generated a specialisation:

     RULE forall d. dfun T d = dT
     dT = (MkD a d (meth d)) [T/a, d1/d]
        = MkD T d1 (meth d1)

But now we use the RULE on the RHS of d2, to get

    d2 = dT = MkD d1 (meth d1)
    d1 = $p1 d2

and now d1 is bottom!  The problem is that when specialising 'dfun' we
should first dump "below" the binding all floated dictionary bindings
that mention 'dfun' itself.  So d2 and d3 (and hence d1) must be
placed below 'dfun', and thus unavailable to it when specialising
'dfun'.  That in turn means that the call (dfun T d1) must be
discarded.  On the other hand, the call (dfun T d4) is fine, assuming
d4 doesn't mention dfun.

But look at this:

  class C a where { foo,bar :: [a] -> [a] }

  instance C Int where 
     foo x = r_bar x    
     bar xs = reverse xs

  r_bar :: C a => [a] -> [a]
  r_bar xs = bar (xs ++ xs)

That translates to:

    r_bar a (c::C a) (xs::[a]) = bar a d (xs ++ xs)

    Rec { $fCInt :: C Int = MkC foo_help reverse
          foo_help (xs::[Int]) = r_bar Int $fCInt xs }

The call (r_bar $fCInt) mentions $fCInt, 
                        which mentions foo_help, 
                        which mentions r_bar
But we DO want to specialise r_bar at Int:

    Rec { $fCInt :: C Int = MkC foo_help reverse
          foo_help (xs::[Int]) = r_bar Int $fCInt xs

          r_bar a (c::C a) (xs::[a]) = bar a d (xs ++ xs)
	    RULE r_bar Int _ = r_bar_Int

          r_bar_Int xs = bar Int $fCInt (xs ++ xs)
           }
   
Note that, because of its RULE, r_bar joins the recursive
group.  (In this case it'll unravel a short moment later.)


Conclusion: we catch the nasty case using filter_dfuns in
callsForMe To be honest I'm not 100% certain that this is 100%
right, but it works.  Sigh.


Note [Specialising a recursive group]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
    let rec { f x = ...g x'...
            ; g y = ...f y'.... }
    in f 'a'
Here we specialise 'f' at Char; but that is very likely to lead to 
a specialisation of 'g' at Char.  We must do the latter, else the
whole point of specialisation is lost.

But we do not want to keep iterating to a fixpoint, because in the
presence of polymorphic recursion we might generate an infinite number
of specialisations.

So we use the following heuristic:
  * Arrange the rec block in dependency order, so far as possible
    (the occurrence analyser already does this)

  * Specialise it much like a sequence of lets

  * Then go through the block a second time, feeding call-info from
    the RHSs back in the bottom, as it were

In effect, the ordering maxmimises the effectiveness of each sweep,
and we do just two sweeps.   This should catch almost every case of 
monomorphic recursion -- the exception could be a very knotted-up
recursion with multiple cycles tied up together.

This plan is implemented in the Rec case of specBindItself.
 
Note [Specialisations already covered]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We obviously don't want to generate two specialisations for the same
argument pattern.  There are two wrinkles

1. We do the already-covered test in specDefn, not when we generate
the CallInfo in mkCallUDs.  We used to test in the latter place, but
we now iterate the specialiser somewhat, and the Id at the call site
might therefore not have all the RULES that we can see in specDefn

2. What about two specialisations where the second is an *instance*
of the first?  If the more specific one shows up first, we'll generate
specialisations for both.  If the *less* specific one shows up first,
we *don't* currently generate a specialisation for the more specific
one.  (See the call to lookupRule in already_covered.)  Reasons:
  (a) lookupRule doesn't say which matches are exact (bad reason)
  (b) if the earlier specialisation is user-provided, it's
      far from clear that we should auto-specialise further

Note [Auto-specialisation and RULES]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider:
   g :: Num a => a -> a
   g = ...

   f :: (Int -> Int) -> Int
   f w = ...
   {-# RULE f g = 0 #-}

Suppose that auto-specialisation makes a specialised version of
g::Int->Int That version won't appear in the LHS of the RULE for f.
So if the specialisation rule fires too early, the rule for f may
never fire. 

It might be possible to add new rules, to "complete" the rewrite system.
Thus when adding
	RULE forall d. g Int d = g_spec
also add
	RULE f g_spec = 0

But that's a bit complicated.  For now we ask the programmer's help,
by *copying the INLINE activation pragma* to the auto-specialised
rule.  So if g says {-# NOINLINE[2] g #-}, then the auto-spec rule
will also not be active until phase 2.  And that's what programmers
should jolly well do anyway, even aside from specialisation, to ensure
that g doesn't inline too early.

This in turn means that the RULE would never fire for a NOINLINE
thing so not much point in generating a specialisation at all.

Note [Specialisation shape]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We only specialise a function if it has visible top-level lambdas
corresponding to its overloading.  E.g. if
	f :: forall a. Eq a => ....
then its body must look like
	f = /\a. \d. ...

Reason: when specialising the body for a call (f ty dexp), we want to
substitute dexp for d, and pick up specialised calls in the body of f.

This doesn't always work.  One example I came across was this:
	newtype Gen a = MkGen{ unGen :: Int -> a }

	choose :: Eq a => a -> Gen a
	choose n = MkGen (\r -> n)

	oneof = choose (1::Int)

It's a silly exapmle, but we get
	choose = /\a. g `cast` co
where choose doesn't have any dict arguments.  Thus far I have not
tried to fix this (wait till there's a real example).

Note [Inline specialisations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We transfer to the specialised function any INLINE stuff from the
original.  This means 
   (a) the Activation for its inlining (from its InlinePragma)
   (b) any InlineRule

This is a change (Jun06).  Previously the idea is that the point of
inlining was precisely to specialise the function at its call site,
and that's not so important for the specialised copies.  But
*pragma-directed* specialisation now takes place in the
typechecker/desugarer, with manually specified INLINEs.  The
specialiation here is automatic.  It'd be very odd if a function
marked INLINE was specialised (because of some local use), and then
forever after (including importing modules) the specialised version
wasn't INLINEd.  After all, the programmer said INLINE!

You might wonder why we don't just not specialise INLINE functions.
It's because even INLINE functions are sometimes not inlined, when 
they aren't applied to interesting arguments.  But perhaps the type
arguments alone are enough to specialise (even though the args are too
boring to trigger inlining), and it's certainly better to call the 
specialised version.


%************************************************************************
%*									*
\subsubsection{UsageDetails and suchlike}
%*									*
%************************************************************************

\begin{code}
data UsageDetails 
  = MkUD {
	ud_binds :: !(Bag DictBind),
			-- Floated dictionary bindings
			-- The order is important; 
			-- in ds1 `union` ds2, bindings in ds2 can depend on those in ds1
			-- (Remember, Bags preserve order in GHC.)

	ud_calls :: !CallDetails  

	-- INVARIANT: suppose bs = bindersOf ud_binds
        -- Then 'calls' may *mention* 'bs', 
        -- but there should be no calls *for* bs
    }

instance Outputable UsageDetails where
  ppr (MkUD { ud_binds = dbs, ud_calls = calls })
	= ptext (sLit "MkUD") <+> braces (sep (punctuate comma 
		[ptext (sLit "binds") <+> equals <+> ppr dbs,
	 	 ptext (sLit "calls") <+> equals <+> ppr calls]))

type DictBind = (CoreBind, VarSet)
	-- The set is the free vars of the binding
	-- both tyvars and dicts

type DictExpr = CoreExpr

emptyUDs :: UsageDetails
emptyUDs = MkUD { ud_binds = emptyBag, ud_calls = emptyVarEnv }

------------------------------------------------------------			
type CallDetails  = IdEnv CallInfoSet
newtype CallKey   = CallKey [Maybe Type]			-- Nothing => unconstrained type argument

-- CallInfo uses a FiniteMap, thereby ensuring that
-- we record only one call instance for any key
--
-- The list of types and dictionaries is guaranteed to
-- match the type of f
type CallInfoSet = FiniteMap CallKey ([DictExpr], VarSet)
     	      		-- Range is dict args and the vars of the whole
			-- call (including tyvars)
			-- [*not* include the main id itself, of course]

type CallInfo = (CallKey, ([DictExpr], VarSet))

instance Outputable CallKey where
  ppr (CallKey ts) = ppr ts

-- Type isn't an instance of Ord, so that we can control which
-- instance we use.  That's tiresome here.  Oh well
instance Eq CallKey where
  k1 == k2 = case k1 `compare` k2 of { EQ -> True; _ -> False }

instance Ord CallKey where
  compare (CallKey k1) (CallKey k2) = cmpList cmp k1 k2
		where
		  cmp Nothing   Nothing   = EQ
		  cmp Nothing   (Just _)  = LT
		  cmp (Just _)  Nothing   = GT
		  cmp (Just t1) (Just t2) = tcCmpType t1 t2

unionCalls :: CallDetails -> CallDetails -> CallDetails
unionCalls c1 c2 = plusVarEnv_C plusFM c1 c2

-- plusCalls :: UsageDetails -> CallDetails -> UsageDetails
-- plusCalls uds call_ds = uds { ud_calls = ud_calls uds `unionCalls` call_ds }

callDetailsFVs :: CallDetails -> VarSet
callDetailsFVs calls = foldVarEnv (unionVarSet . callInfoFVs) emptyVarSet calls

callInfoFVs :: CallInfoSet -> VarSet
callInfoFVs call_info = foldFM (\_ (_,fv) vs -> unionVarSet fv vs) emptyVarSet call_info

------------------------------------------------------------			
singleCall :: Id -> [Maybe Type] -> [DictExpr] -> UsageDetails
singleCall id tys dicts 
  = MkUD {ud_binds = emptyBag, 
	  ud_calls = unitVarEnv id (unitFM (CallKey tys) (dicts, call_fvs)) }
  where
    call_fvs = exprsFreeVars dicts `unionVarSet` tys_fvs
    tys_fvs  = tyVarsOfTypes (catMaybes tys)
	-- The type args (tys) are guaranteed to be part of the dictionary
	-- types, because they are just the constrained types,
	-- and the dictionary is therefore sure to be bound
	-- inside the binding for any type variables free in the type;
	-- hence it's safe to neglect tyvars free in tys when making
	-- the free-var set for this call
	-- BUT I don't trust this reasoning; play safe and include tys_fvs
	--
	-- We don't include the 'id' itself.

mkCallUDs :: Id -> [CoreExpr] -> UsageDetails
mkCallUDs f args 
  | not (isLocalId f)	-- Imported from elsewhere
  || null theta	   	-- Not overloaded
  || not (all isClassPred theta)	
	-- Only specialise if all overloading is on class params. 
	-- In ptic, with implicit params, the type args
	--  *don't* say what the value of the implicit param is!
  || not (spec_tys `lengthIs` n_tyvars)
  || not ( dicts   `lengthIs` n_dicts)
  || not (any interestingDict dicts)	-- Note [Interesting dictionary arguments]
  -- See also Note [Specialisations already covered]
  = -- pprTrace "mkCallUDs: discarding" (vcat [ppr f, ppr args, ppr n_tyvars, ppr n_dicts, ppr (map interestingDict dicts)]) 
    emptyUDs	-- Not overloaded, or no specialisation wanted

  | otherwise
  = -- pprTrace "mkCallUDs: keeping" (vcat [ppr f, ppr args, ppr n_tyvars, ppr n_dicts, ppr (map interestingDict dicts)]) 
    singleCall f spec_tys dicts
  where
    (tyvars, theta, _) = tcSplitSigmaTy (idType f)
    constrained_tyvars = tyVarsOfTheta theta 
    n_tyvars	       = length tyvars
    n_dicts	       = length theta

    spec_tys = [mk_spec_ty tv ty | (tv, Type ty) <- tyvars `zip` args]
    dicts    = [dict_expr | (_, dict_expr) <- theta `zip` (drop n_tyvars args)]
    
    mk_spec_ty tyvar ty 
	| tyvar `elemVarSet` constrained_tyvars = Just ty
	| otherwise				= Nothing
\end{code}

Note [Interesting dictionary arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
	 \a.\d:Eq a.  let f = ... in ...(f d)...
There really is not much point in specialising f wrt the dictionary d,
because the code for the specialised f is not improved at all, because
d is lambda-bound.  We simply get junk specialisations.

What is "interesting"?  Just that it has *some* structure.

\begin{code}
interestingDict :: CoreExpr -> Bool
-- A dictionary argument is interesting if it has *some* structure
interestingDict (Var v) =  hasSomeUnfolding (idUnfolding v)
			|| isDataConWorkId v
interestingDict (Type _)	  = False
interestingDict (App fn (Type _)) = interestingDict fn
interestingDict (Note _ a)	  = interestingDict a
interestingDict (Cast e _)	  = interestingDict e
interestingDict _                 = True
\end{code}

\begin{code}
plusUDs :: UsageDetails -> UsageDetails -> UsageDetails
plusUDs (MkUD {ud_binds = db1, ud_calls = calls1})
	(MkUD {ud_binds = db2, ud_calls = calls2})
  = MkUD { ud_binds = db1    `unionBags`   db2 
         , ud_calls = calls1 `unionCalls`  calls2 }

plusUDList :: [UsageDetails] -> UsageDetails
plusUDList = foldr plusUDs emptyUDs

-----------------------------
_dictBindBndrs :: Bag DictBind -> [Id]
_dictBindBndrs dbs = foldrBag ((++) . bindersOf . fst) [] dbs

mkDB :: CoreBind -> DictBind
mkDB bind = (bind, bind_fvs bind)

bind_fvs :: CoreBind -> VarSet
bind_fvs (NonRec bndr rhs) = pair_fvs (bndr,rhs)
bind_fvs (Rec prs)	   = foldl delVarSet rhs_fvs bndrs
			   where
			     bndrs = map fst prs
			     rhs_fvs = unionVarSets (map pair_fvs prs)

pair_fvs :: (Id, CoreExpr) -> VarSet
pair_fvs (bndr, rhs) = exprFreeVars rhs `unionVarSet` idFreeVars bndr
	-- Don't forget variables mentioned in the
	-- rules of the bndr.  C.f. OccAnal.addRuleUsage
	-- Also tyvars mentioned in its type; they may not appear in the RHS
	--	type T a = Int
	--	x :: T a = 3

flattenDictBinds :: Bag DictBind -> [(Id,CoreExpr)] -> [(Id,CoreExpr)]
flattenDictBinds dbs pairs
  = foldrBag add pairs dbs
  where
    add (NonRec b r,_) pairs = (b,r) : pairs
    add (Rec prs1, _)  pairs = prs1 ++ pairs

snocDictBinds :: UsageDetails -> [CoreBind] -> UsageDetails
-- Add ud_binds to the tail end of the bindings in uds
snocDictBinds uds dbs
  = uds { ud_binds = ud_binds uds `unionBags` 
                     foldr (consBag . mkDB) emptyBag dbs }

consDictBind :: CoreBind -> UsageDetails -> UsageDetails
consDictBind bind uds = uds { ud_binds = mkDB bind `consBag` ud_binds uds }

snocDictBind :: UsageDetails -> CoreBind -> UsageDetails
snocDictBind uds bind = uds { ud_binds = ud_binds uds `snocBag` mkDB bind }

wrapDictBinds :: Bag DictBind -> [CoreBind] -> [CoreBind]
wrapDictBinds dbs binds
  = foldrBag add binds dbs
  where
    add (bind,_) binds = bind : binds

wrapDictBindsE :: Bag DictBind -> CoreExpr -> CoreExpr
wrapDictBindsE dbs expr
  = foldrBag add expr dbs
  where
    add (bind,_) expr = Let bind expr

----------------------
dumpUDs :: [CoreBndr] -> UsageDetails -> (UsageDetails, Bag DictBind)
-- Used at a lambda or case binder; just dump anything mentioning the binder
dumpUDs bndrs uds@(MkUD { ud_binds = orig_dbs, ud_calls = orig_calls })
  | null bndrs = (uds, emptyBag)  -- Common in case alternatives
  | otherwise  = (free_uds, dump_dbs)
  where
    free_uds = MkUD { ud_binds = free_dbs, ud_calls = free_calls }
    bndr_set = mkVarSet bndrs
    (free_dbs, dump_dbs, dump_set) = splitDictBinds orig_dbs bndr_set
    free_calls = deleteCallsMentioning dump_set $   -- Drop calls mentioning bndr_set on the floor
                 deleteCallsFor bndrs orig_calls    -- Discard calls for bndr_set; there should be 
		 			   	    -- no calls for any of the dicts in dump_dbs

dumpBindUDs :: [CoreBndr] -> UsageDetails -> (UsageDetails, Bag DictBind, Bool)
-- Used at a lambda or case binder; just dump anything mentioning the binder
dumpBindUDs bndrs (MkUD { ud_binds = orig_dbs, ud_calls = orig_calls })
  = (free_uds, dump_dbs, float_all)
  where
    free_uds = MkUD { ud_binds = free_dbs, ud_calls = free_calls }
    bndr_set = mkVarSet bndrs
    (free_dbs, dump_dbs, dump_set) = splitDictBinds orig_dbs bndr_set
    free_calls = deleteCallsFor bndrs orig_calls
    float_all = dump_set `intersectsVarSet` callDetailsFVs free_calls

callsForMe :: Id -> UsageDetails -> (UsageDetails, [CallInfo])
callsForMe fn (MkUD { ud_binds = orig_dbs, ud_calls = orig_calls })
  = -- pprTrace ("callsForMe")
    --         (vcat [ppr fn, 
    --                text "Orig dbs ="     <+> ppr (_dictBindBndrs orig_dbs), 
    --                text "Orig calls ="   <+> ppr orig_calls,
    --                text "Dep set ="      <+> ppr dep_set, 
    --                text "Calls for me =" <+> ppr calls_for_me]) $
    (uds_without_me, calls_for_me)
  where
    uds_without_me = MkUD { ud_binds = orig_dbs, ud_calls = delVarEnv orig_calls fn }
    calls_for_me = case lookupVarEnv orig_calls fn of
			Nothing -> []
			Just cs -> filter_dfuns (fmToList cs)

    dep_set = foldlBag go (unitVarSet fn) orig_dbs
    go dep_set (db,fvs) | fvs `intersectsVarSet` dep_set
                        = extendVarSetList dep_set (bindersOf db)
                        | otherwise = fvs

	-- Note [Specialisation of dictionary functions]
    filter_dfuns | isDFunId fn = filter ok_call
                 | otherwise   = \cs -> cs

    ok_call (_, (_,fvs)) = not (fvs `intersectsVarSet` dep_set)

----------------------
splitDictBinds :: Bag DictBind -> IdSet -> (Bag DictBind, Bag DictBind, IdSet)
-- Returns (free_dbs, dump_dbs, dump_set)
splitDictBinds dbs bndr_set
   = foldlBag split_db (emptyBag, emptyBag, bndr_set) dbs
		-- Important that it's foldl not foldr;
		-- we're accumulating the set of dumped ids in dump_set
   where
    split_db (free_dbs, dump_dbs, dump_idset) db@(bind, fvs)
	| dump_idset `intersectsVarSet` fvs	-- Dump it
	= (free_dbs, dump_dbs `snocBag` db,
	   extendVarSetList dump_idset (bindersOf bind))

	| otherwise	-- Don't dump it
	= (free_dbs `snocBag` db, dump_dbs, dump_idset)


----------------------
deleteCallsMentioning :: VarSet -> CallDetails -> CallDetails
-- Remove calls *mentioning* bs 
deleteCallsMentioning bs calls
  = mapVarEnv filter_calls calls
  where
    filter_calls :: CallInfoSet -> CallInfoSet
    filter_calls = filterFM (\_ (_, fvs) -> not (fvs `intersectsVarSet` bs))

deleteCallsFor :: [Id] -> CallDetails -> CallDetails
-- Remove calls *for* bs
deleteCallsFor bs calls = delVarEnvList calls bs
\end{code}


%************************************************************************
%*									*
\subsubsection{Boring helper functions}
%*									*
%************************************************************************

\begin{code}
type SpecM a = UniqSM a

initSM :: UniqSupply -> SpecM a -> a
initSM	  = initUs_

mapAndCombineSM :: (a -> SpecM (b, UsageDetails)) -> [a] -> SpecM ([b], UsageDetails)
mapAndCombineSM _ []     = return ([], emptyUDs)
mapAndCombineSM f (x:xs) = do (y, uds1) <- f x
                              (ys, uds2) <- mapAndCombineSM f xs
                              return (y:ys, uds1 `plusUDs` uds2)

cloneBindSM :: Subst -> CoreBind -> SpecM (Subst, Subst, CoreBind)
-- Clone the binders of the bind; return new bind with the cloned binders
-- Return the substitution to use for RHSs, and the one to use for the body
cloneBindSM subst (NonRec bndr rhs) = do
    us <- getUniqueSupplyM
    let (subst', bndr') = cloneIdBndr subst us bndr
    return (subst, subst', NonRec bndr' rhs)

cloneBindSM subst (Rec pairs) = do
    us <- getUniqueSupplyM
    let (subst', bndrs') = cloneRecIdBndrs subst us (map fst pairs)
    return (subst', subst', Rec (bndrs' `zip` map snd pairs))

newDictBndrs :: Subst -> [CoreBndr] -> SpecM (Subst, [CoreBndr])
-- Make up completely fresh binders for the dictionaries
-- Their bindings are going to float outwards
newDictBndrs subst bndrs 
  = do { bndrs' <- mapM new bndrs
       ; let subst' = extendIdSubstList subst 
                        [(d, Var d') | (d,d') <- bndrs `zip` bndrs']
       ; return (subst', bndrs' ) }
  where
    new b = do { uniq <- getUniqueM
    	       ; let n   = idName b
                     ty' = CoreSubst.substTy subst (idType b)
               ; return (mkUserLocal (nameOccName n) uniq ty' (getSrcSpan n)) }

newSpecIdSM :: Id -> Type -> SpecM Id
    -- Give the new Id a similar occurrence name to the old one
newSpecIdSM old_id new_ty
  = do	{ uniq <- getUniqueM
    	; let name    = idName old_id
	      new_occ = mkSpecOcc (nameOccName name)
	      new_id  = mkUserLocal new_occ uniq new_ty (getSrcSpan name)
        ; return new_id }
\end{code}


		Old (but interesting) stuff about unboxed bindings
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

What should we do when a value is specialised to a *strict* unboxed value?

	map_*_* f (x:xs) = let h = f x
			       t = map f xs
			   in h:t

Could convert let to case:

	map_*_Int# f (x:xs) = case f x of h# ->
			      let t = map f xs
			      in h#:t

This may be undesirable since it forces evaluation here, but the value
may not be used in all branches of the body. In the general case this
transformation is impossible since the mutual recursion in a letrec
cannot be expressed as a case.

There is also a problem with top-level unboxed values, since our
implementation cannot handle unboxed values at the top level.

Solution: Lift the binding of the unboxed value and extract it when it
is used:

	map_*_Int# f (x:xs) = let h = case (f x) of h# -> _Lift h#
				  t = map f xs
			      in case h of
				 _Lift h# -> h#:t

Now give it to the simplifier and the _Lifting will be optimised away.

The benfit is that we have given the specialised "unboxed" values a
very simplep lifted semantics and then leave it up to the simplifier to
optimise it --- knowing that the overheads will be removed in nearly
all cases.

In particular, the value will only be evaluted in the branches of the
program which use it, rather than being forced at the point where the
value is bound. For example:

	filtermap_*_* p f (x:xs)
	  = let h = f x
		t = ...
	    in case p x of
		True  -> h:t
		False -> t
   ==>
	filtermap_*_Int# p f (x:xs)
	  = let h = case (f x) of h# -> _Lift h#
		t = ...
	    in case p x of
		True  -> case h of _Lift h#
			   -> h#:t
		False -> t

The binding for h can still be inlined in the one branch and the
_Lifting eliminated.


Question: When won't the _Lifting be eliminated?

Answer: When they at the top-level (where it is necessary) or when
inlining would duplicate work (or possibly code depending on
options). However, the _Lifting will still be eliminated if the
strictness analyser deems the lifted binding strict.