1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1993-1998
\section[StgLint]{A ``lint'' pass to check for Stg correctness}
-}
{-# LANGUAGE CPP #-}
module StgLint ( lintStgBindings ) where
import StgSyn
import Bag ( Bag, emptyBag, isEmptyBag, snocBag, bagToList )
import Id ( Id, idType, isLocalId )
import VarSet
import DataCon
import CoreSyn ( AltCon(..) )
import PrimOp ( primOpType )
import Literal ( literalType )
import Maybes
import Name ( getSrcLoc )
import ErrUtils ( MsgDoc, Severity(..), mkLocMessage )
import Type
import RepType
import TyCon
import Util
import SrcLoc
import Outputable
import Control.Monad
import Data.Function
#include "HsVersions.h"
{-
Checks for
(a) *some* type errors
(b) locally-defined variables used but not defined
Note: unless -dverbose-stg is on, display of lint errors will result
in "panic: bOGUS_LVs".
WARNING:
~~~~~~~~
This module has suffered bit-rot; it is likely to yield lint errors
for Stg code that is currently perfectly acceptable for code
generation. Solution: don't use it! (KSW 2000-05).
************************************************************************
* *
\subsection{``lint'' for various constructs}
* *
************************************************************************
@lintStgBindings@ is the top-level interface function.
-}
lintStgBindings :: String -> [StgBinding] -> [StgBinding]
lintStgBindings whodunnit binds
= {-# SCC "StgLint" #-}
case (initL (lint_binds binds)) of
Nothing -> binds
Just msg -> pprPanic "" (vcat [
text "*** Stg Lint ErrMsgs: in" <+>
text whodunnit <+> text "***",
msg,
text "*** Offending Program ***",
pprStgBindings binds,
text "*** End of Offense ***"])
where
lint_binds :: [StgBinding] -> LintM ()
lint_binds [] = return ()
lint_binds (bind:binds) = do
binders <- lintStgBinds bind
addInScopeVars binders $
lint_binds binds
lintStgArg :: StgArg -> LintM (Maybe Type)
lintStgArg (StgLitArg lit) = return (Just (literalType lit))
lintStgArg (StgVarArg v) = lintStgVar v
lintStgVar :: Id -> LintM (Maybe Kind)
lintStgVar v = do checkInScope v
return (Just (idType v))
lintStgBinds :: StgBinding -> LintM [Id] -- Returns the binders
lintStgBinds (StgNonRec binder rhs) = do
lint_binds_help (binder,rhs)
return [binder]
lintStgBinds (StgRec pairs)
= addInScopeVars binders $ do
mapM_ lint_binds_help pairs
return binders
where
binders = [b | (b,_) <- pairs]
lint_binds_help :: (Id, StgRhs) -> LintM ()
lint_binds_help (binder, rhs)
= addLoc (RhsOf binder) $ do
-- Check the rhs
_maybe_rhs_ty <- lintStgRhs rhs
-- Check binder doesn't have unlifted type
checkL (not (isUnliftedType binder_ty))
(mkUnliftedTyMsg binder rhs)
-- Check match to RHS type
-- Actually we *can't* check the RHS type, because
-- unsafeCoerce means it really might not match at all
-- notably; eg x::Int = (error @Bool "urk") |> unsafeCoerce...
-- case maybe_rhs_ty of
-- Nothing -> return ()
-- Just rhs_ty -> checkTys binder_ty
-- rhs_ty
--- (mkRhsMsg binder rhs_ty)
return ()
where
binder_ty = idType binder
lintStgRhs :: StgRhs -> LintM (Maybe Type) -- Just ty => type is exact
lintStgRhs (StgRhsClosure _ _ _ _ [] expr)
= lintStgExpr expr
lintStgRhs (StgRhsClosure _ _ _ _ binders expr)
= addLoc (LambdaBodyOf binders) $
addInScopeVars binders $ runMaybeT $ do
body_ty <- MaybeT $ lintStgExpr expr
return (mkFunTys (map idType binders) body_ty)
lintStgRhs rhs@(StgRhsCon _ con args) = do
-- TODO: Check arg_tys
when (isUnboxedTupleCon con || isUnboxedSumCon con) $
addErrL (text "StgRhsCon is an unboxed tuple or sum application" $$
ppr rhs)
runMaybeT $ do
arg_tys <- mapM (MaybeT . lintStgArg) args
MaybeT $ checkFunApp con_ty arg_tys (mkRhsConMsg con_ty arg_tys)
where
con_ty = dataConRepType con
lintStgExpr :: StgExpr -> LintM (Maybe Type) -- Just ty => type is exact
lintStgExpr (StgLit l) = return (Just (literalType l))
lintStgExpr e@(StgApp fun args) = runMaybeT $ do
fun_ty <- MaybeT $ lintStgVar fun
arg_tys <- mapM (MaybeT . lintStgArg) args
MaybeT $ checkFunApp fun_ty arg_tys (mkFunAppMsg fun_ty arg_tys e)
lintStgExpr e@(StgConApp con args _arg_tys) = runMaybeT $ do
-- TODO: Check arg_tys
arg_tys <- mapM (MaybeT . lintStgArg) args
MaybeT $ checkFunApp con_ty arg_tys (mkFunAppMsg con_ty arg_tys e)
where
con_ty = dataConRepType con
lintStgExpr e@(StgOpApp (StgPrimOp op) args _) = runMaybeT $ do
arg_tys <- mapM (MaybeT . lintStgArg) args
MaybeT $ checkFunApp op_ty arg_tys (mkFunAppMsg op_ty arg_tys e)
where
op_ty = primOpType op
lintStgExpr (StgOpApp _ args res_ty) = runMaybeT $ do
-- We don't have enough type information to check
-- the application for StgFCallOp and StgPrimCallOp; ToDo
_maybe_arg_tys <- mapM (MaybeT . lintStgArg) args
return res_ty
lintStgExpr (StgLam bndrs _) = do
addErrL (text "Unexpected StgLam" <+> ppr bndrs)
return Nothing
lintStgExpr (StgLet binds body) = do
binders <- lintStgBinds binds
addLoc (BodyOfLetRec binders) $
addInScopeVars binders $
lintStgExpr body
lintStgExpr (StgLetNoEscape binds body) = do
binders <- lintStgBinds binds
addLoc (BodyOfLetRec binders) $
addInScopeVars binders $
lintStgExpr body
lintStgExpr (StgTick _ expr) = lintStgExpr expr
lintStgExpr (StgCase scrut bndr alts_type alts) = runMaybeT $ do
_ <- MaybeT $ lintStgExpr scrut
in_scope <- MaybeT $ liftM Just $
case alts_type of
AlgAlt tc -> check_bndr tc >> return True
PrimAlt tc -> check_bndr tc >> return True
MultiValAlt _ -> return False -- Binder is always dead in this case
PolyAlt -> return True
MaybeT $ addInScopeVars [bndr | in_scope] $
lintStgAlts alts scrut_ty
where
scrut_ty = idType bndr
UnaryRep scrut_rep = repType scrut_ty -- Not used if scrutinee is unboxed tuple or sum
check_bndr tc = case tyConAppTyCon_maybe scrut_rep of
Just bndr_tc -> checkL (tc == bndr_tc) bad_bndr
Nothing -> addErrL bad_bndr
where
bad_bndr = mkDefltMsg bndr tc
lintStgAlts :: [StgAlt]
-> Type -- Type of scrutinee
-> LintM (Maybe Type) -- Just ty => type is accurage
lintStgAlts alts scrut_ty = do
maybe_result_tys <- mapM (lintAlt scrut_ty) alts
-- Check the result types
case catMaybes (maybe_result_tys) of
[] -> return Nothing
(first_ty:_tys) -> do -- mapM_ check tys
return (Just first_ty)
where
-- check ty = checkTys first_ty ty (mkCaseAltMsg alts)
-- We can't check that the alternatives have the
-- same type, because they don't, with unsafeCoerce#
lintAlt :: Type -> (AltCon, [Id], StgExpr) -> LintM (Maybe Type)
lintAlt _ (DEFAULT, _, rhs)
= lintStgExpr rhs
lintAlt scrut_ty (LitAlt lit, _, rhs) = do
checkTys (literalType lit) scrut_ty (mkAltMsg1 scrut_ty)
lintStgExpr rhs
lintAlt scrut_ty (DataAlt con, args, rhs) = do
case splitTyConApp_maybe scrut_ty of
Just (tycon, tys_applied) | isAlgTyCon tycon &&
not (isNewTyCon tycon) -> do
let
cons = tyConDataCons tycon
arg_tys = dataConInstArgTys con tys_applied
-- This does not work for existential constructors
checkL (con `elem` cons) (mkAlgAltMsg2 scrut_ty con)
checkL (length args == dataConRepArity con) (mkAlgAltMsg3 con args)
when (isVanillaDataCon con) $
mapM_ check (zipEqual "lintAlgAlt:stg" arg_tys args)
return ()
_ ->
addErrL (mkAltMsg1 scrut_ty)
addInScopeVars args $
lintStgExpr rhs
where
check (ty, arg) = checkTys ty (idType arg) (mkAlgAltMsg4 ty arg)
-- elem: yes, the elem-list here can sometimes be long-ish,
-- but as it's use-once, probably not worth doing anything different
-- We give it its own copy, so it isn't overloaded.
elem _ [] = False
elem x (y:ys) = x==y || elem x ys
{-
************************************************************************
* *
\subsection[lint-monad]{The Lint monad}
* *
************************************************************************
-}
newtype LintM a = LintM
{ unLintM :: [LintLocInfo] -- Locations
-> IdSet -- Local vars in scope
-> Bag MsgDoc -- Error messages so far
-> (a, Bag MsgDoc) -- Result and error messages (if any)
}
data LintLocInfo
= RhsOf Id -- The variable bound
| LambdaBodyOf [Id] -- The lambda-binder
| BodyOfLetRec [Id] -- One of the binders
dumpLoc :: LintLocInfo -> (SrcSpan, SDoc)
dumpLoc (RhsOf v) =
(srcLocSpan (getSrcLoc v), text " [RHS of " <> pp_binders [v] <> char ']' )
dumpLoc (LambdaBodyOf bs) =
(srcLocSpan (getSrcLoc (head bs)), text " [in body of lambda with binders " <> pp_binders bs <> char ']' )
dumpLoc (BodyOfLetRec bs) =
(srcLocSpan (getSrcLoc (head bs)), text " [in body of letrec with binders " <> pp_binders bs <> char ']' )
pp_binders :: [Id] -> SDoc
pp_binders bs
= sep (punctuate comma (map pp_binder bs))
where
pp_binder b
= hsep [ppr b, dcolon, ppr (idType b)]
initL :: LintM a -> Maybe MsgDoc
initL (LintM m)
= case (m [] emptyVarSet emptyBag) of { (_, errs) ->
if isEmptyBag errs then
Nothing
else
Just (vcat (punctuate blankLine (bagToList errs)))
}
instance Functor LintM where
fmap = liftM
instance Applicative LintM where
pure a = LintM $ \_loc _scope errs -> (a, errs)
(<*>) = ap
(*>) = thenL_
instance Monad LintM where
(>>=) = thenL
(>>) = (*>)
thenL :: LintM a -> (a -> LintM b) -> LintM b
thenL m k = LintM $ \loc scope errs
-> case unLintM m loc scope errs of
(r, errs') -> unLintM (k r) loc scope errs'
thenL_ :: LintM a -> LintM b -> LintM b
thenL_ m k = LintM $ \loc scope errs
-> case unLintM m loc scope errs of
(_, errs') -> unLintM k loc scope errs'
checkL :: Bool -> MsgDoc -> LintM ()
checkL True _ = return ()
checkL False msg = addErrL msg
addErrL :: MsgDoc -> LintM ()
addErrL msg = LintM $ \loc _scope errs -> ((), addErr errs msg loc)
addErr :: Bag MsgDoc -> MsgDoc -> [LintLocInfo] -> Bag MsgDoc
addErr errs_so_far msg locs
= errs_so_far `snocBag` mk_msg locs
where
mk_msg (loc:_) = let (l,hdr) = dumpLoc loc
in mkLocMessage SevWarning l (hdr $$ msg)
mk_msg [] = msg
addLoc :: LintLocInfo -> LintM a -> LintM a
addLoc extra_loc m = LintM $ \loc scope errs
-> unLintM m (extra_loc:loc) scope errs
addInScopeVars :: [Id] -> LintM a -> LintM a
addInScopeVars ids m = LintM $ \loc scope errs
-> let
new_set = mkVarSet ids
in unLintM m loc (scope `unionVarSet` new_set) errs
{-
Checking function applications: we only check that the type has the
right *number* of arrows, we don't actually compare the types. This
is because we can't expect the types to be equal - the type
applications and type lambdas that we use to calculate accurate types
have long since disappeared.
-}
checkFunApp :: Type -- The function type
-> [Type] -- The arg type(s)
-> MsgDoc -- Error message
-> LintM (Maybe Type) -- Just ty => result type is accurate
checkFunApp fun_ty arg_tys msg
= do { case mb_msg of
Just msg -> addErrL msg
Nothing -> return ()
; return mb_ty }
where
(mb_ty, mb_msg) = cfa True fun_ty arg_tys
cfa :: Bool -> Type -> [Type] -> (Maybe Type -- Accurate result?
, Maybe MsgDoc) -- Errors?
cfa accurate fun_ty [] -- Args have run out; that's fine
= (if accurate then Just fun_ty else Nothing, Nothing)
cfa accurate fun_ty arg_tys@(arg_ty':arg_tys')
| Just (arg_ty, res_ty) <- splitFunTy_maybe fun_ty
= if accurate && not (arg_ty `stgEqType` arg_ty')
then (Nothing, Just msg) -- Arg type mismatch
else cfa accurate res_ty arg_tys'
| Just (_, fun_ty') <- splitForAllTy_maybe fun_ty
= cfa False fun_ty' arg_tys
| Just (tc,tc_args) <- splitTyConApp_maybe fun_ty
, isNewTyCon tc
= if length tc_args < tyConArity tc
then WARN( True, text "cfa: unsaturated newtype" <+> ppr fun_ty $$ msg )
(Nothing, Nothing) -- This is odd, but I've seen it
else cfa False (newTyConInstRhs tc tc_args) arg_tys
| Just tc <- tyConAppTyCon_maybe fun_ty
, not (isTypeFamilyTyCon tc) -- Definite error
= (Nothing, Just msg) -- Too many args
| otherwise
= (Nothing, Nothing)
stgEqType :: Type -> Type -> Bool
-- Compare types, but crudely because we have discarded
-- both casts and type applications, so types might look
-- different but be the same. So reply "True" if in doubt.
-- "False" means that the types are definitely different.
--
-- Fundamentally this is a losing battle because of unsafeCoerce
stgEqType orig_ty1 orig_ty2
= gos (repType orig_ty1) (repType orig_ty2)
where
gos :: RepType -> RepType -> Bool
gos (MultiRep slots1) (MultiRep slots2)
= slots1 == slots2
gos (UnaryRep ty1) (UnaryRep ty2) = go ty1 ty2
gos _ _ = False
go :: UnaryType -> UnaryType -> Bool
go ty1 ty2
| Just (tc1, tc_args1) <- splitTyConApp_maybe ty1
, Just (tc2, tc_args2) <- splitTyConApp_maybe ty2
, let res = if tc1 == tc2
then equalLength tc_args1 tc_args2 && and (zipWith (gos `on` repType) tc_args1 tc_args2)
else -- TyCons don't match; but don't bleat if either is a
-- family TyCon because a coercion might have made it
-- equal to something else
(isFamilyTyCon tc1 || isFamilyTyCon tc2)
= if res then True
else
pprTrace "stgEqType: unequal" (vcat [ppr ty1, ppr ty2])
False
| otherwise = True -- Conservatively say "fine".
-- Type variables in particular
checkInScope :: Id -> LintM ()
checkInScope id = LintM $ \loc scope errs
-> if isLocalId id && not (id `elemVarSet` scope) then
((), addErr errs (hsep [ppr id, text "is out of scope"]) loc)
else
((), errs)
checkTys :: Type -> Type -> MsgDoc -> LintM ()
checkTys ty1 ty2 msg = LintM $ \loc _scope errs
-> if (ty1 `stgEqType` ty2)
then ((), errs)
else ((), addErr errs msg loc)
_mkCaseAltMsg :: [StgAlt] -> MsgDoc
_mkCaseAltMsg _alts
= ($$) (text "In some case alternatives, type of alternatives not all same:")
(Outputable.empty) -- LATER: ppr alts
mkDefltMsg :: Id -> TyCon -> MsgDoc
mkDefltMsg bndr tc
= ($$) (text "Binder of a case expression doesn't match type of scrutinee:")
(ppr bndr $$ ppr (idType bndr) $$ ppr tc)
mkFunAppMsg :: Type -> [Type] -> StgExpr -> MsgDoc
mkFunAppMsg fun_ty arg_tys expr
= vcat [text "In a function application, function type doesn't match arg types:",
hang (text "Function type:") 4 (ppr fun_ty),
hang (text "Arg types:") 4 (vcat (map (ppr) arg_tys)),
hang (text "Expression:") 4 (ppr expr)]
mkRhsConMsg :: Type -> [Type] -> MsgDoc
mkRhsConMsg fun_ty arg_tys
= vcat [text "In a RHS constructor application, con type doesn't match arg types:",
hang (text "Constructor type:") 4 (ppr fun_ty),
hang (text "Arg types:") 4 (vcat (map (ppr) arg_tys))]
mkAltMsg1 :: Type -> MsgDoc
mkAltMsg1 ty
= ($$) (text "In a case expression, type of scrutinee does not match patterns")
(ppr ty)
mkAlgAltMsg2 :: Type -> DataCon -> MsgDoc
mkAlgAltMsg2 ty con
= vcat [
text "In some algebraic case alternative, constructor is not a constructor of scrutinee type:",
ppr ty,
ppr con
]
mkAlgAltMsg3 :: DataCon -> [Id] -> MsgDoc
mkAlgAltMsg3 con alts
= vcat [
text "In some algebraic case alternative, number of arguments doesn't match constructor:",
ppr con,
ppr alts
]
mkAlgAltMsg4 :: Type -> Id -> MsgDoc
mkAlgAltMsg4 ty arg
= vcat [
text "In some algebraic case alternative, type of argument doesn't match data constructor:",
ppr ty,
ppr arg
]
_mkRhsMsg :: Id -> Type -> MsgDoc
_mkRhsMsg binder ty
= vcat [hsep [text "The type of this binder doesn't match the type of its RHS:",
ppr binder],
hsep [text "Binder's type:", ppr (idType binder)],
hsep [text "Rhs type:", ppr ty]
]
mkUnliftedTyMsg :: Id -> StgRhs -> SDoc
mkUnliftedTyMsg binder rhs
= (text "Let(rec) binder" <+> quotes (ppr binder) <+>
text "has unlifted type" <+> quotes (ppr (idType binder)))
$$
(text "RHS:" <+> ppr rhs)
|