1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[StgSyn]{Shared term graph (STG) syntax for spineless-tagless code generation}
This data type represents programs just before code generation (conversion to
@Cmm@): basically, what we have is a stylised form of @CoreSyntax@, the style
being one that happens to be ideally suited to spineless tagless code
generation.
-}
{-# LANGUAGE CPP #-}
module StgSyn (
GenStgArg(..),
GenStgLiveVars,
GenStgBinding(..), GenStgExpr(..), GenStgRhs(..),
GenStgAlt, AltType(..),
UpdateFlag(..), isUpdatable,
StgBinderInfo,
noBinderInfo, stgSatOcc, stgUnsatOcc, satCallsOnly,
combineStgBinderInfo,
-- a set of synonyms for the most common (only :-) parameterisation
StgArg, StgLiveVars,
StgBinding, StgExpr, StgRhs, StgAlt,
-- StgOp
StgOp(..),
-- utils
topStgBindHasCafRefs, stgArgHasCafRefs, stgRhsArity,
isDllConApp,
stgArgType,
stripStgTicksTop,
pprStgBinding, pprStgBindings,
pprStgLVs
) where
#include "HsVersions.h"
import CoreSyn ( AltCon, Tickish )
import CostCentre ( CostCentreStack )
import Data.List ( intersperse )
import DataCon
import DynFlags
import FastString
import ForeignCall ( ForeignCall )
import Id
import IdInfo ( mayHaveCafRefs )
import Literal ( Literal, literalType )
import Module ( Module )
import Outputable
import Packages ( isDllName )
import Platform
import PprCore ( {- instances -} )
import PrimOp ( PrimOp, PrimCall )
import TyCon ( PrimRep(..) )
import TyCon ( TyCon )
import Type ( Type )
import Type ( typePrimRep )
import UniqSet
import Unique ( Unique )
import Util
{-
************************************************************************
* *
\subsection{@GenStgBinding@}
* *
************************************************************************
As usual, expressions are interesting; other things are boring. Here
are the boring things [except note the @GenStgRhs@], parameterised
with respect to binder and occurrence information (just as in
@CoreSyn@):
-}
data GenStgBinding bndr occ
= StgNonRec bndr (GenStgRhs bndr occ)
| StgRec [(bndr, GenStgRhs bndr occ)]
{-
************************************************************************
* *
\subsection{@GenStgArg@}
* *
************************************************************************
-}
data GenStgArg occ
= StgVarArg occ
| StgLitArg Literal
-- | Does this constructor application refer to
-- anything in a different *Windows* DLL?
-- If so, we can't allocate it statically
isDllConApp :: DynFlags -> Module -> DataCon -> [StgArg] -> Bool
isDllConApp dflags this_mod con args
| platformOS (targetPlatform dflags) == OSMinGW32
= isDllName dflags this_pkg this_mod (dataConName con) || any is_dll_arg args
| otherwise = False
where
-- NB: typePrimRep is legit because any free variables won't have
-- unlifted type (there are no unlifted things at top level)
is_dll_arg :: StgArg -> Bool
is_dll_arg (StgVarArg v) = isAddrRep (typePrimRep (idType v))
&& isDllName dflags this_pkg this_mod (idName v)
is_dll_arg _ = False
this_pkg = thisPackage dflags
-- True of machine addresses; these are the things that don't
-- work across DLLs. The key point here is that VoidRep comes
-- out False, so that a top level nullary GADT constructor is
-- False for isDllConApp
-- data T a where
-- T1 :: T Int
-- gives
-- T1 :: forall a. (a~Int) -> T a
-- and hence the top-level binding
-- $WT1 :: T Int
-- $WT1 = T1 Int (Coercion (Refl Int))
-- The coercion argument here gets VoidRep
isAddrRep :: PrimRep -> Bool
isAddrRep AddrRep = True
isAddrRep PtrRep = True
isAddrRep _ = False
-- | Type of an @StgArg@
--
-- Very half baked becase we have lost the type arguments.
stgArgType :: StgArg -> Type
stgArgType (StgVarArg v) = idType v
stgArgType (StgLitArg lit) = literalType lit
-- | Strip ticks of a given type from an STG expression
stripStgTicksTop :: (Tickish Id -> Bool) -> StgExpr -> ([Tickish Id], StgExpr)
stripStgTicksTop p = go []
where go ts (StgTick t e) | p t = go (t:ts) e
go ts other = (reverse ts, other)
{-
************************************************************************
* *
\subsection{STG expressions}
* *
************************************************************************
The @GenStgExpr@ data type is parameterised on binder and occurrence
info, as before.
************************************************************************
* *
\subsubsection{@GenStgExpr@ application}
* *
************************************************************************
An application is of a function to a list of atoms [not expressions].
Operationally, we want to push the arguments on the stack and call the
function. (If the arguments were expressions, we would have to build
their closures first.)
There is no constructor for a lone variable; it would appear as
@StgApp var []@.
-}
type GenStgLiveVars occ = UniqSet occ
data GenStgExpr bndr occ
= StgApp
occ -- function
[GenStgArg occ] -- arguments; may be empty
{-
************************************************************************
* *
\subsubsection{@StgConApp@ and @StgPrimApp@---saturated applications}
* *
************************************************************************
There are specialised forms of application, for constructors,
primitives, and literals.
-}
| StgLit Literal
-- StgConApp is vital for returning unboxed tuples
-- which can't be let-bound first
| StgConApp DataCon
[GenStgArg occ] -- Saturated
| StgOpApp StgOp -- Primitive op or foreign call
[GenStgArg occ] -- Saturated
Type -- Result type
-- We need to know this so that we can
-- assign result registers
{-
************************************************************************
* *
\subsubsection{@StgLam@}
* *
************************************************************************
StgLam is used *only* during CoreToStg's work. Before CoreToStg has
finished it encodes (\x -> e) as (let f = \x -> e in f)
-}
| StgLam
[bndr]
StgExpr -- Body of lambda
{-
************************************************************************
* *
\subsubsection{@GenStgExpr@: case-expressions}
* *
************************************************************************
This has the same boxed/unboxed business as Core case expressions.
-}
| StgCase
(GenStgExpr bndr occ)
-- the thing to examine
bndr -- binds the result of evaluating the scrutinee
AltType
[GenStgAlt bndr occ]
-- The DEFAULT case is always *first*
-- if it is there at all
{-
************************************************************************
* *
\subsubsection{@GenStgExpr@: @let(rec)@-expressions}
* *
************************************************************************
The various forms of let(rec)-expression encode most of the
interesting things we want to do.
\begin{enumerate}
\item
\begin{verbatim}
let-closure x = [free-vars] [args] expr
in e
\end{verbatim}
is equivalent to
\begin{verbatim}
let x = (\free-vars -> \args -> expr) free-vars
\end{verbatim}
\tr{args} may be empty (and is for most closures). It isn't under
circumstances like this:
\begin{verbatim}
let x = (\y -> y+z)
\end{verbatim}
This gets mangled to
\begin{verbatim}
let-closure x = [z] [y] (y+z)
\end{verbatim}
The idea is that we compile code for @(y+z)@ in an environment in which
@z@ is bound to an offset from \tr{Node}, and @y@ is bound to an
offset from the stack pointer.
(A let-closure is an @StgLet@ with a @StgRhsClosure@ RHS.)
\item
\begin{verbatim}
let-constructor x = Constructor [args]
in e
\end{verbatim}
(A let-constructor is an @StgLet@ with a @StgRhsCon@ RHS.)
\item
Letrec-expressions are essentially the same deal as
let-closure/let-constructor, so we use a common structure and
distinguish between them with an @is_recursive@ boolean flag.
\item
\begin{verbatim}
let-unboxed u = an arbitrary arithmetic expression in unboxed values
in e
\end{verbatim}
All the stuff on the RHS must be fully evaluated.
No function calls either!
(We've backed away from this toward case-expressions with
suitably-magical alts ...)
\item
~[Advanced stuff here! Not to start with, but makes pattern matching
generate more efficient code.]
\begin{verbatim}
let-escapes-not fail = expr
in e'
\end{verbatim}
Here the idea is that @e'@ guarantees not to put @fail@ in a data structure,
or pass it to another function. All @e'@ will ever do is tail-call @fail@.
Rather than build a closure for @fail@, all we need do is to record the stack
level at the moment of the @let-escapes-not@; then entering @fail@ is just
a matter of adjusting the stack pointer back down to that point and entering
the code for it.
Another example:
\begin{verbatim}
f x y = let z = huge-expression in
if y==1 then z else
if y==2 then z else
1
\end{verbatim}
(A let-escapes-not is an @StgLetNoEscape@.)
\item
We may eventually want:
\begin{verbatim}
let-literal x = Literal
in e
\end{verbatim}
\end{enumerate}
And so the code for let(rec)-things:
-}
| StgLet
(GenStgBinding bndr occ) -- right hand sides (see below)
(GenStgExpr bndr occ) -- body
| StgLetNoEscape
(GenStgBinding bndr occ) -- right hand sides (see below)
(GenStgExpr bndr occ) -- body
{-
%************************************************************************
%* *
\subsubsection{@GenStgExpr@: @hpc@, @scc@ and other debug annotations}
%* *
%************************************************************************
Finally for @hpc@ expressions we introduce a new STG construct.
-}
| StgTick
(Tickish bndr)
(GenStgExpr bndr occ) -- sub expression
-- END of GenStgExpr
{-
************************************************************************
* *
\subsection{STG right-hand sides}
* *
************************************************************************
Here's the rest of the interesting stuff for @StgLet@s; the first
flavour is for closures:
-}
data GenStgRhs bndr occ
= StgRhsClosure
CostCentreStack -- CCS to be attached (default is CurrentCCS)
StgBinderInfo -- Info about how this binder is used (see below)
[occ] -- non-global free vars; a list, rather than
-- a set, because order is important
!UpdateFlag -- ReEntrant | Updatable | SingleEntry
[bndr] -- arguments; if empty, then not a function;
-- as above, order is important.
(GenStgExpr bndr occ) -- body
{-
An example may be in order. Consider:
\begin{verbatim}
let t = \x -> \y -> ... x ... y ... p ... q in e
\end{verbatim}
Pulling out the free vars and stylising somewhat, we get the equivalent:
\begin{verbatim}
let t = (\[p,q] -> \[x,y] -> ... x ... y ... p ...q) p q
\end{verbatim}
Stg-operationally, the @[x,y]@ are on the stack, the @[p,q]@ are
offsets from @Node@ into the closure, and the code ptr for the closure
will be exactly that in parentheses above.
The second flavour of right-hand-side is for constructors (simple but important):
-}
| StgRhsCon
CostCentreStack -- CCS to be attached (default is CurrentCCS).
-- Top-level (static) ones will end up with
-- DontCareCCS, because we don't count static
-- data in heap profiles, and we don't set CCCS
-- from static closure.
DataCon -- constructor
[GenStgArg occ] -- args
stgRhsArity :: StgRhs -> Int
stgRhsArity (StgRhsClosure _ _ _ _ bndrs _)
= ASSERT( all isId bndrs ) length bndrs
-- The arity never includes type parameters, but they should have gone by now
stgRhsArity (StgRhsCon _ _ _) = 0
-- Note [CAF consistency]
-- ~~~~~~~~~~~~~~~~~~~~~~
--
-- `topStgBindHasCafRefs` is only used by an assert (`consistentCafInfo` in
-- `CoreToStg`) to make sure CAF-ness predicted by `TidyPgm` is consistent with
-- reality.
--
-- Specifically, if the RHS mentions any Id that itself is marked
-- `MayHaveCafRefs`; or if the binding is a top-level updateable thunk; then the
-- `Id` for the binding should be marked `MayHaveCafRefs`. The potential trouble
-- is that `TidyPgm` computed the CAF info on the `Id` but some transformations
-- have taken place since then.
topStgBindHasCafRefs :: GenStgBinding bndr Id -> Bool
topStgBindHasCafRefs (StgNonRec _ rhs)
= topRhsHasCafRefs rhs
topStgBindHasCafRefs (StgRec binds)
= any topRhsHasCafRefs (map snd binds)
topRhsHasCafRefs :: GenStgRhs bndr Id -> Bool
topRhsHasCafRefs (StgRhsClosure _ _ _ upd _ body)
= -- See Note [CAF consistency]
isUpdatable upd || exprHasCafRefs body
topRhsHasCafRefs (StgRhsCon _ _ args)
= any stgArgHasCafRefs args
exprHasCafRefs :: GenStgExpr bndr Id -> Bool
exprHasCafRefs (StgApp f args)
= stgIdHasCafRefs f || any stgArgHasCafRefs args
exprHasCafRefs StgLit{}
= False
exprHasCafRefs (StgConApp _ args)
= any stgArgHasCafRefs args
exprHasCafRefs (StgOpApp _ args _)
= any stgArgHasCafRefs args
exprHasCafRefs (StgLam _ body)
= exprHasCafRefs body
exprHasCafRefs (StgCase scrt _ _ alts)
= exprHasCafRefs scrt || any altHasCafRefs alts
exprHasCafRefs (StgLet bind body)
= bindHasCafRefs bind || exprHasCafRefs body
exprHasCafRefs (StgLetNoEscape bind body)
= bindHasCafRefs bind || exprHasCafRefs body
exprHasCafRefs (StgTick _ expr)
= exprHasCafRefs expr
bindHasCafRefs :: GenStgBinding bndr Id -> Bool
bindHasCafRefs (StgNonRec _ rhs)
= rhsHasCafRefs rhs
bindHasCafRefs (StgRec binds)
= any rhsHasCafRefs (map snd binds)
rhsHasCafRefs :: GenStgRhs bndr Id -> Bool
rhsHasCafRefs (StgRhsClosure _ _ _ _ _ body)
= exprHasCafRefs body
rhsHasCafRefs (StgRhsCon _ _ args)
= any stgArgHasCafRefs args
altHasCafRefs :: GenStgAlt bndr Id -> Bool
altHasCafRefs (_, _, _, rhs) = exprHasCafRefs rhs
stgArgHasCafRefs :: GenStgArg Id -> Bool
stgArgHasCafRefs (StgVarArg id)
= stgIdHasCafRefs id
stgArgHasCafRefs _
= False
stgIdHasCafRefs :: Id -> Bool
stgIdHasCafRefs id =
-- We are looking for occurrences of an Id that is bound at top level, and may
-- have CAF refs. At this point (after TidyPgm) top-level Ids (whether
-- imported or defined in this module) are GlobalIds, so the test is easy.
isGlobalId id && mayHaveCafRefs (idCafInfo id)
-- Here's the @StgBinderInfo@ type, and its combining op:
data StgBinderInfo
= NoStgBinderInfo
| SatCallsOnly -- All occurrences are *saturated* *function* calls
-- This means we don't need to build an info table and
-- slow entry code for the thing
-- Thunks never get this value
noBinderInfo, stgUnsatOcc, stgSatOcc :: StgBinderInfo
noBinderInfo = NoStgBinderInfo
stgUnsatOcc = NoStgBinderInfo
stgSatOcc = SatCallsOnly
satCallsOnly :: StgBinderInfo -> Bool
satCallsOnly SatCallsOnly = True
satCallsOnly NoStgBinderInfo = False
combineStgBinderInfo :: StgBinderInfo -> StgBinderInfo -> StgBinderInfo
combineStgBinderInfo SatCallsOnly SatCallsOnly = SatCallsOnly
combineStgBinderInfo _ _ = NoStgBinderInfo
--------------
pp_binder_info :: StgBinderInfo -> SDoc
pp_binder_info NoStgBinderInfo = empty
pp_binder_info SatCallsOnly = text "sat-only"
{-
************************************************************************
* *
\subsection[Stg-case-alternatives]{STG case alternatives}
* *
************************************************************************
Very like in @CoreSyntax@ (except no type-world stuff).
The type constructor is guaranteed not to be abstract; that is, we can
see its representation. This is important because the code generator
uses it to determine return conventions etc. But it's not trivial
where there's a module loop involved, because some versions of a type
constructor might not have all the constructors visible. So
mkStgAlgAlts (in CoreToStg) ensures that it gets the TyCon from the
constructors or literals (which are guaranteed to have the Real McCoy)
rather than from the scrutinee type.
-}
type GenStgAlt bndr occ
= (AltCon, -- alts: data constructor,
[bndr], -- constructor's parameters,
[Bool], -- "use mask", same length as
-- parameters; a True in a
-- param's position if it is
-- used in the ...
GenStgExpr bndr occ) -- ...right-hand side.
data AltType
= PolyAlt -- Polymorphic (a type variable)
| UbxTupAlt Int -- Unboxed tuple of this arity
| AlgAlt TyCon -- Algebraic data type; the AltCons will be DataAlts
| PrimAlt TyCon -- Primitive data type; the AltCons will be LitAlts
{-
************************************************************************
* *
\subsection[Stg]{The Plain STG parameterisation}
* *
************************************************************************
This happens to be the only one we use at the moment.
-}
type StgBinding = GenStgBinding Id Id
type StgArg = GenStgArg Id
type StgLiveVars = GenStgLiveVars Id
type StgExpr = GenStgExpr Id Id
type StgRhs = GenStgRhs Id Id
type StgAlt = GenStgAlt Id Id
{-
************************************************************************
* *
\subsubsection[UpdateFlag-datatype]{@UpdateFlag@}
* *
************************************************************************
This is also used in @LambdaFormInfo@ in the @ClosureInfo@ module.
A @ReEntrant@ closure may be entered multiple times, but should not be
updated or blackholed. An @Updatable@ closure should be updated after
evaluation (and may be blackholed during evaluation). A @SingleEntry@
closure will only be entered once, and so need not be updated but may
safely be blackholed.
-}
data UpdateFlag = ReEntrant | Updatable | SingleEntry
instance Outputable UpdateFlag where
ppr u = char $ case u of
ReEntrant -> 'r'
Updatable -> 'u'
SingleEntry -> 's'
isUpdatable :: UpdateFlag -> Bool
isUpdatable ReEntrant = False
isUpdatable SingleEntry = False
isUpdatable Updatable = True
{-
************************************************************************
* *
\subsubsection{StgOp}
* *
************************************************************************
An StgOp allows us to group together PrimOps and ForeignCalls.
It's quite useful to move these around together, notably
in StgOpApp and COpStmt.
-}
data StgOp
= StgPrimOp PrimOp
| StgPrimCallOp PrimCall
| StgFCallOp ForeignCall Unique
-- The Unique is occasionally needed by the C pretty-printer
-- (which lacks a unique supply), notably when generating a
-- typedef for foreign-export-dynamic
{-
************************************************************************
* *
\subsection[Stg-pretty-printing]{Pretty-printing}
* *
************************************************************************
Robin Popplestone asked for semi-colon separators on STG binds; here's
hoping he likes terminators instead... Ditto for case alternatives.
-}
pprGenStgBinding :: (OutputableBndr bndr, Outputable bdee, Ord bdee)
=> GenStgBinding bndr bdee -> SDoc
pprGenStgBinding (StgNonRec bndr rhs)
= hang (hsep [pprBndr LetBind bndr, equals])
4 (ppr rhs <> semi)
pprGenStgBinding (StgRec pairs)
= vcat $ ifPprDebug (text "{- StgRec (begin) -}") :
map (ppr_bind) pairs ++ [ifPprDebug (text "{- StgRec (end) -}")]
where
ppr_bind (bndr, expr)
= hang (hsep [pprBndr LetBind bndr, equals])
4 (ppr expr <> semi)
pprStgBinding :: StgBinding -> SDoc
pprStgBinding bind = pprGenStgBinding bind
pprStgBindings :: [StgBinding] -> SDoc
pprStgBindings binds = vcat $ intersperse blankLine (map pprGenStgBinding binds)
instance (Outputable bdee) => Outputable (GenStgArg bdee) where
ppr = pprStgArg
instance (OutputableBndr bndr, Outputable bdee, Ord bdee)
=> Outputable (GenStgBinding bndr bdee) where
ppr = pprGenStgBinding
instance (OutputableBndr bndr, Outputable bdee, Ord bdee)
=> Outputable (GenStgExpr bndr bdee) where
ppr = pprStgExpr
instance (OutputableBndr bndr, Outputable bdee, Ord bdee)
=> Outputable (GenStgRhs bndr bdee) where
ppr rhs = pprStgRhs rhs
pprStgArg :: (Outputable bdee) => GenStgArg bdee -> SDoc
pprStgArg (StgVarArg var) = ppr var
pprStgArg (StgLitArg con) = ppr con
pprStgExpr :: (OutputableBndr bndr, Outputable bdee, Ord bdee)
=> GenStgExpr bndr bdee -> SDoc
-- special case
pprStgExpr (StgLit lit) = ppr lit
-- general case
pprStgExpr (StgApp func args)
= hang (ppr func) 4 (sep (map (ppr) args))
pprStgExpr (StgConApp con args)
= hsep [ ppr con, brackets (interppSP args)]
pprStgExpr (StgOpApp op args _)
= hsep [ pprStgOp op, brackets (interppSP args)]
pprStgExpr (StgLam bndrs body)
= sep [ char '\\' <+> ppr_list (map (pprBndr LambdaBind) bndrs)
<+> text "->",
pprStgExpr body ]
where ppr_list = brackets . fsep . punctuate comma
-- special case: let v = <very specific thing>
-- in
-- let ...
-- in
-- ...
--
-- Very special! Suspicious! (SLPJ)
{-
pprStgExpr (StgLet srt (StgNonRec bndr (StgRhsClosure cc bi free_vars upd_flag args rhs))
expr@(StgLet _ _))
= ($$)
(hang (hcat [text "let { ", ppr bndr, ptext (sLit " = "),
ppr cc,
pp_binder_info bi,
text " [", ifPprDebug (interppSP free_vars), ptext (sLit "] \\"),
ppr upd_flag, text " [",
interppSP args, char ']'])
8 (sep [hsep [ppr rhs, text "} in"]]))
(ppr expr)
-}
-- special case: let ... in let ...
pprStgExpr (StgLet bind expr@(StgLet _ _))
= ($$)
(sep [hang (text "let {")
2 (hsep [pprGenStgBinding bind, text "} in"])])
(ppr expr)
-- general case
pprStgExpr (StgLet bind expr)
= sep [hang (text "let {") 2 (pprGenStgBinding bind),
hang (text "} in ") 2 (ppr expr)]
pprStgExpr (StgLetNoEscape bind expr)
= sep [hang (text "let-no-escape {")
2 (pprGenStgBinding bind),
hang (text "} in ")
2 (ppr expr)]
pprStgExpr (StgTick tickish expr)
= sdocWithDynFlags $ \dflags ->
if gopt Opt_PprShowTicks dflags
then sep [ ppr tickish, pprStgExpr expr ]
else pprStgExpr expr
pprStgExpr (StgCase expr bndr alt_type alts)
= sep [sep [text "case",
nest 4 (hsep [pprStgExpr expr,
ifPprDebug (dcolon <+> ppr alt_type)]),
text "of", pprBndr CaseBind bndr, char '{'],
nest 2 (vcat (map pprStgAlt alts)),
char '}']
pprStgAlt :: (OutputableBndr bndr, Outputable occ, Ord occ)
=> GenStgAlt bndr occ -> SDoc
pprStgAlt (con, params, _use_mask, expr)
= hang (hsep [ppr con, sep (map (pprBndr CaseBind) params), text "->"])
4 (ppr expr <> semi)
pprStgOp :: StgOp -> SDoc
pprStgOp (StgPrimOp op) = ppr op
pprStgOp (StgPrimCallOp op)= ppr op
pprStgOp (StgFCallOp op _) = ppr op
instance Outputable AltType where
ppr PolyAlt = text "Polymorphic"
ppr (UbxTupAlt n) = text "UbxTup" <+> ppr n
ppr (AlgAlt tc) = text "Alg" <+> ppr tc
ppr (PrimAlt tc) = text "Prim" <+> ppr tc
pprStgLVs :: Outputable occ => GenStgLiveVars occ -> SDoc
pprStgLVs lvs
= getPprStyle $ \ sty ->
if userStyle sty || isEmptyUniqSet lvs then
empty
else
hcat [text "{-lvs:", interpp'SP (uniqSetToList lvs), text "-}"]
pprStgRhs :: (OutputableBndr bndr, Outputable bdee, Ord bdee)
=> GenStgRhs bndr bdee -> SDoc
-- special case
pprStgRhs (StgRhsClosure cc bi [free_var] upd_flag [{-no args-}] (StgApp func []))
= hcat [ ppr cc,
pp_binder_info bi,
brackets (ifPprDebug (ppr free_var)),
text " \\", ppr upd_flag, ptext (sLit " [] "), ppr func ]
-- general case
pprStgRhs (StgRhsClosure cc bi free_vars upd_flag args body)
= sdocWithDynFlags $ \dflags ->
hang (hsep [if gopt Opt_SccProfilingOn dflags then ppr cc else empty,
pp_binder_info bi,
ifPprDebug (brackets (interppSP free_vars)),
char '\\' <> ppr upd_flag, brackets (interppSP args)])
4 (ppr body)
pprStgRhs (StgRhsCon cc con args)
= hcat [ ppr cc,
space, ppr con, text "! ", brackets (interppSP args)]
|