1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1993-1998
-----------------
A demand analysis
-----------------
-}
{-# LANGUAGE CPP #-}
module DmdAnal ( dmdAnalProgram ) where
#include "HsVersions.h"
import DynFlags
import WwLib ( findTypeShape, deepSplitProductType_maybe )
import Demand -- All of it
import CoreSyn
import Outputable
import VarEnv
import BasicTypes
import FastString
import Data.List
import DataCon
import Id
import CoreUtils ( exprIsHNF, exprType, exprIsTrivial )
import TyCon
import Type
import FamInstEnv
import Util
import Maybes ( isJust )
import TysWiredIn ( unboxedPairDataCon )
import TysPrim ( realWorldStatePrimTy )
import ErrUtils ( dumpIfSet_dyn )
import Name ( getName, stableNameCmp )
import Data.Function ( on )
{-
************************************************************************
* *
\subsection{Top level stuff}
* *
************************************************************************
-}
dmdAnalProgram :: DynFlags -> FamInstEnvs -> CoreProgram -> IO CoreProgram
dmdAnalProgram dflags fam_envs binds
= do {
let { binds_plus_dmds = do_prog binds } ;
dumpIfSet_dyn dflags Opt_D_dump_strsigs "Strictness signatures" $
dumpStrSig binds_plus_dmds ;
return binds_plus_dmds
}
where
do_prog :: CoreProgram -> CoreProgram
do_prog binds = snd $ mapAccumL dmdAnalTopBind (emptyAnalEnv dflags fam_envs) binds
-- Analyse a (group of) top-level binding(s)
dmdAnalTopBind :: AnalEnv
-> CoreBind
-> (AnalEnv, CoreBind)
dmdAnalTopBind sigs (NonRec id rhs)
= (extendAnalEnv TopLevel sigs id sig, NonRec id2 rhs2)
where
( _, _, _, rhs1) = dmdAnalRhs TopLevel Nothing sigs id rhs
(sig, _, id2, rhs2) = dmdAnalRhs TopLevel Nothing (nonVirgin sigs) id rhs1
-- Do two passes to improve CPR information
-- See comments with ignore_cpr_info in mk_sig_ty
-- and with extendSigsWithLam
dmdAnalTopBind sigs (Rec pairs)
= (sigs', Rec pairs')
where
(sigs', _, pairs') = dmdFix TopLevel sigs pairs
-- We get two iterations automatically
-- c.f. the NonRec case above
{-
************************************************************************
* *
\subsection{The analyser itself}
* *
************************************************************************
Note [Ensure demand is strict]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's important not to analyse e with a lazy demand because
a) When we encounter case s of (a,b) ->
we demand s with U(d1d2)... but if the overall demand is lazy
that is wrong, and we'd need to reduce the demand on s,
which is inconvenient
b) More important, consider
f (let x = R in x+x), where f is lazy
We still want to mark x as demanded, because it will be when we
enter the let. If we analyse f's arg with a Lazy demand, we'll
just mark x as Lazy
c) The application rule wouldn't be right either
Evaluating (f x) in a L demand does *not* cause
evaluation of f in a C(L) demand!
-}
-- If e is complicated enough to become a thunk, its contents will be evaluated
-- at most once, so oneify it.
dmdTransformThunkDmd :: CoreExpr -> Demand -> Demand
dmdTransformThunkDmd e
| exprIsTrivial e = id
| otherwise = oneifyDmd
-- Do not process absent demands
-- Otherwise act like in a normal demand analysis
-- See |-* relation in the companion paper
dmdAnalStar :: AnalEnv
-> Demand -- This one takes a *Demand*
-> CoreExpr -> (BothDmdArg, CoreExpr)
dmdAnalStar env dmd e
| (cd, defer_and_use) <- toCleanDmd dmd (exprType e)
, (dmd_ty, e') <- dmdAnal env cd e
= (postProcessDmdTypeM defer_and_use dmd_ty, e')
-- Main Demand Analsysis machinery
dmdAnal, dmdAnal' :: AnalEnv
-> CleanDemand -- The main one takes a *CleanDemand*
-> CoreExpr -> (DmdType, CoreExpr)
-- The CleanDemand is always strict and not absent
-- See Note [Ensure demand is strict]
dmdAnal env d e = -- pprTrace "dmdAnal" (ppr d <+> ppr e) $
dmdAnal' env d e
dmdAnal' _ _ (Lit lit) = (nopDmdType, Lit lit)
dmdAnal' _ _ (Type ty) = (nopDmdType, Type ty) -- Doesn't happen, in fact
dmdAnal' _ _ (Coercion co) = (nopDmdType, Coercion co)
dmdAnal' env dmd (Var var)
= (dmdTransform env var dmd, Var var)
dmdAnal' env dmd (Cast e co)
= (dmd_ty, Cast e' co)
where
(dmd_ty, e') = dmdAnal env dmd e
{- ----- I don't get this, so commenting out -------
to_co = pSnd (coercionKind co)
dmd'
| Just tc <- tyConAppTyCon_maybe to_co
, isRecursiveTyCon tc = cleanEvalDmd
| otherwise = dmd
-- This coerce usually arises from a recursive
-- newtype, and we don't want to look inside them
-- for exactly the same reason that we don't look
-- inside recursive products -- we might not reach
-- a fixpoint. So revert to a vanilla Eval demand
-}
dmdAnal' env dmd (Tick t e)
= (dmd_ty, Tick t e')
where
(dmd_ty, e') = dmdAnal env dmd e
dmdAnal' env dmd (App fun (Type ty))
= (fun_ty, App fun' (Type ty))
where
(fun_ty, fun') = dmdAnal env dmd fun
-- Lots of the other code is there to make this
-- beautiful, compositional, application rule :-)
dmdAnal' env dmd (App fun arg)
= -- This case handles value arguments (type args handled above)
-- Crucially, coercions /are/ handled here, because they are
-- value arguments (Trac #10288)
let
call_dmd = mkCallDmd dmd
(fun_ty, fun') = dmdAnal env call_dmd fun
(arg_dmd, res_ty) = splitDmdTy fun_ty
(arg_ty, arg') = dmdAnalStar env (dmdTransformThunkDmd arg arg_dmd) arg
in
-- pprTrace "dmdAnal:app" (vcat
-- [ text "dmd =" <+> ppr dmd
-- , text "expr =" <+> ppr (App fun arg)
-- , text "fun dmd_ty =" <+> ppr fun_ty
-- , text "arg dmd =" <+> ppr arg_dmd
-- , text "arg dmd_ty =" <+> ppr arg_ty
-- , text "res dmd_ty =" <+> ppr res_ty
-- , text "overall res dmd_ty =" <+> ppr (res_ty `bothDmdType` arg_ty) ])
(res_ty `bothDmdType` arg_ty, App fun' arg')
-- this is an anonymous lambda, since @dmdAnalRhs@ uses @collectBinders@
dmdAnal' env dmd (Lam var body)
| isTyVar var
= let
(body_ty, body') = dmdAnal env dmd body
in
(body_ty, Lam var body')
| otherwise
= let (body_dmd, defer_and_use@(_,one_shot)) = peelCallDmd dmd
-- body_dmd - a demand to analyze the body
-- one_shot - one-shotness of the lambda
-- hence, cardinality of its free vars
env' = extendSigsWithLam env var
(body_ty, body') = dmdAnal env' body_dmd body
(lam_ty, var') = annotateLamIdBndr env notArgOfDfun body_ty one_shot var
in
(postProcessUnsat defer_and_use lam_ty, Lam var' body')
dmdAnal' env dmd (Case scrut case_bndr ty [(DataAlt dc, bndrs, rhs)])
-- Only one alternative with a product constructor
| let tycon = dataConTyCon dc
, isProductTyCon tycon
, Just rec_tc' <- checkRecTc (ae_rec_tc env) tycon
= let
env_w_tc = env { ae_rec_tc = rec_tc' }
env_alt = extendAnalEnv NotTopLevel env_w_tc case_bndr case_bndr_sig
case_bndr_sig = cprProdSig (dataConRepArity dc)
-- cprProdSig: inside the alternative, the case binder has the CPR property.
-- Meaning that a case on it will successfully cancel.
-- Example:
-- f True x = case x of y { I# x' -> if x' ==# 3 then y else I# 8 }
-- f False x = I# 3
--
-- We want f to have the CPR property:
-- f b x = case fw b x of { r -> I# r }
-- fw True x = case x of y { I# x' -> if x' ==# 3 then x' else 8 }
-- fw False x = 3
(rhs_ty, rhs') = dmdAnal env_alt dmd rhs
(alt_ty1, dmds) = findBndrsDmds env rhs_ty bndrs
(alt_ty2, case_bndr_dmd) = findBndrDmd env False alt_ty1 case_bndr
id_dmds = addCaseBndrDmd case_bndr_dmd dmds
alt_ty3 | io_hack_reqd dc bndrs = deferAfterIO alt_ty2
| otherwise = alt_ty2
-- Compute demand on the scrutinee
-- See Note [Demand on scrutinee of a product case]
scrut_dmd = mkProdDmd (addDataConStrictness dc id_dmds)
(scrut_ty, scrut') = dmdAnal env scrut_dmd scrut
res_ty = alt_ty3 `bothDmdType` toBothDmdArg scrut_ty
case_bndr' = setIdDemandInfo case_bndr case_bndr_dmd
bndrs' = setBndrsDemandInfo bndrs id_dmds
in
-- pprTrace "dmdAnal:Case1" (vcat [ text "scrut" <+> ppr scrut
-- , text "dmd" <+> ppr dmd
-- , text "case_bndr_dmd" <+> ppr (idDemandInfo case_bndr')
-- , text "scrut_dmd" <+> ppr scrut_dmd
-- , text "scrut_ty" <+> ppr scrut_ty
-- , text "alt_ty" <+> ppr alt_ty2
-- , text "res_ty" <+> ppr res_ty ]) $
(res_ty, Case scrut' case_bndr' ty [(DataAlt dc, bndrs', rhs')])
dmdAnal' env dmd (Case scrut case_bndr ty alts)
= let -- Case expression with multiple alternatives
(alt_tys, alts') = mapAndUnzip (dmdAnalAlt env dmd case_bndr) alts
(scrut_ty, scrut') = dmdAnal env cleanEvalDmd scrut
(alt_ty, case_bndr') = annotateBndr env (foldr lubDmdType botDmdType alt_tys) case_bndr
res_ty = alt_ty `bothDmdType` toBothDmdArg scrut_ty
in
-- pprTrace "dmdAnal:Case2" (vcat [ text "scrut" <+> ppr scrut
-- , text "scrut_ty" <+> ppr scrut_ty
-- , text "alt_tys" <+> ppr alt_tys
-- , text "alt_ty" <+> ppr alt_ty
-- , text "res_ty" <+> ppr res_ty ]) $
(res_ty, Case scrut' case_bndr' ty alts')
dmdAnal' env dmd (Let (NonRec id rhs) body)
= (body_ty2, Let (NonRec id2 annotated_rhs) body')
where
(sig, lazy_fv, id1, rhs') = dmdAnalRhs NotTopLevel Nothing env id rhs
(body_ty, body') = dmdAnal (extendAnalEnv NotTopLevel env id sig) dmd body
(body_ty1, id2) = annotateBndr env body_ty id1
body_ty2 = addLazyFVs body_ty1 lazy_fv
-- Annotate top-level lambdas at RHS basing on the aggregated demand info
-- See Note [Annotating lambdas at right-hand side]
annotated_rhs = annLamWithShotness (idDemandInfo id2) rhs'
-- If the actual demand is better than the vanilla call
-- demand, you might think that we might do better to re-analyse
-- the RHS with the stronger demand.
-- But (a) That seldom happens, because it means that *every* path in
-- the body of the let has to use that stronger demand
-- (b) It often happens temporarily in when fixpointing, because
-- the recursive function at first seems to place a massive demand.
-- But we don't want to go to extra work when the function will
-- probably iterate to something less demanding.
-- In practice, all the times the actual demand on id2 is more than
-- the vanilla call demand seem to be due to (b). So we don't
-- bother to re-analyse the RHS.
dmdAnal' env dmd (Let (Rec pairs) body)
= let
(env', lazy_fv, pairs') = dmdFix NotTopLevel env pairs
(body_ty, body') = dmdAnal env' dmd body
body_ty1 = deleteFVs body_ty (map fst pairs)
body_ty2 = addLazyFVs body_ty1 lazy_fv
in
body_ty2 `seq`
(body_ty2, Let (Rec pairs') body')
io_hack_reqd :: DataCon -> [Var] -> Bool
-- Note [IO hack in the demand analyser]
--
-- There's a hack here for I/O operations. Consider
-- case foo x s of { (# s, r #) -> y }
-- Is this strict in 'y'. Normally yes, but what if 'foo' is an I/O
-- operation that simply terminates the program (not in an erroneous way)?
-- In that case we should not evaluate y before the call to 'foo'.
-- Hackish solution: spot the IO-like situation and add a virtual branch,
-- as if we had
-- case foo x s of
-- (# s, r #) -> y
-- other -> return ()
-- So the 'y' isn't necessarily going to be evaluated
--
-- A more complete example (Trac #148, #1592) where this shows up is:
-- do { let len = <expensive> ;
-- ; when (...) (exitWith ExitSuccess)
-- ; print len }
io_hack_reqd con bndrs
| (bndr:_) <- bndrs
= con == unboxedPairDataCon &&
idType bndr `eqType` realWorldStatePrimTy
| otherwise
= False
annLamWithShotness :: Demand -> CoreExpr -> CoreExpr
annLamWithShotness d e
| Just u <- cleanUseDmd_maybe d
= go u e
| otherwise = e
where
go u e
| Just (c, u') <- peelUseCall u
, Lam bndr body <- e
= if isTyVar bndr
then Lam bndr (go u body)
else Lam (setOneShotness c bndr) (go u' body)
| otherwise
= e
setOneShotness :: Count -> Id -> Id
setOneShotness One bndr = setOneShotLambda bndr
setOneShotness Many bndr = bndr
dmdAnalAlt :: AnalEnv -> CleanDemand -> Id -> Alt Var -> (DmdType, Alt Var)
dmdAnalAlt env dmd case_bndr (con,bndrs,rhs)
| null bndrs -- Literals, DEFAULT, and nullary constructors
, (rhs_ty, rhs') <- dmdAnal env dmd rhs
= (rhs_ty, (con, [], rhs'))
| otherwise -- Non-nullary data constructors
, (rhs_ty, rhs') <- dmdAnal env dmd rhs
, (alt_ty, dmds) <- findBndrsDmds env rhs_ty bndrs
, let case_bndr_dmd = findIdDemand alt_ty case_bndr
id_dmds = addCaseBndrDmd case_bndr_dmd dmds
= (alt_ty, (con, setBndrsDemandInfo bndrs id_dmds, rhs'))
{- Note [Demand on the scrutinee of a product case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When figuring out the demand on the scrutinee of a product case,
we use the demands of the case alternative, i.e. id_dmds.
But note that these include the demand on the case binder;
see Note [Demand on case-alternative binders] in Demand.hs.
This is crucial. Example:
f x = case x of y { (a,b) -> k y a }
If we just take scrut_demand = U(L,A), then we won't pass x to the
worker, so the worker will rebuild
x = (a, absent-error)
and that'll crash.
Note [Aggregated demand for cardinality]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We use different strategies for strictness and usage/cardinality to
"unleash" demands captured on free variables by bindings. Let us
consider the example:
f1 y = let {-# NOINLINE h #-}
h = y
in (h, h)
We are interested in obtaining cardinality demand U1 on |y|, as it is
used only in a thunk, and, therefore, is not going to be updated any
more. Therefore, the demand on |y|, captured and unleashed by usage of
|h| is U1. However, if we unleash this demand every time |h| is used,
and then sum up the effects, the ultimate demand on |y| will be U1 +
U1 = U. In order to avoid it, we *first* collect the aggregate demand
on |h| in the body of let-expression, and only then apply the demand
transformer:
transf[x](U) = {y |-> U1}
so the resulting demand on |y| is U1.
The situation is, however, different for strictness, where this
aggregating approach exhibits worse results because of the nature of
|both| operation for strictness. Consider the example:
f y c =
let h x = y |seq| x
in case of
True -> h True
False -> y
It is clear that |f| is strict in |y|, however, the suggested analysis
will infer from the body of |let| that |h| is used lazily (as it is
used in one branch only), therefore lazy demand will be put on its
free variable |y|. Conversely, if the demand on |h| is unleashed right
on the spot, we will get the desired result, namely, that |f| is
strict in |y|.
Note [Annotating lambdas at right-hand side]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Let us take a look at the following example:
g f = let x = 100
h = \y -> f x y
in h 5
One can see that |h| is called just once, therefore the RHS of h can
be annotated as a one-shot lambda. This is done by the function
annLamWithShotness *a posteriori*, i.e., basing on the aggregated
usage demand on |h| from the body of |let|-expression, which is C1(U)
in this case.
In other words, for locally-bound lambdas we can infer
one-shotness.
-}
{-
Note [Add demands for strict constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this program (due to Roman):
data X a = X !a
foo :: X Int -> Int -> Int
foo (X a) n = go 0
where
go i | i < n = a + go (i+1)
| otherwise = 0
We want the worker for 'foo' too look like this:
$wfoo :: Int# -> Int# -> Int#
with the first argument unboxed, so that it is not eval'd each time
around the 'go' loop (which would otherwise happen, since 'foo' is not
strict in 'a'). It is sound for the wrapper to pass an unboxed arg
because X is strict, so its argument must be evaluated. And if we
*don't* pass an unboxed argument, we can't even repair it by adding a
`seq` thus:
foo (X a) n = a `seq` go 0
because the seq is discarded (very early) since X is strict!
There is the usual danger of reboxing, which as usual we ignore. But
if X is monomorphic, and has an UNPACK pragma, then this optimisation
is even more important. We don't want the wrapper to rebox an unboxed
argument, and pass an Int to $wfoo!
We add these extra strict demands to the demand on the *scrutinee* of
the case expression; hence the use of addDataConStrictness when
forming scrut_dmd. The case alternatives aren't strict in their
sub-components, but simply evaluating the scrutinee to HNF does force
those sub-components.
************************************************************************
* *
Demand transformer
* *
************************************************************************
-}
dmdTransform :: AnalEnv -- The strictness environment
-> Id -- The function
-> CleanDemand -- The demand on the function
-> DmdType -- The demand type of the function in this context
-- Returned DmdEnv includes the demand on
-- this function plus demand on its free variables
dmdTransform env var dmd
| isDataConWorkId var -- Data constructor
= dmdTransformDataConSig (idArity var) (idStrictness var) dmd
| gopt Opt_DmdTxDictSel (ae_dflags env),
Just _ <- isClassOpId_maybe var -- Dictionary component selector
= dmdTransformDictSelSig (idStrictness var) dmd
| isGlobalId var -- Imported function
= let res = dmdTransformSig (idStrictness var) dmd in
-- pprTrace "dmdTransform" (vcat [ppr var, ppr (idStrictness var), ppr dmd, ppr res])
res
| Just (sig, top_lvl) <- lookupSigEnv env var -- Local letrec bound thing
, let fn_ty = dmdTransformSig sig dmd
= -- pprTrace "dmdTransform" (vcat [ppr var, ppr sig, ppr dmd, ppr fn_ty]) $
if isTopLevel top_lvl
then fn_ty -- Don't record top level things
else addVarDmd fn_ty var (mkOnceUsedDmd dmd)
| otherwise -- Local non-letrec-bound thing
= unitVarDmd var (mkOnceUsedDmd dmd)
{-
************************************************************************
* *
\subsection{Bindings}
* *
************************************************************************
-}
-- Recursive bindings
dmdFix :: TopLevelFlag
-> AnalEnv -- Does not include bindings for this binding
-> [(Id,CoreExpr)]
-> (AnalEnv, DmdEnv,
[(Id,CoreExpr)]) -- Binders annotated with stricness info
dmdFix top_lvl env orig_pairs
= (updSigEnv env (sigEnv final_env), lazy_fv, pairs')
-- Return to original virgin state, keeping new signatures
where
bndrs = map fst orig_pairs
initial_env = addInitialSigs top_lvl env bndrs
(final_env, lazy_fv, pairs') = loop 1 initial_env orig_pairs
loop :: Int
-> AnalEnv -- Already contains the current sigs
-> [(Id,CoreExpr)]
-> (AnalEnv, DmdEnv, [(Id,CoreExpr)])
loop n env pairs
= -- pprTrace "dmd loop" (ppr n <+> ppr bndrs $$ ppr env) $
loop' n env pairs
loop' n env pairs
| found_fixpoint
= (env', lazy_fv, pairs')
-- Note: return pairs', not pairs. pairs' is the result of
-- processing the RHSs with sigs (= sigs'), whereas pairs
-- is the result of processing the RHSs with the *previous*
-- iteration of sigs.
| n >= 10
= -- pprTrace "dmdFix loop" (ppr n <+> (vcat
-- [ text "Sigs:" <+> ppr [ (id,lookupVarEnv (sigEnv env) id,
-- lookupVarEnv (sigEnv env') id)
-- | (id,_) <- pairs],
-- text "env:" <+> ppr env,
-- text "binds:" <+> pprCoreBinding (Rec pairs)]))
(env, lazy_fv, orig_pairs) -- Safe output
-- The lazy_fv part is really important! orig_pairs has no strictness
-- info, including nothing about free vars. But if we have
-- letrec f = ....y..... in ...f...
-- where 'y' is free in f, we must record that y is mentioned,
-- otherwise y will get recorded as absent altogether
| otherwise
= loop (n+1) (nonVirgin env') pairs'
where
found_fixpoint = all (same_sig (sigEnv env) (sigEnv env')) bndrs
((env',lazy_fv), pairs') = mapAccumL my_downRhs (env, emptyDmdEnv) pairs
-- mapAccumL: Use the new signature to do the next pair
-- The occurrence analyser has arranged them in a good order
-- so this can significantly reduce the number of iterations needed
my_downRhs (env, lazy_fv) (id,rhs)
= ((env', lazy_fv'), (id', rhs'))
where
(sig, lazy_fv1, id', rhs') = dmdAnalRhs top_lvl (Just bndrs) env id rhs
lazy_fv' = plusVarEnv_C bothDmd lazy_fv lazy_fv1
env' = extendAnalEnv top_lvl env id sig
same_sig sigs sigs' var = lookup sigs var == lookup sigs' var
lookup sigs var = case lookupVarEnv sigs var of
Just (sig,_) -> sig
Nothing -> pprPanic "dmdFix" (ppr var)
-- Non-recursive bindings
dmdAnalRhs :: TopLevelFlag
-> Maybe [Id] -- Just bs <=> recursive, Nothing <=> non-recursive
-> AnalEnv -> Id -> CoreExpr
-> (StrictSig, DmdEnv, Id, CoreExpr)
-- Process the RHS of the binding, add the strictness signature
-- to the Id, and augment the environment with the signature as well.
dmdAnalRhs top_lvl rec_flag env id rhs
| Just fn <- unpackTrivial rhs -- See Note [Demand analysis for trivial right-hand sides]
, let fn_str = getStrictness env fn
fn_fv | isLocalId fn = unitVarEnv fn topDmd
| otherwise = emptyDmdEnv
-- Note [Remember to demand the function itself]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- fn_fv: don't forget to produce a demand for fn itself
-- Lacking this caused Trac #9128
-- The demand is very conservative (topDmd), but that doesn't
-- matter; trivial bindings are usually inlined, so it only
-- kicks in for top-level bindings and NOINLINE bindings
= (fn_str, fn_fv, set_idStrictness env id fn_str, rhs)
| otherwise
= (sig_ty, lazy_fv, id', mkLams bndrs' body')
where
(bndrs, body) = collectBinders rhs
env_body = foldl extendSigsWithLam env bndrs
(body_ty, body') = dmdAnal env_body body_dmd body
body_ty' = removeDmdTyArgs body_ty -- zap possible deep CPR info
(DmdType rhs_fv rhs_dmds rhs_res, bndrs')
= annotateLamBndrs env (isDFunId id) body_ty' bndrs
sig_ty = mkStrictSig (mkDmdType sig_fv rhs_dmds rhs_res')
id' = set_idStrictness env id sig_ty
-- See Note [NOINLINE and strictness]
-- See Note [Product demands for function body]
body_dmd = case deepSplitProductType_maybe (ae_fam_envs env) (exprType body) of
Nothing -> cleanEvalDmd
Just (dc, _, _, _) -> cleanEvalProdDmd (dataConRepArity dc)
-- See Note [Lazy and unleashable free variables]
-- See Note [Aggregated demand for cardinality]
rhs_fv1 = case rec_flag of
Just bs -> reuseEnv (delVarEnvList rhs_fv bs)
Nothing -> rhs_fv
(lazy_fv, sig_fv) = splitFVs is_thunk rhs_fv1
rhs_res' = trimCPRInfo trim_all trim_sums rhs_res
trim_all = is_thunk && not_strict
trim_sums = not (isTopLevel top_lvl) -- See Note [CPR for sum types]
-- See Note [CPR for thunks]
is_thunk = not (exprIsHNF rhs)
not_strict
= isTopLevel top_lvl -- Top level and recursive things don't
|| isJust rec_flag -- get their demandInfo set at all
|| not (isStrictDmd (idDemandInfo id) || ae_virgin env)
-- See Note [Optimistic CPR in the "virgin" case]
unpackTrivial :: CoreExpr -> Maybe Id
-- Returns (Just v) if the arg is really equal to v, modulo
-- casts, type applications etc
-- See Note [Demand analysis for trivial right-hand sides]
unpackTrivial (Var v) = Just v
unpackTrivial (Cast e _) = unpackTrivial e
unpackTrivial (Lam v e) | isTyVar v = unpackTrivial e
unpackTrivial (App e a) | isTypeArg a = unpackTrivial e
unpackTrivial _ = Nothing
{-
Note [Demand analysis for trivial right-hand sides]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
foo = plusInt |> co
where plusInt is an arity-2 function with known strictness. Clearly
we want plusInt's strictness to propagate to foo! But because it has
no manifest lambdas, it won't do so automatically, and indeed 'co' might
have type (Int->Int->Int) ~ T, so we *can't* eta-expand. So we have a
special case for right-hand sides that are "trivial", namely variables,
casts, type applications, and the like.
Note that this can mean that 'foo' has an arity that is smaller than that
indicated by its demand info. e.g. if co :: (Int->Int->Int) ~ T, then
foo's arity will be zero (see Note [exprArity invariant] in CoreArity),
but its demand signature will be that of plusInt. A small example is the
test case of Trac #8963.
Note [Product demands for function body]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This example comes from shootout/binary_trees:
Main.check' = \ b z ds. case z of z' { I# ip ->
case ds_d13s of
Main.Nil -> z'
Main.Node s14k s14l s14m ->
Main.check' (not b)
(Main.check' b
(case b {
False -> I# (-# s14h s14k);
True -> I# (+# s14h s14k)
})
s14l)
s14m } } }
Here we *really* want to unbox z, even though it appears to be used boxed in
the Nil case. Partly the Nil case is not a hot path. But more specifically,
the whole function gets the CPR property if we do.
So for the demand on the body of a RHS we use a product demand if it's
a product type.
************************************************************************
* *
\subsection{Strictness signatures and types}
* *
************************************************************************
-}
unitVarDmd :: Var -> Demand -> DmdType
unitVarDmd var dmd
= DmdType (unitVarEnv var dmd) [] topRes
addVarDmd :: DmdType -> Var -> Demand -> DmdType
addVarDmd (DmdType fv ds res) var dmd
= DmdType (extendVarEnv_C bothDmd fv var dmd) ds res
addLazyFVs :: DmdType -> DmdEnv -> DmdType
addLazyFVs dmd_ty lazy_fvs
= dmd_ty `bothDmdType` mkBothDmdArg lazy_fvs
-- Using bothDmdType (rather than just both'ing the envs)
-- is vital. Consider
-- let f = \x -> (x,y)
-- in error (f 3)
-- Here, y is treated as a lazy-fv of f, but we must `bothDmd` that L
-- demand with the bottom coming up from 'error'
--
-- I got a loop in the fixpointer without this, due to an interaction
-- with the lazy_fv filtering in dmdAnalRhs. Roughly, it was
-- letrec f n x
-- = letrec g y = x `fatbar`
-- letrec h z = z + ...g...
-- in h (f (n-1) x)
-- in ...
-- In the initial iteration for f, f=Bot
-- Suppose h is found to be strict in z, but the occurrence of g in its RHS
-- is lazy. Now consider the fixpoint iteration for g, esp the demands it
-- places on its free variables. Suppose it places none. Then the
-- x `fatbar` ...call to h...
-- will give a x->V demand for x. That turns into a L demand for x,
-- which floats out of the defn for h. Without the modifyEnv, that
-- L demand doesn't get both'd with the Bot coming up from the inner
-- call to f. So we just get an L demand for x for g.
{-
Note [Do not strictify the argument dictionaries of a dfun]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The typechecker can tie recursive knots involving dfuns, so we do the
conservative thing and refrain from strictifying a dfun's argument
dictionaries.
-}
setBndrsDemandInfo :: [Var] -> [Demand] -> [Var]
setBndrsDemandInfo (b:bs) (d:ds)
| isTyVar b = b : setBndrsDemandInfo bs (d:ds)
| otherwise = setIdDemandInfo b d : setBndrsDemandInfo bs ds
setBndrsDemandInfo [] ds = ASSERT( null ds ) []
setBndrsDemandInfo bs _ = pprPanic "setBndrsDemandInfo" (ppr bs)
annotateBndr :: AnalEnv -> DmdType -> Var -> (DmdType, Var)
-- The returned env has the var deleted
-- The returned var is annotated with demand info
-- according to the result demand of the provided demand type
-- No effect on the argument demands
annotateBndr env dmd_ty var
| isId var = (dmd_ty', setIdDemandInfo var dmd)
| otherwise = (dmd_ty, var)
where
(dmd_ty', dmd) = findBndrDmd env False dmd_ty var
annotateLamBndrs :: AnalEnv -> DFunFlag -> DmdType -> [Var] -> (DmdType, [Var])
annotateLamBndrs env args_of_dfun ty bndrs = mapAccumR annotate ty bndrs
where
annotate dmd_ty bndr
| isId bndr = annotateLamIdBndr env args_of_dfun dmd_ty Many bndr
| otherwise = (dmd_ty, bndr)
annotateLamIdBndr :: AnalEnv
-> DFunFlag -- is this lambda at the top of the RHS of a dfun?
-> DmdType -- Demand type of body
-> Count -- One-shot-ness of the lambda
-> Id -- Lambda binder
-> (DmdType, -- Demand type of lambda
Id) -- and binder annotated with demand
annotateLamIdBndr env arg_of_dfun dmd_ty one_shot id
-- For lambdas we add the demand to the argument demands
-- Only called for Ids
= ASSERT( isId id )
-- pprTrace "annLamBndr" (vcat [ppr id, ppr _dmd_ty]) $
(final_ty, setOneShotness one_shot (setIdDemandInfo id dmd))
where
-- Watch out! See note [Lambda-bound unfoldings]
final_ty = case maybeUnfoldingTemplate (idUnfolding id) of
Nothing -> main_ty
Just unf -> main_ty `bothDmdType` unf_ty
where
(unf_ty, _) = dmdAnalStar env dmd unf
main_ty = addDemand dmd dmd_ty'
(dmd_ty', dmd) = findBndrDmd env arg_of_dfun dmd_ty id
deleteFVs :: DmdType -> [Var] -> DmdType
deleteFVs (DmdType fvs dmds res) bndrs
= DmdType (delVarEnvList fvs bndrs) dmds res
{-
Note [CPR for sum types]
~~~~~~~~~~~~~~~~~~~~~~~~
At the moment we do not do CPR for let-bindings that
* non-top level
* bind a sum type
Reason: I found that in some benchmarks we were losing let-no-escapes,
which messed it all up. Example
let j = \x. ....
in case y of
True -> j False
False -> j True
If we w/w this we get
let j' = \x. ....
in case y of
True -> case j' False of { (# a #) -> Just a }
False -> case j' True of { (# a #) -> Just a }
Notice that j' is not a let-no-escape any more.
However this means in turn that the *enclosing* function
may be CPR'd (via the returned Justs). But in the case of
sums, there may be Nothing alternatives; and that messes
up the sum-type CPR.
Conclusion: only do this for products. It's still not
guaranteed OK for products, but sums definitely lose sometimes.
Note [CPR for thunks]
~~~~~~~~~~~~~~~~~~~~~
If the rhs is a thunk, we usually forget the CPR info, because
it is presumably shared (else it would have been inlined, and
so we'd lose sharing if w/w'd it into a function). E.g.
let r = case expensive of
(a,b) -> (b,a)
in ...
If we marked r as having the CPR property, then we'd w/w into
let $wr = \() -> case expensive of
(a,b) -> (# b, a #)
r = case $wr () of
(# b,a #) -> (b,a)
in ...
But now r is a thunk, which won't be inlined, so we are no further ahead.
But consider
f x = let r = case expensive of (a,b) -> (b,a)
in if foo r then r else (x,x)
Does f have the CPR property? Well, no.
However, if the strictness analyser has figured out (in a previous
iteration) that it's strict, then we DON'T need to forget the CPR info.
Instead we can retain the CPR info and do the thunk-splitting transform
(see WorkWrap.splitThunk).
This made a big difference to PrelBase.modInt, which had something like
modInt = \ x -> let r = ... -> I# v in
...body strict in r...
r's RHS isn't a value yet; but modInt returns r in various branches, so
if r doesn't have the CPR property then neither does modInt
Another case I found in practice (in Complex.magnitude), looks like this:
let k = if ... then I# a else I# b
in ... body strict in k ....
(For this example, it doesn't matter whether k is returned as part of
the overall result; but it does matter that k's RHS has the CPR property.)
Left to itself, the simplifier will make a join point thus:
let $j k = ...body strict in k...
if ... then $j (I# a) else $j (I# b)
With thunk-splitting, we get instead
let $j x = let k = I#x in ...body strict in k...
in if ... then $j a else $j b
This is much better; there's a good chance the I# won't get allocated.
The difficulty with this is that we need the strictness type to
look at the body... but we now need the body to calculate the demand
on the variable, so we can decide whether its strictness type should
have a CPR in it or not. Simple solution:
a) use strictness info from the previous iteration
b) make sure we do at least 2 iterations, by doing a second
round for top-level non-recs. Top level recs will get at
least 2 iterations except for totally-bottom functions
which aren't very interesting anyway.
NB: strictly_demanded is never true of a top-level Id, or of a recursive Id.
Note [Optimistic CPR in the "virgin" case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demand and strictness info are initialized by top elements. However,
this prevents from inferring a CPR property in the first pass of the
analyser, so we keep an explicit flag ae_virgin in the AnalEnv
datatype.
We can't start with 'not-demanded' (i.e., top) because then consider
f x = let
t = ... I# x
in
if ... then t else I# y else f x'
In the first iteration we'd have no demand info for x, so assume
not-demanded; then we'd get TopRes for f's CPR info. Next iteration
we'd see that t was demanded, and so give it the CPR property, but by
now f has TopRes, so it will stay TopRes. Instead, by checking the
ae_virgin flag at the first time round, we say 'yes t is demanded' the
first time.
However, this does mean that for non-recursive bindings we must
iterate twice to be sure of not getting over-optimistic CPR info,
in the case where t turns out to be not-demanded. This is handled
by dmdAnalTopBind.
Note [NOINLINE and strictness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The strictness analyser used to have a HACK which ensured that NOINLNE
things were not strictness-analysed. The reason was unsafePerformIO.
Left to itself, the strictness analyser would discover this strictness
for unsafePerformIO:
unsafePerformIO: C(U(AV))
But then consider this sub-expression
unsafePerformIO (\s -> let r = f x in
case writeIORef v r s of (# s1, _ #) ->
(# s1, r #)
The strictness analyser will now find that r is sure to be eval'd,
and may then hoist it out. This makes tests/lib/should_run/memo002
deadlock.
Solving this by making all NOINLINE things have no strictness info is overkill.
In particular, it's overkill for runST, which is perfectly respectable.
Consider
f x = runST (return x)
This should be strict in x.
So the new plan is to define unsafePerformIO using the 'lazy' combinator:
unsafePerformIO (IO m) = lazy (case m realWorld# of (# _, r #) -> r)
Remember, 'lazy' is a wired-in identity-function Id, of type a->a, which is
magically NON-STRICT, and is inlined after strictness analysis. So
unsafePerformIO will look non-strict, and that's what we want.
Now we don't need the hack in the strictness analyser. HOWEVER, this
decision does mean that even a NOINLINE function is not entirely
opaque: some aspect of its implementation leaks out, notably its
strictness. For example, if you have a function implemented by an
error stub, but which has RULES, you may want it not to be eliminated
in favour of error!
Note [Lazy and unleasheable free variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We put the strict and once-used FVs in the DmdType of the Id, so
that at its call sites we unleash demands on its strict fvs.
An example is 'roll' in imaginary/wheel-sieve2
Something like this:
roll x = letrec
go y = if ... then roll (x-1) else x+1
in
go ms
We want to see that roll is strict in x, which is because
go is called. So we put the DmdEnv for x in go's DmdType.
Another example:
f :: Int -> Int -> Int
f x y = let t = x+1
h z = if z==0 then t else
if z==1 then x+1 else
x + h (z-1)
in h y
Calling h does indeed evaluate x, but we can only see
that if we unleash a demand on x at the call site for t.
Incidentally, here's a place where lambda-lifting h would
lose the cigar --- we couldn't see the joint strictness in t/x
ON THE OTHER HAND
We don't want to put *all* the fv's from the RHS into the
DmdType, because that makes fixpointing very slow --- the
DmdType gets full of lazy demands that are slow to converge.
Note [Lamba-bound unfoldings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We allow a lambda-bound variable to carry an unfolding, a facility that is used
exclusively for join points; see Note [Case binders and join points]. If so,
we must be careful to demand-analyse the RHS of the unfolding! Example
\x. \y{=Just x}. <body>
Then if <body> uses 'y', then transitively it uses 'x', and we must not
forget that fact, otherwise we might make 'x' absent when it isn't.
************************************************************************
* *
\subsection{Strictness signatures}
* *
************************************************************************
-}
type DFunFlag = Bool -- indicates if the lambda being considered is in the
-- sequence of lambdas at the top of the RHS of a dfun
notArgOfDfun :: DFunFlag
notArgOfDfun = False
data AnalEnv
= AE { ae_dflags :: DynFlags
, ae_sigs :: SigEnv
, ae_virgin :: Bool -- True on first iteration only
-- See Note [Initialising strictness]
, ae_rec_tc :: RecTcChecker
, ae_fam_envs :: FamInstEnvs
}
-- We use the se_env to tell us whether to
-- record info about a variable in the DmdEnv
-- We do so if it's a LocalId, but not top-level
--
-- The DmdEnv gives the demand on the free vars of the function
-- when it is given enough args to satisfy the strictness signature
type SigEnv = VarEnv (StrictSig, TopLevelFlag)
instance Outputable AnalEnv where
ppr (AE { ae_sigs = env, ae_virgin = virgin })
= ptext (sLit "AE") <+> braces (vcat
[ ptext (sLit "ae_virgin =") <+> ppr virgin
, ptext (sLit "ae_sigs =") <+> ppr env ])
emptyAnalEnv :: DynFlags -> FamInstEnvs -> AnalEnv
emptyAnalEnv dflags fam_envs
= AE { ae_dflags = dflags
, ae_sigs = emptySigEnv
, ae_virgin = True
, ae_rec_tc = initRecTc
, ae_fam_envs = fam_envs
}
emptySigEnv :: SigEnv
emptySigEnv = emptyVarEnv
sigEnv :: AnalEnv -> SigEnv
sigEnv = ae_sigs
updSigEnv :: AnalEnv -> SigEnv -> AnalEnv
updSigEnv env sigs = env { ae_sigs = sigs }
extendAnalEnv :: TopLevelFlag -> AnalEnv -> Id -> StrictSig -> AnalEnv
extendAnalEnv top_lvl env var sig
= env { ae_sigs = extendSigEnv top_lvl (ae_sigs env) var sig }
extendSigEnv :: TopLevelFlag -> SigEnv -> Id -> StrictSig -> SigEnv
extendSigEnv top_lvl sigs var sig = extendVarEnv sigs var (sig, top_lvl)
lookupSigEnv :: AnalEnv -> Id -> Maybe (StrictSig, TopLevelFlag)
lookupSigEnv env id = lookupVarEnv (ae_sigs env) id
getStrictness :: AnalEnv -> Id -> StrictSig
getStrictness env fn
| isGlobalId fn = idStrictness fn
| Just (sig, _) <- lookupSigEnv env fn = sig
| otherwise = nopSig
addInitialSigs :: TopLevelFlag -> AnalEnv -> [Id] -> AnalEnv
-- See Note [Initialising strictness]
addInitialSigs top_lvl env@(AE { ae_sigs = sigs, ae_virgin = virgin }) ids
= env { ae_sigs = extendVarEnvList sigs [ (id, (init_sig id, top_lvl))
| id <- ids ] }
where
init_sig | virgin = \_ -> botSig
| otherwise = idStrictness
nonVirgin :: AnalEnv -> AnalEnv
nonVirgin env = env { ae_virgin = False }
extendSigsWithLam :: AnalEnv -> Id -> AnalEnv
-- Extend the AnalEnv when we meet a lambda binder
extendSigsWithLam env id
| isId id
, isStrictDmd (idDemandInfo id) || ae_virgin env
-- See Note [Optimistic CPR in the "virgin" case]
-- See Note [Initial CPR for strict binders]
, Just (dc,_,_,_) <- deepSplitProductType_maybe (ae_fam_envs env) $ idType id
= extendAnalEnv NotTopLevel env id (cprProdSig (dataConRepArity dc))
| otherwise
= env
addDataConStrictness :: DataCon -> [Demand] -> [Demand]
-- See Note [Add demands for strict constructors]
addDataConStrictness con ds
= ASSERT2( equalLength strs ds, ppr con $$ ppr strs $$ ppr ds )
zipWith add ds strs
where
strs = dataConRepStrictness con
add dmd str | isMarkedStrict str = dmd `bothDmd` seqDmd
| otherwise = dmd
-- Yes, even if 'dmd' is Absent!
findBndrsDmds :: AnalEnv -> DmdType -> [Var] -> (DmdType, [Demand])
-- Return the demands on the Ids in the [Var]
findBndrsDmds env dmd_ty bndrs
= go dmd_ty bndrs
where
go dmd_ty [] = (dmd_ty, [])
go dmd_ty (b:bs)
| isId b = let (dmd_ty1, dmds) = go dmd_ty bs
(dmd_ty2, dmd) = findBndrDmd env False dmd_ty1 b
in (dmd_ty2, dmd : dmds)
| otherwise = go dmd_ty bs
findBndrDmd :: AnalEnv -> Bool -> DmdType -> Id -> (DmdType, Demand)
-- See Note [Trimming a demand to a type] in Demand.lhs
findBndrDmd env arg_of_dfun dmd_ty id
= (dmd_ty', dmd')
where
dmd' = killUsageDemand (ae_dflags env) $
strictify $
trimToType starting_dmd (findTypeShape fam_envs id_ty)
(dmd_ty', starting_dmd) = peelFV dmd_ty id
id_ty = idType id
strictify dmd
| gopt Opt_DictsStrict (ae_dflags env)
-- We never want to strictify a recursive let. At the moment
-- annotateBndr is only call for non-recursive lets; if that
-- changes, we need a RecFlag parameter and another guard here.
, not arg_of_dfun -- See Note [Do not strictify the argument dictionaries of a dfun]
= strictifyDictDmd id_ty dmd
| otherwise
= dmd
fam_envs = ae_fam_envs env
set_idStrictness :: AnalEnv -> Id -> StrictSig -> Id
set_idStrictness env id sig
= setIdStrictness id (killUsageSig (ae_dflags env) sig)
dumpStrSig :: CoreProgram -> SDoc
dumpStrSig binds = vcat (map printId ids)
where
ids = sortBy (stableNameCmp `on` getName) (concatMap getIds binds)
getIds (NonRec i _) = [ i ]
getIds (Rec bs) = map fst bs
printId id | isExportedId id = ppr id <> colon <+> pprIfaceStrictSig (idStrictness id)
| otherwise = empty
{-
Note [Initial CPR for strict binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CPR is initialized for a lambda binder in an optimistic manner, i.e,
if the binder is used strictly and at least some of its components as
a product are used, which is checked by the value of the absence
demand.
If the binder is marked demanded with a strict demand, then give it a
CPR signature, because in the likely event that this is a lambda on a
fn defn [we only use this when the lambda is being consumed with a
call demand], it'll be w/w'd and so it will be CPR-ish. E.g.
f = \x::(Int,Int). if ...strict in x... then
x
else
(a,b)
We want f to have the CPR property because x does, by the time f has been w/w'd
Also note that we only want to do this for something that definitely
has product type, else we may get over-optimistic CPR results
(e.g. from \x -> x!).
Note [Initialising strictness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See section 9.2 (Finding fixpoints) of the paper.
Our basic plan is to initialise the strictness of each Id in a
recursive group to "bottom", and find a fixpoint from there. However,
this group B might be inside an *enclosing* recursiveb group A, in
which case we'll do the entire fixpoint shebang on for each iteration
of A. This can be illustrated by the following example:
Example:
f [] = []
f (x:xs) = let g [] = f xs
g (y:ys) = y+1 : g ys
in g (h x)
At each iteration of the fixpoint for f, the analyser has to find a
fixpoint for the enclosed function g. In the meantime, the demand
values for g at each iteration for f are *greater* than those we
encountered in the previous iteration for f. Therefore, we can begin
the fixpoint for g not with the bottom value but rather with the
result of the previous analysis. I.e., when beginning the fixpoint
process for g, we can start from the demand signature computed for g
previously and attached to the binding occurrence of g.
To speed things up, we initialise each iteration of A (the enclosing
one) from the result of the last one, which is neatly recorded in each
binder. That way we make use of earlier iterations of the fixpoint
algorithm. (Cunning plan.)
But on the *first* iteration we want to *ignore* the current strictness
of the Id, and start from "bottom". Nowadays the Id can have a current
strictness, because interface files record strictness for nested bindings.
To know when we are in the first iteration, we look at the ae_virgin
field of the AnalEnv.
-}
|