1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1993-1998
%
-----------------
A demand analysis
-----------------
\begin{code}
module DmdAnal ( dmdAnalPgm, dmdAnalTopRhs,
both {- needed by WwLib -}
) where
#include "HsVersions.h"
import DynFlags ( DynFlags )
import StaticFlags ( opt_MaxWorkerArgs )
import Demand -- All of it
import CoreSyn
import PprCore
import CoreUtils ( exprIsHNF, exprIsTrivial )
import CoreArity ( exprArity )
import DataCon ( dataConTyCon, dataConRepStrictness )
import TyCon ( isProductTyCon, isRecursiveTyCon )
import Id ( Id, idType, idInlineActivation,
isDataConWorkId, isGlobalId, idArity,
idStrictness,
setIdStrictness, idDemandInfo, idUnfolding,
idDemandInfo_maybe, setIdDemandInfo
)
import Var ( Var )
import VarEnv
import TysWiredIn ( unboxedPairDataCon )
import TysPrim ( realWorldStatePrimTy )
import UniqFM ( addToUFM_Directly, lookupUFM_Directly,
minusUFM, filterUFM )
import Type ( isUnLiftedType, coreEqType, splitTyConApp_maybe )
import Coercion ( coercionKind )
import Util ( mapAndUnzip, lengthIs, zipEqual )
import BasicTypes ( Arity, TopLevelFlag(..), isTopLevel, isNeverActive,
RecFlag(..), isRec, isMarkedStrict )
import Maybes ( orElse, expectJust )
import Outputable
import Data.List
import FastString
\end{code}
To think about
* set a noinline pragma on bottoming Ids
* Consider f x = x+1 `fatbar` error (show x)
We'd like to unbox x, even if that means reboxing it in the error case.
%************************************************************************
%* *
\subsection{Top level stuff}
%* *
%************************************************************************
\begin{code}
dmdAnalPgm :: DynFlags -> [CoreBind] -> IO [CoreBind]
dmdAnalPgm _ binds
= do {
let { binds_plus_dmds = do_prog binds } ;
return binds_plus_dmds
}
where
do_prog :: [CoreBind] -> [CoreBind]
do_prog binds = snd $ mapAccumL dmdAnalTopBind emptySigEnv binds
dmdAnalTopBind :: SigEnv
-> CoreBind
-> (SigEnv, CoreBind)
dmdAnalTopBind sigs (NonRec id rhs)
= let
( _, _, (_, rhs1)) = dmdAnalRhs TopLevel NonRecursive sigs (id, rhs)
(sigs2, _, (id2, rhs2)) = dmdAnalRhs TopLevel NonRecursive sigs (id, rhs1)
-- Do two passes to improve CPR information
-- See comments with ignore_cpr_info in mk_sig_ty
-- and with extendSigsWithLam
in
(sigs2, NonRec id2 rhs2)
dmdAnalTopBind sigs (Rec pairs)
= let
(sigs', _, pairs') = dmdFix TopLevel sigs pairs
-- We get two iterations automatically
-- c.f. the NonRec case above
in
(sigs', Rec pairs')
\end{code}
\begin{code}
dmdAnalTopRhs :: CoreExpr -> (StrictSig, CoreExpr)
-- Analyse the RHS and return
-- a) appropriate strictness info
-- b) the unfolding (decorated with stricntess info)
dmdAnalTopRhs rhs
= (sig, rhs2)
where
call_dmd = vanillaCall (exprArity rhs)
(_, rhs1) = dmdAnal emptySigEnv call_dmd rhs
(rhs_ty, rhs2) = dmdAnal emptySigEnv call_dmd rhs1
sig = mkTopSigTy rhs rhs_ty
-- Do two passes; see notes with extendSigsWithLam
-- Otherwise we get bogus CPR info for constructors like
-- newtype T a = MkT a
-- The constructor looks like (\x::T a -> x), modulo the coerce
-- extendSigsWithLam will optimistically give x a CPR tag the
-- first time, which is wrong in the end.
\end{code}
%************************************************************************
%* *
\subsection{The analyser itself}
%* *
%************************************************************************
\begin{code}
dmdAnal :: SigEnv -> Demand -> CoreExpr -> (DmdType, CoreExpr)
dmdAnal _ Abs e = (topDmdType, e)
dmdAnal sigs dmd e
| not (isStrictDmd dmd)
= let
(res_ty, e') = dmdAnal sigs evalDmd e
in
(deferType res_ty, e')
-- It's important not to analyse e with a lazy demand because
-- a) When we encounter case s of (a,b) ->
-- we demand s with U(d1d2)... but if the overall demand is lazy
-- that is wrong, and we'd need to reduce the demand on s,
-- which is inconvenient
-- b) More important, consider
-- f (let x = R in x+x), where f is lazy
-- We still want to mark x as demanded, because it will be when we
-- enter the let. If we analyse f's arg with a Lazy demand, we'll
-- just mark x as Lazy
-- c) The application rule wouldn't be right either
-- Evaluating (f x) in a L demand does *not* cause
-- evaluation of f in a C(L) demand!
dmdAnal _ _ (Lit lit) = (topDmdType, Lit lit)
dmdAnal _ _ (Type ty) = (topDmdType, Type ty) -- Doesn't happen, in fact
dmdAnal sigs dmd (Var var)
= (dmdTransform sigs var dmd, Var var)
dmdAnal sigs dmd (Cast e co)
= (dmd_ty, Cast e' co)
where
(dmd_ty, e') = dmdAnal sigs dmd' e
to_co = snd (coercionKind co)
dmd'
| Just (tc, _) <- splitTyConApp_maybe to_co
, isRecursiveTyCon tc = evalDmd
| otherwise = dmd
-- This coerce usually arises from a recursive
-- newtype, and we don't want to look inside them
-- for exactly the same reason that we don't look
-- inside recursive products -- we might not reach
-- a fixpoint. So revert to a vanilla Eval demand
dmdAnal sigs dmd (Note n e)
= (dmd_ty, Note n e')
where
(dmd_ty, e') = dmdAnal sigs dmd e
dmdAnal sigs dmd (App fun (Type ty))
= (fun_ty, App fun' (Type ty))
where
(fun_ty, fun') = dmdAnal sigs dmd fun
-- Lots of the other code is there to make this
-- beautiful, compositional, application rule :-)
dmdAnal sigs dmd (App fun arg) -- Non-type arguments
= let -- [Type arg handled above]
(fun_ty, fun') = dmdAnal sigs (Call dmd) fun
(arg_ty, arg') = dmdAnal sigs arg_dmd arg
(arg_dmd, res_ty) = splitDmdTy fun_ty
in
(res_ty `bothType` arg_ty, App fun' arg')
dmdAnal sigs dmd (Lam var body)
| isTyCoVar var
= let
(body_ty, body') = dmdAnal sigs dmd body
in
(body_ty, Lam var body')
| Call body_dmd <- dmd -- A call demand: good!
= let
sigs' = extendSigsWithLam sigs var
(body_ty, body') = dmdAnal sigs' body_dmd body
(lam_ty, var') = annotateLamIdBndr sigs body_ty var
in
(lam_ty, Lam var' body')
| otherwise -- Not enough demand on the lambda; but do the body
= let -- anyway to annotate it and gather free var info
(body_ty, body') = dmdAnal sigs evalDmd body
(lam_ty, var') = annotateLamIdBndr sigs body_ty var
in
(deferType lam_ty, Lam var' body')
dmdAnal sigs dmd (Case scrut case_bndr ty [alt@(DataAlt dc, _, _)])
| let tycon = dataConTyCon dc
, isProductTyCon tycon
, not (isRecursiveTyCon tycon)
= let
sigs_alt = extendSigEnv NotTopLevel sigs case_bndr case_bndr_sig
(alt_ty, alt') = dmdAnalAlt sigs_alt dmd alt
(alt_ty1, case_bndr') = annotateBndr alt_ty case_bndr
(_, bndrs', _) = alt'
case_bndr_sig = cprSig
-- Inside the alternative, the case binder has the CPR property.
-- Meaning that a case on it will successfully cancel.
-- Example:
-- f True x = case x of y { I# x' -> if x' ==# 3 then y else I# 8 }
-- f False x = I# 3
--
-- We want f to have the CPR property:
-- f b x = case fw b x of { r -> I# r }
-- fw True x = case x of y { I# x' -> if x' ==# 3 then x' else 8 }
-- fw False x = 3
-- Figure out whether the demand on the case binder is used, and use
-- that to set the scrut_dmd. This is utterly essential.
-- Consider f x = case x of y { (a,b) -> k y a }
-- If we just take scrut_demand = U(L,A), then we won't pass x to the
-- worker, so the worker will rebuild
-- x = (a, absent-error)
-- and that'll crash.
-- So at one stage I had:
-- dead_case_bndr = isAbsentDmd (idDemandInfo case_bndr')
-- keepity | dead_case_bndr = Drop
-- | otherwise = Keep
--
-- But then consider
-- case x of y { (a,b) -> h y + a }
-- where h : U(LL) -> T
-- The above code would compute a Keep for x, since y is not Abs, which is silly
-- The insight is, of course, that a demand on y is a demand on the
-- scrutinee, so we need to `both` it with the scrut demand
alt_dmd = Eval (Prod [idDemandInfo b | b <- bndrs', isId b])
scrut_dmd = alt_dmd `both`
idDemandInfo case_bndr'
(scrut_ty, scrut') = dmdAnal sigs scrut_dmd scrut
in
(alt_ty1 `bothType` scrut_ty, Case scrut' case_bndr' ty [alt'])
dmdAnal sigs dmd (Case scrut case_bndr ty alts)
= let
(alt_tys, alts') = mapAndUnzip (dmdAnalAlt sigs dmd) alts
(scrut_ty, scrut') = dmdAnal sigs evalDmd scrut
(alt_ty, case_bndr') = annotateBndr (foldr1 lubType alt_tys) case_bndr
in
-- pprTrace "dmdAnal:Case" (ppr alts $$ ppr alt_tys)
(alt_ty `bothType` scrut_ty, Case scrut' case_bndr' ty alts')
dmdAnal sigs dmd (Let (NonRec id rhs) body)
= let
(sigs', lazy_fv, (id1, rhs')) = dmdAnalRhs NotTopLevel NonRecursive sigs (id, rhs)
(body_ty, body') = dmdAnal sigs' dmd body
(body_ty1, id2) = annotateBndr body_ty id1
body_ty2 = addLazyFVs body_ty1 lazy_fv
in
-- If the actual demand is better than the vanilla call
-- demand, you might think that we might do better to re-analyse
-- the RHS with the stronger demand.
-- But (a) That seldom happens, because it means that *every* path in
-- the body of the let has to use that stronger demand
-- (b) It often happens temporarily in when fixpointing, because
-- the recursive function at first seems to place a massive demand.
-- But we don't want to go to extra work when the function will
-- probably iterate to something less demanding.
-- In practice, all the times the actual demand on id2 is more than
-- the vanilla call demand seem to be due to (b). So we don't
-- bother to re-analyse the RHS.
(body_ty2, Let (NonRec id2 rhs') body')
dmdAnal sigs dmd (Let (Rec pairs) body)
= let
bndrs = map fst pairs
(sigs', lazy_fv, pairs') = dmdFix NotTopLevel sigs pairs
(body_ty, body') = dmdAnal sigs' dmd body
body_ty1 = addLazyFVs body_ty lazy_fv
in
sigs' `seq` body_ty `seq`
let
(body_ty2, _) = annotateBndrs body_ty1 bndrs
-- Don't bother to add demand info to recursive
-- binders as annotateBndr does;
-- being recursive, we can't treat them strictly.
-- But we do need to remove the binders from the result demand env
in
(body_ty2, Let (Rec pairs') body')
dmdAnalAlt :: SigEnv -> Demand -> Alt Var -> (DmdType, Alt Var)
dmdAnalAlt sigs dmd (con,bndrs,rhs)
= let
(rhs_ty, rhs') = dmdAnal sigs dmd rhs
rhs_ty' = addDataConPatDmds con bndrs rhs_ty
(alt_ty, bndrs') = annotateBndrs rhs_ty' bndrs
final_alt_ty | io_hack_reqd = alt_ty `lubType` topDmdType
| otherwise = alt_ty
-- There's a hack here for I/O operations. Consider
-- case foo x s of { (# s, r #) -> y }
-- Is this strict in 'y'. Normally yes, but what if 'foo' is an I/O
-- operation that simply terminates the program (not in an erroneous way)?
-- In that case we should not evaluate y before the call to 'foo'.
-- Hackish solution: spot the IO-like situation and add a virtual branch,
-- as if we had
-- case foo x s of
-- (# s, r #) -> y
-- other -> return ()
-- So the 'y' isn't necessarily going to be evaluated
--
-- A more complete example where this shows up is:
-- do { let len = <expensive> ;
-- ; when (...) (exitWith ExitSuccess)
-- ; print len }
io_hack_reqd = con == DataAlt unboxedPairDataCon &&
idType (head bndrs) `coreEqType` realWorldStatePrimTy
in
(final_alt_ty, (con, bndrs', rhs'))
addDataConPatDmds :: AltCon -> [Var] -> DmdType -> DmdType
-- See Note [Add demands for strict constructors]
addDataConPatDmds DEFAULT _ dmd_ty = dmd_ty
addDataConPatDmds (LitAlt _) _ dmd_ty = dmd_ty
addDataConPatDmds (DataAlt con) bndrs dmd_ty
= foldr add dmd_ty str_bndrs
where
add bndr dmd_ty = addVarDmd dmd_ty bndr seqDmd
str_bndrs = [ b | (b,s) <- zipEqual "addDataConPatBndrs"
(filter isId bndrs)
(dataConRepStrictness con)
, isMarkedStrict s ]
\end{code}
Note [Add demands for strict constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this program (due to Roman):
data X a = X !a
foo :: X Int -> Int -> Int
foo (X a) n = go 0
where
go i | i < n = a + go (i+1)
| otherwise = 0
We want the worker for 'foo' too look like this:
$wfoo :: Int# -> Int# -> Int#
with the first argument unboxed, so that it is not eval'd each time
around the loop (which would otherwise happen, since 'foo' is not
strict in 'a'. It is sound for the wrapper to pass an unboxed arg
because X is strict, so its argument must be evaluated. And if we
*don't* pass an unboxed argument, we can't even repair it by adding a
`seq` thus:
foo (X a) n = a `seq` go 0
because the seq is discarded (very early) since X is strict!
There is the usual danger of reboxing, which as usual we ignore. But
if X is monomorphic, and has an UNPACK pragma, then this optimisation
is even more important. We don't want the wrapper to rebox an unboxed
argument, and pass an Int to $wfoo!
%************************************************************************
%* *
Demand transformer
%* *
%************************************************************************
\begin{code}
dmdTransform :: SigEnv -- The strictness environment
-> Id -- The function
-> Demand -- The demand on the function
-> DmdType -- The demand type of the function in this context
-- Returned DmdEnv includes the demand on
-- this function plus demand on its free variables
dmdTransform sigs var dmd
------ DATA CONSTRUCTOR
| isDataConWorkId var -- Data constructor
= let
StrictSig dmd_ty = idStrictness var -- It must have a strictness sig
DmdType _ _ con_res = dmd_ty
arity = idArity var
in
if arity == call_depth then -- Saturated, so unleash the demand
let
-- Important! If we Keep the constructor application, then
-- we need the demands the constructor places (always lazy)
-- If not, we don't need to. For example:
-- f p@(x,y) = (p,y) -- S(AL)
-- g a b = f (a,b)
-- It's vital that we don't calculate Absent for a!
dmd_ds = case res_dmd of
Box (Eval ds) -> mapDmds box ds
Eval ds -> ds
_ -> Poly Top
-- ds can be empty, when we are just seq'ing the thing
-- If so we must make up a suitable bunch of demands
arg_ds = case dmd_ds of
Poly d -> replicate arity d
Prod ds -> ASSERT( ds `lengthIs` arity ) ds
in
mkDmdType emptyDmdEnv arg_ds con_res
-- Must remember whether it's a product, hence con_res, not TopRes
else
topDmdType
------ IMPORTED FUNCTION
| isGlobalId var, -- Imported function
let StrictSig dmd_ty = idStrictness var
= -- pprTrace "strict-sig" (ppr var $$ ppr dmd_ty) $
if dmdTypeDepth dmd_ty <= call_depth then -- Saturated, so unleash the demand
dmd_ty
else
topDmdType
------ LOCAL LET/REC BOUND THING
| Just (StrictSig dmd_ty, top_lvl) <- lookupSigEnv sigs var
= let
fn_ty | dmdTypeDepth dmd_ty <= call_depth = dmd_ty
| otherwise = deferType dmd_ty
-- NB: it's important to use deferType, and not just return topDmdType
-- Consider let { f x y = p + x } in f 1
-- The application isn't saturated, but we must nevertheless propagate
-- a lazy demand for p!
in
if isTopLevel top_lvl then fn_ty -- Don't record top level things
else addVarDmd fn_ty var dmd
------ LOCAL NON-LET/REC BOUND THING
| otherwise -- Default case
= unitVarDmd var dmd
where
(call_depth, res_dmd) = splitCallDmd dmd
\end{code}
%************************************************************************
%* *
\subsection{Bindings}
%* *
%************************************************************************
\begin{code}
dmdFix :: TopLevelFlag
-> SigEnv -- Does not include bindings for this binding
-> [(Id,CoreExpr)]
-> (SigEnv, DmdEnv,
[(Id,CoreExpr)]) -- Binders annotated with stricness info
dmdFix top_lvl sigs orig_pairs
= loop 1 initial_sigs orig_pairs
where
bndrs = map fst orig_pairs
initial_sigs = addInitialSigs top_lvl sigs bndrs
loop :: Int
-> SigEnv -- Already contains the current sigs
-> [(Id,CoreExpr)]
-> (SigEnv, DmdEnv, [(Id,CoreExpr)])
loop n sigs pairs
| found_fixpoint
= (sigs', lazy_fv, pairs')
-- Note: return pairs', not pairs. pairs' is the result of
-- processing the RHSs with sigs (= sigs'), whereas pairs
-- is the result of processing the RHSs with the *previous*
-- iteration of sigs.
| n >= 10
= pprTrace "dmdFix loop" (ppr n <+> (vcat
[ text "Sigs:" <+> ppr [ (id,lookupSigEnv sigs id, lookupSigEnv sigs' id)
| (id,_) <- pairs],
text "env:" <+> ppr sigs,
text "binds:" <+> pprCoreBinding (Rec pairs)]))
(emptySigEnv, lazy_fv, orig_pairs) -- Safe output
-- The lazy_fv part is really important! orig_pairs has no strictness
-- info, including nothing about free vars. But if we have
-- letrec f = ....y..... in ...f...
-- where 'y' is free in f, we must record that y is mentioned,
-- otherwise y will get recorded as absent altogether
| otherwise
= loop (n+1) (setNonVirgin sigs') pairs'
where
found_fixpoint = all (same_sig sigs sigs') bndrs
-- Use the new signature to do the next pair
-- The occurrence analyser has arranged them in a good order
-- so this can significantly reduce the number of iterations needed
((sigs',lazy_fv), pairs') = mapAccumL my_downRhs (sigs, emptyDmdEnv) pairs
my_downRhs (sigs,lazy_fv) (id,rhs) = ((sigs', lazy_fv'), pair')
where
(sigs', lazy_fv1, pair') = dmdAnalRhs top_lvl Recursive sigs (id,rhs)
lazy_fv' = plusVarEnv_C both lazy_fv lazy_fv1
same_sig sigs sigs' var = lookup sigs var == lookup sigs' var
lookup sigs var = case lookupSigEnv sigs var of
Just (sig,_) -> sig
Nothing -> pprPanic "dmdFix" (ppr var)
dmdAnalRhs :: TopLevelFlag -> RecFlag
-> SigEnv -> (Id, CoreExpr)
-> (SigEnv, DmdEnv, (Id, CoreExpr))
-- Process the RHS of the binding, add the strictness signature
-- to the Id, and augment the environment with the signature as well.
dmdAnalRhs top_lvl rec_flag sigs (id, rhs)
= (sigs', lazy_fv, (id', rhs'))
where
arity = idArity id -- The idArity should be up to date
-- The simplifier was run just beforehand
(rhs_dmd_ty, rhs') = dmdAnal sigs (vanillaCall arity) rhs
(lazy_fv, sig_ty) = WARN( arity /= dmdTypeDepth rhs_dmd_ty && not (exprIsTrivial rhs), ppr id )
-- The RHS can be eta-reduced to just a variable,
-- in which case we should not complain.
mkSigTy top_lvl rec_flag id rhs rhs_dmd_ty
id' = id `setIdStrictness` sig_ty
sigs' = extendSigEnv top_lvl sigs id sig_ty
\end{code}
%************************************************************************
%* *
\subsection{Strictness signatures and types}
%* *
%************************************************************************
\begin{code}
mkTopSigTy :: CoreExpr -> DmdType -> StrictSig
-- Take a DmdType and turn it into a StrictSig
-- NB: not used for never-inline things; hence False
mkTopSigTy rhs dmd_ty = snd (mk_sig_ty False False rhs dmd_ty)
mkSigTy :: TopLevelFlag -> RecFlag -> Id -> CoreExpr -> DmdType -> (DmdEnv, StrictSig)
mkSigTy top_lvl rec_flag id rhs dmd_ty
= mk_sig_ty never_inline thunk_cpr_ok rhs dmd_ty
where
never_inline = isNeverActive (idInlineActivation id)
maybe_id_dmd = idDemandInfo_maybe id
-- Is Nothing the first time round
thunk_cpr_ok
| isTopLevel top_lvl = False -- Top level things don't get
-- their demandInfo set at all
| isRec rec_flag = False -- Ditto recursive things
| Just dmd <- maybe_id_dmd = isStrictDmd dmd
| otherwise = True -- Optimistic, first time round
-- See notes below
\end{code}
The thunk_cpr_ok stuff [CPR-AND-STRICTNESS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the rhs is a thunk, we usually forget the CPR info, because
it is presumably shared (else it would have been inlined, and
so we'd lose sharing if w/w'd it into a function). E.g.
let r = case expensive of
(a,b) -> (b,a)
in ...
If we marked r as having the CPR property, then we'd w/w into
let $wr = \() -> case expensive of
(a,b) -> (# b, a #)
r = case $wr () of
(# b,a #) -> (b,a)
in ...
But now r is a thunk, which won't be inlined, so we are no further ahead.
But consider
f x = let r = case expensive of (a,b) -> (b,a)
in if foo r then r else (x,x)
Does f have the CPR property? Well, no.
However, if the strictness analyser has figured out (in a previous
iteration) that it's strict, then we DON'T need to forget the CPR info.
Instead we can retain the CPR info and do the thunk-splitting transform
(see WorkWrap.splitThunk).
This made a big difference to PrelBase.modInt, which had something like
modInt = \ x -> let r = ... -> I# v in
...body strict in r...
r's RHS isn't a value yet; but modInt returns r in various branches, so
if r doesn't have the CPR property then neither does modInt
Another case I found in practice (in Complex.magnitude), looks like this:
let k = if ... then I# a else I# b
in ... body strict in k ....
(For this example, it doesn't matter whether k is returned as part of
the overall result; but it does matter that k's RHS has the CPR property.)
Left to itself, the simplifier will make a join point thus:
let $j k = ...body strict in k...
if ... then $j (I# a) else $j (I# b)
With thunk-splitting, we get instead
let $j x = let k = I#x in ...body strict in k...
in if ... then $j a else $j b
This is much better; there's a good chance the I# won't get allocated.
The difficulty with this is that we need the strictness type to
look at the body... but we now need the body to calculate the demand
on the variable, so we can decide whether its strictness type should
have a CPR in it or not. Simple solution:
a) use strictness info from the previous iteration
b) make sure we do at least 2 iterations, by doing a second
round for top-level non-recs. Top level recs will get at
least 2 iterations except for totally-bottom functions
which aren't very interesting anyway.
NB: strictly_demanded is never true of a top-level Id, or of a recursive Id.
The Nothing case in thunk_cpr_ok [CPR-AND-STRICTNESS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demand info now has a 'Nothing' state, just like strictness info.
The analysis works from 'dangerous' towards a 'safe' state; so we
start with botSig for 'Nothing' strictness infos, and we start with
"yes, it's demanded" for 'Nothing' in the demand info. The
fixpoint iteration will sort it all out.
We can't start with 'not-demanded' because then consider
f x = let
t = ... I# x
in
if ... then t else I# y else f x'
In the first iteration we'd have no demand info for x, so assume
not-demanded; then we'd get TopRes for f's CPR info. Next iteration
we'd see that t was demanded, and so give it the CPR property, but by
now f has TopRes, so it will stay TopRes. Instead, with the Nothing
setting the first time round, we say 'yes t is demanded' the first
time.
However, this does mean that for non-recursive bindings we must
iterate twice to be sure of not getting over-optimistic CPR info,
in the case where t turns out to be not-demanded. This is handled
by dmdAnalTopBind.
Note [NOINLINE and strictness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The strictness analyser used to have a HACK which ensured that NOINLNE
things were not strictness-analysed. The reason was unsafePerformIO.
Left to itself, the strictness analyser would discover this strictness
for unsafePerformIO:
unsafePerformIO: C(U(AV))
But then consider this sub-expression
unsafePerformIO (\s -> let r = f x in
case writeIORef v r s of (# s1, _ #) ->
(# s1, r #)
The strictness analyser will now find that r is sure to be eval'd,
and may then hoist it out. This makes tests/lib/should_run/memo002
deadlock.
Solving this by making all NOINLINE things have no strictness info is overkill.
In particular, it's overkill for runST, which is perfectly respectable.
Consider
f x = runST (return x)
This should be strict in x.
So the new plan is to define unsafePerformIO using the 'lazy' combinator:
unsafePerformIO (IO m) = lazy (case m realWorld# of (# _, r #) -> r)
Remember, 'lazy' is a wired-in identity-function Id, of type a->a, which is
magically NON-STRICT, and is inlined after strictness analysis. So
unsafePerformIO will look non-strict, and that's what we want.
Now we don't need the hack in the strictness analyser. HOWEVER, this
decision does mean that even a NOINLINE function is not entirely
opaque: some aspect of its implementation leaks out, notably its
strictness. For example, if you have a function implemented by an
error stub, but which has RULES, you may want it not to be eliminated
in favour of error!
\begin{code}
mk_sig_ty :: Bool -> Bool -> CoreExpr
-> DmdType -> (DmdEnv, StrictSig)
mk_sig_ty _never_inline thunk_cpr_ok rhs (DmdType fv dmds res)
= (lazy_fv, mkStrictSig dmd_ty)
-- Re unused never_inline, see Note [NOINLINE and strictness]
where
dmd_ty = DmdType strict_fv final_dmds res'
lazy_fv = filterUFM (not . isStrictDmd) fv
strict_fv = filterUFM isStrictDmd fv
-- We put the strict FVs in the DmdType of the Id, so
-- that at its call sites we unleash demands on its strict fvs.
-- An example is 'roll' in imaginary/wheel-sieve2
-- Something like this:
-- roll x = letrec
-- go y = if ... then roll (x-1) else x+1
-- in
-- go ms
-- We want to see that roll is strict in x, which is because
-- go is called. So we put the DmdEnv for x in go's DmdType.
--
-- Another example:
-- f :: Int -> Int -> Int
-- f x y = let t = x+1
-- h z = if z==0 then t else
-- if z==1 then x+1 else
-- x + h (z-1)
-- in
-- h y
-- Calling h does indeed evaluate x, but we can only see
-- that if we unleash a demand on x at the call site for t.
--
-- Incidentally, here's a place where lambda-lifting h would
-- lose the cigar --- we couldn't see the joint strictness in t/x
--
-- ON THE OTHER HAND
-- We don't want to put *all* the fv's from the RHS into the
-- DmdType, because that makes fixpointing very slow --- the
-- DmdType gets full of lazy demands that are slow to converge.
final_dmds = setUnpackStrategy dmds
-- Set the unpacking strategy
res' = case res of
RetCPR | ignore_cpr_info -> TopRes
_ -> res
ignore_cpr_info = not (exprIsHNF rhs || thunk_cpr_ok)
\end{code}
The unpack strategy determines whether we'll *really* unpack the argument,
or whether we'll just remember its strictness. If unpacking would give
rise to a *lot* of worker args, we may decide not to unpack after all.
\begin{code}
setUnpackStrategy :: [Demand] -> [Demand]
setUnpackStrategy ds
= snd (go (opt_MaxWorkerArgs - nonAbsentArgs ds) ds)
where
go :: Int -- Max number of args available for sub-components of [Demand]
-> [Demand]
-> (Int, [Demand]) -- Args remaining after subcomponents of [Demand] are unpacked
go n (Eval (Prod cs) : ds)
| n' >= 0 = Eval (Prod cs') `cons` go n'' ds
| otherwise = Box (Eval (Prod cs)) `cons` go n ds
where
(n'',cs') = go n' cs
n' = n + 1 - non_abs_args
-- Add one to the budget 'cos we drop the top-level arg
non_abs_args = nonAbsentArgs cs
-- Delete # of non-absent args to which we'll now be committed
go n (d:ds) = d `cons` go n ds
go n [] = (n,[])
cons d (n,ds) = (n, d:ds)
nonAbsentArgs :: [Demand] -> Int
nonAbsentArgs [] = 0
nonAbsentArgs (Abs : ds) = nonAbsentArgs ds
nonAbsentArgs (_ : ds) = 1 + nonAbsentArgs ds
\end{code}
%************************************************************************
%* *
\subsection{Strictness signatures and types}
%* *
%************************************************************************
\begin{code}
unitVarDmd :: Var -> Demand -> DmdType
unitVarDmd var dmd = DmdType (unitVarEnv var dmd) [] TopRes
addVarDmd :: DmdType -> Var -> Demand -> DmdType
addVarDmd (DmdType fv ds res) var dmd
= DmdType (extendVarEnv_C both fv var dmd) ds res
addLazyFVs :: DmdType -> DmdEnv -> DmdType
addLazyFVs (DmdType fv ds res) lazy_fvs
= DmdType both_fv1 ds res
where
both_fv = plusVarEnv_C both fv lazy_fvs
both_fv1 = modifyEnv (isBotRes res) (`both` Bot) lazy_fvs fv both_fv
-- This modifyEnv is vital. Consider
-- let f = \x -> (x,y)
-- in error (f 3)
-- Here, y is treated as a lazy-fv of f, but we must `both` that L
-- demand with the bottom coming up from 'error'
--
-- I got a loop in the fixpointer without this, due to an interaction
-- with the lazy_fv filtering in mkSigTy. Roughly, it was
-- letrec f n x
-- = letrec g y = x `fatbar`
-- letrec h z = z + ...g...
-- in h (f (n-1) x)
-- in ...
-- In the initial iteration for f, f=Bot
-- Suppose h is found to be strict in z, but the occurrence of g in its RHS
-- is lazy. Now consider the fixpoint iteration for g, esp the demands it
-- places on its free variables. Suppose it places none. Then the
-- x `fatbar` ...call to h...
-- will give a x->V demand for x. That turns into a L demand for x,
-- which floats out of the defn for h. Without the modifyEnv, that
-- L demand doesn't get both'd with the Bot coming up from the inner
-- call to f. So we just get an L demand for x for g.
--
-- A better way to say this is that the lazy-fv filtering should give the
-- same answer as putting the lazy fv demands in the function's type.
annotateBndr :: DmdType -> Var -> (DmdType, Var)
-- The returned env has the var deleted
-- The returned var is annotated with demand info
-- No effect on the argument demands
annotateBndr dmd_ty@(DmdType fv ds res) var
| isTyCoVar var = (dmd_ty, var)
| otherwise = (DmdType fv' ds res, setIdDemandInfo var dmd)
where
(fv', dmd) = removeFV fv var res
annotateBndrs :: DmdType -> [Var] -> (DmdType, [Var])
annotateBndrs = mapAccumR annotateBndr
annotateLamIdBndr :: SigEnv
-> DmdType -- Demand type of body
-> Id -- Lambda binder
-> (DmdType, -- Demand type of lambda
Id) -- and binder annotated with demand
annotateLamIdBndr sigs (DmdType fv ds res) id
-- For lambdas we add the demand to the argument demands
-- Only called for Ids
= ASSERT( isId id )
(final_ty, setIdDemandInfo id hacked_dmd)
where
-- Watch out! See note [Lambda-bound unfoldings]
final_ty = case maybeUnfoldingTemplate (idUnfolding id) of
Nothing -> main_ty
Just unf -> main_ty `bothType` unf_ty
where
(unf_ty, _) = dmdAnal sigs dmd unf
main_ty = DmdType fv' (hacked_dmd:ds) res
(fv', dmd) = removeFV fv id res
hacked_dmd = argDemand dmd
-- This call to argDemand is vital, because otherwise we label
-- a lambda binder with demand 'B'. But in terms of calling
-- conventions that's Abs, because we don't pass it. But
-- when we do a w/w split we get
-- fw x = (\x y:B -> ...) x (error "oops")
-- And then the simplifier things the 'B' is a strict demand
-- and evaluates the (error "oops"). Sigh
removeFV :: DmdEnv -> Var -> DmdResult -> (DmdEnv, Demand)
removeFV fv id res = (fv', zapUnlifted id dmd)
where
fv' = fv `delVarEnv` id
dmd = lookupVarEnv fv id `orElse` deflt
deflt | isBotRes res = Bot
| otherwise = Abs
zapUnlifted :: Id -> Demand -> Demand
-- For unlifted-type variables, we are only
-- interested in Bot/Abs/Box Abs
zapUnlifted _ Bot = Bot
zapUnlifted _ Abs = Abs
zapUnlifted id dmd | isUnLiftedType (idType id) = lazyDmd
| otherwise = dmd
\end{code}
Note [Lamba-bound unfoldings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We allow a lambda-bound variable to carry an unfolding, a facility that is used
exclusively for join points; see Note [Case binders and join points]. If so,
we must be careful to demand-analyse the RHS of the unfolding! Example
\x. \y{=Just x}. <body>
Then if <body> uses 'y', then transitively it uses 'x', and we must not
forget that fact, otherwise we might make 'x' absent when it isn't.
%************************************************************************
%* *
\subsection{Strictness signatures}
%* *
%************************************************************************
\begin{code}
data SigEnv
= SE { se_env :: VarEnv (StrictSig, TopLevelFlag)
, se_virgin :: Bool } -- True on first iteration only
-- See Note [Initialising strictness]
-- We use the se_env to tell us whether to
-- record info about a variable in the DmdEnv
-- We do so if it's a LocalId, but not top-level
--
-- The DmdEnv gives the demand on the free vars of the function
-- when it is given enough args to satisfy the strictness signature
instance Outputable SigEnv where
ppr (SE { se_env = env, se_virgin = virgin })
= ptext (sLit "SE") <+> braces (vcat
[ ptext (sLit "se_virgin =") <+> ppr virgin
, ptext (sLit "se_env =") <+> ppr env ])
emptySigEnv :: SigEnv
emptySigEnv = SE { se_env = emptyVarEnv, se_virgin = True }
extendSigEnv :: TopLevelFlag -> SigEnv -> Id -> StrictSig -> SigEnv
extendSigEnv top_lvl sigs var sig
= sigs { se_env = extendVarEnv (se_env sigs) var (sig, top_lvl) }
lookupSigEnv :: SigEnv -> Id -> Maybe (StrictSig, TopLevelFlag)
lookupSigEnv sigs id = lookupVarEnv (se_env sigs) id
addInitialSigs :: TopLevelFlag -> SigEnv -> [Id] -> SigEnv
-- See Note [Initialising strictness]
addInitialSigs top_lvl sigs@(SE { se_env = env, se_virgin = virgin }) ids
= sigs { se_env = extendVarEnvList env [ (id, (init_sig id, top_lvl))
| id <- ids ] }
where
init_sig | virgin = \_ -> botSig
| otherwise = idStrictness
setNonVirgin :: SigEnv -> SigEnv
setNonVirgin sigs = sigs { se_virgin = False }
extendSigsWithLam :: SigEnv -> Id -> SigEnv
-- Extend the SigEnv when we meet a lambda binder
-- If the binder is marked demanded with a product demand, then give it a CPR
-- signature, because in the likely event that this is a lambda on a fn defn
-- [we only use this when the lambda is being consumed with a call demand],
-- it'll be w/w'd and so it will be CPR-ish. E.g.
-- f = \x::(Int,Int). if ...strict in x... then
-- x
-- else
-- (a,b)
-- We want f to have the CPR property because x does, by the time f has been w/w'd
--
-- Also note that we only want to do this for something that
-- definitely has product type, else we may get over-optimistic
-- CPR results (e.g. from \x -> x!).
extendSigsWithLam sigs id
= case idDemandInfo_maybe id of
Nothing -> extendSigEnv NotTopLevel sigs id cprSig
-- Optimistic in the Nothing case;
-- See notes [CPR-AND-STRICTNESS]
Just (Eval (Prod _)) -> extendSigEnv NotTopLevel sigs id cprSig
_ -> sigs
\end{code}
Note [Initialising strictness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Our basic plan is to initialise the strictness of each Id in
a recursive group to "bottom", and find a fixpoint from there.
However, this group A might be inside an *enclosing* recursive
group B, in which case we'll do the entire fixpoint shebang on A
for each iteration of B.
To speed things up, we initialise each iteration of B from the result
of the last one, which is neatly recorded in each binder. That way we
make use of earlier iterations of the fixpoint algorithm. (Cunning
plan.)
But on the *first* iteration we want to *ignore* the current strictness
of the Id, and start from "bottom". Nowadays the Id can have a current
strictness, because interface files record strictness for nested bindings.
To know when we are in the first iteration, we look at the se_virgin
field of the SigEnv.
%************************************************************************
%* *
Demands
%* *
%************************************************************************
\begin{code}
splitDmdTy :: DmdType -> (Demand, DmdType)
-- Split off one function argument
-- We already have a suitable demand on all
-- free vars, so no need to add more!
splitDmdTy (DmdType fv (dmd:dmds) res_ty) = (dmd, DmdType fv dmds res_ty)
splitDmdTy ty@(DmdType _ [] res_ty) = (resTypeArgDmd res_ty, ty)
splitCallDmd :: Demand -> (Int, Demand)
splitCallDmd (Call d) = case splitCallDmd d of
(n, r) -> (n+1, r)
splitCallDmd d = (0, d)
vanillaCall :: Arity -> Demand
vanillaCall 0 = evalDmd
vanillaCall n = Call (vanillaCall (n-1))
deferType :: DmdType -> DmdType
deferType (DmdType fv _ _) = DmdType (deferEnv fv) [] TopRes
-- Notice that we throw away info about both arguments and results
-- For example, f = let ... in \x -> x
-- We don't want to get a stricness type V->T for f.
deferEnv :: DmdEnv -> DmdEnv
deferEnv fv = mapVarEnv defer fv
----------------
argDemand :: Demand -> Demand
-- The 'Defer' demands are just Lazy at function boundaries
-- Ugly! Ask John how to improve it.
argDemand Top = lazyDmd
argDemand (Defer _) = lazyDmd
argDemand (Eval ds) = Eval (mapDmds argDemand ds)
argDemand (Box Bot) = evalDmd
argDemand (Box d) = box (argDemand d)
argDemand Bot = Abs -- Don't pass args that are consumed (only) by bottom
argDemand d = d
\end{code}
\begin{code}
-------------------------
lubType :: DmdType -> DmdType -> DmdType
-- Consider (if x then y else []) with demand V
-- Then the first branch gives {y->V} and the second
-- *implicitly* has {y->A}. So we must put {y->(V `lub` A)}
-- in the result env.
lubType (DmdType fv1 ds1 r1) (DmdType fv2 ds2 r2)
= DmdType lub_fv2 (lub_ds ds1 ds2) (r1 `lubRes` r2)
where
lub_fv = plusVarEnv_C lub fv1 fv2
lub_fv1 = modifyEnv (not (isBotRes r1)) absLub fv2 fv1 lub_fv
lub_fv2 = modifyEnv (not (isBotRes r2)) absLub fv1 fv2 lub_fv1
-- lub is the identity for Bot
-- Extend the shorter argument list to match the longer
lub_ds (d1:ds1) (d2:ds2) = lub d1 d2 : lub_ds ds1 ds2
lub_ds [] [] = []
lub_ds ds1 [] = map (`lub` resTypeArgDmd r2) ds1
lub_ds [] ds2 = map (resTypeArgDmd r1 `lub`) ds2
-----------------------------------
bothType :: DmdType -> DmdType -> DmdType
-- (t1 `bothType` t2) takes the argument/result info from t1,
-- using t2 just for its free-var info
-- NB: Don't forget about r2! It might be BotRes, which is
-- a bottom demand on all the in-scope variables.
-- Peter: can this be done more neatly?
bothType (DmdType fv1 ds1 r1) (DmdType fv2 _ r2)
= DmdType both_fv2 ds1 (r1 `bothRes` r2)
where
both_fv = plusVarEnv_C both fv1 fv2
both_fv1 = modifyEnv (isBotRes r1) (`both` Bot) fv2 fv1 both_fv
both_fv2 = modifyEnv (isBotRes r2) (`both` Bot) fv1 fv2 both_fv1
-- both is the identity for Abs
\end{code}
\begin{code}
lubRes :: DmdResult -> DmdResult -> DmdResult
lubRes BotRes r = r
lubRes r BotRes = r
lubRes RetCPR RetCPR = RetCPR
lubRes _ _ = TopRes
bothRes :: DmdResult -> DmdResult -> DmdResult
-- If either diverges, the whole thing does
-- Otherwise take CPR info from the first
bothRes _ BotRes = BotRes
bothRes r1 _ = r1
\end{code}
\begin{code}
modifyEnv :: Bool -- No-op if False
-> (Demand -> Demand) -- The zapper
-> DmdEnv -> DmdEnv -- Env1 and Env2
-> DmdEnv -> DmdEnv -- Transform this env
-- Zap anything in Env1 but not in Env2
-- Assume: dom(env) includes dom(Env1) and dom(Env2)
modifyEnv need_to_modify zapper env1 env2 env
| need_to_modify = foldr zap env (varEnvKeys (env1 `minusUFM` env2))
| otherwise = env
where
zap uniq env = addToUFM_Directly env uniq (zapper current_val)
where
current_val = expectJust "modifyEnv" (lookupUFM_Directly env uniq)
\end{code}
%************************************************************************
%* *
\subsection{LUB and BOTH}
%* *
%************************************************************************
\begin{code}
lub :: Demand -> Demand -> Demand
lub Bot d2 = d2
lub Abs d2 = absLub d2
lub Top _ = Top
lub (Defer ds1) d2 = defer (Eval ds1 `lub` d2)
lub (Call d1) (Call d2) = Call (d1 `lub` d2)
lub d1@(Call _) (Box d2) = d1 `lub` d2 -- Just strip the box
lub (Call _) d2@(Eval _) = d2 -- Presumably seq or vanilla eval
lub d1@(Call _) d2 = d2 `lub` d1 -- Bot, Abs, Top
-- For the Eval case, we use these approximation rules
-- Box Bot <= Eval (Box Bot ...)
-- Box Top <= Defer (Box Bot ...)
-- Box (Eval ds) <= Eval (map Box ds)
lub (Eval ds1) (Eval ds2) = Eval (ds1 `lubs` ds2)
lub (Eval ds1) (Box Bot) = Eval (mapDmds (`lub` Box Bot) ds1)
lub (Eval ds1) (Box (Eval ds2)) = Eval (ds1 `lubs` mapDmds box ds2)
lub (Eval ds1) (Box Abs) = deferEval (mapDmds (`lub` Box Bot) ds1)
lub d1@(Eval _) d2 = d2 `lub` d1 -- Bot,Abs,Top,Call,Defer
lub (Box d1) (Box d2) = box (d1 `lub` d2)
lub d1@(Box _) d2 = d2 `lub` d1
lubs :: Demands -> Demands -> Demands
lubs ds1 ds2 = zipWithDmds lub ds1 ds2
---------------------
box :: Demand -> Demand
-- box is the smart constructor for Box
-- It computes <B,bot> & d
-- INVARIANT: (Box d) => d = Bot, Abs, Eval
-- Seems to be no point in allowing (Box (Call d))
box (Call d) = Call d -- The odd man out. Why?
box (Box d) = Box d
box (Defer _) = lazyDmd
box Top = lazyDmd -- Box Abs and Box Top
box Abs = lazyDmd -- are the same <B,L>
box d = Box d -- Bot, Eval
---------------
defer :: Demand -> Demand
-- defer is the smart constructor for Defer
-- The idea is that (Defer ds) = <U(ds), L>
--
-- It specifies what happens at a lazy function argument
-- or a lambda; the L* operator
-- Set the strictness part to L, but leave
-- the boxity side unaffected
-- It also ensures that Defer (Eval [LLLL]) = L
defer Bot = Abs
defer Abs = Abs
defer Top = Top
defer (Call _) = lazyDmd -- Approximation here?
defer (Box _) = lazyDmd
defer (Defer ds) = Defer ds
defer (Eval ds) = deferEval ds
deferEval :: Demands -> Demand
-- deferEval ds = defer (Eval ds)
deferEval ds | allTop ds = Top
| otherwise = Defer ds
---------------------
absLub :: Demand -> Demand
-- Computes (Abs `lub` d)
-- For the Bot case consider
-- f x y = if ... then x else error x
-- Then for y we get Abs `lub` Bot, and we really
-- want Abs overall
absLub Bot = Abs
absLub Abs = Abs
absLub Top = Top
absLub (Call _) = Top
absLub (Box _) = Top
absLub (Eval ds) = Defer (absLubs ds) -- Or (Defer ds)?
absLub (Defer ds) = Defer (absLubs ds) -- Or (Defer ds)?
absLubs :: Demands -> Demands
absLubs = mapDmds absLub
---------------
both :: Demand -> Demand -> Demand
both Abs d2 = d2
-- Note [Bottom demands]
both Bot Bot = Bot
both Bot Abs = Bot
both Bot (Eval ds) = Eval (mapDmds (`both` Bot) ds)
both Bot (Defer ds) = Eval (mapDmds (`both` Bot) ds)
both Bot _ = errDmd
both Top Bot = errDmd
both Top Abs = Top
both Top Top = Top
both Top (Box d) = Box d
both Top (Call d) = Call d
both Top (Eval ds) = Eval (mapDmds (`both` Top) ds)
both Top (Defer ds) -- = defer (Top `both` Eval ds)
-- = defer (Eval (mapDmds (`both` Top) ds))
= deferEval (mapDmds (`both` Top) ds)
both (Box d1) (Box d2) = box (d1 `both` d2)
both (Box d1) d2@(Call _) = box (d1 `both` d2)
both (Box d1) d2@(Eval _) = box (d1 `both` d2)
both (Box d1) (Defer _) = Box d1
both d1@(Box _) d2 = d2 `both` d1
both (Call d1) (Call d2) = Call (d1 `both` d2)
both (Call d1) (Eval _) = Call d1 -- Could do better for (Poly Bot)?
both (Call d1) (Defer _) = Call d1 -- Ditto
both d1@(Call _) d2 = d2 `both` d1
both (Eval ds1) (Eval ds2) = Eval (ds1 `boths` ds2)
both (Eval ds1) (Defer ds2) = Eval (ds1 `boths` mapDmds defer ds2)
both d1@(Eval _) d2 = d2 `both` d1
both (Defer ds1) (Defer ds2) = deferEval (ds1 `boths` ds2)
both d1@(Defer _) d2 = d2 `both` d1
boths :: Demands -> Demands -> Demands
boths ds1 ds2 = zipWithDmds both ds1 ds2
\end{code}
Note [Bottom demands]
~~~~~~~~~~~~~~~~~~~~~
Consider
f x = error x
From 'error' itself we get demand Bot on x
From the arg demand on x we get
x :-> evalDmd = Box (Eval (Poly Abs))
So we get Bot `both` Box (Eval (Poly Abs))
= Seq Keep (Poly Bot)
Consider also
f x = if ... then error (fst x) else fst x
Then we get (Eval (Box Bot, Bot) `lub` Eval (SA))
= Eval (SA)
which is what we want.
Consider also
f x = error [fst x]
Then we get
x :-> Bot `both` Defer [SA]
and we want the Bot demand to cancel out the Defer
so that we get Eval [SA]. Otherwise we'd have the odd
situation that
f x = error (fst x) -- Strictness U(SA)b
g x = error ('y':fst x) -- Strictness Tb
|