1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1993-1998
%
\section[WorkWrap]{Worker/wrapper-generating back-end of strictness analyser}
\begin{code}
module WorkWrap ( wwTopBinds, mkWrapper ) where
import CoreSyn
import CoreUnfold ( certainlyWillInline, mkInlineRule, mkWwInlineRule )
import CoreUtils ( exprType, exprIsHNF )
import CoreArity ( exprArity )
import Var
import Id ( idType, isOneShotLambda, idUnfolding,
setIdStrictness, mkWorkerId,
setInlineActivation, setIdUnfolding,
setIdArity )
import Type ( Type )
import IdInfo
import Demand ( Demand(..), StrictSig(..), DmdType(..), DmdResult(..),
Demands(..), mkTopDmdType, isBotRes, returnsCPR, topSig, isAbsent
)
import UniqSupply
import BasicTypes ( RecFlag(..), isNonRec, isNeverActive,
Activation, inlinePragmaActivation )
import VarEnv ( isEmptyVarEnv )
import Maybes ( orElse )
import WwLib
import Util ( lengthIs, notNull )
import Outputable
import MonadUtils
#include "HsVersions.h"
\end{code}
We take Core bindings whose binders have:
\begin{enumerate}
\item Strictness attached (by the front-end of the strictness
analyser), and / or
\item Constructed Product Result information attached by the CPR
analysis pass.
\end{enumerate}
and we return some ``plain'' bindings which have been
worker/wrapper-ified, meaning:
\begin{enumerate}
\item Functions have been split into workers and wrappers where
appropriate. If a function has both strictness and CPR properties
then only one worker/wrapper doing both transformations is produced;
\item Binders' @IdInfos@ have been updated to reflect the existence of
these workers/wrappers (this is where we get STRICTNESS and CPR pragma
info for exported values).
\end{enumerate}
\begin{code}
wwTopBinds :: UniqSupply -> [CoreBind] -> [CoreBind]
wwTopBinds us top_binds
= initUs_ us $ do
top_binds' <- mapM wwBind top_binds
return (concat top_binds')
\end{code}
%************************************************************************
%* *
\subsection[wwBind-wwExpr]{@wwBind@ and @wwExpr@}
%* *
%************************************************************************
@wwBind@ works on a binding, trying each \tr{(binder, expr)} pair in
turn. Non-recursive case first, then recursive...
\begin{code}
wwBind :: CoreBind
-> UniqSM [CoreBind] -- returns a WwBinding intermediate form;
-- the caller will convert to Expr/Binding,
-- as appropriate.
wwBind (NonRec binder rhs) = do
new_rhs <- wwExpr rhs
new_pairs <- tryWW NonRecursive binder new_rhs
return [NonRec b e | (b,e) <- new_pairs]
-- Generated bindings must be non-recursive
-- because the original binding was.
wwBind (Rec pairs)
= return . Rec <$> concatMapM do_one pairs
where
do_one (binder, rhs) = do new_rhs <- wwExpr rhs
tryWW Recursive binder new_rhs
\end{code}
@wwExpr@ basically just walks the tree, looking for appropriate
annotations that can be used. Remember it is @wwBind@ that does the
matching by looking for strict arguments of the correct type.
@wwExpr@ is a version that just returns the ``Plain'' Tree.
\begin{code}
wwExpr :: CoreExpr -> UniqSM CoreExpr
wwExpr e@(Type {}) = return e
wwExpr e@(Lit {}) = return e
wwExpr e@(Var {}) = return e
wwExpr (Lam binder expr)
= Lam binder <$> wwExpr expr
wwExpr (App f a)
= App <$> wwExpr f <*> wwExpr a
wwExpr (Note note expr)
= Note note <$> wwExpr expr
wwExpr (Cast expr co) = do
new_expr <- wwExpr expr
return (Cast new_expr co)
wwExpr (Let bind expr)
= mkLets <$> wwBind bind <*> wwExpr expr
wwExpr (Case expr binder ty alts) = do
new_expr <- wwExpr expr
new_alts <- mapM ww_alt alts
return (Case new_expr binder ty new_alts)
where
ww_alt (con, binders, rhs) = do
new_rhs <- wwExpr rhs
return (con, binders, new_rhs)
\end{code}
%************************************************************************
%* *
\subsection[tryWW]{@tryWW@: attempt a worker/wrapper pair}
%* *
%************************************************************************
@tryWW@ just accumulates arguments, converts strictness info from the
front-end into the proper form, then calls @mkWwBodies@ to do
the business.
We have to BE CAREFUL that we don't worker-wrapperize an Id that has
already been w-w'd! (You can end up with several liked-named Ids
bouncing around at the same time---absolute mischief.) So the
criterion we use is: if an Id already has an unfolding (for whatever
reason), then we don't w-w it.
The only reason this is monadised is for the unique supply.
Note [Don't w/w inline things (a)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's very important to refrain from w/w-ing an INLINE function
because the wrapper will then overwrite the InlineRule unfolding.
It was wrong with the old InlineMe Note too: if we do so by mistake
we transform
f = __inline (\x -> E)
into
f = __inline (\x -> case x of (a,b) -> fw E)
fw = \ab -> (__inline (\x -> E)) (a,b)
and the original __inline now vanishes, so E is no longer
inside its __inline wrapper. Death! Disaster!
Furthermore, if the programmer has marked something as INLINE,
we may lose by w/w'ing it.
If the strictness analyser is run twice, this test also prevents
wrappers (which are INLINEd) from being re-done.
Notice that we refrain from w/w'ing an INLINE function even if it is
in a recursive group. It might not be the loop breaker. (We could
test for loop-breaker-hood, but I'm not sure that ever matters.)
Note [Don't w/w inline things (b)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general, therefore, we refrain from w/w-ing *small* functions,
because they'll inline anyway. But we must take care: it may look
small now, but get to be big later after other inling has happened.
So we take the precaution of adding an INLINE pragma to any such
functions.
I made this change when I observed a big function at the end of
compilation with a useful strictness signature but no w-w. When
I measured it on nofib, it didn't make much difference; just a few
percent improved allocation on one benchmark (bspt/Euclid.space).
But nothing got worse.
\begin{code}
tryWW :: RecFlag
-> Id -- The fn binder
-> CoreExpr -- The bound rhs; its innards
-- are already ww'd
-> UniqSM [(Id, CoreExpr)] -- either *one* or *two* pairs;
-- if one, then no worker (only
-- the orig "wrapper" lives on);
-- if two, then a worker and a
-- wrapper.
tryWW is_rec fn_id rhs
| isNeverActive inline_act
-- No point in worker/wrappering if the thing is never inlined!
-- Because the no-inline prag will prevent the wrapper ever
-- being inlined at a call site.
--
-- Furthermore, don't even expose strictness info
= return [ (fn_id, rhs) ]
| is_thunk && worthSplittingThunk maybe_fn_dmd res_info
= ASSERT2( isNonRec is_rec, ppr new_fn_id ) -- The thunk must be non-recursive
checkSize new_fn_id rhs $
splitThunk new_fn_id rhs
| is_fun && worthSplittingFun wrap_dmds res_info
= checkSize new_fn_id rhs $
splitFun new_fn_id fn_info wrap_dmds res_info inline_act rhs
| otherwise
= return [ (new_fn_id, rhs) ]
where
fn_info = idInfo fn_id
maybe_fn_dmd = demandInfo fn_info
inline_act = inlinePragmaActivation (inlinePragInfo fn_info)
-- In practice it always will have a strictness
-- signature, even if it's a uninformative one
strict_sig = strictnessInfo fn_info `orElse` topSig
StrictSig (DmdType env wrap_dmds res_info) = strict_sig
-- new_fn_id has the DmdEnv zapped.
-- (a) it is never used again
-- (b) it wastes space
-- (c) it becomes incorrect as things are cloned, because
-- we don't push the substitution into it
new_fn_id | isEmptyVarEnv env = fn_id
| otherwise = fn_id `setIdStrictness`
StrictSig (mkTopDmdType wrap_dmds res_info)
is_fun = notNull wrap_dmds
is_thunk = not is_fun && not (exprIsHNF rhs)
---------------------
checkSize :: Id -> CoreExpr
-> UniqSM [(Id,CoreExpr)] -> UniqSM [(Id,CoreExpr)]
-- See Note [Don't w/w inline things (a) and (b)]
checkSize fn_id rhs thing_inside
| isStableUnfolding unfolding -- For DFuns and INLINE things, leave their
= return [ (fn_id, rhs) ] -- unfolding unchanged; but still attach
-- strictness info to the Id
| certainlyWillInline unfolding
= return [ (fn_id `setIdUnfolding` inline_rule, rhs) ]
-- Note [Don't w/w inline things (b)]
| otherwise = thing_inside
where
unfolding = idUnfolding fn_id
inline_rule = mkInlineRule unSaturatedOk rhs (unfoldingArity unfolding)
---------------------
splitFun :: Id -> IdInfo -> [Demand] -> DmdResult -> Activation -> Expr Var
-> UniqSM [(Id, CoreExpr)]
splitFun fn_id fn_info wrap_dmds res_info inline_act rhs
= WARN( not (wrap_dmds `lengthIs` arity), ppr fn_id <+> (ppr arity $$ ppr wrap_dmds $$ ppr res_info) )
(do {
-- The arity should match the signature
(work_demands, wrap_fn, work_fn) <- mkWwBodies fun_ty wrap_dmds res_info one_shots
; work_uniq <- getUniqueM
; let
work_rhs = work_fn rhs
work_id = mkWorkerId work_uniq fn_id (exprType work_rhs)
`setInlineActivation` inline_act
-- Any inline activation (which sets when inlining is active)
-- on the original function is duplicated on the worker and wrapper
-- It *matters* that the pragma stays on the wrapper
-- It seems sensible to have it on the worker too, although we
-- can't think of a compelling reason. (In ptic, INLINE things are
-- not w/wd). However, the RuleMatchInfo is not transferred since
-- it does not make sense for workers to be constructorlike.
`setIdStrictness` StrictSig (mkTopDmdType work_demands work_res_info)
-- Even though we may not be at top level,
-- it's ok to give it an empty DmdEnv
`setIdArity` (exprArity work_rhs)
-- Set the arity so that the Core Lint check that the
-- arity is consistent with the demand type goes through
wrap_rhs = wrap_fn work_id
wrap_id = fn_id `setIdUnfolding` mkWwInlineRule work_id wrap_rhs arity
; return ([(work_id, work_rhs), (wrap_id, wrap_rhs)]) })
-- Worker first, because wrapper mentions it
-- mkWwBodies has already built a wrap_rhs with an INLINE pragma wrapped around it
where
fun_ty = idType fn_id
arity = arityInfo fn_info -- The arity is set by the simplifier using exprEtaExpandArity
-- So it may be more than the number of top-level-visible lambdas
work_res_info | isBotRes res_info = BotRes -- Cpr stuff done by wrapper
| otherwise = TopRes
one_shots = get_one_shots rhs
-- If the original function has one-shot arguments, it is important to
-- make the wrapper and worker have corresponding one-shot arguments too.
-- Otherwise we spuriously float stuff out of case-expression join points,
-- which is very annoying.
get_one_shots :: Expr Var -> [Bool]
get_one_shots (Lam b e)
| isId b = isOneShotLambda b : get_one_shots e
| otherwise = get_one_shots e
get_one_shots (Note _ e) = get_one_shots e
get_one_shots _ = noOneShotInfo
\end{code}
Thunk splitting
~~~~~~~~~~~~~~~
Suppose x is used strictly (never mind whether it has the CPR
property).
let
x* = x-rhs
in body
splitThunk transforms like this:
let
x* = case x-rhs of { I# a -> I# a }
in body
Now simplifier will transform to
case x-rhs of
I# a -> let x* = I# a
in body
which is what we want. Now suppose x-rhs is itself a case:
x-rhs = case e of { T -> I# a; F -> I# b }
The join point will abstract over a, rather than over (which is
what would have happened before) which is fine.
Notice that x certainly has the CPR property now!
In fact, splitThunk uses the function argument w/w splitting
function, so that if x's demand is deeper (say U(U(L,L),L))
then the splitting will go deeper too.
\begin{code}
-- splitThunk converts the *non-recursive* binding
-- x = e
-- into
-- x = let x = e
-- in case x of
-- I# y -> let x = I# y in x }
-- See comments above. Is it not beautifully short?
splitThunk :: Var -> Expr Var -> UniqSM [(Var, Expr Var)]
splitThunk fn_id rhs = do
(_, wrap_fn, work_fn) <- mkWWstr [fn_id]
return [ (fn_id, Let (NonRec fn_id rhs) (wrap_fn (work_fn (Var fn_id)))) ]
\end{code}
%************************************************************************
%* *
\subsection{Functions over Demands}
%* *
%************************************************************************
\begin{code}
worthSplittingFun :: [Demand] -> DmdResult -> Bool
-- True <=> the wrapper would not be an identity function
worthSplittingFun ds res
= any worth_it ds || returnsCPR res
-- worthSplitting returns False for an empty list of demands,
-- and hence do_strict_ww is False if arity is zero and there is no CPR
-- See Note [Worker-wrapper for bottoming functions]
where
worth_it Abs = True -- Absent arg
worth_it (Eval (Prod _)) = True -- Product arg to evaluate
worth_it _ = False
worthSplittingThunk :: Maybe Demand -- Demand on the thunk
-> DmdResult -- CPR info for the thunk
-> Bool
worthSplittingThunk maybe_dmd res
= worth_it maybe_dmd || returnsCPR res
where
-- Split if the thing is unpacked
worth_it (Just (Eval (Prod ds))) = not (all isAbsent ds)
worth_it _ = False
\end{code}
Note [Worker-wrapper for bottoming functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used not to split if the result is bottom.
[Justification: there's no efficiency to be gained.]
But it's sometimes bad not to make a wrapper. Consider
fw = \x# -> let x = I# x# in case e of
p1 -> error_fn x
p2 -> error_fn x
p3 -> the real stuff
The re-boxing code won't go away unless error_fn gets a wrapper too.
[We don't do reboxing now, but in general it's better to pass an
unboxed thing to f, and have it reboxed in the error cases....]
%************************************************************************
%* *
\subsection{The worker wrapper core}
%* *
%************************************************************************
@mkWrapper@ is called when importing a function. We have the type of
the function and the name of its worker, and we want to make its body (the wrapper).
\begin{code}
mkWrapper :: Type -- Wrapper type
-> StrictSig -- Wrapper strictness info
-> UniqSM (Id -> CoreExpr) -- Wrapper body, missing worker Id
mkWrapper fun_ty (StrictSig (DmdType _ demands res_info)) = do
(_, wrap_fn, _) <- mkWwBodies fun_ty demands res_info noOneShotInfo
return wrap_fn
noOneShotInfo :: [Bool]
noOneShotInfo = repeat False
\end{code}
|