1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1993-1998
\section[WwLib]{A library for the ``worker\/wrapper'' back-end to the strictness analyser}
-}
{-# LANGUAGE CPP #-}
module WwLib ( mkWwBodies, mkWWstr, mkWorkerArgs
, deepSplitProductType_maybe, findTypeShape
) where
#include "HsVersions.h"
import CoreSyn
import CoreUtils ( exprType, mkCast )
import Id ( Id, idType, mkSysLocal, idDemandInfo, setIdDemandInfo,
setIdUnfolding,
setIdInfo, idOneShotInfo, setIdOneShotInfo
)
import IdInfo ( vanillaIdInfo )
import DataCon
import Demand
import MkCore ( mkRuntimeErrorApp, aBSENT_ERROR_ID )
import MkId ( voidArgId, voidPrimId )
import TysPrim ( voidPrimTy )
import TysWiredIn ( tupleDataCon )
import Type
import Coercion hiding ( substTy, substTyVarBndr )
import FamInstEnv
import BasicTypes ( Boxity(..), OneShotInfo(..), worstOneShot )
import Literal ( absentLiteralOf )
import TyCon
import UniqSupply
import Unique
import Maybes
import Util
import Outputable
import DynFlags
import FastString
{-
************************************************************************
* *
\subsection[mkWrapperAndWorker]{@mkWrapperAndWorker@}
* *
************************************************************************
Here's an example. The original function is:
\begin{verbatim}
g :: forall a . Int -> [a] -> a
g = \/\ a -> \ x ys ->
case x of
0 -> head ys
_ -> head (tail ys)
\end{verbatim}
From this, we want to produce:
\begin{verbatim}
-- wrapper (an unfolding)
g :: forall a . Int -> [a] -> a
g = \/\ a -> \ x ys ->
case x of
I# x# -> $wg a x# ys
-- call the worker; don't forget the type args!
-- worker
$wg :: forall a . Int# -> [a] -> a
$wg = \/\ a -> \ x# ys ->
let
x = I# x#
in
case x of -- note: body of g moved intact
0 -> head ys
_ -> head (tail ys)
\end{verbatim}
Something we have to be careful about: Here's an example:
\begin{verbatim}
-- "f" strictness: U(P)U(P)
f (I# a) (I# b) = a +# b
g = f -- "g" strictness same as "f"
\end{verbatim}
\tr{f} will get a worker all nice and friendly-like; that's good.
{\em But we don't want a worker for \tr{g}}, even though it has the
same strictness as \tr{f}. Doing so could break laziness, at best.
Consequently, we insist that the number of strictness-info items is
exactly the same as the number of lambda-bound arguments. (This is
probably slightly paranoid, but OK in practice.) If it isn't the
same, we ``revise'' the strictness info, so that we won't propagate
the unusable strictness-info into the interfaces.
************************************************************************
* *
\subsection{The worker wrapper core}
* *
************************************************************************
@mkWwBodies@ is called when doing the worker\/wrapper split inside a module.
-}
mkWwBodies :: DynFlags
-> FamInstEnvs
-> Type -- Type of original function
-> [Demand] -- Strictness of original function
-> DmdResult -- Info about function result
-> [OneShotInfo] -- One-shot-ness of the function, value args only
-> UniqSM (Maybe ([Demand], -- Demands for worker (value) args
Id -> CoreExpr, -- Wrapper body, lacking only the worker Id
CoreExpr -> CoreExpr)) -- Worker body, lacking the original function rhs
-- wrap_fn_args E = \x y -> E
-- work_fn_args E = E x y
-- wrap_fn_str E = case x of { (a,b) ->
-- case a of { (a1,a2) ->
-- E a1 a2 b y }}
-- work_fn_str E = \a2 a2 b y ->
-- let a = (a1,a2) in
-- let x = (a,b) in
-- E
mkWwBodies dflags fam_envs fun_ty demands res_info one_shots
= do { let arg_info = demands `zip` (one_shots ++ repeat NoOneShotInfo)
all_one_shots = foldr (worstOneShot . snd) OneShotLam arg_info
; (wrap_args, wrap_fn_args, work_fn_args, res_ty) <- mkWWargs emptyTvSubst fun_ty arg_info
; (useful1, work_args, wrap_fn_str, work_fn_str) <- mkWWstr dflags fam_envs wrap_args
-- Do CPR w/w. See Note [Always do CPR w/w]
; (useful2, wrap_fn_cpr, work_fn_cpr, cpr_res_ty) <- mkWWcpr fam_envs res_ty res_info
; let (work_lam_args, work_call_args) = mkWorkerArgs dflags work_args all_one_shots cpr_res_ty
worker_args_dmds = [idDemandInfo v | v <- work_call_args, isId v]
wrapper_body = wrap_fn_args . wrap_fn_cpr . wrap_fn_str . applyToVars work_call_args . Var
worker_body = mkLams work_lam_args. work_fn_str . work_fn_cpr . work_fn_args
; if useful1 && not (only_one_void_argument) || useful2
then return (Just (worker_args_dmds, wrapper_body, worker_body))
else return Nothing
}
-- We use an INLINE unconditionally, even if the wrapper turns out to be
-- something trivial like
-- fw = ...
-- f = __inline__ (coerce T fw)
-- The point is to propagate the coerce to f's call sites, so even though
-- f's RHS is now trivial (size 1) we still want the __inline__ to prevent
-- fw from being inlined into f's RHS
where
-- Note [Do not split void functions]
only_one_void_argument
| [d] <- demands
, Just (arg_ty1, _) <- splitFunTy_maybe fun_ty
, isAbsDmd d && isVoidTy arg_ty1
= True
| otherwise
= False
{-
Note [Always do CPR w/w]
~~~~~~~~~~~~~~~~~~~~~~~~
At one time we refrained from doing CPR w/w for thunks, on the grounds that
we might duplicate work. But that is already handled by the demand analyser,
which doesn't give the CPR proprety if w/w might waste work: see
Note [CPR for thunks] in DmdAnal.
And if something *has* been given the CPR property and we don't w/w, it's
a disaster, because then the enclosing function might say it has the CPR
property, but now doesn't and there a cascade of disaster. A good example
is Trac #5920.
************************************************************************
* *
\subsection{Making wrapper args}
* *
************************************************************************
During worker-wrapper stuff we may end up with an unlifted thing
which we want to let-bind without losing laziness. So we
add a void argument. E.g.
f = /\a -> \x y z -> E::Int# -- E does not mention x,y,z
==>
fw = /\ a -> \void -> E
f = /\ a -> \x y z -> fw realworld
We use the state-token type which generates no code.
-}
mkWorkerArgs :: DynFlags -> [Var]
-> OneShotInfo -- Whether all arguments are one-shot
-> Type -- Type of body
-> ([Var], -- Lambda bound args
[Var]) -- Args at call site
mkWorkerArgs dflags args all_one_shot res_ty
| any isId args || not needsAValueLambda
= (args, args)
| otherwise
= (args ++ [newArg], args ++ [voidPrimId])
where
needsAValueLambda =
isUnLiftedType res_ty
|| not (gopt Opt_FunToThunk dflags)
-- see Note [Protecting the last value argument]
-- see Note [All One-Shot Arguments of a Worker]
newArg = setIdOneShotInfo voidArgId all_one_shot
{-
Note [Protecting the last value argument]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the user writes (\_ -> E), they might be intentionally disallowing
the sharing of E. Since absence analysis and worker-wrapper are keen
to remove such unused arguments, we add in a void argument to prevent
the function from becoming a thunk.
The user can avoid adding the void argument with the -ffun-to-thunk
flag. However, this can create sharing, which may be bad in two ways. 1) It can
create a space leak. 2) It can prevent inlining *under a lambda*. If w/w
removes the last argument from a function f, then f now looks like a thunk, and
so f can't be inlined *under a lambda*.
Note [All One-Shot Arguments of a Worker]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sometimes, derived join-points are just lambda-lifted thunks, whose
only argument is of the unit type and is never used. This might
interfere with the absence analysis, basing on which results these
never-used arguments are eliminated in the worker. The additional
argument `all_one_shot` of `mkWorkerArgs` is to prevent this.
Example. Suppose we have
foo = \p(one-shot) q(one-shot). y + 3
Then we drop the unused args to give
foo = \pq. $wfoo void#
$wfoo = \void(one-shot). y + 3
But suppse foo didn't have all one-shot args:
foo = \p(not-one-shot) q(one-shot). expensive y + 3
Then we drop the unused args to give
foo = \pq. $wfoo void#
$wfoo = \void(not-one-shot). y + 3
If we made the void-arg one-shot we might inline an expensive
computation for y, which would be terrible!
************************************************************************
* *
\subsection{Coercion stuff}
* *
************************************************************************
We really want to "look through" coerces.
Reason: I've seen this situation:
let f = coerce T (\s -> E)
in \x -> case x of
p -> coerce T' f
q -> \s -> E2
r -> coerce T' f
If only we w/w'd f, we'd get
let f = coerce T (\s -> fw s)
fw = \s -> E
in ...
Now we'll inline f to get
let fw = \s -> E
in \x -> case x of
p -> fw
q -> \s -> E2
r -> fw
Now we'll see that fw has arity 1, and will arity expand
the \x to get what we want.
-}
-- mkWWargs just does eta expansion
-- is driven off the function type and arity.
-- It chomps bites off foralls, arrows, newtypes
-- and keeps repeating that until it's satisfied the supplied arity
mkWWargs :: TvSubst -- Freshening substitution to apply to the type
-- See Note [Freshen type variables]
-> Type -- The type of the function
-> [(Demand,OneShotInfo)] -- Demands and one-shot info for value arguments
-> UniqSM ([Var], -- Wrapper args
CoreExpr -> CoreExpr, -- Wrapper fn
CoreExpr -> CoreExpr, -- Worker fn
Type) -- Type of wrapper body
mkWWargs subst fun_ty arg_info
| null arg_info
= return ([], id, id, substTy subst fun_ty)
| ((dmd,one_shot):arg_info') <- arg_info
, Just (arg_ty, fun_ty') <- splitFunTy_maybe fun_ty
= do { uniq <- getUniqueM
; let arg_ty' = substTy subst arg_ty
id = mk_wrap_arg uniq arg_ty' dmd one_shot
; (wrap_args, wrap_fn_args, work_fn_args, res_ty)
<- mkWWargs subst fun_ty' arg_info'
; return (id : wrap_args,
Lam id . wrap_fn_args,
work_fn_args . (`App` varToCoreExpr id),
res_ty) }
| Just (tv, fun_ty') <- splitForAllTy_maybe fun_ty
= do { let (subst', tv') = substTyVarBndr subst tv
-- This substTyVarBndr clones the type variable when necy
-- See Note [Freshen type variables]
; (wrap_args, wrap_fn_args, work_fn_args, res_ty)
<- mkWWargs subst' fun_ty' arg_info
; return (tv' : wrap_args,
Lam tv' . wrap_fn_args,
work_fn_args . (`App` Type (mkTyVarTy tv')),
res_ty) }
| Just (co, rep_ty) <- topNormaliseNewType_maybe fun_ty
-- The newtype case is for when the function has
-- a newtype after the arrow (rare)
--
-- It's also important when we have a function returning (say) a pair
-- wrapped in a newtype, at least if CPR analysis can look
-- through such newtypes, which it probably can since they are
-- simply coerces.
= do { (wrap_args, wrap_fn_args, work_fn_args, res_ty)
<- mkWWargs subst rep_ty arg_info
; return (wrap_args,
\e -> Cast (wrap_fn_args e) (mkSymCo co),
\e -> work_fn_args (Cast e co),
res_ty) }
| otherwise
= WARN( True, ppr fun_ty ) -- Should not happen: if there is a demand
return ([], id, id, substTy subst fun_ty) -- then there should be a function arrow
applyToVars :: [Var] -> CoreExpr -> CoreExpr
applyToVars vars fn = mkVarApps fn vars
mk_wrap_arg :: Unique -> Type -> Demand -> OneShotInfo -> Id
mk_wrap_arg uniq ty dmd one_shot
= mkSysLocal (fsLit "w") uniq ty
`setIdDemandInfo` dmd
`setIdOneShotInfo` one_shot
{-
Note [Freshen type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Wen we do a worker/wrapper split, we must not use shadowed names,
else we'll get
f = /\ a /\a. fw a a
which is obviously wrong. Type variables can can in principle shadow,
within a type (e.g. forall a. a -> forall a. a->a). But type
variables *are* mentioned in <blah>, so we must substitute.
That's why we carry the TvSubst through mkWWargs
************************************************************************
* *
\subsection{Strictness stuff}
* *
************************************************************************
-}
mkWWstr :: DynFlags
-> FamInstEnvs
-> [Var] -- Wrapper args; have their demand info on them
-- *Includes type variables*
-> UniqSM (Bool, -- Is this useful
[Var], -- Worker args
CoreExpr -> CoreExpr, -- Wrapper body, lacking the worker call
-- and without its lambdas
-- This fn adds the unboxing
CoreExpr -> CoreExpr) -- Worker body, lacking the original body of the function,
-- and lacking its lambdas.
-- This fn does the reboxing
mkWWstr _ _ []
= return (False, [], nop_fn, nop_fn)
mkWWstr dflags fam_envs (arg : args) = do
(useful1, args1, wrap_fn1, work_fn1) <- mkWWstr_one dflags fam_envs arg
(useful2, args2, wrap_fn2, work_fn2) <- mkWWstr dflags fam_envs args
return (useful1 || useful2, args1 ++ args2, wrap_fn1 . wrap_fn2, work_fn1 . work_fn2)
{-
Note [Unpacking arguments with product and polymorphic demands]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The argument is unpacked in a case if it has a product type and has a
strict *and* used demand put on it. I.e., arguments, with demands such
as the following ones:
<S,U(U, L)>
<S(L,S),U>
will be unpacked, but
<S,U> or <B,U>
will not, because the pieces aren't used. This is quite important otherwise
we end up unpacking massive tuples passed to the bottoming function. Example:
f :: ((Int,Int) -> String) -> (Int,Int) -> a
f g pr = error (g pr)
main = print (f fst (1, error "no"))
Does 'main' print "error 1" or "error no"? We don't really want 'f'
to unbox its second argument. This actually happened in GHC's onwn
source code, in Packages.applyPackageFlag, which ended up un-boxing
the enormous DynFlags tuple, and being strict in the
as-yet-un-filled-in pkgState files.
-}
----------------------
-- mkWWstr_one wrap_arg = (useful, work_args, wrap_fn, work_fn)
-- * wrap_fn assumes wrap_arg is in scope,
-- brings into scope work_args (via cases)
-- * work_fn assumes work_args are in scope, a
-- brings into scope wrap_arg (via lets)
mkWWstr_one :: DynFlags -> FamInstEnvs -> Var
-> UniqSM (Bool, [Var], CoreExpr -> CoreExpr, CoreExpr -> CoreExpr)
mkWWstr_one dflags fam_envs arg
| isTyVar arg
= return (False, [arg], nop_fn, nop_fn)
-- See Note [Worker-wrapper for bottoming functions]
| isAbsDmd dmd
, Just work_fn <- mk_absent_let dflags arg
-- Absent case. We can't always handle absence for arbitrary
-- unlifted types, so we need to choose just the cases we can
--- (that's what mk_absent_let does)
= return (True, [], nop_fn, work_fn)
-- See Note [Worthy functions for Worker-Wrapper split]
| isSeqDmd dmd -- `seq` demand; evaluate in wrapper in the hope
-- of dropping seqs in the worker
= let arg_w_unf = arg `setIdUnfolding` evaldUnfolding
-- Tell the worker arg that it's sure to be evaluated
-- so that internal seqs can be dropped
in return (True, [arg_w_unf], mk_seq_case arg, nop_fn)
-- Pass the arg, anyway, even if it is in theory discarded
-- Consider
-- f x y = x `seq` y
-- x gets a (Eval (Poly Abs)) demand, but if we fail to pass it to the worker
-- we ABSOLUTELY MUST record that x is evaluated in the wrapper.
-- Something like:
-- f x y = x `seq` fw y
-- fw y = let x{Evald} = error "oops" in (x `seq` y)
-- If we don't pin on the "Evald" flag, the seq doesn't disappear, and
-- we end up evaluating the absent thunk.
-- But the Evald flag is pretty weird, and I worry that it might disappear
-- during simplification, so for now I've just nuked this whole case
| isStrictDmd dmd
, Just cs <- splitProdDmd_maybe dmd
-- See Note [Unpacking arguments with product and polymorphic demands]
, Just (data_con, inst_tys, inst_con_arg_tys, co)
<- deepSplitProductType_maybe fam_envs (idType arg)
, cs `equalLength` inst_con_arg_tys
-- See Note [mkWWstr and unsafeCoerce]
= do { (uniq1:uniqs) <- getUniquesM
; let unpk_args = zipWith mk_ww_local uniqs inst_con_arg_tys
unpk_args_w_ds = zipWithEqual "mkWWstr" set_worker_arg_info unpk_args cs
unbox_fn = mkUnpackCase (Var arg) co uniq1
data_con unpk_args
rebox_fn = Let (NonRec arg con_app)
con_app = mkConApp2 data_con inst_tys unpk_args `mkCast` mkSymCo co
; (_, worker_args, wrap_fn, work_fn) <- mkWWstr dflags fam_envs unpk_args_w_ds
; return (True, worker_args, unbox_fn . wrap_fn, work_fn . rebox_fn) }
-- Don't pass the arg, rebox instead
| otherwise -- Other cases
= return (False, [arg], nop_fn, nop_fn)
where
dmd = idDemandInfo arg
one_shot = idOneShotInfo arg
-- If the wrapper argument is a one-shot lambda, then
-- so should (all) the corresponding worker arguments be
-- This bites when we do w/w on a case join point
set_worker_arg_info worker_arg demand
= worker_arg `setIdDemandInfo` demand
`setIdOneShotInfo` one_shot
----------------------
nop_fn :: CoreExpr -> CoreExpr
nop_fn body = body
{-
Note [mkWWstr and unsafeCoerce]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
By using unsafeCoerce, it is possible to make the number of demands fail to
match the number of constructor arguments; this happened in Trac #8037.
If so, the worker/wrapper split doesn't work right and we get a Core Lint
bug. The fix here is simply to decline to do w/w if that happens.
************************************************************************
* *
Type scrutiny that is specfic to demand analysis
* *
************************************************************************
Note [Do not unpack class dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have
f :: Ord a => [a] -> Int -> a
{-# INLINABLE f #-}
and we worker/wrapper f, we'll get a worker with an INLINALBE pragma
(see Note [Worker-wrapper for INLINABLE functions] in WorkWrap), which
can still be specialised by the type-class specialiser, something like
fw :: Ord a => [a] -> Int# -> a
BUT if f is strict in the Ord dictionary, we might unpack it, to get
fw :: (a->a->Bool) -> [a] -> Int# -> a
and the type-class specialiser can't specialise that. An example is
Trac #6056.
Moreover, dictinoaries can have a lot of fields, so unpacking them can
increase closure sizes.
Conclusion: don't unpack dictionaries.
-}
deepSplitProductType_maybe :: FamInstEnvs -> Type -> Maybe (DataCon, [Type], [Type], Coercion)
-- If deepSplitProductType_maybe ty = Just (dc, tys, arg_tys, co)
-- then dc @ tys (args::arg_tys) :: rep_ty
-- co :: ty ~ rep_ty
deepSplitProductType_maybe fam_envs ty
| let (co, ty1) = topNormaliseType_maybe fam_envs ty
`orElse` (mkReflCo Representational ty, ty)
, Just (tc, tc_args) <- splitTyConApp_maybe ty1
, Just con <- isDataProductTyCon_maybe tc
, not (isClassTyCon tc) -- See Note [Do not unpack class dictionaries]
= Just (con, tc_args, dataConInstArgTys con tc_args, co)
deepSplitProductType_maybe _ _ = Nothing
deepSplitCprType_maybe :: FamInstEnvs -> ConTag -> Type -> Maybe (DataCon, [Type], [Type], Coercion)
-- If deepSplitCprType_maybe n ty = Just (dc, tys, arg_tys, co)
-- then dc @ tys (args::arg_tys) :: rep_ty
-- co :: ty ~ rep_ty
deepSplitCprType_maybe fam_envs con_tag ty
| let (co, ty1) = topNormaliseType_maybe fam_envs ty
`orElse` (mkReflCo Representational ty, ty)
, Just (tc, tc_args) <- splitTyConApp_maybe ty1
, isDataTyCon tc
, let cons = tyConDataCons tc
, cons `lengthAtLeast` con_tag -- This might not be true if we import the
-- type constructor via a .hs-bool file (#8743)
, let con = cons !! (con_tag - fIRST_TAG)
= Just (con, tc_args, dataConInstArgTys con tc_args, co)
deepSplitCprType_maybe _ _ _ = Nothing
findTypeShape :: FamInstEnvs -> Type -> TypeShape
-- Uncover the arrow and product shape of a type
-- The data type TypeShape is defined in Demand
-- See Note [Trimming a demand to a type] in Demand
findTypeShape fam_envs ty
| Just (_, ty') <- splitForAllTy_maybe ty
= findTypeShape fam_envs ty'
| Just (tc, tc_args) <- splitTyConApp_maybe ty
, Just con <- isDataProductTyCon_maybe tc
= TsProd (map (findTypeShape fam_envs) $ dataConInstArgTys con tc_args)
| Just (_, res) <- splitFunTy_maybe ty
= TsFun (findTypeShape fam_envs res)
| Just (_, ty') <- topNormaliseType_maybe fam_envs ty
= findTypeShape fam_envs ty'
| otherwise
= TsUnk
{-
************************************************************************
* *
\subsection{CPR stuff}
* *
************************************************************************
@mkWWcpr@ takes the worker/wrapper pair produced from the strictness
info and adds in the CPR transformation. The worker returns an
unboxed tuple containing non-CPR components. The wrapper takes this
tuple and re-produces the correct structured output.
The non-CPR results appear ordered in the unboxed tuple as if by a
left-to-right traversal of the result structure.
-}
mkWWcpr :: FamInstEnvs
-> Type -- function body type
-> DmdResult -- CPR analysis results
-> UniqSM (Bool, -- Is w/w'ing useful?
CoreExpr -> CoreExpr, -- New wrapper
CoreExpr -> CoreExpr, -- New worker
Type) -- Type of worker's body
mkWWcpr fam_envs body_ty res
= case returnsCPR_maybe res of
Nothing -> return (False, id, id, body_ty) -- No CPR info
Just con_tag | Just stuff <- deepSplitCprType_maybe fam_envs con_tag body_ty
-> mkWWcpr_help stuff
| otherwise
-- See Note [non-algebraic or open body type warning]
-> WARN( True, text "mkWWcpr: non-algebraic or open body type" <+> ppr body_ty )
return (False, id, id, body_ty)
mkWWcpr_help :: (DataCon, [Type], [Type], Coercion)
-> UniqSM (Bool, CoreExpr -> CoreExpr, CoreExpr -> CoreExpr, Type)
mkWWcpr_help (data_con, inst_tys, arg_tys, co)
| [arg_ty1] <- arg_tys
, isUnLiftedType arg_ty1
-- Special case when there is a single result of unlifted type
--
-- Wrapper: case (..call worker..) of x -> C x
-- Worker: case ( ..body.. ) of C x -> x
= do { (work_uniq : arg_uniq : _) <- getUniquesM
; let arg = mk_ww_local arg_uniq arg_ty1
con_app = mkConApp2 data_con inst_tys [arg] `mkCast` mkSymCo co
; return ( True
, \ wkr_call -> Case wkr_call arg (exprType con_app) [(DEFAULT, [], con_app)]
, \ body -> mkUnpackCase body co work_uniq data_con [arg] (Var arg)
, arg_ty1 ) }
| otherwise -- The general case
-- Wrapper: case (..call worker..) of (# a, b #) -> C a b
-- Worker: case ( ...body... ) of C a b -> (# a, b #)
= do { (work_uniq : uniqs) <- getUniquesM
; let (wrap_wild : args) = zipWith mk_ww_local uniqs (ubx_tup_ty : arg_tys)
ubx_tup_con = tupleDataCon Unboxed (length arg_tys)
ubx_tup_ty = exprType ubx_tup_app
ubx_tup_app = mkConApp2 ubx_tup_con arg_tys args
con_app = mkConApp2 data_con inst_tys args `mkCast` mkSymCo co
; return (True
, \ wkr_call -> Case wkr_call wrap_wild (exprType con_app) [(DataAlt ubx_tup_con, args, con_app)]
, \ body -> mkUnpackCase body co work_uniq data_con args ubx_tup_app
, ubx_tup_ty ) }
mkUnpackCase :: CoreExpr -> Coercion -> Unique -> DataCon -> [Id] -> CoreExpr -> CoreExpr
-- (mkUnpackCase e co uniq Con args body)
-- returns
-- case e |> co of bndr { Con args -> body }
mkUnpackCase (Tick tickish e) co uniq con args body -- See Note [Profiling and unpacking]
= Tick tickish (mkUnpackCase e co uniq con args body)
mkUnpackCase scrut co uniq boxing_con unpk_args body
= Case casted_scrut bndr (exprType body)
[(DataAlt boxing_con, unpk_args, body)]
where
casted_scrut = scrut `mkCast` co
bndr = mk_ww_local uniq (exprType casted_scrut)
{-
Note [non-algebraic or open body type warning]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are a few cases where the W/W transformation is told that something
returns a constructor, but the type at hand doesn't really match this. One
real-world example involves unsafeCoerce:
foo = IO a
foo = unsafeCoerce c_exit
foreign import ccall "c_exit" c_exit :: IO ()
Here CPR will tell you that `foo` returns a () constructor for sure, but trying
to create a worker/wrapper for type `a` obviously fails.
(This was a real example until ee8e792 in libraries/base.)
It does not seem feasible to avoid all such cases already in the analyser (and
after all, the analysis is not really wrong), so we simply do nothing here in
mkWWcpr. But we still want to emit warning with -DDEBUG, to hopefully catch
other cases where something went avoidably wrong.
Note [Profiling and unpacking]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the original function looked like
f = \ x -> {-# SCC "foo" #-} E
then we want the CPR'd worker to look like
\ x -> {-# SCC "foo" #-} (case E of I# x -> x)
and definitely not
\ x -> case ({-# SCC "foo" #-} E) of I# x -> x)
This transform doesn't move work or allocation
from one cost centre to another.
Later [SDM]: presumably this is because we want the simplifier to
eliminate the case, and the scc would get in the way? I'm ok with
including the case itself in the cost centre, since it is morally
part of the function (post transformation) anyway.
************************************************************************
* *
\subsection{Utilities}
* *
************************************************************************
Note [Absent errors]
~~~~~~~~~~~~~~~~~~~~
We make a new binding for Ids that are marked absent, thus
let x = absentError "x :: Int"
The idea is that this binding will never be used; but if it
buggily is used we'll get a runtime error message.
Coping with absence for *unlifted* types is important; see, for
example, Trac #4306. For these we find a suitable literal,
using Literal.absentLiteralOf. We don't have literals for
every primitive type, so the function is partial.
[I did try the experiment of using an error thunk for unlifted
things too, relying on the simplifier to drop it as dead code,
by making absentError
(a) *not* be a bottoming Id,
(b) be "ok for speculation"
But that relies on the simplifier finding that it really
is dead code, which is fragile, and indeed failed when
profiling is on, which disables various optimisations. So
using a literal will do.]
-}
mk_absent_let :: DynFlags -> Id -> Maybe (CoreExpr -> CoreExpr)
mk_absent_let dflags arg
| not (isUnLiftedType arg_ty)
= Just (Let (NonRec arg abs_rhs))
| Just tc <- tyConAppTyCon_maybe arg_ty
, Just lit <- absentLiteralOf tc
= Just (Let (NonRec arg (Lit lit)))
| arg_ty `eqType` voidPrimTy
= Just (Let (NonRec arg (Var voidPrimId)))
| otherwise
= WARN( True, ptext (sLit "No absent value for") <+> ppr arg_ty )
Nothing
where
arg_ty = idType arg
abs_rhs = mkRuntimeErrorApp aBSENT_ERROR_ID arg_ty msg
msg = showSDoc dflags (ppr arg <+> ppr (idType arg))
mk_seq_case :: Id -> CoreExpr -> CoreExpr
mk_seq_case arg body = Case (Var arg) (sanitiseCaseBndr arg) (exprType body) [(DEFAULT, [], body)]
sanitiseCaseBndr :: Id -> Id
-- The argument we are scrutinising has the right type to be
-- a case binder, so it's convenient to re-use it for that purpose.
-- But we *must* throw away all its IdInfo. In particular, the argument
-- will have demand info on it, and that demand info may be incorrect for
-- the case binder. e.g. case ww_arg of ww_arg { I# x -> ... }
-- Quite likely ww_arg isn't used in '...'. The case may get discarded
-- if the case binder says "I'm demanded". This happened in a situation
-- like (x+y) `seq` ....
sanitiseCaseBndr id = id `setIdInfo` vanillaIdInfo
mk_ww_local :: Unique -> Type -> Id
mk_ww_local uniq ty = mkSysLocal (fsLit "ww") uniq ty
|