summaryrefslogtreecommitdiff
path: root/compiler/typecheck/Inst.lhs
blob: 8d21d1bcb190b8973b99d40035e75f5c8e8a7b94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%

The @Inst@ type: dictionaries or method instances

\begin{code}
{-# OPTIONS -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details

module Inst ( 
	Inst, 

	pprInstances, pprDictsTheta, pprDictsInFull,	-- User error messages
	showLIE, pprInst, pprInsts, pprInstInFull,	-- Debugging messages

	tidyInsts, tidyMoreInsts,

	newDictBndr, newDictBndrs, newDictBndrsO,
	instCall, instStupidTheta,
	cloneDict, 
	shortCutFracLit, shortCutIntLit, shortCutStringLit, newIPDict, 
	newMethod, newMethodFromName, newMethodWithGivenTy, 
	tcInstClassOp, 
	tcSyntaxName, isHsVar,

	tyVarsOfInst, tyVarsOfInsts, tyVarsOfLIE, 
	ipNamesOfInst, ipNamesOfInsts, fdPredsOfInst, fdPredsOfInsts,
	getDictClassTys, dictPred,

	lookupSimpleInst, LookupInstResult(..), 
	tcExtendLocalInstEnv, tcGetInstEnvs, getOverlapFlag,

	isAbstractableInst, isEqInst,
	isDict, isClassDict, isMethod, isImplicInst,
	isIPDict, isInheritableInst, isMethodOrLit,
	isTyVarDict, isMethodFor, 

	zonkInst, zonkInsts,
	instToId, instToVar, instType, instName,

	InstOrigin(..), InstLoc, pprInstLoc,

	mkWantedCo, mkGivenCo,
	fromWantedCo, fromGivenCo,
	eitherEqInst, mkEqInst, mkEqInsts,
	finalizeEqInst, writeWantedCoercion,
	eqInstType, updateEqInstCoercion,
	eqInstCoercion,
	eqInstLeftTy, eqInstRightTy
    ) where

#include "HsVersions.h"

import {-# SOURCE #-}	TcExpr( tcPolyExpr )
import {-# SOURCE #-}	TcUnify( boxyUnify, unifyType )

import FastString(FastString)
import HsSyn
import TcHsSyn
import TcRnMonad
import TcEnv
import InstEnv
import FunDeps
import TcMType
import TcType
import Type
import TypeRep
import Class
import Unify
import Module
import Coercion
import HscTypes
import CoreFVs
import DataCon
import Id
import Name
import NameSet
import Literal
import Var      ( Var, TyVar )
import qualified Var
import VarEnv
import VarSet
import TysWiredIn
import PrelNames
import BasicTypes
import SrcLoc
import DynFlags
import Maybes
import Util
import Outputable
import Data.List
import TypeRep
import Class
\end{code}


Selection
~~~~~~~~~
\begin{code}
instName :: Inst -> Name
instName (EqInst {tci_name = name}) = name
instName inst = Var.varName (instToVar inst)

instToId :: Inst -> TcId
instToId inst = WARN( not (isId id), ppr inst ) 
	      id 
	      where
		id = instToVar inst

instToVar :: Inst -> Var
instToVar (LitInst {tci_name = nm, tci_ty = ty})
  = mkLocalId nm ty
instToVar (Method {tci_id = id}) 
  = id
instToVar (Dict {tci_name = nm, tci_pred = pred})    
  | isEqPred pred = Var.mkCoVar nm (mkPredTy pred)
  | otherwise	  = mkLocalId nm (mkPredTy pred)
instToVar (ImplicInst {tci_name = nm, tci_tyvars = tvs, tci_given = givens,
		       tci_wanted = wanteds})
  = mkLocalId nm (mkImplicTy tvs givens wanteds)
instToVar i@(EqInst {})
  = eitherEqInst i id (\(TyVarTy covar) -> covar)

instType :: Inst -> Type
instType (LitInst {tci_ty = ty})  = ty
instType (Method {tci_id = id})   = idType id
instType (Dict {tci_pred = pred}) = mkPredTy pred
instType imp@(ImplicInst {})      = mkImplicTy (tci_tyvars imp) (tci_given imp)	
					       (tci_wanted imp)
-- instType i@(EqInst {tci_co = co}) = eitherEqInst i TyVarTy id
instType (EqInst {tci_left = ty1, tci_right = ty2}) = mkPredTy (EqPred ty1 ty2)

mkImplicTy tvs givens wanteds	-- The type of an implication constraint
  = ASSERT( all isDict givens )
    -- pprTrace "mkImplicTy" (ppr givens) $
    -- See [Equational Constraints in Implication Constraints]
    let dict_wanteds = filter (not . isEqInst) wanteds
    in 
      mkForAllTys tvs $ 
      mkPhiTy (map dictPred givens) $
      if isSingleton dict_wanteds then
  	instType (head dict_wanteds) 
      else
  	mkTupleTy Boxed (length dict_wanteds) (map instType dict_wanteds)

dictPred (Dict {tci_pred = pred}) = pred
dictPred (EqInst {tci_left=ty1,tci_right=ty2}) = EqPred ty1 ty2
dictPred inst		          = pprPanic "dictPred" (ppr inst)

getDictClassTys (Dict {tci_pred = pred}) = getClassPredTys pred
getDictClassTys inst		         = pprPanic "getDictClassTys" (ppr inst)

-- fdPredsOfInst is used to get predicates that contain functional 
-- dependencies *or* might do so.  The "might do" part is because
-- a constraint (C a b) might have a superclass with FDs
-- Leaving these in is really important for the call to fdPredsOfInsts
-- in TcSimplify.inferLoop, because the result is fed to 'grow',
-- which is supposed to be conservative
fdPredsOfInst (Dict {tci_pred = pred}) 	     = [pred]
fdPredsOfInst (Method {tci_theta = theta})   = theta
fdPredsOfInst (ImplicInst {tci_given = gs, 
			   tci_wanted = ws}) = fdPredsOfInsts (gs ++ ws)
fdPredsOfInst (LitInst {})		     = []
fdPredsOfInst (EqInst {})		     = []

fdPredsOfInsts :: [Inst] -> [PredType]
fdPredsOfInsts insts = concatMap fdPredsOfInst insts

isInheritableInst (Dict {tci_pred = pred})     = isInheritablePred pred
isInheritableInst (Method {tci_theta = theta}) = all isInheritablePred theta
isInheritableInst other			       = True


---------------------------------
-- Get the implicit parameters mentioned by these Insts
-- NB: the results of these functions are insensitive to zonking

ipNamesOfInsts :: [Inst] -> [Name]
ipNamesOfInst  :: Inst   -> [Name]
ipNamesOfInsts insts = [n | inst <- insts, n <- ipNamesOfInst inst]

ipNamesOfInst (Dict {tci_pred = IParam n _}) = [ipNameName n]
ipNamesOfInst (Method {tci_theta = theta})   = [ipNameName n | IParam n _ <- theta]
ipNamesOfInst other		    	     = []

---------------------------------
tyVarsOfInst :: Inst -> TcTyVarSet
tyVarsOfInst (LitInst {tci_ty = ty})  = tyVarsOfType  ty
tyVarsOfInst (Dict {tci_pred = pred}) = tyVarsOfPred pred
tyVarsOfInst (Method {tci_oid = id, tci_tys = tys}) = tyVarsOfTypes tys `unionVarSet` varTypeTyVars id
				 -- The id might have free type variables; in the case of
				 -- locally-overloaded class methods, for example
tyVarsOfInst (ImplicInst {tci_tyvars = tvs, tci_given = givens, tci_wanted = wanteds})
  = (tyVarsOfInsts givens `unionVarSet` tyVarsOfInsts wanteds) 
    `minusVarSet` mkVarSet tvs
    `unionVarSet` unionVarSets (map varTypeTyVars tvs)
		-- Remember the free tyvars of a coercion
tyVarsOfInst (EqInst {tci_left = ty1, tci_right = ty2}) = tyVarsOfType ty1 `unionVarSet` tyVarsOfType ty2

tyVarsOfInsts insts = foldr (unionVarSet . tyVarsOfInst) emptyVarSet insts
tyVarsOfLIE   lie   = tyVarsOfInsts (lieToList lie)
\end{code}

Predicates
~~~~~~~~~~
\begin{code}

isAbstractableInst :: Inst -> Bool
isAbstractableInst inst = isDict inst || isEqInst inst

isEqInst :: Inst -> Bool
isEqInst (EqInst {}) = True
isEqInst other       = False

isDict :: Inst -> Bool
isDict (Dict {}) = True
isDict other	 = False

isClassDict :: Inst -> Bool
isClassDict (Dict {tci_pred = pred}) = isClassPred pred
isClassDict other	    	     = False

isTyVarDict :: Inst -> Bool
isTyVarDict (Dict {tci_pred = pred}) = isTyVarClassPred pred
isTyVarDict other	    	     = False

isIPDict :: Inst -> Bool
isIPDict (Dict {tci_pred = pred}) = isIPPred pred
isIPDict other		 	  = False

isImplicInst (ImplicInst {}) = True
isImplicInst other 	     = False

isMethod :: Inst -> Bool
isMethod (Method {}) = True
isMethod other	     = False

isMethodFor :: TcIdSet -> Inst -> Bool
isMethodFor ids (Method {tci_oid = id}) = id `elemVarSet` ids
isMethodFor ids inst			= False

isMethodOrLit :: Inst -> Bool
isMethodOrLit (Method {})  = True
isMethodOrLit (LitInst {}) = True
isMethodOrLit other        = False
\end{code}


%************************************************************************
%*									*
\subsection{Building dictionaries}
%*									*
%************************************************************************

-- newDictBndrs makes a dictionary at a binding site
-- instCall makes a dictionary at an occurrence site
--	and throws it into the LIE

\begin{code}
----------------
newDictBndrsO :: InstOrigin -> TcThetaType -> TcM [Inst]
newDictBndrsO orig theta = do { loc <- getInstLoc orig
			      ; newDictBndrs loc theta }

newDictBndrs :: InstLoc -> TcThetaType -> TcM [Inst]
newDictBndrs inst_loc theta = mapM (newDictBndr inst_loc) theta

newDictBndr :: InstLoc -> TcPredType -> TcM Inst
newDictBndr inst_loc pred@(EqPred ty1 ty2)
  = do { uniq <- newUnique 
	; let name = mkPredName uniq inst_loc pred 
	; return (EqInst {tci_name  = name, 
			  tci_loc   = inst_loc, 
			  tci_left  = ty1, 
			  tci_right = ty2, 
			  tci_co    = mkGivenCo $ TyVarTy (Var.mkCoVar name (PredTy pred))})
       }
newDictBndr inst_loc pred
  = do 	{ uniq <- newUnique 
	; let name = mkPredName uniq inst_loc pred 
	; return (Dict {tci_name = name, tci_pred = pred, tci_loc = inst_loc}) }

----------------
instCall :: InstOrigin -> [TcType] -> TcThetaType -> TcM HsWrapper
-- Instantiate the constraints of a call
--	(instCall o tys theta)
-- (a) Makes fresh dictionaries as necessary for the constraints (theta)
-- (b) Throws these dictionaries into the LIE
-- (c) Returns an HsWrapper ([.] tys dicts)

instCall orig tys theta 
  = do	{ loc <- getInstLoc orig
	; dict_app <- instCallDicts loc theta
	; return (dict_app <.> mkWpTyApps tys) }

----------------
instStupidTheta :: InstOrigin -> TcThetaType -> TcM ()
-- Similar to instCall, but only emit the constraints in the LIE
-- Used exclusively for the 'stupid theta' of a data constructor
instStupidTheta orig theta
  = do	{ loc <- getInstLoc orig
	; _co <- instCallDicts loc theta	-- Discard the coercion
	; return () }

----------------
instCallDicts :: InstLoc -> TcThetaType -> TcM HsWrapper
-- Instantiates the TcTheta, puts all constraints thereby generated
-- into the LIE, and returns a HsWrapper to enclose the call site.
-- This is the key place where equality predicates 
-- are unleashed into the world
instCallDicts loc [] = return idHsWrapper

-- instCallDicts loc (EqPred ty1 ty2 : preds)
--   = do  { unifyType ty1 ty2	-- For now, we insist that they unify right away 
-- 				-- Later on, when we do associated types, 
-- 				-- unifyType :: Type -> Type -> TcM ([Inst], Coercion)
-- 	; (dicts, co_fn) <- instCallDicts loc preds
-- 	; return (dicts, co_fn <.> WpTyApp ty1) }
-- 	-- We use type application to apply the function to the 
-- 	-- coercion; here ty1 *is* the appropriate identity coercion

instCallDicts loc (EqPred ty1 ty2 : preds)
  = do  { traceTc (text "instCallDicts" <+> ppr (EqPred ty1 ty2))
	; coi <- boxyUnify ty1 ty2
--	; coi <- unifyType ty1 ty2
	; let co = fromCoI coi ty1
	; co_fn <- instCallDicts loc preds
	; return (co_fn <.> WpTyApp co) }

instCallDicts loc (pred : preds)
  = do	{ uniq <- newUnique
	; let name = mkPredName uniq loc pred 
	      dict = Dict {tci_name = name, tci_pred = pred, tci_loc = loc}
	; extendLIE dict
	; co_fn <- instCallDicts loc preds
	; return (co_fn <.> WpApp (instToId dict)) }

-------------
cloneDict :: Inst -> TcM Inst
cloneDict dict@(Dict nm ty loc) = do { uniq <- newUnique
				     ; return (dict {tci_name = setNameUnique nm uniq}) }
cloneDict eq@(EqInst {})	= return eq
cloneDict other = pprPanic "cloneDict" (ppr other)

-- For vanilla implicit parameters, there is only one in scope
-- at any time, so we used to use the name of the implicit parameter itself
-- But with splittable implicit parameters there may be many in 
-- scope, so we make up a new namea.
newIPDict :: InstOrigin -> IPName Name -> Type 
	  -> TcM (IPName Id, Inst)
newIPDict orig ip_name ty
  = getInstLoc orig			`thenM` \ inst_loc ->
    newUnique				`thenM` \ uniq ->
    let
	pred = IParam ip_name ty
        name = mkPredName uniq inst_loc pred 
	dict = Dict {tci_name = name, tci_pred = pred, tci_loc = inst_loc}
    in
    returnM (mapIPName (\n -> instToId dict) ip_name, dict)
\end{code}


\begin{code}
mkPredName :: Unique -> InstLoc -> PredType -> Name
mkPredName uniq loc pred_ty
  = mkInternalName uniq occ (instLocSpan loc)
  where
    occ = case pred_ty of
	    ClassP cls _ -> mkDictOcc (getOccName cls)
	    IParam ip  _ -> getOccName (ipNameName ip)
	    EqPred ty  _ -> mkEqPredCoOcc baseOcc
	      where
		-- we use the outermost tycon of the lhs, if there is one, to
		-- improve readability of Core code
	        baseOcc = case splitTyConApp_maybe ty of
			    Nothing      -> mkOccName tcName "$"
                            Just (tc, _) -> getOccName tc
\end{code}

%************************************************************************
%*									*
\subsection{Building methods (calls of overloaded functions)}
%*									*
%************************************************************************


\begin{code}
newMethodFromName :: InstOrigin -> BoxyRhoType -> Name -> TcM TcId
newMethodFromName origin ty name
  = tcLookupId name		`thenM` \ id ->
	-- Use tcLookupId not tcLookupGlobalId; the method is almost
	-- always a class op, but with -fno-implicit-prelude GHC is
	-- meant to find whatever thing is in scope, and that may
	-- be an ordinary function. 
    getInstLoc origin		`thenM` \ loc ->
    tcInstClassOp loc id [ty]	`thenM` \ inst ->
    extendLIE inst		`thenM_`
    returnM (instToId inst)

newMethodWithGivenTy orig id tys
  = getInstLoc orig		`thenM` \ loc ->
    newMethod loc id tys	`thenM` \ inst ->
    extendLIE inst		`thenM_`
    returnM (instToId inst)

--------------------------------------------
-- tcInstClassOp, and newMethod do *not* drop the 
-- Inst into the LIE; they just returns the Inst
-- This is important because they are used by TcSimplify
-- to simplify Insts

-- NB: the kind of the type variable to be instantiated
--     might be a sub-kind of the type to which it is applied,
--     notably when the latter is a type variable of kind ??
--     Hence the call to checkKind
-- A worry: is this needed anywhere else?
tcInstClassOp :: InstLoc -> Id -> [TcType] -> TcM Inst
tcInstClassOp inst_loc sel_id tys
  = let
	(tyvars, _rho) = tcSplitForAllTys (idType sel_id)
    in
    zipWithM_ checkKind tyvars tys	`thenM_` 
    newMethod inst_loc sel_id tys

checkKind :: TyVar -> TcType -> TcM ()
-- Ensure that the type has a sub-kind of the tyvar
checkKind tv ty
  = do	{ let ty1 = ty 
		-- ty1 <- zonkTcType ty
	; if typeKind ty1 `isSubKind` Var.tyVarKind tv
	  then return ()
	  else 

    pprPanic "checkKind: adding kind constraint" 
	     (vcat [ppr tv <+> ppr (Var.tyVarKind tv), 
	            ppr ty <+> ppr ty1 <+> ppr (typeKind ty1)])
	}
--    do	{ tv1 <- tcInstTyVar tv
--	; unifyType ty1 (mkTyVarTy tv1) } }


---------------------------
newMethod inst_loc id tys
  = newUnique		`thenM` \ new_uniq ->
    let
	(theta,tau) = tcSplitPhiTy (applyTys (idType id) tys)
	meth_id	    = mkUserLocal (mkMethodOcc (getOccName id)) new_uniq tau loc
	inst        = Method {tci_id = meth_id, tci_oid = id, tci_tys = tys,
			      tci_theta = theta, tci_loc = inst_loc}
	loc         = instLocSpan inst_loc
    in
    returnM inst
\end{code}

\begin{code}
shortCutIntLit :: Integer -> TcType -> Maybe (HsExpr TcId)
shortCutIntLit i ty
  | isIntTy ty && inIntRange i 		-- Short cut for Int
  = Just (HsLit (HsInt i))
  | isIntegerTy ty 			-- Short cut for Integer
  = Just (HsLit (HsInteger i ty))
  | otherwise = Nothing

shortCutFracLit :: Rational -> TcType -> Maybe (HsExpr TcId)
shortCutFracLit f ty
  | isFloatTy ty 
  = Just (mk_lit floatDataCon (HsFloatPrim f))
  | isDoubleTy ty
  = Just (mk_lit doubleDataCon (HsDoublePrim f))
  | otherwise = Nothing
  where
    mk_lit con lit = HsApp (nlHsVar (dataConWrapId con)) (nlHsLit lit)

shortCutStringLit :: FastString -> TcType -> Maybe (HsExpr TcId)
shortCutStringLit s ty
  | isStringTy ty 			-- Short cut for String
  = Just (HsLit (HsString s))
  | otherwise = Nothing

mkIntegerLit :: Integer -> TcM (LHsExpr TcId)
mkIntegerLit i
  = tcMetaTy integerTyConName 	`thenM` \ integer_ty ->
    getSrcSpanM			`thenM` \ span -> 
    returnM (L span $ HsLit (HsInteger i integer_ty))

mkRatLit :: Rational -> TcM (LHsExpr TcId)
mkRatLit r
  = tcMetaTy rationalTyConName 	`thenM` \ rat_ty ->
    getSrcSpanM			`thenM` \ span -> 
    returnM (L span $ HsLit (HsRat r rat_ty))

mkStrLit :: FastString -> TcM (LHsExpr TcId)
mkStrLit s
  = --tcMetaTy stringTyConName 	`thenM` \ string_ty ->
    getSrcSpanM			`thenM` \ span -> 
    returnM (L span $ HsLit (HsString s))

isHsVar :: HsExpr Name -> Name -> Bool
isHsVar (HsVar f) g = f==g
isHsVar other 	  g = False
\end{code}


%************************************************************************
%*									*
\subsection{Zonking}
%*									*
%************************************************************************

Zonking makes sure that the instance types are fully zonked.

\begin{code}
zonkInst :: Inst -> TcM Inst
zonkInst dict@(Dict { tci_pred = pred})
  = zonkTcPredType pred			`thenM` \ new_pred ->
    returnM (dict {tci_pred = new_pred})

zonkInst meth@(Method {tci_oid = id, tci_tys = tys, tci_theta = theta}) 
  = zonkId id			`thenM` \ new_id ->
	-- Essential to zonk the id in case it's a local variable
	-- Can't use zonkIdOcc because the id might itself be
	-- an InstId, in which case it won't be in scope

    zonkTcTypes tys		`thenM` \ new_tys ->
    zonkTcThetaType theta	`thenM` \ new_theta ->
    returnM (meth { tci_oid = new_id, tci_tys = new_tys, tci_theta = new_theta })
	-- No need to zonk the tci_id

zonkInst lit@(LitInst {tci_ty = ty})
  = zonkTcType ty			`thenM` \ new_ty ->
    returnM (lit {tci_ty = new_ty})

zonkInst implic@(ImplicInst {})
  = ASSERT( all isImmutableTyVar (tci_tyvars implic) )
    do 	{ givens'  <- zonkInsts (tci_given  implic)
	; wanteds' <- zonkInsts (tci_wanted implic)
	; return (implic {tci_given = givens',tci_wanted = wanteds'}) }

zonkInst eqinst@(EqInst {tci_left = ty1, tci_right = ty2})
  = do { co' <- eitherEqInst eqinst 
			(\covar -> return (mkWantedCo covar)) 
			(\co    -> zonkTcType co >>= \coercion -> return (mkGivenCo coercion))
       ; ty1' <- zonkTcType ty1
       ; ty2' <- zonkTcType ty2
       ; return (eqinst {tci_co = co',tci_left=ty1',tci_right=ty2})
       }

zonkInsts insts = mappM zonkInst insts
\end{code}


%************************************************************************
%*									*
\subsection{Printing}
%*									*
%************************************************************************

ToDo: improve these pretty-printing things.  The ``origin'' is really only
relevant in error messages.

\begin{code}
instance Outputable Inst where
    ppr inst = pprInst inst

pprDictsTheta :: [Inst] -> SDoc
-- Print in type-like fashion (Eq a, Show b)
-- The Inst can be an implication constraint, but not a Method or LitInst
pprDictsTheta insts = parens (sep (punctuate comma (map (ppr . instType) insts)))

pprDictsInFull :: [Inst] -> SDoc
-- Print in type-like fashion, but with source location
pprDictsInFull dicts 
  = vcat (map go dicts)
  where
    go dict = sep [quotes (ppr (instType dict)), nest 2 (pprInstArising dict)]

pprInsts :: [Inst] -> SDoc
-- Debugging: print the evidence :: type
pprInsts insts = brackets (interpp'SP insts)

pprInst, pprInstInFull :: Inst -> SDoc
-- Debugging: print the evidence :: type
pprInst i@(EqInst {tci_left = ty1, tci_right = ty2, tci_co = co}) 
	= eitherEqInst i
		(\covar -> text "Wanted" <+> ppr (TyVarTy covar) <+> dcolon <+> ppr (EqPred ty1 ty2))
		(\co    -> text "Given"  <+> ppr co              <+> dcolon <+> ppr (EqPred ty1 ty2))
pprInst inst = ppr (instName inst) <+> dcolon 
		<+> (braces (ppr (instType inst)) $$
		     ifPprDebug implic_stuff)
  where
    implic_stuff | isImplicInst inst = ppr (tci_reft inst)
		 | otherwise	     = empty

pprInstInFull inst@(EqInst {}) = pprInst inst
pprInstInFull inst = sep [quotes (pprInst inst), nest 2 (pprInstArising inst)]

tidyInst :: TidyEnv -> Inst -> Inst
tidyInst env eq@(EqInst {tci_left = lty, tci_right = rty, tci_co = co}) =
  eq { tci_left  = tidyType env lty
     , tci_right = tidyType env rty
     , tci_co    = either Left (Right . tidyType env) co
     }
tidyInst env lit@(LitInst {tci_ty = ty})   = lit {tci_ty = tidyType env ty}
tidyInst env dict@(Dict {tci_pred = pred}) = dict {tci_pred = tidyPred env pred}
tidyInst env meth@(Method {tci_tys = tys}) = meth {tci_tys = tidyTypes env tys}
tidyInst env implic@(ImplicInst {})
  = implic { tci_tyvars = tvs' 
	   , tci_given  = map (tidyInst env') (tci_given  implic)
	   , tci_wanted = map (tidyInst env') (tci_wanted implic) }
  where
    (env', tvs') = mapAccumL tidyTyVarBndr env (tci_tyvars implic)

tidyMoreInsts :: TidyEnv -> [Inst] -> (TidyEnv, [Inst])
-- This function doesn't assume that the tyvars are in scope
-- so it works like tidyOpenType, returning a TidyEnv
tidyMoreInsts env insts
  = (env', map (tidyInst env') insts)
  where
    env' = tidyFreeTyVars env (tyVarsOfInsts insts)

tidyInsts :: [Inst] -> (TidyEnv, [Inst])
tidyInsts insts = tidyMoreInsts emptyTidyEnv insts

showLIE :: SDoc -> TcM ()	-- Debugging
showLIE str
  = do { lie_var <- getLIEVar ;
	 lie <- readMutVar lie_var ;
	 traceTc (str <+> vcat (map pprInstInFull (lieToList lie))) }
\end{code}


%************************************************************************
%*									*
	Extending the instance environment
%*									*
%************************************************************************

\begin{code}
tcExtendLocalInstEnv :: [Instance] -> TcM a -> TcM a
  -- Add new locally-defined instances
tcExtendLocalInstEnv dfuns thing_inside
 = do { traceDFuns dfuns
      ; env <- getGblEnv
      ; inst_env' <- foldlM addLocalInst (tcg_inst_env env) dfuns
      ; let env' = env { tcg_insts = dfuns ++ tcg_insts env,
			 tcg_inst_env = inst_env' }
      ; setGblEnv env' thing_inside }

addLocalInst :: InstEnv -> Instance -> TcM InstEnv
-- Check that the proposed new instance is OK, 
-- and then add it to the home inst env
addLocalInst home_ie ispec
  = do	{ 	-- Instantiate the dfun type so that we extend the instance
		-- envt with completely fresh template variables
		-- This is important because the template variables must
		-- not overlap with anything in the things being looked up
		-- (since we do unification).  
		-- We use tcInstSkolType because we don't want to allocate fresh
		--  *meta* type variables.  
	  let dfun = instanceDFunId ispec
	; (tvs', theta', tau') <- tcInstSkolType InstSkol (idType dfun)
	; let	(cls, tys') = tcSplitDFunHead tau'
		dfun' 	    = setIdType dfun (mkSigmaTy tvs' theta' tau')	    
	  	ispec'      = setInstanceDFunId ispec dfun'

		-- Load imported instances, so that we report
		-- duplicates correctly
	; eps <- getEps
	; let inst_envs = (eps_inst_env eps, home_ie)

		-- Check functional dependencies
	; case checkFunDeps inst_envs ispec' of
		Just specs -> funDepErr ispec' specs
		Nothing    -> return ()

		-- Check for duplicate instance decls
	; let { (matches, _) = lookupInstEnv inst_envs cls tys'
	      ;	dup_ispecs = [ dup_ispec 
			     | (dup_ispec, _) <- matches
			     , let (_,_,_,dup_tys) = instanceHead dup_ispec
			     , isJust (tcMatchTys (mkVarSet tvs') tys' dup_tys)] }
		-- Find memebers of the match list which ispec itself matches.
		-- If the match is 2-way, it's a duplicate
	; case dup_ispecs of
	    dup_ispec : _ -> dupInstErr ispec' dup_ispec
	    []            -> return ()

		-- OK, now extend the envt
	; return (extendInstEnv home_ie ispec') }

getOverlapFlag :: TcM OverlapFlag
getOverlapFlag 
  = do 	{ dflags <- getDOpts
	; let overlap_ok    = dopt Opt_OverlappingInstances dflags
	      incoherent_ok = dopt Opt_IncoherentInstances  dflags
	      overlap_flag | incoherent_ok = Incoherent
			   | overlap_ok    = OverlapOk
			   | otherwise     = NoOverlap
			   
	; return overlap_flag }

traceDFuns ispecs
  = traceTc (hang (text "Adding instances:") 2 (vcat (map pp ispecs)))
  where
    pp ispec = ppr (instanceDFunId ispec) <+> colon <+> ppr ispec
	-- Print the dfun name itself too

funDepErr ispec ispecs
  = addDictLoc ispec $
    addErr (hang (ptext SLIT("Functional dependencies conflict between instance declarations:"))
	       2 (pprInstances (ispec:ispecs)))
dupInstErr ispec dup_ispec
  = addDictLoc ispec $
    addErr (hang (ptext SLIT("Duplicate instance declarations:"))
	       2 (pprInstances [ispec, dup_ispec]))

addDictLoc ispec thing_inside
  = setSrcSpan (mkSrcSpan loc loc) thing_inside
  where
   loc = getSrcLoc ispec
\end{code}
    

%************************************************************************
%*									*
\subsection{Looking up Insts}
%*									*
%************************************************************************

\begin{code}
data LookupInstResult
  = NoInstance
  | GenInst [Inst] (LHsExpr TcId)	-- The expression and its needed insts

lookupSimpleInst :: Inst -> TcM LookupInstResult
-- This is "simple" in that it returns NoInstance for implication constraints

-- It's important that lookupInst does not put any new stuff into
-- the LIE.  Instead, any Insts needed by the lookup are returned in
-- the LookupInstResult, where they can be further processed by tcSimplify

lookupSimpleInst (EqInst {}) = return NoInstance

--------------------- Implications ------------------------
lookupSimpleInst (ImplicInst {}) = return NoInstance

--------------------- Methods ------------------------
lookupSimpleInst (Method {tci_oid = id, tci_tys = tys, tci_theta = theta, tci_loc = loc})
  = do	{ (dict_app, dicts) <- getLIE $ instCallDicts loc theta
	; let co_fn = dict_app <.> mkWpTyApps tys
	; return (GenInst dicts (L span $ HsWrap co_fn (HsVar id))) }
  where
    span = instLocSpan loc

--------------------- Literals ------------------------
-- Look for short cuts first: if the literal is *definitely* a 
-- int, integer, float or a double, generate the real thing here.
-- This is essential (see nofib/spectral/nucleic).
-- [Same shortcut as in newOverloadedLit, but we
--  may have done some unification by now] 		

lookupSimpleInst (LitInst {tci_lit = HsIntegral i from_integer_name, tci_ty = ty, tci_loc = loc})
  | Just expr <- shortCutIntLit i ty
  = returnM (GenInst [] (noLoc expr))
  | otherwise
  = ASSERT( from_integer_name `isHsVar` fromIntegerName )	-- A LitInst invariant
    tcLookupId fromIntegerName			`thenM` \ from_integer ->
    tcInstClassOp loc from_integer [ty]		`thenM` \ method_inst ->
    mkIntegerLit i				`thenM` \ integer_lit ->
    returnM (GenInst [method_inst]
		     (mkHsApp (L (instLocSpan loc)
			   	 (HsVar (instToId method_inst))) integer_lit))

lookupSimpleInst (LitInst {tci_lit = HsFractional f from_rat_name, tci_ty = ty, tci_loc = loc})
  | Just expr <- shortCutFracLit f ty
  = returnM (GenInst [] (noLoc expr))

  | otherwise
  = ASSERT( from_rat_name `isHsVar` fromRationalName )	-- A LitInst invariant
    tcLookupId fromRationalName			`thenM` \ from_rational ->
    tcInstClassOp loc from_rational [ty]	`thenM` \ method_inst ->
    mkRatLit f					`thenM` \ rat_lit ->
    returnM (GenInst [method_inst] (mkHsApp (L (instLocSpan loc) 
					       (HsVar (instToId method_inst))) rat_lit))

lookupSimpleInst (LitInst {tci_lit = HsIsString s from_string_name, tci_ty = ty, tci_loc = loc})
  | Just expr <- shortCutStringLit s ty
  = returnM (GenInst [] (noLoc expr))
  | otherwise
  = ASSERT( from_string_name `isHsVar` fromStringName )	-- A LitInst invariant
    tcLookupId fromStringName			`thenM` \ from_string ->
    tcInstClassOp loc from_string [ty]		`thenM` \ method_inst ->
    mkStrLit s					`thenM` \ string_lit ->
    returnM (GenInst [method_inst]
		     (mkHsApp (L (instLocSpan loc)
			   	 (HsVar (instToId method_inst))) string_lit))

--------------------- Dictionaries ------------------------
lookupSimpleInst (Dict {tci_pred = pred, tci_loc = loc})
  = do 	{ mb_result <- lookupPred pred
	; case mb_result of {
	    Nothing -> return NoInstance ;
	    Just (dfun_id, mb_inst_tys) -> do

    { use_stage <- getStage
    ; checkWellStaged (ptext SLIT("instance for") <+> quotes (ppr pred))
    		      (topIdLvl dfun_id) use_stage

 	-- It's possible that not all the tyvars are in
	-- the substitution, tenv. For example:
	--	instance C X a => D X where ...
	-- (presumably there's a functional dependency in class C)
	-- Hence mb_inst_tys :: Either TyVar TcType 

    ; let inst_tv (Left tv)  = do { tv' <- tcInstTyVar tv; return (mkTyVarTy tv') }
	  inst_tv (Right ty) = return ty
    ; tys <- mappM inst_tv mb_inst_tys
    ; let
    	(theta, _) = tcSplitPhiTy (applyTys (idType dfun_id) tys)
	src_loc	   = instLocSpan loc
	dfun	   = HsVar dfun_id
    ; if null theta then
    	returnM (GenInst [] (L src_loc $ HsWrap (mkWpTyApps tys) dfun))
      else do
    { (dict_app, dicts) <- getLIE $ instCallDicts loc theta -- !!!
    ; let co_fn = dict_app <.> mkWpTyApps tys
    ; returnM (GenInst dicts (L src_loc $ HsWrap co_fn dfun))
    }}}}

---------------
lookupPred :: TcPredType -> TcM (Maybe (DFunId, [Either TyVar TcType]))
-- Look up a class constraint in the instance environment
lookupPred pred@(ClassP clas tys)
  = do	{ eps     <- getEps
	; tcg_env <- getGblEnv
	; let inst_envs = (eps_inst_env eps, tcg_inst_env tcg_env)
	; case lookupInstEnv inst_envs clas tys of {
	    ([(ispec, inst_tys)], []) 
		-> do	{ let dfun_id = is_dfun ispec
			; traceTc (text "lookupInst success" <+> 
				   vcat [text "dict" <+> ppr pred, 
				         text "witness" <+> ppr dfun_id
					 <+> ppr (idType dfun_id) ])
				-- Record that this dfun is needed
			; record_dfun_usage dfun_id
			; return (Just (dfun_id, inst_tys)) } ;

     	    (matches, unifs)
		-> do	{ traceTc (text "lookupInst fail" <+> 
				   vcat [text "dict" <+> ppr pred,
				   	 text "matches" <+> ppr matches,
				   	 text "unifs" <+> ppr unifs])
		-- In the case of overlap (multiple matches) we report
		-- NoInstance here.  That has the effect of making the 
		-- context-simplifier return the dict as an irreducible one.
		-- Then it'll be given to addNoInstanceErrs, which will do another
		-- lookupInstEnv to get the detailed info about what went wrong.
			; return Nothing }
	}}

lookupPred ip_pred = return Nothing	-- Implicit parameters

record_dfun_usage dfun_id 
  = do	{ hsc_env <- getTopEnv
	; let  dfun_name = idName dfun_id
	       dfun_mod  = nameModule dfun_name
	; if isInternalName dfun_name ||    -- Internal name => defined in this module
	     modulePackageId dfun_mod /= thisPackage (hsc_dflags hsc_env)
	  then return () -- internal, or in another package
	   else do { tcg_env <- getGblEnv
	  	   ; updMutVar (tcg_inst_uses tcg_env)
			       (`addOneToNameSet` idName dfun_id) }}


tcGetInstEnvs :: TcM (InstEnv, InstEnv)
-- Gets both the external-package inst-env
-- and the home-pkg inst env (includes module being compiled)
tcGetInstEnvs = do { eps <- getEps; env <- getGblEnv;
		     return (eps_inst_env eps, tcg_inst_env env) }
\end{code}



%************************************************************************
%*									*
		Re-mappable syntax
%*									*
%************************************************************************

Suppose we are doing the -fno-implicit-prelude thing, and we encounter
a do-expression.  We have to find (>>) in the current environment, which is
done by the rename. Then we have to check that it has the same type as
Control.Monad.(>>).  Or, more precisely, a compatible type. One 'customer' had
this:

  (>>) :: HB m n mn => m a -> n b -> mn b

So the idea is to generate a local binding for (>>), thus:

	let then72 :: forall a b. m a -> m b -> m b
	    then72 = ...something involving the user's (>>)...
	in
	...the do-expression...

Now the do-expression can proceed using then72, which has exactly
the expected type.

In fact tcSyntaxName just generates the RHS for then72, because we only
want an actual binding in the do-expression case. For literals, we can 
just use the expression inline.

\begin{code}
tcSyntaxName :: InstOrigin
	     -> TcType			-- Type to instantiate it at
	     -> (Name, HsExpr Name)	-- (Standard name, user name)
	     -> TcM (Name, HsExpr TcId)	-- (Standard name, suitable expression)
--	*** NOW USED ONLY FOR CmdTop (sigh) ***
-- NB: tcSyntaxName calls tcExpr, and hence can do unification.
-- So we do not call it from lookupInst, which is called from tcSimplify

tcSyntaxName orig ty (std_nm, HsVar user_nm)
  | std_nm == user_nm
  = newMethodFromName orig ty std_nm	`thenM` \ id ->
    returnM (std_nm, HsVar id)

tcSyntaxName orig ty (std_nm, user_nm_expr)
  = tcLookupId std_nm		`thenM` \ std_id ->
    let	
	-- C.f. newMethodAtLoc
	([tv], _, tau)  = tcSplitSigmaTy (idType std_id)
 	sigma1		= substTyWith [tv] [ty] tau
	-- Actually, the "tau-type" might be a sigma-type in the
	-- case of locally-polymorphic methods.
    in
    addErrCtxtM (syntaxNameCtxt user_nm_expr orig sigma1)	$

	-- Check that the user-supplied thing has the
	-- same type as the standard one.  
	-- Tiresome jiggling because tcCheckSigma takes a located expression
    getSrcSpanM					`thenM` \ span -> 
    tcPolyExpr (L span user_nm_expr) sigma1	`thenM` \ expr ->
    returnM (std_nm, unLoc expr)

syntaxNameCtxt name orig ty tidy_env
  = getInstLoc orig		`thenM` \ inst_loc ->
    let
	msg = vcat [ptext SLIT("When checking that") <+> quotes (ppr name) <+> 
				ptext SLIT("(needed by a syntactic construct)"),
		    nest 2 (ptext SLIT("has the required type:") <+> ppr (tidyType tidy_env ty)),
		    nest 2 (ptext SLIT("arising from") <+> pprInstLoc inst_loc)]
    in
    returnM (tidy_env, msg)
\end{code}

%************************************************************************
%*									*
		EqInsts
%*									*
%************************************************************************

\begin{code}
mkGivenCo   :: Coercion -> Either TcTyVar Coercion
mkGivenCo   =  Right

mkWantedCo  :: TcTyVar  -> Either TcTyVar Coercion
mkWantedCo  =  Left

fromGivenCo :: Either TcTyVar Coercion -> Coercion
fromGivenCo (Right co) 	 = co
fromGivenCo _		 = panic "fromGivenCo: not a wanted coercion"

fromWantedCo :: String -> Either TcTyVar Coercion -> TcTyVar
fromWantedCo _ (Left covar) = covar
fromWantedCo msg _	    = panic ("fromWantedCo: not a wanted coercion: " ++ msg)

eitherEqInst 
	:: Inst 		-- given or wanted EqInst
	-> (TcTyVar  -> a) 	-- 	result if wanted
	-> (Coercion -> a) 	--	result if given
	-> a		
eitherEqInst (EqInst {tci_co = either_co}) withWanted withGiven
	= case either_co of
		Left  covar -> withWanted covar
		Right co    -> withGiven  co

mkEqInsts :: [PredType] -> [Either TcTyVar Coercion] -> TcM [Inst]
mkEqInsts preds cos = zipWithM mkEqInst preds cos

mkEqInst :: PredType -> Either TcTyVar Coercion -> TcM Inst
mkEqInst (EqPred ty1 ty2) co
	= do { uniq <- newUnique
	     ; src_span <- getSrcSpanM
	     ; err_ctxt <- getErrCtxt
	     ; let loc  = InstLoc EqOrigin src_span err_ctxt
	           name = mkName uniq src_span
	           inst = EqInst {tci_left = ty1, tci_right = ty2, tci_co = co, tci_loc = loc, tci_name = name} 
	     ; return inst
	     }
	where mkName uniq src_span = mkInternalName uniq (mkVarOcc "co") src_span

-- type inference:
--	We want to promote the wanted EqInst to a given EqInst
--	in the signature context.
--	This means we have to give the coercion a name
--	and fill it in as its own name.
finalizeEqInst 
	:: Inst			-- wanted
	-> TcM Inst		-- given
finalizeEqInst wanted@(EqInst {tci_left = ty1, tci_right = ty2, tci_name = name})
  	= do { let var = Var.mkCoVar name (PredTy $ EqPred ty1 ty2)
       	     ; writeWantedCoercion wanted (TyVarTy var)
	     ; let given = wanted { tci_co = mkGivenCo $ TyVarTy var }
	     ; return given
             }

writeWantedCoercion 
	:: Inst 	-- wanted EqInst
	-> Coercion 	-- coercion to fill the hole with
	-> TcM ()	
writeWantedCoercion wanted co
  	= do { let cotv = fromWantedCo "writeWantedCoercion" $ tci_co wanted
	     ; writeMetaTyVar cotv co
	     }

eqInstType :: Inst -> TcType
eqInstType inst = eitherEqInst inst mkTyVarTy id

eqInstCoercion :: Inst -> Either TcTyVar Coercion
eqInstCoercion = tci_co

eqInstLeftTy, eqInstRightTy :: Inst -> TcType
eqInstLeftTy  = tci_left
eqInstRightTy = tci_right

updateEqInstCoercion :: (Either TcTyVar Coercion -> Either TcTyVar Coercion) -> Inst -> Inst
updateEqInstCoercion f inst = inst {tci_co = f $ tci_co inst}
\end{code}