summaryrefslogtreecommitdiff
path: root/compiler/typecheck/TcFlatten.hs
blob: 3e13a004437666f9f9ec4ee7360fdb0f25942414 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
{-# LANGUAGE CPP #-}

module TcFlatten(
   FlattenEnv(..), FlattenMode(..), mkFlattenEnv,
   flatten, flattenMany, flatten_many,
   flattenFamApp, flattenTyVarOuter,
   unflatten,
   eqCanRewrite, eqCanRewriteFR, canRewriteOrSame,
   CtFlavourRole, ctEvFlavourRole, ctFlavourRole
 ) where

#include "HsVersions.h"

import TcRnTypes
import TcType
import Type
import TcEvidence
import TyCon
import TypeRep
import Kind( isSubKind )
import Coercion  ( tyConRolesX )
import Var
import VarEnv
import NameEnv
import Outputable
import VarSet
import TcSMonad as TcS
import DynFlags( DynFlags )

import Util
import Bag
import FastString
import Control.Monad( when, liftM )
import MonadUtils ( zipWithAndUnzipM )
import GHC.Exts ( inline )

{-
Note [The flattening story]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* A CFunEqCan is either of form
     [G] <F xis> : F xis ~ fsk   -- fsk is a FlatSkol
     [W]       x : F xis ~ fmv   -- fmv is a unification variable,
                                 -- but untouchable,
                                 -- with MetaInfo = FlatMetaTv
  where
     x is the witness variable
     fsk/fmv is a flatten skolem
     xis are function-free
  CFunEqCans are always [Wanted], or [Given], never [Derived]

  fmv untouchable just means that in a CTyVarEq, say,
       fmv ~ Int
  we do NOT unify fmv.

* KEY INSIGHTS:

   - A given flatten-skolem, fsk, is known a-priori to be equal to
     F xis (the LHS), with <F xis> evidence

   - A unification flatten-skolem, fmv, stands for the as-yet-unknown
     type to which (F xis) will eventually reduce

* Inert set invariant: if F xis1 ~ fsk1, F xis2 ~ fsk2
                       then xis1 /= xis2
  i.e. at most one CFunEqCan with a particular LHS

* Each canonical CFunEqCan x : F xis ~ fsk/fmv has its own
  distinct evidence variable x and flatten-skolem fsk/fmv.
  Why? We make a fresh fsk/fmv when the constraint is born;
  and we never rewrite the RHS of a CFunEqCan.

* Function applications can occur in the RHS of a CTyEqCan.  No reason
  not allow this, and it reduces the amount of flattening that must occur.

* Flattening a type (F xis):
    - If we are flattening in a Wanted/Derived constraint
      then create new [W] x : F xis ~ fmv
      else create new [G] x : F xis ~ fsk
      with fresh evidence variable x and flatten-skolem fsk/fmv

    - Add it to the work list

    - Replace (F xis) with fsk/fmv in the type you are flattening

    - You can also add the CFunEqCan to the "flat cache", which
      simply keeps track of all the function applications you
      have flattened.

    - If (F xis) is in the cache already, just
      use its fsk/fmv and evidence x, and emit nothing.

    - No need to substitute in the flat-cache. It's not the end
      of the world if we start with, say (F alpha ~ fmv1) and
      (F Int ~ fmv2) and then find alpha := Int.  Athat will
      simply give rise to fmv1 := fmv2 via [Interacting rule] below

* Canonicalising a CFunEqCan [G/W] x : F xis ~ fsk/fmv
    - Flatten xis (to substitute any tyvars; there are already no functions)
                  cos :: xis ~ flat_xis
    - New wanted  x2 :: F flat_xis ~ fsk/fmv
    - Add new wanted to flat cache
    - Discharge x = F cos ; x2

* Unification flatten-skolems, fmv, ONLY get unified when either
    a) The CFunEqCan takes a step, using an axiom
    b) During un-flattening
  They are never unified in any other form of equality.
  For example [W] ffmv ~ Int  is stuck; it does not unify with fmv.

* We *never* substitute in the RHS (i.e. the fsk/fmv) of a CFunEqCan.
  That would destroy the invariant about the shape of a CFunEqCan,
  and it would risk wanted/wanted interactions. The only way we
  learn information about fsk is when the CFunEqCan takes a step.

  However we *do* substitute in the LHS of a CFunEqCan (else it
  would never get to fire!)

* [Interacting rule]
    (inert)     [W] x1 : F tys ~ fmv1
    (work item) [W] x2 : F tys ~ fmv2
  Just solve one from the other:
    x2 := x1
    fmv2 := fmv1
  This just unites the two fsks into one.
  Always solve given from wanted if poss.

* [Firing rule: wanteds]
    (work item) [W] x : F tys ~ fmv
    instantiate axiom: ax_co : F tys ~ rhs

   Dischard fmv:
      fmv := alpha
      x := ax_co ; sym x2
      [W] x2 : alpha ~ rhs  (Non-canonical)
   discharging the work item. This is the way that fmv's get
   unified; even though they are "untouchable".

   NB: this deals with the case where fmv appears in xi, which can
   happen; it just happens through the non-canonical stuff

   Possible short cut (shortCutReduction) if rhs = G rhs_tys,
   where G is a type function.  Then
      - Flatten rhs_tys (cos : rhs_tys ~ rhs_xis)
      - Add G rhs_xis ~ fmv to flat cache
      - New wanted [W] x2 : G rhs_xis ~ fmv
      - Discharge x := co ; G cos ; x2

* [Firing rule: givens]
    (work item) [G] g : F tys ~ fsk
    instantiate axiom: co : F tys ~ rhs

   Now add non-canonical (since rhs is not flat)
      [G] (sym g ; co) : fsk ~ rhs

   Short cut (shortCutReduction) for when rhs = G rhs_tys and G is a type function
      [G] (co ; g) : G tys ~ fsk
   But need to flatten tys:  flat_cos : tys ~ flat_tys
      [G] (sym (G flat_cos) ; co ; g) : G flat_tys ~ fsk


Why given-fsks, alone, doesn't work
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Could we get away with only flatten meta-tyvars, with no flatten-skolems? No.

  [W] w : alpha ~ [F alpha Int]

---> flatten
  w = ...w'...
  [W] w' : alpha ~ [fsk]
  [G] <F alpha Int> : F alpha Int ~ fsk

--> unify (no occurs check)
  alpha := [fsk]

But since fsk = F alpha Int, this is really an occurs check error.  If
that is all we know about alpha, we will succeed in constraint
solving, producing a program with an infinite type.

Even if we did finally get (g : fsk ~ Boo)l by solving (F alpha Int ~ fsk)
using axiom, zonking would not see it, so (x::alpha) sitting in the
tree will get zonked to an infinite type.  (Zonking always only does
refl stuff.)

Why flatten-meta-vars, alone doesn't work
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Look at Simple13, with unification-fmvs only

  [G] g : a ~ [F a]

---> Flatten given
  g' = g;[x]
  [G] g'  : a ~ [fmv]
  [W] x : F a ~ fmv

--> subst a in x
       x = F g' ; x2
   [W] x2 : F [fmv] ~ fmv

And now we have an evidence cycle between g' and x!

If we used a given instead (ie current story)

  [G] g : a ~ [F a]

---> Flatten given
  g' = g;[x]
  [G] g'  : a ~ [fsk]
  [G] <F a> : F a ~ fsk

---> Substitute for a
  [G] g'  : a ~ [fsk]
  [G] F (sym g'); <F a> : F [fsk] ~ fsk


Why is it right to treat fmv's differently to ordinary unification vars?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  f :: forall a. a -> a -> Bool
  g :: F Int -> F Int -> Bool

Consider
  f (x:Int) (y:Bool)
This gives alpha~Int, alpha~Bool.  There is an inconsistency,
but really only one error.  SherLoc may tell you which location
is most likely, based on other occurrences of alpha.

Consider
  g (x:Int) (y:Bool)
Here we get (F Int ~ Int, F Int ~ Bool), which flattens to
  (fmv ~ Int, fmv ~ Bool)
But there are really TWO separate errors.  We must not complain
about Int~Bool.  Moreover these two errors could arise in entirely
unrelated parts of the code.  (In the alpha case, there must be
*some* connection (eg v:alpha in common envt).)

Note [Orient equalities with flatten-meta-vars on the left]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This example comes from IndTypesPerfMerge

From the ambiguity check for
  f :: (F a ~ a) => a
we get:
      [G] F a ~ a
      [W] F alpha ~ alpha, alpha ~ a

    From Givens we get
      [G] F a ~ fsk, fsk ~ a

    Now if we flatten we get
      [W] alpha ~ fmv, F alpha ~ fmv, alpha ~ a

    Now, processing the first one first, choosing alpha := fmv
      [W] F fmv ~ fmv, fmv ~ a

    And now we are stuck.  We must either *unify* fmv := a, or
    use the fmv ~ a to rewrite F fmv ~ fmv, so we can make it
    meet up with the given F a ~ blah.

Solution: always put fmvs on the left, so we get
      [W] fmv ~ alpha, F alpha ~ fmv, alpha ~ a
  The point is that fmvs are very uninformative, so doing alpha := fmv
  is a bad idea.  We want to use other constraints on alpha first.


Note [Derived constraints from wanted CTyEqCans]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Is this type ambiguous:  (Foo e ~ Maybe e) => Foo e
 (indexed-types/should_fail/T4093a)

 [G] Foo e ~ Maybe e
 [W] Foo e ~ Foo ee      -- ee is a unification variable
 [W] Foo ee ~ Maybe ee)
---
 [G] Foo e ~ fsk
 [G] fsk ~ Maybe e

 [W] Foo e ~ fmv1
 [W] Foo ee ~ fmv2
 [W] fmv1 ~ fmv2
 [W] fmv2 ~ Maybe ee

--->   fmv1 := fsk  by matching LHSs
 [W] Foo ee ~ fmv2
 [W] fsk ~ fmv2
 [W] fmv2 ~ Maybe ee

--->
 [W] Foo ee ~ fmv2
 [W] fmv2 ~ Maybe e
 [W] fmv2 ~ Maybe ee

Now maybe we shuld get [D] e ~ ee, and then we'd solve it entirely.
But if in a smilar situation we got [D] Int ~ Bool we'd be back
to complaining about wanted/wanted interactions.  Maybe this arises
also for fundeps?

Here's another example:
  f :: [a] -> [b] -> blah
  f (e1 :: F Int) (e2 :: F Int)

  we get
     F Int ~ fmv
     fmv ~ [alpha]
     fmv ~ [beta]

  We want: alpha := beta (which might unlock something else).  If we
  generated [D] [alpha] ~ [beta] we'd be good here.

Current story: we don't generate these derived constraints.  We could, but
we'd want to make them very weak, so we didn't get the Int~Bool complaint.


************************************************************************
*                                                                      *
*                  Other notes (Oct 14)
      I have not revisted these, but I didn't want to discard them
*                                                                      *
************************************************************************


Try: rewrite wanted with wanted only for fmvs (not all meta-tyvars)

But:   fmv ~ alpha[0]
       alpha[0] ~ fmv’
Now we don’t see that fmv ~ fmv’, which is a problem for injectivity detection.

Conclusion: rewrite wanteds with wanted for all untouchables.

skol ~ untch, must re-orieint to untch ~ skol, so that we can use it to rewrite.



************************************************************************
*                                                                      *
*                  Examples
     Here is a long series of examples I had to work through
*                                                                      *
************************************************************************

Simple20
~~~~~~~~
axiom F [a] = [F a]

 [G] F [a] ~ a
-->
 [G] fsk ~ a
 [G] [F a] ~ fsk  (nc)
-->
 [G] F a ~ fsk2
 [G] fsk ~ [fsk2]
 [G] fsk ~ a
-->
 [G] F a ~ fsk2
 [G] a ~ [fsk2]
 [G] fsk ~ a


-----------------------------------

----------------------------------------
indexed-types/should_compile/T44984

  [W] H (F Bool) ~ H alpha
  [W] alpha ~ F Bool
-->
  F Bool  ~ fmv0
  H fmv0  ~ fmv1
  H alpha ~ fmv2

  fmv1 ~ fmv2
  fmv0 ~ alpha

flatten
~~~~~~~
  fmv0  := F Bool
  fmv1  := H (F Bool)
  fmv2  := H alpha
  alpha := F Bool
plus
  fmv1 ~ fmv2

But these two are equal under the above assumptions.
Solve by Refl.


--- under plan B, namely solve fmv1:=fmv2 eagerly ---
  [W] H (F Bool) ~ H alpha
  [W] alpha ~ F Bool
-->
  F Bool  ~ fmv0
  H fmv0  ~ fmv1
  H alpha ~ fmv2

  fmv1 ~ fmv2
  fmv0 ~ alpha
-->
  F Bool  ~ fmv0
  H fmv0  ~ fmv1
  H alpha ~ fmv2    fmv2 := fmv1

  fmv0 ~ alpha

flatten
  fmv0 := F Bool
  fmv1 := H fmv0 = H (F Bool)
  retain   H alpha ~ fmv2
    because fmv2 has been filled
  alpha := F Bool


----------------------------
indexed-types/should_failt/T4179

after solving
  [W] fmv_1 ~ fmv_2
  [W] A3 (FCon x)           ~ fmv_1    (CFunEqCan)
  [W] A3 (x (aoa -> fmv_2)) ~ fmv_2    (CFunEqCan)

----------------------------------------
indexed-types/should_fail/T7729a

a)  [W]   BasePrimMonad (Rand m) ~ m1
b)  [W]   tt m1 ~ BasePrimMonad (Rand m)

--->  process (b) first
    BasePrimMonad (Ramd m) ~ fmv_atH
    fmv_atH ~ tt m1

--->  now process (a)
    m1 ~ s_atH ~ tt m1    -- An obscure occurs check


----------------------------------------
typecheck/TcTypeNatSimple

Original constraint
  [W] x + y ~ x + alpha  (non-canonical)
==>
  [W] x + y     ~ fmv1   (CFunEqCan)
  [W] x + alpha ~ fmv2   (CFuneqCan)
  [W] fmv1 ~ fmv2        (CTyEqCan)

(sigh)

----------------------------------------
indexed-types/should_fail/GADTwrong1

  [G] Const a ~ ()
==> flatten
  [G] fsk ~ ()
  work item: Const a ~ fsk
==> fire top rule
  [G] fsk ~ ()
  work item fsk ~ ()

Surely the work item should rewrite to () ~ ()?  Well, maybe not;
it'a very special case.  More generally, our givens look like
F a ~ Int, where (F a) is not reducible.


----------------------------------------
indexed_types/should_fail/T8227:

Why using a different can-rewrite rule in CFunEqCan heads
does not work.

Assuming NOT rewriting wanteds with wanteds

   Inert: [W] fsk_aBh ~ fmv_aBk -> fmv_aBk
          [W] fmv_aBk ~ fsk_aBh

          [G] Scalar fsk_aBg ~ fsk_aBh
          [G] V a ~ f_aBg

   Worklist includes  [W] Scalar fmv_aBi ~ fmv_aBk
   fmv_aBi, fmv_aBk are flatten unificaiton variables

   Work item: [W] V fsk_aBh ~ fmv_aBi

Note that the inert wanteds are cyclic, because we do not rewrite
wanteds with wanteds.


Then we go into a loop when normalise the work-item, because we
use rewriteOrSame on the argument of V.

Conclusion: Don't make canRewrite context specific; instead use
[W] a ~ ty to rewrite a wanted iff 'a' is a unification variable.


----------------------------------------

Here is a somewhat similar case:

   type family G a :: *

   blah :: (G a ~ Bool, Eq (G a)) => a -> a
   blah = error "urk"

   foo x = blah x

For foo we get
   [W] Eq (G a), G a ~ Bool
Flattening
   [W] G a ~ fmv, Eq fmv, fmv ~ Bool
We can't simplify away the Eq Bool unless we substitute for fmv.
Maybe that doesn't matter: we would still be left with unsolved
G a ~ Bool.

--------------------------
Trac #9318 has a very simple program leading to

  [W] F Int ~ Int
  [W] F Int ~ Bool

We don't want to get "Error Int~Bool".  But if fmv's can rewrite
wanteds, we will

  [W] fmv ~ Int
  [W] fmv ~ Bool
--->
  [W] Int ~ Bool


************************************************************************
*                                                                      *
*           The main flattening functions
*                                                                      *
************************************************************************

Note [Flattening]
~~~~~~~~~~~~~~~~~~~~
  flatten ty  ==>   (xi, cc)
    where
      xi has no type functions, unless they appear under ForAlls

      cc = Auxiliary given (equality) constraints constraining
           the fresh type variables in xi.  Evidence for these
           is always the identity coercion, because internally the
           fresh flattening skolem variables are actually identified
           with the types they have been generated to stand in for.

Note that it is flatten's job to flatten *every type function it sees*.
flatten is only called on *arguments* to type functions, by canEqGiven.

Recall that in comments we use alpha[flat = ty] to represent a
flattening skolem variable alpha which has been generated to stand in
for ty.

----- Example of flattening a constraint: ------
  flatten (List (F (G Int)))  ==>  (xi, cc)
    where
      xi  = List alpha
      cc  = { G Int ~ beta[flat = G Int],
              F beta ~ alpha[flat = F beta] }
Here
  * alpha and beta are 'flattening skolem variables'.
  * All the constraints in cc are 'given', and all their coercion terms
    are the identity.

NB: Flattening Skolems only occur in canonical constraints, which
are never zonked, so we don't need to worry about zonking doing
accidental unflattening.

Note that we prefer to leave type synonyms unexpanded when possible,
so when the flattener encounters one, it first asks whether its
transitive expansion contains any type function applications.  If so,
it expands the synonym and proceeds; if not, it simply returns the
unexpanded synonym.

Note [Flattener EqRels]
~~~~~~~~~~~~~~~~~~~~~~~
When flattening, we need to know which equality relation -- nominal
or representation -- we should be respecting. The only difference is
that we rewrite variables by representational equalities when fe_eq_rel
is ReprEq.

-}

data FlattenEnv
  = FE { fe_mode    :: FlattenMode
       , fe_loc     :: CtLoc
       , fe_flavour :: CtFlavour
       , fe_eq_rel  :: EqRel }   -- See Note [Flattener EqRels]

data FlattenMode  -- Postcondition for all three: inert wrt the type substitution
  = FM_FlattenAll          -- Postcondition: function-free

  | FM_Avoid TcTyVar Bool  -- See Note [Lazy flattening]
                           -- Postcondition:
                           --  * tyvar is only mentioned in result under a rigid path
                           --    e.g.   [a] is ok, but F a won't happen
                           --  * If flat_top is True, top level is not a function application
                           --   (but under type constructors is ok e.g. [F a])

  | FM_SubstOnly           -- See Note [Flattening under a forall]

mkFlattenEnv :: FlattenMode -> CtEvidence -> FlattenEnv
mkFlattenEnv fm ctev = FE { fe_mode    = fm
                          , fe_loc     = ctEvLoc ctev
                          , fe_flavour = ctEvFlavour ctev
                          , fe_eq_rel  = ctEvEqRel ctev }

feRole :: FlattenEnv -> Role
feRole = eqRelRole . fe_eq_rel

{-
Note [Lazy flattening]
~~~~~~~~~~~~~~~~~~~~~~
The idea of FM_Avoid mode is to flatten less aggressively.  If we have
       a ~ [F Int]
there seems to be no great merit in lifting out (F Int).  But if it was
       a ~ [G a Int]
then we *do* want to lift it out, in case (G a Int) reduces to Bool, say,
which gets rid of the occurs-check problem.  (For the flat_top Bool, see
comments above and at call sites.)

HOWEVER, the lazy flattening actually seems to make type inference go
*slower*, not faster.  perf/compiler/T3064 is a case in point; it gets
*dramatically* worse with FM_Avoid.  I think it may be because
floating the types out means we normalise them, and that often makes
them smaller and perhaps allows more re-use of previously solved
goals.  But to be honest I'm not absolutely certain, so I am leaving
FM_Avoid in the code base.  What I'm removing is the unique place
where it is *used*, namely in TcCanonical.canEqTyVar.

See also Note [Conservative unification check] in TcUnify, which gives
other examples where lazy flattening caused problems.

Bottom line: FM_Avoid is unused for now (Nov 14).
Note: T5321Fun got faster when I disabled FM_Avoid
      T5837 did too, but it's pathalogical anyway

Note [Phantoms in the flattener]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have

data Proxy p = Proxy

and we're flattening (Proxy ty) w.r.t. ReprEq. Then, we know that `ty`
is really irrelevant -- it will be ignored when solving for representational
equality later on. So, we omit flattening `ty` entirely. This may
violate the expectation of "xi"s for a bit, but the canonicaliser will
soon throw out the phantoms when decomposing a TyConApp. (Or, the
canonicaliser will emit an insoluble, in which case the unflattened version
yields a better error message anyway.)

Note [flatten_many performance]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In programs with lots of type-level evaluation, flatten_many becomes
part of a tight loop. For example, see test perf/compiler/T9872a, which
calls flatten_many a whopping 7,106,808 times. It is thus important
that flatten_many be efficient.

Performance testing showed that the current implementation is indeed
efficient. It's critically important that zipWithAndUnzipM be
specialized to TcS, and it's also quite helpful to actually `inline`
it. On test T9872a, here are the allocation stats (Dec 16, 2014):

 * Unspecialized, uninlined:     8,472,613,440 bytes allocated in the heap
 * Specialized, uninlined:       6,639,253,488 bytes allocated in the heap
 * Specialized, inlined:         6,281,539,792 bytes allocated in the heap

To improve performance even further, flatten_many_nom is split off
from flatten_many, as nominal equality is the common case. This would
be natural to write using mapAndUnzipM, but even inlined, that function
is not as performant as a hand-written loop.

 * mapAndUnzipM, inlined:        7,463,047,432 bytes allocated in the heap
 * hand-written recursion:       5,848,602,848 bytes allocated in the heap

If you make any change here, pay close attention to the T9872{a,b,c} tests
and T5321Fun.

If we need to make this yet more performant, a possible way forward is to
duplicate the flattener code for the nominal case, and make that case
faster. This doesn't seem quite worth it, yet.

-}

------------------
flatten :: FlattenMode -> CtEvidence -> TcType -> TcS (Xi, TcCoercion)
flatten mode ev ty
  = runFlatten (flatten_one fmode ty)
  where
    fmode = mkFlattenEnv mode ev

flattenMany :: FlattenMode -> CtEvidence -> [Role]
            -> [TcType] -> TcS ([Xi], [TcCoercion])
-- Flatten a bunch of types all at once. Roles on the coercions returned
-- always match the corresponding roles passed in.
flattenMany mode ev roles tys
  = runFlatten (flatten_many fmode roles tys)
  where
    fmode = mkFlattenEnv mode ev

flattenFamApp :: FlattenMode -> CtEvidence
              -> TyCon -> [TcType] -> TcS (Xi, TcCoercion)
flattenFamApp mode ev tc tys
  = runFlatten (flatten_fam_app fmode tc tys)
  where
    fmode = mkFlattenEnv mode ev

------------------
flatten_many :: FlattenEnv -> [Role] -> [Type] -> TcS ([Xi], [TcCoercion])
-- Coercions :: Xi ~ Type, at roles given
-- Returns True iff (no flattening happened)
-- NB: The EvVar inside the 'fe_ev :: CtEvidence' is unused,
--     we merely want (a) Given/Solved/Derived/Wanted info
--                    (b) the GivenLoc/WantedLoc for when we create new evidence
flatten_many fmode roles tys
-- See Note [flatten_many performance]
  = inline zipWithAndUnzipM go roles tys
  where
    go Nominal          ty = flatten_one (setFEEqRel fmode NomEq)  ty
    go Representational ty = flatten_one (setFEEqRel fmode ReprEq) ty
    go Phantom          ty = -- See Note [Phantoms in the flattener]
                             return (ty, mkTcPhantomCo ty ty)

-- | Like 'flatten_many', but assumes that every role is nominal.
flatten_many_nom :: FlattenEnv -> [Type] -> TcS ([Xi], [TcCoercion])
flatten_many_nom _     [] = return ([], [])
-- See Note [flatten_many performance]
flatten_many_nom fmode (ty:tys)
  = ASSERT( fe_eq_rel fmode == NomEq )
    do { (xi, co) <- flatten_one fmode ty
       ; (xis, cos) <- flatten_many_nom fmode tys
       ; return (xi:xis, co:cos) }

------------------
flatten_one :: FlattenEnv -> TcType -> TcS (Xi, TcCoercion)
-- Flatten a type to get rid of type function applications, returning
-- the new type-function-free type, and a collection of new equality
-- constraints.  See Note [Flattening] for more detail.
--
-- Postcondition: Coercion :: Xi ~ TcType
-- The role on the result coercion matches the EqRel in the FlattenEnv

flatten_one fmode xi@(LitTy {}) = return (xi, mkTcReflCo (feRole fmode) xi)

flatten_one fmode (TyVarTy tv)
  = flattenTyVar fmode tv

flatten_one fmode (AppTy ty1 ty2)
  = do { (xi1,co1) <- flatten_one fmode ty1
       ; case (fe_eq_rel fmode, nextRole xi1) of
           (NomEq,  _)                -> flatten_rhs xi1 co1 NomEq
           (ReprEq, Nominal)          -> flatten_rhs xi1 co1 NomEq
           (ReprEq, Representational) -> flatten_rhs xi1 co1 ReprEq
           (ReprEq, Phantom)          ->
             return (mkAppTy xi1 ty2, co1 `mkTcAppCo` mkTcNomReflCo ty2) }
  where
    flatten_rhs xi1 co1 eq_rel2
      = do { (xi2,co2) <- flatten_one (setFEEqRel fmode eq_rel2) ty2
           ; traceTcS "flatten/appty"
                      (ppr ty1 $$ ppr ty2 $$ ppr xi1 $$
                       ppr co1 $$ ppr xi2 $$ ppr co2)
           ; let role1 = feRole fmode
                 role2 = eqRelRole eq_rel2
           ; return ( mkAppTy xi1 xi2
                    , mkTcTransAppCo role1 co1 xi1 ty1
                                     role2 co2 xi2 ty2
                                     role1 ) }  -- output should match fmode

flatten_one fmode (FunTy ty1 ty2)
  = do { (xi1,co1) <- flatten_one fmode ty1
       ; (xi2,co2) <- flatten_one fmode ty2
       ; return (mkFunTy xi1 xi2, mkTcFunCo (feRole fmode) co1 co2) }

flatten_one fmode (TyConApp tc tys)

  -- Expand type synonyms that mention type families
  -- on the RHS; see Note [Flattening synonyms]
  | Just (tenv, rhs, tys') <- tcExpandTyCon_maybe tc tys
  , let expanded_ty = mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys'
  = case fe_mode fmode of
      FM_FlattenAll | anyNameEnv isTypeFamilyTyCon (tyConsOfType rhs)
                   -> flatten_one fmode expanded_ty
                    | otherwise
                   -> flattenTyConApp fmode tc tys
      _ -> flattenTyConApp fmode tc tys

  -- Otherwise, it's a type function application, and we have to
  -- flatten it away as well, and generate a new given equality constraint
  -- between the application and a newly generated flattening skolem variable.
  | isTypeFamilyTyCon tc
  = flatten_fam_app fmode tc tys

  -- For * a normal data type application
  --     * data family application
  -- we just recursively flatten the arguments.
  | otherwise
-- FM_Avoid stuff commented out; see Note [Lazy flattening]
--  , let fmode' = case fmode of  -- Switch off the flat_top bit in FM_Avoid
--                   FE { fe_mode = FM_Avoid tv _ }
--                     -> fmode { fe_mode = FM_Avoid tv False }
--                   _ -> fmode
  = flattenTyConApp fmode tc tys

flatten_one fmode ty@(ForAllTy {})
-- We allow for-alls when, but only when, no type function
-- applications inside the forall involve the bound type variables.
  = do { let (tvs, rho) = splitForAllTys ty
       ; (rho', co) <- flatten_one (setFEMode fmode FM_SubstOnly) rho
                         -- Substitute only under a forall
                         -- See Note [Flattening under a forall]
       ; return (mkForAllTys tvs rho', foldr mkTcForAllCo co tvs) }

flattenTyConApp :: FlattenEnv -> TyCon -> [TcType] -> TcS (Xi, TcCoercion)
flattenTyConApp fmode tc tys
  = do { (xis, cos) <- case fe_eq_rel fmode of
                         NomEq  -> flatten_many_nom fmode tys
                         ReprEq -> flatten_many fmode (tyConRolesX role tc) tys
       ; return (mkTyConApp tc xis, mkTcTyConAppCo role tc cos) }
  where
    role = feRole fmode

{-
Note [Flattening synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Not expanding synonyms aggressively improves error messages, and
keeps types smaller. But we need to take care.

Suppose
   type T a = a -> a
and we want to flatten the type (T (F a)).  Then we can safely flatten
the (F a) to a skolem, and return (T fsk).  We don't need to expand the
synonym.  This works because TcTyConAppCo can deal with synonyms
(unlike TyConAppCo), see Note [TcCoercions] in TcEvidence.

But (Trac #8979) for
   type T a = (F a, a)    where F is a type function
we must expand the synonym in (say) T Int, to expose the type function
to the flattener.


Note [Flattening under a forall]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Under a forall, we
  (a) MUST apply the inert substitution
  (b) MUST NOT flatten type family applications
Hence FMSubstOnly.

For (a) consider   c ~ a, a ~ T (forall b. (b, [c]))
If we don't apply the c~a substitution to the second constraint
we won't see the occurs-check error.

For (b) consider  (a ~ forall b. F a b), we don't want to flatten
to     (a ~ forall b.fsk, F a b ~ fsk)
because now the 'b' has escaped its scope.  We'd have to flatten to
       (a ~ forall b. fsk b, forall b. F a b ~ fsk b)
and we have not begun to think about how to make that work!

************************************************************************
*                                                                      *
             Flattening a type-family application
*                                                                      *
************************************************************************
-}

flatten_fam_app, flatten_exact_fam_app, flatten_exact_fam_app_fully
  :: FlattenEnv -> TyCon -> [TcType] -> TcS (Xi, TcCoercion)
  --   flatten_fam_app            can be over-saturated
  --   flatten_exact_fam_app       is exactly saturated
  --   flatten_exact_fam_app_fully lifts out the application to top level
  -- Postcondition: Coercion :: Xi ~ F tys
flatten_fam_app fmode tc tys  -- Can be over-saturated
    = ASSERT( tyConArity tc <= length tys )  -- Type functions are saturated
                 -- The type function might be *over* saturated
                 -- in which case the remaining arguments should
                 -- be dealt with by AppTys
      do { let (tys1, tys_rest) = splitAt (tyConArity tc) tys
         ; (xi1, co1) <- flatten_exact_fam_app fmode tc tys1
               -- co1 :: xi1 ~ F tys1

               -- all Nominal roles b/c the tycon is oversaturated
         ; (xis_rest, cos_rest) <- flatten_many fmode (repeat Nominal) tys_rest
               -- cos_res :: xis_rest ~ tys_rest
         ; return ( mkAppTys xi1 xis_rest   -- NB mkAppTys: rhs_xi might not be a type variable
                                            --    cf Trac #5655
                  , mkTcAppCos co1 cos_rest -- (rhs_xi :: F xis) ; (F cos :: F xis ~ F tys)
                  ) }

flatten_exact_fam_app fmode tc tys
  = case fe_mode fmode of
       FM_FlattenAll -> flatten_exact_fam_app_fully fmode tc tys

       FM_SubstOnly -> do { (xis, cos) <- flatten_many fmode roles tys
                          ; return ( mkTyConApp tc xis
                                   , mkTcTyConAppCo (feRole fmode) tc cos ) }

       FM_Avoid tv flat_top ->
         do { (xis, cos) <- flatten_many fmode roles tys
            ; if flat_top || tv `elemVarSet` tyVarsOfTypes xis
              then flatten_exact_fam_app_fully fmode tc tys
              else return ( mkTyConApp tc xis
                          , mkTcTyConAppCo (feRole fmode) tc cos ) }
  where
    -- These are always going to be Nominal for now,
    -- but not if #8177 is implemented
    roles = tyConRolesX (feRole fmode) tc

flatten_exact_fam_app_fully fmode tc tys
  -- See Note [Reduce type family applications eagerly]
  = try_to_reduce tc tys False id $
    do { (xis, cos) <- flatten_many_nom (setFEEqRel (setFEMode fmode FM_FlattenAll) NomEq) tys
       ; let ret_co = mkTcTyConAppCo (feRole fmode) tc cos
              -- ret_co :: F xis ~ F tys

       ; mb_ct <- lookupFlatCache tc xis
       ; case mb_ct of
           Just (co, rhs_ty, flav)  -- co :: F xis ~ fsk
             | (flav, NomEq) `canRewriteOrSameFR` (feFlavourRole fmode)
             ->  -- Usable hit in the flat-cache
                 -- We certainly *can* use a Wanted for a Wanted
                do { traceTcS "flatten/flat-cache hit" $ (ppr tc <+> ppr xis $$ ppr rhs_ty $$ ppr co)
                   ; (fsk_xi, fsk_co) <- flatten_one fmode rhs_ty
                          -- The fsk may already have been unified, so flatten it
                          -- fsk_co :: fsk_xi ~ fsk
                   ; return (fsk_xi, fsk_co `mkTcTransCo`
                                     maybeTcSubCo (fe_eq_rel fmode)
                                                  (mkTcSymCo co) `mkTcTransCo`
                                     ret_co) }
                                    -- :: fsk_xi ~ F xis

           -- Try to reduce the family application right now
           -- See Note [Reduce type family applications eagerly]
           _ -> try_to_reduce tc xis True (`mkTcTransCo` ret_co) $
                do { let fam_ty = mkTyConApp tc xis
                   ; (ev, fsk) <- newFlattenSkolem (fe_flavour fmode)
                                                   (fe_loc fmode)
                                                   fam_ty
                   ; let fsk_ty = mkTyVarTy fsk
                         co     = ctEvCoercion ev
                   ; extendFlatCache tc xis (co, fsk_ty, ctEvFlavour ev)

                   -- The new constraint (F xis ~ fsk) is not necessarily inert
                   -- (e.g. the LHS may be a redex) so we must put it in the work list
                   ; let ct = CFunEqCan { cc_ev     = ev
                                        , cc_fun    = tc
                                        , cc_tyargs = xis
                                        , cc_fsk    = fsk }
                   ; emitFlatWork ct

                   ; traceTcS "flatten/flat-cache miss" $ (ppr fam_ty $$ ppr fsk $$ ppr ev)
                   ; return (fsk_ty, maybeTcSubCo (fe_eq_rel fmode)
                                                  (mkTcSymCo co)
                                     `mkTcTransCo` ret_co) }
        }

  where
    try_to_reduce :: TyCon   -- F, family tycon
                  -> [Type]  -- args, not necessarily flattened
                  -> Bool    -- add to the flat cache?
                  -> (   TcCoercion     -- :: xi ~ F args
                      -> TcCoercion )   -- what to return from outer function
                  -> TcS (Xi, TcCoercion)  -- continuation upon failure
                  -> TcS (Xi, TcCoercion)
    try_to_reduce tc tys cache update_co k
      = do { mb_match <- matchFam tc tys
           ; case mb_match of
               Just (norm_co, norm_ty)
                 -> do { traceTcS "Eager T.F. reduction success" $
                         vcat [ppr tc, ppr tys, ppr norm_ty, ppr cache]
                       ; (xi, final_co) <- flatten_one fmode norm_ty
                       ; let co = norm_co `mkTcTransCo` mkTcSymCo final_co
                       ; when cache $
                         extendFlatCache tc tys (co, xi, fe_flavour fmode)
                       ; return (xi, update_co $ mkTcSymCo co) }
               Nothing -> k }

{- Note [Reduce type family applications eagerly]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we come across a type-family application like (Append (Cons x Nil) t),
then, rather than flattening to a skolem etc, we may as well just reduce
it on the spot to (Cons x t).  This saves a lot of intermediate steps.
Examples that are helped are tests T9872, and T5321Fun.

Performance testing indicates that it's best to try this *twice*, once
before flattening arguments and once after flattening arguments.
Adding the extra reduction attempt before flattening arguments cut
the allocation amounts for the T9872{a,b,c} tests by half.

An example of where the early reduction appears helpful:

  type family Last x where
    Last '[x]     = x
    Last (h ': t) = Last t

  workitem: (x ~ Last '[1,2,3,4,5,6])

Flattening the argument never gets us anywhere, but trying to flatten
it at every step is quadratic in the length of the list. Reducing more
eagerly makes simplifying the right-hand type linear in its length.

Testing also indicated that the early reduction should *not* use the
flat-cache, but that the later reduction *should*. (Although the
effect was not large.)  Hence the Bool argument to try_to_reduce.  To
me (SLPJ) this seems odd; I get that eager reduction usually succeeds;
and if don't use the cache for eager reduction, we will miss most of
the opportunities for using it at all.  More exploration would be good
here.

At the end, once we've got a flat rhs, we extend the flatten-cache to record
the result. Doing so can save lots of work when the same redex shows up more
than once. Note that we record the link from the redex all the way to its
*final* value, not just the single step reduction. Interestingly, using the
flat-cache for the first reduction resulted in an increase in allocations
of about 3% for the four T9872x tests. However, using the flat-cache in
the later reduction is a similar gain. I (Richard E) don't currently (Dec '14)
have any knowledge as to *why* these facts are true.

************************************************************************
*                                                                      *
             Flattening a type variable
*                                                                      *
************************************************************************


Note [The inert equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Definition [Can-rewrite relation]
A "can-rewrite" relation between flavours, written f1 >= f2, is a
binary relation with the following properties

  R1.  >= is transitive
  R2.  If f1 >= f, and f2 >= f,
       then either f1 >= f2 or f2 >= f1

Lemma.  If f1 >= f then f1 >= f1
Proof.  By property (R2), with f1=f2

Definition [Generalised substitution]
A "generalised substitution" S is a set of triples (a -f-> t), where
  a is a type variable
  t is a type
  f is a flavour
such that
  (WF1) if (a -f1-> t1) in S
           (a -f2-> t2) in S
        then neither (f1 >= f2) nor (f2 >= f1) hold
  (WF2) if (a -f-> t) is in S, then t /= a

Definition [Applying a generalised substitution]
If S is a generalised substitution
   S(f,a) = t,  if (a -fs-> t) in S, and fs >= f
          = a,  otherwise
Application extends naturally to types S(f,t), modulo roles.
See Note [Flavours with roles].

Theorem: S(f,a) is well defined as a function.
Proof: Suppose (a -f1-> t1) and (a -f2-> t2) are both in S,
               and  f1 >= f and f2 >= f
       Then by (R2) f1 >= f2 or f2 >= f1, which contradicts (WF)

Notation: repeated application.
  S^0(f,t)     = t
  S^(n+1)(f,t) = S(f, S^n(t))

Definition: inert generalised substitution
A generalised substitution S is "inert" iff

  (IG1) there is an n such that
        for every f,t, S^n(f,t) = S^(n+1)(f,t)

  (IG2) if (b -f-> t) in S, and f >= f, then S(f,t) = t
        that is, each individual binding is "self-stable"

----------------------------------------------------------------
Our main invariant:
   the inert CTyEqCans should be an inert generalised substitution
----------------------------------------------------------------

Note that inertness is not the same as idempotence.  To apply S to a
type, you may have to apply it recursive.  But inertness does
guarantee that this recursive use will terminate.

---------- The main theorem --------------
   Suppose we have a "work item"
       a -fw-> t
   and an inert generalised substitution S,
   such that
      (T1) S(fw,a) = a     -- LHS of work-item is a fixpoint of S(fw,_)
      (T2) S(fw,t) = t     -- RHS of work-item is a fixpoint of S(fw,_)
      (T3) a not in t      -- No occurs check in the work item

      (K1) if (a -fs-> s) is in S then not (fw >= fs)
      (K2) if (b -fs-> s) is in S, where b /= a, then
              (K2a) not (fs >= fs)
           or (K2b) not (fw >= fs)
           or (K2c) a not in s
      (K3) If (b -fs-> s) is in S with (fw >= fs), then
        (K3a) If the role of fs is nominal: s /= a
        (K3b) If the role of fs is representational: EITHER
                a not in s, OR
                the path from the top of s to a includes at least one non-newtype

   then the extended substition T = S+(a -fw-> t)
   is an inert generalised substitution.

The idea is that
* (T1-2) are guaranteed by exhaustively rewriting the work-item
  with S(fw,_).

* T3 is guaranteed by a simple occurs-check on the work item.

* (K1-3) are the "kick-out" criteria.  (As stated, they are really the
  "keep" criteria.) If the current inert S contains a triple that does
  not satisfy (K1-3), then we remove it from S by "kicking it out",
  and re-processing it.

* Note that kicking out is a Bad Thing, because it means we have to
  re-process a constraint.  The less we kick out, the better.
  TODO: Make sure that kicking out really *is* a Bad Thing. We've assumed
  this but haven't done the empirical study to check.

* Assume we have  G>=G, G>=W, D>=D, and that's all.  Then, when performing
  a unification we add a new given  a -G-> ty.  But doing so does NOT require
  us to kick out an inert wanted that mentions a, because of (K2a).  This
  is a common case, hence good not to kick out.

* Lemma (L1): The conditions of the Main Theorem imply that there is no
              (a fs-> t) in S, s.t.  (fs >= fw).
  Proof. Suppose the contrary (fs >= fw).  Then because of (T1),
  S(fw,a)=a.  But since fs>=fw, S(fw,a) = s, hence s=a.  But now we
  have (a -fs-> a) in S, which contradicts (WF2).

* The extended substitution satisfies (WF1) and (WF2)
  - (K1) plus (L1) guarantee that the extended substiution satisfies (WF1).
  - (T3) guarantees (WF2).

* (K2) is about inertness.  Intuitively, any infinite chain T^0(f,t),
  T^1(f,t), T^2(f,T).... must pass through the new work item infnitely
  often, since the substution without the work item is inert; and must
  pass through at least one of the triples in S infnitely often.

  - (K2a): if not(fs>=fs) then there is no f that fs can rewrite (fs>=f),
    and hence this triple never plays a role in application S(f,a).
    It is always safe to extend S with such a triple.

    (NB: we could strengten K1) in this way too, but see K3.

  - (K2b): If this holds, we can't pass through this triple infinitely
    often, because if we did then fs>=f, fw>=f, hence fs>=fw,
    contradicting (L1), or fw>=fs contradicting K2b.

  - (K2c): if a not in s, we hae no further opportunity to apply the
    work item.

  NB: this reasoning isn't water tight.

Key lemma to make it watertight.
  Under the conditions of the Main Theorem,
  forall f st fw >= f, a is not in S^k(f,t), for any k

Also, consider roles more carefully. See Note [Flavours with roles].

Completeness
~~~~~~~~~~~~~
K3: completeness.  (K3) is not necessary for the extended substitution
to be inert.  In fact K1 could be made stronger by saying
   ... then (not (fw >= fs) or not (fs >= fs))
But it's not enough for S to be inert; we also want completeness.
That is, we want to be able to solve all soluble wanted equalities.
Suppose we have

   work-item   b -G-> a
   inert-item  a -W-> b

Assuming (G >= W) but not (W >= W), this fulfills all the conditions,
so we could extend the inerts, thus:

   inert-items   b -G-> a
                 a -W-> b

But if we kicked-out the inert item, we'd get

   work-item     a -W-> b
   inert-item    b -G-> a

Then rewrite the work-item gives us (a -W-> a), which is soluble via Refl.
So we add one more clause to the kick-out criteria

Another way to understand (K3) is that we treat an inert item
        a -f-> b
in the same way as
        b -f-> a
So if we kick out one, we should kick out the other.  The orientation
is somewhat accidental.

When considering roles, we also need the second clause (K3b). Consider

  inert-item   a -W/R-> b c
  work-item    c -G/N-> a

The work-item doesn't get rewritten by the inert, because (>=) doesn't hold.
We've satisfied conditions (T1)-(T3) and (K1) and (K2). If all we had were
condition (K3a), then we would keep the inert around and add the work item.
But then, consider if we hit the following:

  work-item2   b -G/N-> Id

where

  newtype Id x = Id x

For similar reasons, if we only had (K3a), we wouldn't kick the
representational inert out. And then, we'd miss solving the inert, which
now reduced to reflexivity. The solution here is to kick out representational
inerts whenever the tyvar of a work item is "exposed", where exposed means
not under some proper data-type constructor, like [] or Maybe. See
isTyVarExposed in TcType. This is encoded in (K3b).

Note [Flavours with roles]
~~~~~~~~~~~~~~~~~~~~~~~~~~
The system described in Note [The inert equalities] discusses an abstract
set of flavours. In GHC, flavours have two components: the flavour proper,
taken from {Wanted, Derived, Given}; and the equality relation (often called
role), taken from {NomEq, ReprEq}. When substituting w.r.t. the inert set,
as described in Note [The inert equalities], we must be careful to respect
roles. For example, if we have

  inert set: a -G/R-> Int
             b -G/R-> Bool

  type role T nominal representational

and we wish to compute S(W/R, T a b), the correct answer is T a Bool, NOT
T Int Bool. The reason is that T's first parameter has a nominal role, and
thus rewriting a to Int in T a b is wrong. Indeed, this non-congruence of
subsitution means that the proof in Note [The inert equalities] may need
to be revisited, but we don't think that the end conclusion is wrong.
-}

flattenTyVar :: FlattenEnv -> TcTyVar -> TcS (Xi, TcCoercion)
-- "Flattening" a type variable means to apply the substitution to it
-- The substitution is actually the union of
--     * the unifications that have taken place (either before the
--       solver started, or in TcInteract.solveByUnification)
--     * the CTyEqCans held in the inert set
--
-- Postcondition: co : xi ~ tv
flattenTyVar fmode tv
  = do { mb_yes <- flattenTyVarOuter fmode tv
       ; case mb_yes of
           Left tv' -> -- Done
                       do { traceTcS "flattenTyVar1" (ppr tv $$ ppr (tyVarKind tv'))
                          ; return (ty', mkTcReflCo (feRole fmode) ty') }
                    where
                       ty' = mkTyVarTy tv'

           Right (ty1, co1)  -- Recurse
                    -> do { (ty2, co2) <- flatten_one fmode ty1
                          ; traceTcS "flattenTyVar3" (ppr tv $$ ppr ty2)
                          ; return (ty2, co2 `mkTcTransCo` co1) }
       }

flattenTyVarOuter :: FlattenEnv -> TcTyVar
                  -> TcS (Either TyVar (TcType, TcCoercion))
-- Look up the tyvar in
--   a) the internal MetaTyVar box
--   b) the tyvar binds
--   c) the inerts
-- Return (Left tv')      if it is not found, tv' has a properly zonked kind
--        (Right (ty, co) if found, with co :: ty ~ tv;

flattenTyVarOuter fmode tv
  | not (isTcTyVar tv)             -- Happens when flatten under a (forall a. ty)
  = Left `liftM` flattenTyVarFinal fmode tv
          -- So ty contains refernces to the non-TcTyVar a

  | otherwise
  = do { mb_ty <- isFilledMetaTyVar_maybe tv
       ; case mb_ty of {
           Just ty -> do { traceTcS "Following filled tyvar" (ppr tv <+> equals <+> ppr ty)
                         ; return (Right (ty, mkTcReflCo (feRole fmode) ty)) } ;
           Nothing ->

    -- Try in the inert equalities
    -- See Definition [Applying a generalised substitution]
    do { ieqs <- getInertEqs
       ; case lookupVarEnv ieqs tv of
           Just (ct:_)   -- If the first doesn't work,
                         -- the subsequent ones won't either
             | CTyEqCan { cc_ev = ctev, cc_tyvar = tv, cc_rhs = rhs_ty } <- ct
             , ctEvFlavourRole ctev `eqCanRewriteFR` feFlavourRole fmode
             ->  do { traceTcS "Following inert tyvar" (ppr tv <+> equals <+> ppr rhs_ty $$ ppr ctev)
                    ; let rewrite_co1 = mkTcSymCo (ctEvCoercion ctev)
                          rewrite_co = case (ctEvEqRel ctev, fe_eq_rel fmode) of
                            (ReprEq, _rel)  -> ASSERT( _rel == ReprEq )
                                    -- if this ASSERT fails, then
                                    -- eqCanRewriteFR answered incorrectly
                                               rewrite_co1
                            (NomEq, NomEq)  -> rewrite_co1
                            (NomEq, ReprEq) -> mkTcSubCo rewrite_co1

                    ; return (Right (rhs_ty, rewrite_co)) }
                    -- NB: ct is Derived then fmode must be also, hence
                    -- we are not going to touch the returned coercion
                    -- so ctEvCoercion is fine.

           _other -> Left `liftM` flattenTyVarFinal fmode tv
    } } }

flattenTyVarFinal :: FlattenEnv -> TcTyVar -> TcS TyVar
flattenTyVarFinal fmode tv
  = -- Done, but make sure the kind is zonked
    do { let kind       = tyVarKind tv
             kind_fmode = setFEMode fmode FM_SubstOnly
       ; (new_knd, _kind_co) <- flatten_one kind_fmode kind
       ; return (setVarType tv new_knd) }

{-
Note [An alternative story for the inert substitution]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(This entire note is just background, left here in case we ever want
 to return the the previousl state of affairs)

We used (GHC 7.8) to have this story for the inert substitution inert_eqs

 * 'a' is not in fvs(ty)
 * They are *inert* in the weaker sense that there is no infinite chain of
   (i1 `eqCanRewrite` i2), (i2 `eqCanRewrite` i3), etc

This means that flattening must be recursive, but it does allow
  [G] a ~ [b]
  [G] b ~ Maybe c

This avoids "saturating" the Givens, which can save a modest amount of work.
It is easy to implement, in TcInteract.kick_out, by only kicking out an inert
only if (a) the work item can rewrite the inert AND
        (b) the inert cannot rewrite the work item

This is signifcantly harder to think about. It can save a LOT of work
in occurs-check cases, but we don't care about them much.  Trac #5837
is an example; all the constraints here are Givens

             [G] a ~ TF (a,Int)
    -->
    work     TF (a,Int) ~ fsk
    inert    fsk ~ a

    --->
    work     fsk ~ (TF a, TF Int)
    inert    fsk ~ a

    --->
    work     a ~ (TF a, TF Int)
    inert    fsk ~ a

    ---> (attempting to flatten (TF a) so that it does not mention a
    work     TF a ~ fsk2
    inert    a ~ (fsk2, TF Int)
    inert    fsk ~ (fsk2, TF Int)

    ---> (substitute for a)
    work     TF (fsk2, TF Int) ~ fsk2
    inert    a ~ (fsk2, TF Int)
    inert    fsk ~ (fsk2, TF Int)

    ---> (top-level reduction, re-orient)
    work     fsk2 ~ (TF fsk2, TF Int)
    inert    a ~ (fsk2, TF Int)
    inert    fsk ~ (fsk2, TF Int)

    ---> (attempt to flatten (TF fsk2) to get rid of fsk2
    work     TF fsk2 ~ fsk3
    work     fsk2 ~ (fsk3, TF Int)
    inert    a   ~ (fsk2, TF Int)
    inert    fsk ~ (fsk2, TF Int)

    --->
    work     TF fsk2 ~ fsk3
    inert    fsk2 ~ (fsk3, TF Int)
    inert    a   ~ ((fsk3, TF Int), TF Int)
    inert    fsk ~ ((fsk3, TF Int), TF Int)

Because the incoming given rewrites all the inert givens, we get more and
more duplication in the inert set.  But this really only happens in pathalogical
casee, so we don't care.
-}

eqCanRewrite :: CtEvidence -> CtEvidence -> Bool
eqCanRewrite ev1 ev2 = ctEvFlavourRole ev1 `eqCanRewriteFR` ctEvFlavourRole ev2

-- | Whether or not one 'Ct' can rewrite another is determined by its
-- flavour and its equality relation
type CtFlavourRole = (CtFlavour, EqRel)

-- | Extract the flavour and role from a 'CtEvidence'
ctEvFlavourRole :: CtEvidence -> CtFlavourRole
ctEvFlavourRole ev = (ctEvFlavour ev, ctEvEqRel ev)

-- | Extract the flavour and role from a 'Ct'
ctFlavourRole :: Ct -> CtFlavourRole
ctFlavourRole = ctEvFlavourRole . cc_ev

-- | Extract the flavour and role from a 'FlattenEnv'
feFlavourRole :: FlattenEnv -> CtFlavourRole
feFlavourRole (FE { fe_flavour = flav, fe_eq_rel = eq_rel })
  = (flav, eq_rel)

eqCanRewriteFR :: CtFlavourRole -> CtFlavourRole -> Bool
-- Very important function!
-- See Note [eqCanRewrite]
eqCanRewriteFR (Given,   NomEq)  (_,       _)      = True
eqCanRewriteFR (Given,   ReprEq) (_,       ReprEq) = True
eqCanRewriteFR _                 _                 = False

canRewriteOrSame :: CtEvidence -> CtEvidence -> Bool
-- See Note [canRewriteOrSame]
canRewriteOrSame ev1 ev2 = ev1 `eqCanRewrite` ev2 ||
                           ctEvFlavourRole ev1 == ctEvFlavourRole ev2

canRewriteOrSameFR :: CtFlavourRole -> CtFlavourRole -> Bool
canRewriteOrSameFR fr1 fr2 = fr1 `eqCanRewriteFR` fr2 || fr1 == fr2

{-
Note [eqCanRewrite]
~~~~~~~~~~~~~~~~~~~
(eqCanRewrite ct1 ct2) holds if the constraint ct1 (a CTyEqCan of form
tv ~ ty) can be used to rewrite ct2.  It must satisfy the properties of
a can-rewrite relation, see Definition [Can-rewrite relation]

At the moment we don't allow Wanteds to rewrite Wanteds, because that can give
rise to very confusing type error messages.  A good example is Trac #8450.
Here's another
   f :: a -> Bool
   f x = ( [x,'c'], [x,True] ) `seq` True
Here we get
  [W] a ~ Char
  [W] a ~ Bool
but we do not want to complain about Bool ~ Char!

Accordingly, we also don't let Deriveds rewrite Deriveds.

With the solver handling Coercible constraints like equality constraints,
the rewrite conditions must take role into account, never allowing
a representational equality to rewrite a nominal one.

Note [canRewriteOrSame]
~~~~~~~~~~~~~~~~~~~~~~~
canRewriteOrSame is similar but
 * returns True for Wanted/Wanted.
 * works for all kinds of constraints, not just CTyEqCans
See the call sites for explanations.

************************************************************************
*                                                                      *
             Unflattening
*                                                                      *
************************************************************************

An unflattening example:
    [W] F a ~ alpha
flattens to
    [W] F a ~ fmv   (CFunEqCan)
    [W] fmv ~ alpha (CTyEqCan)
We must solve both!
-}

unflatten :: Cts -> Cts -> TcS Cts
unflatten tv_eqs funeqs
 = do { dflags   <- getDynFlags
      ; tclvl    <- getTcLevel

      ; traceTcS "Unflattening" $ braces $
        vcat [ ptext (sLit "Funeqs =") <+> pprCts funeqs
             , ptext (sLit "Tv eqs =") <+> pprCts tv_eqs ]

         -- Step 1: unflatten the CFunEqCans, except if that causes an occurs check
         -- See Note [Unflatten using funeqs first]
      ; funeqs <- foldrBagM (unflatten_funeq dflags) emptyCts funeqs
      ; traceTcS "Unflattening 1" $ braces (pprCts funeqs)

          -- Step 2: unify the irreds, if possible
      ; tv_eqs  <- foldrBagM (unflatten_eq dflags tclvl) emptyCts tv_eqs
      ; traceTcS "Unflattening 2" $ braces (pprCts tv_eqs)

          -- Step 3: fill any remaining fmvs with fresh unification variables
      ; funeqs <- mapBagM finalise_funeq funeqs
      ; traceTcS "Unflattening 3" $ braces (pprCts funeqs)

          -- Step 4: remove any irreds that look like ty ~ ty
      ; tv_eqs <- foldrBagM finalise_eq emptyCts tv_eqs

      ; let all_flat = tv_eqs `andCts` funeqs
      ; traceTcS "Unflattening done" $ braces (pprCts all_flat)

      ; return all_flat }
  where
    ----------------
    unflatten_funeq :: DynFlags -> Ct -> Cts -> TcS Cts
    unflatten_funeq dflags ct@(CFunEqCan { cc_fun = tc, cc_tyargs = xis
                                         , cc_fsk = fmv, cc_ev = ev }) rest
      = do {   -- fmv should be a flatten meta-tv; we now fix its final
               -- value, and then zonking will eliminate it
             filled <- tryFill dflags fmv (mkTyConApp tc xis) ev
           ; return (if filled then rest else ct `consCts` rest) }

    unflatten_funeq _ other_ct _
      = pprPanic "unflatten_funeq" (ppr other_ct)

    ----------------
    finalise_funeq :: Ct -> TcS Ct
    finalise_funeq (CFunEqCan { cc_fsk = fmv, cc_ev = ev })
      = do { demoteUnfilledFmv fmv
           ; return (mkNonCanonical ev) }
    finalise_funeq ct = pprPanic "finalise_funeq" (ppr ct)

    ----------------
    unflatten_eq ::  DynFlags -> TcLevel -> Ct -> Cts -> TcS Cts
    unflatten_eq dflags tclvl ct@(CTyEqCan { cc_ev = ev, cc_tyvar = tv, cc_rhs = rhs }) rest
      | isFmvTyVar tv
      = do { lhs_elim <- tryFill dflags tv rhs ev
           ; if lhs_elim then return rest else
        do { rhs_elim <- try_fill dflags tclvl ev rhs (mkTyVarTy tv)
           ; if rhs_elim then return rest else
             return (ct `consCts` rest) } }

      | otherwise
      = return (ct `consCts` rest)

    unflatten_eq _ _ ct _ = pprPanic "unflatten_irred" (ppr ct)

    ----------------
    finalise_eq :: Ct -> Cts -> TcS Cts
    finalise_eq (CTyEqCan { cc_ev = ev, cc_tyvar = tv
                          , cc_rhs = rhs, cc_eq_rel = eq_rel }) rest
      | isFmvTyVar tv
      = do { ty1 <- zonkTcTyVar tv
           ; ty2 <- zonkTcType rhs
           ; let is_refl = ty1 `tcEqType` ty2
           ; if is_refl then do { when (isWanted ev) $
                                  setEvBind (ctEvId ev)
                                            (EvCoercion $
                                             mkTcReflCo (eqRelRole eq_rel) rhs)
                                ; return rest }
                        else return (mkNonCanonical ev `consCts` rest) }
      | otherwise
      = return (mkNonCanonical ev `consCts` rest)

    finalise_eq ct _ = pprPanic "finalise_irred" (ppr ct)

    ----------------
    try_fill dflags tclvl ev ty1 ty2
      | Just tv1 <- tcGetTyVar_maybe ty1
      , isTouchableOrFmv tclvl tv1
      , typeKind ty1 `isSubKind` tyVarKind tv1
      = tryFill dflags tv1 ty2 ev
      | otherwise
      = return False

tryFill :: DynFlags -> TcTyVar -> TcType -> CtEvidence -> TcS Bool
-- (tryFill tv rhs ev) sees if 'tv' is an un-filled MetaTv
-- If so, and if tv does not appear in 'rhs', set tv := rhs
-- bind the evidence (which should be a CtWanted) to Refl<rhs>
-- and return True.  Otherwise return False
tryFill dflags tv rhs ev
  = ASSERT2( not (isGiven ev), ppr ev )
    do { is_filled <- isFilledMetaTyVar tv
       ; if is_filled then return False else
    do { rhs' <- zonkTcType rhs
       ; case occurCheckExpand dflags tv rhs' of
           OC_OK rhs''    -- Normal case: fill the tyvar
             -> do { when (isWanted ev) $
                     setEvBind (ctEvId ev)
                               (EvCoercion (mkTcReflCo (ctEvRole ev) rhs''))
                   ; setWantedTyBind tv rhs''
                   ; return True }

           _ ->  -- Occurs check
                 return False } }

{-
Note [Unflatten using funeqs first]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    [W] G a ~ Int
    [W] F (G a) ~ G a

do not want to end up with
    [W} F Int ~ Int
because that might actually hold!  Better to end up with the two above
unsolved constraints.  The flat form will be

    G a ~ fmv1     (CFunEqCan)
    F fmv1 ~ fmv2  (CFunEqCan)
    fmv1 ~ Int     (CTyEqCan)
    fmv1 ~ fmv2    (CTyEqCan)

Flatten using the fun-eqs first.
-}

-- | Change the 'EqRel' in a 'FlattenEnv'. Avoids allocating a
-- new 'FlattenEnv' where possible.
setFEEqRel :: FlattenEnv -> EqRel -> FlattenEnv
setFEEqRel fmode@(FE { fe_eq_rel = old_eq_rel }) new_eq_rel
  | old_eq_rel == new_eq_rel = fmode
  | otherwise                = fmode { fe_eq_rel = new_eq_rel }

-- | Change the 'FlattenMode' in a 'FlattenEnv'. Avoids allocating
-- a new 'FlattenEnv' where possible.
setFEMode :: FlattenEnv -> FlattenMode -> FlattenEnv
setFEMode fmode@(FE { fe_mode = old_mode }) new_mode
  | old_mode `eq` new_mode = fmode
  | otherwise            = fmode { fe_mode = new_mode }
  where
    FM_FlattenAll   `eq` FM_FlattenAll   = True
    FM_SubstOnly    `eq` FM_SubstOnly    = True
    FM_Avoid tv1 b1 `eq` FM_Avoid tv2 b2 = tv1 == tv2 && b1 == b2
    _               `eq` _               = False