summaryrefslogtreecommitdiff
path: root/compiler/typecheck/TcInteract.hs
blob: 5d00e4c773633c60a8cdfaf25f8f0267ee7f0bc0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
{-# LANGUAGE CPP #-}

module TcInteract (
     solveSimpleGivens,   -- Solves [Ct]
     solveSimpleWanteds,  -- Solves Cts

     solveCallStack,      -- for use in TcSimplify
  ) where

#include "HsVersions.h"

import BasicTypes ( SwapFlag(..), isSwapped,
                    infinity, IntWithInf, intGtLimit )
import HsTypes ( HsIPName(..) )
import TcCanonical
import TcFlatten
import TcUnify( canSolveByUnification )
import VarSet
import Type
import InstEnv( DFunInstType, lookupInstEnv, instanceDFunId )
import CoAxiom( sfInteractTop, sfInteractInert )

import Var
import TcType
import Name
import PrelNames ( knownNatClassName, knownSymbolClassName,
                   typeableClassName, coercibleTyConKey,
                   heqTyConKey, ipClassKey )
import TysWiredIn ( typeNatKind, typeSymbolKind, heqDataCon,
                    coercibleDataCon )
import TysPrim    ( eqPrimTyCon, eqReprPrimTyCon )
import Id( idType )
import CoAxiom ( Eqn, CoAxiom(..), CoAxBranch(..), fromBranches )
import Class
import TyCon
import DataCon( dataConWrapId )
import FunDeps
import FamInst
import FamInstEnv
import Unify ( tcUnifyTyWithTFs )

import TcEvidence
import Outputable

import TcRnTypes
import TcSMonad
import Bag
import MonadUtils ( concatMapM )

import Data.List( partition, foldl', deleteFirstsBy )
import SrcLoc
import VarEnv

import Control.Monad
import Maybes( isJust )
import Pair (Pair(..))
import Unique( hasKey )
import DynFlags
import Util
import qualified GHC.LanguageExtensions as LangExt

{-
**********************************************************************
*                                                                    *
*                      Main Interaction Solver                       *
*                                                                    *
**********************************************************************

Note [Basic Simplifier Plan]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1. Pick an element from the WorkList if there exists one with depth
   less than our context-stack depth.

2. Run it down the 'stage' pipeline. Stages are:
      - canonicalization
      - inert reactions
      - spontaneous reactions
      - top-level intreactions
   Each stage returns a StopOrContinue and may have sideffected
   the inerts or worklist.

   The threading of the stages is as follows:
      - If (Stop) is returned by a stage then we start again from Step 1.
      - If (ContinueWith ct) is returned by a stage, we feed 'ct' on to
        the next stage in the pipeline.
4. If the element has survived (i.e. ContinueWith x) the last stage
   then we add him in the inerts and jump back to Step 1.

If in Step 1 no such element exists, we have exceeded our context-stack
depth and will simply fail.

Note [Unflatten after solving the simple wanteds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We unflatten after solving the wc_simples of an implication, and before attempting
to float. This means that

 * The fsk/fmv flatten-skolems only survive during solveSimples.  We don't
   need to worry about them across successive passes over the constraint tree.
   (E.g. we don't need the old ic_fsk field of an implication.

 * When floating an equality outwards, we don't need to worry about floating its
   associated flattening constraints.

 * Another tricky case becomes easy: Trac #4935
       type instance F True a b = a
       type instance F False a b = b

       [w] F c a b ~ gamma
       (c ~ True) => a ~ gamma
       (c ~ False) => b ~ gamma

   Obviously this is soluble with gamma := F c a b, and unflattening
   will do exactly that after solving the simple constraints and before
   attempting the implications.  Before, when we were not unflattening,
   we had to push Wanted funeqs in as new givens.  Yuk!

   Another example that becomes easy: indexed_types/should_fail/T7786
      [W] BuriedUnder sub k Empty ~ fsk
      [W] Intersect fsk inv ~ s
      [w] xxx[1] ~ s
      [W] forall[2] . (xxx[1] ~ Empty)
                   => Intersect (BuriedUnder sub k Empty) inv ~ Empty

Note [Running plugins on unflattened wanteds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is an annoying mismatch between solveSimpleGivens and
solveSimpleWanteds, because the latter needs to fiddle with the inert
set, unflatten and zonk the wanteds.  It passes the zonked wanteds
to runTcPluginsWanteds, which produces a replacement set of wanteds,
some additional insolubles and a flag indicating whether to go round
the loop again.  If so, prepareInertsForImplications is used to remove
the previous wanteds (which will still be in the inert set).  Note
that prepareInertsForImplications will discard the insolubles, so we
must keep track of them separately.
-}

solveSimpleGivens :: [Ct] -> TcS ()
solveSimpleGivens givens
  | null givens  -- Shortcut for common case
  = return ()
  | otherwise
  = do { traceTcS "solveSimpleGivens {" (ppr givens)
       ; go givens
       ; traceTcS "End solveSimpleGivens }" empty }
  where
    go givens = do { solveSimples (listToBag givens)
                   ; new_givens <- runTcPluginsGiven
                   ; when (notNull new_givens) $
                     go new_givens }

solveSimpleWanteds :: Cts -> TcS WantedConstraints
-- NB: 'simples' may contain /derived/ equalities, floated
--     out from a nested implication. So don't discard deriveds!
solveSimpleWanteds simples
  = do { traceTcS "solveSimpleWanteds {" (ppr simples)
       ; dflags <- getDynFlags
       ; (n,wc) <- go 1 (solverIterations dflags) (emptyWC { wc_simple = simples })
       ; traceTcS "solveSimpleWanteds end }" $
             vcat [ text "iterations =" <+> ppr n
                  , text "residual =" <+> ppr wc ]
       ; return wc }
  where
    go :: Int -> IntWithInf -> WantedConstraints -> TcS (Int, WantedConstraints)
    go n limit wc
      | n `intGtLimit` limit
      = failTcS (hang (text "solveSimpleWanteds: too many iterations"
                       <+> parens (text "limit =" <+> ppr limit))
                    2 (vcat [ text "Set limit with -fconstraint-solver-iterations=n; n=0 for no limit"
                            , text "Simples =" <+> ppr simples
                            , text "WC ="      <+> ppr wc ]))

     | isEmptyBag (wc_simple wc)
     = return (n,wc)

     | otherwise
     = do { -- Solve
            (unif_count, wc1) <- solve_simple_wanteds wc

            -- Run plugins
          ; (rerun_plugin, wc2) <- runTcPluginsWanted wc1
             -- See Note [Running plugins on unflattened wanteds]

          ; if unif_count == 0 && not rerun_plugin
            then return (n, wc2)             -- Done
            else do { traceTcS "solveSimple going round again:" $
                      ppr unif_count $$ ppr rerun_plugin
                    ; go (n+1) limit wc2 } }      -- Loop


solve_simple_wanteds :: WantedConstraints -> TcS (Int, WantedConstraints)
-- Try solving these constraints
-- Affects the unification state (of course) but not the inert set
solve_simple_wanteds (WC { wc_simple = simples1, wc_insol = insols1, wc_impl = implics1 })
  = nestTcS $
    do { solveSimples simples1
       ; (implics2, tv_eqs, fun_eqs, insols2, others) <- getUnsolvedInerts
       ; (unif_count, unflattened_eqs) <- reportUnifications $
                                          unflatten tv_eqs fun_eqs
            -- See Note [Unflatten after solving the simple wanteds]
       ; return ( unif_count
                , WC { wc_simple = others `andCts` unflattened_eqs
                     , wc_insol  = insols1 `andCts` insols2
                     , wc_impl   = implics1 `unionBags` implics2 }) }

{- Note [The solveSimpleWanteds loop]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Solving a bunch of simple constraints is done in a loop,
(the 'go' loop of 'solveSimpleWanteds'):
  1. Try to solve them; unflattening may lead to improvement that
     was not exploitable during solving
  2. Try the plugin
  3. If step 1 did improvement during unflattening; or if the plugin
     wants to run again, go back to step 1

Non-obviously, improvement can also take place during
the unflattening that takes place in step (1). See TcFlatten,
See Note [Unflattening can force the solver to iterate]
-}

-- The main solver loop implements Note [Basic Simplifier Plan]
---------------------------------------------------------------
solveSimples :: Cts -> TcS ()
-- Returns the final InertSet in TcS
-- Has no effect on work-list or residual-implications
-- The constraints are initially examined in left-to-right order

solveSimples cts
  = {-# SCC "solveSimples" #-}
    do { updWorkListTcS (\wl -> foldrBag extendWorkListCt wl cts)
       ; solve_loop }
  where
    solve_loop
      = {-# SCC "solve_loop" #-}
        do { sel <- selectNextWorkItem
           ; case sel of
              Nothing -> return ()
              Just ct -> do { runSolverPipeline thePipeline ct
                            ; solve_loop } }

-- | Extract the (inert) givens and invoke the plugins on them.
-- Remove solved givens from the inert set and emit insolubles, but
-- return new work produced so that 'solveSimpleGivens' can feed it back
-- into the main solver.
runTcPluginsGiven :: TcS [Ct]
runTcPluginsGiven
  = do { plugins <- getTcPlugins
       ; if null plugins then return [] else
    do { givens <- getInertGivens
       ; if null givens then return [] else
    do { p <- runTcPlugins plugins (givens,[],[])
       ; let (solved_givens, _, _) = pluginSolvedCts p
       ; updInertCans (removeInertCts solved_givens)
       ; mapM_ emitInsoluble (pluginBadCts p)
       ; return (pluginNewCts p) } } }

-- | Given a bag of (flattened, zonked) wanteds, invoke the plugins on
-- them and produce an updated bag of wanteds (possibly with some new
-- work) and a bag of insolubles.  The boolean indicates whether
-- 'solveSimpleWanteds' should feed the updated wanteds back into the
-- main solver.
runTcPluginsWanted :: WantedConstraints -> TcS (Bool, WantedConstraints)
runTcPluginsWanted wc@(WC { wc_simple = simples1, wc_insol = insols1, wc_impl = implics1 })
  | isEmptyBag simples1
  = return (False, wc)
  | otherwise
  = do { plugins <- getTcPlugins
       ; if null plugins then return (False, wc) else

    do { given <- getInertGivens
       ; simples1 <- zonkSimples simples1    -- Plugin requires zonked inputs
       ; let (wanted, derived) = partition isWantedCt (bagToList simples1)
       ; p <- runTcPlugins plugins (given, derived, wanted)
       ; let (_, _,                solved_wanted)   = pluginSolvedCts p
             (_, unsolved_derived, unsolved_wanted) = pluginInputCts p
             new_wanted                             = pluginNewCts p

-- SLPJ: I'm deeply suspicious of this
--       ; updInertCans (removeInertCts $ solved_givens ++ solved_deriveds)

       ; mapM_ setEv solved_wanted
       ; return ( notNull (pluginNewCts p)
                , WC { wc_simple = listToBag new_wanted `andCts` listToBag unsolved_wanted
                                                        `andCts` listToBag unsolved_derived
                     , wc_insol  = listToBag (pluginBadCts p) `andCts` insols1
                     , wc_impl   = implics1 } ) } }
  where
    setEv :: (EvTerm,Ct) -> TcS ()
    setEv (ev,ct) = case ctEvidence ct of
      CtWanted { ctev_dest = dest } -> setWantedEvTerm dest ev
      _ -> panic "runTcPluginsWanted.setEv: attempt to solve non-wanted!"

-- | A triple of (given, derived, wanted) constraints to pass to plugins
type SplitCts  = ([Ct], [Ct], [Ct])

-- | A solved triple of constraints, with evidence for wanteds
type SolvedCts = ([Ct], [Ct], [(EvTerm,Ct)])

-- | Represents collections of constraints generated by typechecker
-- plugins
data TcPluginProgress = TcPluginProgress
    { pluginInputCts  :: SplitCts
      -- ^ Original inputs to the plugins with solved/bad constraints
      -- removed, but otherwise unmodified
    , pluginSolvedCts :: SolvedCts
      -- ^ Constraints solved by plugins
    , pluginBadCts    :: [Ct]
      -- ^ Constraints reported as insoluble by plugins
    , pluginNewCts    :: [Ct]
      -- ^ New constraints emitted by plugins
    }

getTcPlugins :: TcS [TcPluginSolver]
getTcPlugins = do { tcg_env <- getGblEnv; return (tcg_tc_plugins tcg_env) }

-- | Starting from a triple of (given, derived, wanted) constraints,
-- invoke each of the typechecker plugins in turn and return
--
--  * the remaining unmodified constraints,
--  * constraints that have been solved,
--  * constraints that are insoluble, and
--  * new work.
--
-- Note that new work generated by one plugin will not be seen by
-- other plugins on this pass (but the main constraint solver will be
-- re-invoked and they will see it later).  There is no check that new
-- work differs from the original constraints supplied to the plugin:
-- the plugin itself should perform this check if necessary.
runTcPlugins :: [TcPluginSolver] -> SplitCts -> TcS TcPluginProgress
runTcPlugins plugins all_cts
  = foldM do_plugin initialProgress plugins
  where
    do_plugin :: TcPluginProgress -> TcPluginSolver -> TcS TcPluginProgress
    do_plugin p solver = do
        result <- runTcPluginTcS (uncurry3 solver (pluginInputCts p))
        return $ progress p result

    progress :: TcPluginProgress -> TcPluginResult -> TcPluginProgress
    progress p (TcPluginContradiction bad_cts) =
       p { pluginInputCts = discard bad_cts (pluginInputCts p)
         , pluginBadCts   = bad_cts ++ pluginBadCts p
         }
    progress p (TcPluginOk solved_cts new_cts) =
      p { pluginInputCts  = discard (map snd solved_cts) (pluginInputCts p)
        , pluginSolvedCts = add solved_cts (pluginSolvedCts p)
        , pluginNewCts    = new_cts ++ pluginNewCts p
        }

    initialProgress = TcPluginProgress all_cts ([], [], []) [] []

    discard :: [Ct] -> SplitCts -> SplitCts
    discard cts (xs, ys, zs) =
        (xs `without` cts, ys `without` cts, zs `without` cts)

    without :: [Ct] -> [Ct] -> [Ct]
    without = deleteFirstsBy eqCt

    eqCt :: Ct -> Ct -> Bool
    eqCt c c' = ctFlavour c == ctFlavour c'
             && ctPred c `tcEqType` ctPred c'

    add :: [(EvTerm,Ct)] -> SolvedCts -> SolvedCts
    add xs scs = foldl' addOne scs xs

    addOne :: SolvedCts -> (EvTerm,Ct) -> SolvedCts
    addOne (givens, deriveds, wanteds) (ev,ct) = case ctEvidence ct of
      CtGiven  {} -> (ct:givens, deriveds, wanteds)
      CtDerived{} -> (givens, ct:deriveds, wanteds)
      CtWanted {} -> (givens, deriveds, (ev,ct):wanteds)


type WorkItem = Ct
type SimplifierStage = WorkItem -> TcS (StopOrContinue Ct)

runSolverPipeline :: [(String,SimplifierStage)] -- The pipeline
                  -> WorkItem                   -- The work item
                  -> TcS ()
-- Run this item down the pipeline, leaving behind new work and inerts
runSolverPipeline pipeline workItem
  = do { wl <- getWorkList
       ; traceTcS "Start solver pipeline {" $
                  vcat [ text "work item =" <+> ppr workItem
                       , text "rest of worklist =" <+> ppr wl ]

       ; bumpStepCountTcS    -- One step for each constraint processed
       ; final_res  <- run_pipeline pipeline (ContinueWith workItem)
       ; case final_res of
           Stop ev s       -> do { traceFireTcS ev s
                                 ; final_is <- getTcSInerts
                                 ; traceTcS "End solver pipeline (discharged) }"
                                       (text "inerts =" <+> ppr final_is)
                                 ; return () }
           ContinueWith ct -> do { traceFireTcS (ctEvidence ct) (text "Kept as inert")
                                 ; addInertCan ct
                                 ; final_is <- getTcSInerts
                                 ; traceTcS "End solver pipeline (kept as inert) }" $
                                       vcat [ text "final_item =" <+> ppr ct
                                            , pprTyVars $ tyCoVarsOfCtList ct
                                            , text "inerts     =" <+> ppr final_is] }
       }
  where run_pipeline :: [(String,SimplifierStage)] -> StopOrContinue Ct
                     -> TcS (StopOrContinue Ct)
        run_pipeline [] res        = return res
        run_pipeline _ (Stop ev s) = return (Stop ev s)
        run_pipeline ((stg_name,stg):stgs) (ContinueWith ct)
          = do { traceTcS ("runStage " ++ stg_name ++ " {")
                          (text "workitem   = " <+> ppr ct)
               ; res <- stg ct
               ; traceTcS ("end stage " ++ stg_name ++ " }") empty
               ; run_pipeline stgs res }

{-
Example 1:
  Inert:   {c ~ d, F a ~ t, b ~ Int, a ~ ty} (all given)
  Reagent: a ~ [b] (given)

React with (c~d)     ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~ t) ==> IR (ContinueWith (a~[b]))  False   [F [b] ~ t]
React with (b ~ Int) ==> IR (ContinueWith (a~[Int]) True    []

Example 2:
  Inert:  {c ~w d, F a ~g t, b ~w Int, a ~w ty}
  Reagent: a ~w [b]

React with (c ~w d)   ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~g t) ==> IR (ContinueWith (a~[b]))  True    []    (can't rewrite given with wanted!)
etc.

Example 3:
  Inert:  {a ~ Int, F Int ~ b} (given)
  Reagent: F a ~ b (wanted)

React with (a ~ Int)   ==> IR (ContinueWith (F Int ~ b)) True []
React with (F Int ~ b) ==> IR Stop True []    -- after substituting we re-canonicalize and get nothing
-}

thePipeline :: [(String,SimplifierStage)]
thePipeline = [ ("canonicalization",        TcCanonical.canonicalize)
              , ("interact with inerts",    interactWithInertsStage)
              , ("top-level reactions",     topReactionsStage) ]

{-
*********************************************************************************
*                                                                               *
                       The interact-with-inert Stage
*                                                                               *
*********************************************************************************

Note [The Solver Invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We always add Givens first.  So you might think that the solver has
the invariant

   If the work-item is Given,
   then the inert item must Given

But this isn't quite true.  Suppose we have,
    c1: [W] beta ~ [alpha], c2 : [W] blah, c3 :[W] alpha ~ Int
After processing the first two, we get
     c1: [G] beta ~ [alpha], c2 : [W] blah
Now, c3 does not interact with the the given c1, so when we spontaneously
solve c3, we must re-react it with the inert set.  So we can attempt a
reaction between inert c2 [W] and work-item c3 [G].

It *is* true that [Solver Invariant]
   If the work-item is Given,
   AND there is a reaction
   then the inert item must Given
or, equivalently,
   If the work-item is Given,
   and the inert item is Wanted/Derived
   then there is no reaction
-}

-- Interaction result of  WorkItem <~> Ct

type StopNowFlag = Bool    -- True <=> stop after this interaction

interactWithInertsStage :: WorkItem -> TcS (StopOrContinue Ct)
-- Precondition: if the workitem is a CTyEqCan then it will not be able to
-- react with anything at this stage.

interactWithInertsStage wi
  = do { inerts <- getTcSInerts
       ; let ics = inert_cans inerts
       ; case wi of
             CTyEqCan    {} -> interactTyVarEq ics wi
             CFunEqCan   {} -> interactFunEq   ics wi
             CIrredEvCan {} -> interactIrred   ics wi
             CDictCan    {} -> interactDict    ics wi
             _ -> pprPanic "interactWithInerts" (ppr wi) }
                -- CHoleCan are put straight into inert_frozen, so never get here
                -- CNonCanonical have been canonicalised

data InteractResult
   = IRKeep      -- Keep the existing inert constraint in the inert set
   | IRReplace   -- Replace the existing inert constraint with the work item
   | IRDelete    -- Delete the existing inert constraint from the inert set

instance Outputable InteractResult where
  ppr IRKeep    = text "keep"
  ppr IRReplace = text "replace"
  ppr IRDelete  = text "delete"

solveOneFromTheOther :: CtEvidence  -- Inert
                     -> CtEvidence  -- WorkItem
                     -> TcS (InteractResult, StopNowFlag)
-- Preconditions:
-- 1) inert and work item represent evidence for the /same/ predicate
-- 2) ip/class/irred constraints only; not used for equalities
solveOneFromTheOther ev_i ev_w
  | isDerived ev_w         -- Work item is Derived; just discard it
  = return (IRKeep, True)

  | isDerived ev_i            -- The inert item is Derived, we can just throw it away,
  = return (IRDelete, False)  -- The ev_w is inert wrt earlier inert-set items,
                              -- so it's safe to continue on from this point

  | CtWanted { ctev_loc = loc_w } <- ev_w
  , prohibitedSuperClassSolve (ctEvLoc ev_i) loc_w
  = return (IRDelete, False)

  | CtWanted { ctev_dest = dest } <- ev_w
       -- Inert is Given or Wanted
  = do { setWantedEvTerm dest (ctEvTerm ev_i)
       ; return (IRKeep, True) }

  | CtWanted { ctev_loc = loc_i } <- ev_i   -- Work item is Given
  , prohibitedSuperClassSolve (ctEvLoc ev_w) loc_i
  = return (IRKeep, False)  -- Just discard the un-usable Given
                            -- This never actually happens because
                            -- Givens get processed first

  | CtWanted { ctev_dest = dest } <- ev_i
  = do { setWantedEvTerm dest (ctEvTerm ev_w)
       ; return (IRReplace, True) }

  -- So they are both Given
  -- See Note [Replacement vs keeping]
  | lvl_i == lvl_w
  = do { binds <- getTcEvBindsMap
       ; return (same_level_strategy binds, True) }

  | otherwise   -- Both are Given, levels differ
  = return (different_level_strategy, True)
  where
     pred  = ctEvPred ev_i
     loc_i = ctEvLoc ev_i
     loc_w = ctEvLoc ev_w
     lvl_i = ctLocLevel loc_i
     lvl_w = ctLocLevel loc_w

     different_level_strategy
       | isIPPred pred, lvl_w > lvl_i = IRReplace
       | lvl_w < lvl_i                = IRReplace
       | otherwise                    = IRKeep

     same_level_strategy binds        -- Both Given
       | GivenOrigin (InstSC s_i) <- ctLocOrigin loc_i
       = case ctLocOrigin loc_w of
            GivenOrigin (InstSC s_w) | s_w < s_i -> IRReplace
                                     | otherwise -> IRKeep
            _                                    -> IRReplace

       | GivenOrigin (InstSC {}) <- ctLocOrigin loc_w
       = IRKeep

       | has_binding binds ev_w
       , not (has_binding binds ev_i)
       = IRReplace

       | otherwise = IRKeep

     has_binding binds ev = isJust (lookupEvBind binds (ctEvId ev))

{-
Note [Replacement vs keeping]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we have two Given constraints both of type (C tys), say, which should
we keep?  More subtle than you might think!

  * Constraints come from different levels (different_level_strategy)

      - For implicit parameters we want to keep the innermost (deepest)
        one, so that it overrides the outer one.
        See Note [Shadowing of Implicit Parameters]

      - For everything else, we want to keep the outermost one.  Reason: that
        makes it more likely that the inner one will turn out to be unused,
        and can be reported as redundant.  See Note [Tracking redundant constraints]
        in TcSimplify.

        It transpires that using the outermost one is reponsible for an
        8% performance improvement in nofib cryptarithm2, compared to
        just rolling the dice.  I didn't investigate why.

  * Constraints coming from the same level (i.e. same implication)

       - Always get rid of InstSC ones if possible, since they are less
         useful for solving.  If both are InstSC, choose the one with
         the smallest TypeSize
         See Note [Solving superclass constraints] in TcInstDcls

       - Keep the one that has a non-trivial evidence binding.
            Example:  f :: (Eq a, Ord a) => blah
            then we may find [G] d3 :: Eq a
                             [G] d2 :: Eq a
              with bindings  d3 = sc_sel (d1::Ord a)
            We want to discard d2 in favour of the superclass selection from
            the Ord dictionary.
         Why? See Note [Tracking redundant constraints] in TcSimplify again.

  * Finally, when there is still a choice, use IRKeep rather than
    IRReplace, to avoid unnecessary munging of the inert set.

Doing the depth-check for implicit parameters, rather than making the work item
always overrride, is important.  Consider

    data T a where { T1 :: (?x::Int) => T Int; T2 :: T a }

    f :: (?x::a) => T a -> Int
    f T1 = ?x
    f T2 = 3

We have a [G] (?x::a) in the inert set, and at the pattern match on T1 we add
two new givens in the work-list:  [G] (?x::Int)
                                  [G] (a ~ Int)
Now consider these steps
  - process a~Int, kicking out (?x::a)
  - process (?x::Int), the inner given, adding to inert set
  - process (?x::a), the outer given, overriding the inner given
Wrong!  The depth-check ensures that the inner implicit parameter wins.
(Actually I think that the order in which the work-list is processed means
that this chain of events won't happen, but that's very fragile.)

*********************************************************************************
*                                                                               *
                   interactIrred
*                                                                               *
*********************************************************************************
-}

-- Two pieces of irreducible evidence: if their types are *exactly identical*
-- we can rewrite them. We can never improve using this:
-- if we want ty1 :: Constraint and have ty2 :: Constraint it clearly does not
-- mean that (ty1 ~ ty2)
interactIrred :: InertCans -> Ct -> TcS (StopOrContinue Ct)

interactIrred inerts workItem@(CIrredEvCan { cc_ev = ev_w })
  | let pred = ctEvPred ev_w
        (matching_irreds, others)
          = partitionBag (\ct -> ctPred ct `tcEqTypeNoKindCheck` pred)
                         (inert_irreds inerts)
  , (ct_i : rest) <- bagToList matching_irreds
  , let ctev_i = ctEvidence ct_i
  = ASSERT( null rest )
    do { (inert_effect, stop_now) <- solveOneFromTheOther ctev_i ev_w
       ; case inert_effect of
            IRKeep    -> return ()
            IRDelete  -> updInertIrreds (\_ -> others)
            IRReplace -> updInertIrreds (\_ -> others `snocCts` workItem)
                         -- These const upd's assume that solveOneFromTheOther
                         -- has no side effects on InertCans
       ; if stop_now then
            return (Stop ev_w (text "Irred equal" <+> parens (ppr inert_effect)))
       ; else
            continueWith workItem }

  | otherwise
  = continueWith workItem

interactIrred _ wi = pprPanic "interactIrred" (ppr wi)

{-
*********************************************************************************
*                                                                               *
                   interactDict
*                                                                               *
*********************************************************************************
-}

interactDict :: InertCans -> Ct -> TcS (StopOrContinue Ct)
interactDict inerts workItem@(CDictCan { cc_ev = ev_w, cc_class = cls, cc_tyargs = tys })
  | isWanted ev_w
  , Just ip_name      <- isCallStackPred (ctPred workItem)
  , OccurrenceOf func <- ctLocOrigin (ctEvLoc ev_w)
  -- If we're given a CallStack constraint that arose from a function
  -- call, we need to push the current call-site onto the stack instead
  -- of solving it directly from a given.
  -- See Note [Overview of implicit CallStacks]
  = do { let loc = ctEvLoc ev_w

         -- First we emit a new constraint that will capture the
         -- given CallStack.
       ; let new_loc      = setCtLocOrigin loc (IPOccOrigin (HsIPName ip_name))
                            -- We change the origin to IPOccOrigin so
                            -- this rule does not fire again.
                            -- See Note [Overview of implicit CallStacks]

       ; mb_new <- newWantedEvVar new_loc (ctEvPred ev_w)
       ; emitWorkNC (freshGoals [mb_new])

         -- Then we solve the wanted by pushing the call-site onto the
         -- newly emitted CallStack.
       ; let ev_cs = EvCsPushCall func (ctLocSpan loc) (getEvTerm mb_new)
       ; solveCallStack ev_w ev_cs
       ; stopWith ev_w "Wanted CallStack IP" }

  | Just ctev_i <- lookupInertDict inerts cls tys
  = do { (inert_effect, stop_now) <- solveOneFromTheOther ctev_i ev_w
       ; case inert_effect of
           IRKeep    -> return ()
           IRDelete  -> updInertDicts $ \ ds -> delDict ds cls tys
           IRReplace -> updInertDicts $ \ ds -> addDict ds cls tys workItem
       ; if stop_now then
            return (Stop ev_w (text "Dict equal" <+> parens (ppr inert_effect)))
         else
            continueWith workItem }

  | cls `hasKey` ipClassKey
  , isGiven ev_w
  = interactGivenIP inerts workItem

  | otherwise
  = do { addFunDepWork inerts ev_w cls
       ; continueWith workItem  }

interactDict _ wi = pprPanic "interactDict" (ppr wi)

addFunDepWork :: InertCans -> CtEvidence -> Class -> TcS ()
-- Add derived constraints from type-class functional dependencies.
addFunDepWork inerts work_ev cls
  = mapBagM_ add_fds (findDictsByClass (inert_dicts inerts) cls)
               -- No need to check flavour; fundeps work between
               -- any pair of constraints, regardless of flavour
               -- Importantly we don't throw workitem back in the
               -- worklist because this can cause loops (see #5236)
  where
    work_pred = ctEvPred work_ev
    work_loc  = ctEvLoc work_ev

    add_fds inert_ct
      = emitFunDepDeriveds $
        improveFromAnother derived_loc inert_pred work_pred
               -- We don't really rewrite tys2, see below _rewritten_tys2, so that's ok
               -- NB: We do create FDs for given to report insoluble equations that arise
               -- from pairs of Givens, and also because of floating when we approximate
               -- implications. The relevant test is: typecheck/should_fail/FDsFromGivens.hs
      where
        inert_pred = ctPred inert_ct
        inert_loc  = ctLoc inert_ct
        derived_loc = work_loc { ctl_origin = FunDepOrigin1 work_pred  work_loc
                                                            inert_pred inert_loc }

{-
**********************************************************************
*                                                                    *
                   Implicit parameters
*                                                                    *
**********************************************************************
-}

interactGivenIP :: InertCans -> Ct -> TcS (StopOrContinue Ct)
-- Work item is Given (?x:ty)
-- See Note [Shadowing of Implicit Parameters]
interactGivenIP inerts workItem@(CDictCan { cc_ev = ev, cc_class = cls
                                          , cc_tyargs = tys@(ip_str:_) })
  = do { updInertCans $ \cans -> cans { inert_dicts = addDict filtered_dicts cls tys workItem }
       ; stopWith ev "Given IP" }
  where
    dicts           = inert_dicts inerts
    ip_dicts        = findDictsByClass dicts cls
    other_ip_dicts  = filterBag (not . is_this_ip) ip_dicts
    filtered_dicts  = addDictsByClass dicts cls other_ip_dicts

    -- Pick out any Given constraints for the same implicit parameter
    is_this_ip (CDictCan { cc_ev = ev, cc_tyargs = ip_str':_ })
       = isGiven ev && ip_str `tcEqType` ip_str'
    is_this_ip _ = False

interactGivenIP _ wi = pprPanic "interactGivenIP" (ppr wi)


{- Note [Shadowing of Implicit Parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following example:

f :: (?x :: Char) => Char
f = let ?x = 'a' in ?x

The "let ?x = ..." generates an implication constraint of the form:

?x :: Char => ?x :: Char

Furthermore, the signature for `f` also generates an implication
constraint, so we end up with the following nested implication:

?x :: Char => (?x :: Char => ?x :: Char)

Note that the wanted (?x :: Char) constraint may be solved in
two incompatible ways:  either by using the parameter from the
signature, or by using the local definition.  Our intention is
that the local definition should "shadow" the parameter of the
signature, and we implement this as follows: when we add a new
*given* implicit parameter to the inert set, it replaces any existing
givens for the same implicit parameter.

Similarly, consider
   f :: (?x::a) => Bool -> a

   g v = let ?x::Int = 3
         in (f v, let ?x::Bool = True in f v)

This should probably be well typed, with
   g :: Bool -> (Int, Bool)

So the inner binding for ?x::Bool *overrides* the outer one.

All this works for the normal cases but it has an odd side effect in
some pathological programs like this:
-- This is accepted, the second parameter shadows
f1 :: (?x :: Int, ?x :: Char) => Char
f1 = ?x

-- This is rejected, the second parameter shadows
f2 :: (?x :: Int, ?x :: Char) => Int
f2 = ?x

Both of these are actually wrong:  when we try to use either one,
we'll get two incompatible wnated constraints (?x :: Int, ?x :: Char),
which would lead to an error.

I can think of two ways to fix this:

  1. Simply disallow multiple constraints for the same implicit
    parameter---this is never useful, and it can be detected completely
    syntactically.

  2. Move the shadowing machinery to the location where we nest
     implications, and add some code here that will produce an
     error if we get multiple givens for the same implicit parameter.


**********************************************************************
*                                                                    *
                   interactFunEq
*                                                                    *
**********************************************************************
-}

interactFunEq :: InertCans -> Ct -> TcS (StopOrContinue Ct)
-- Try interacting the work item with the inert set
interactFunEq inerts work_item@(CFunEqCan { cc_ev = ev, cc_fun = tc
                                          , cc_tyargs = args, cc_fsk = fsk })
  | Just inert_ct@(CFunEqCan { cc_ev = ev_i
                             , cc_fsk = fsk_i })
         <- findFunEq (inert_funeqs inerts) tc args
  , pr@(swap_flag, upgrade_flag) <- ev_i `funEqCanDischarge` ev
  = do { traceTcS "reactFunEq (rewrite inert item):" $
         vcat [ text "work_item =" <+> ppr work_item
              , text "inertItem=" <+> ppr ev_i
              , text "(swap_flag, upgrade)" <+> ppr pr ]
       ; if isSwapped swap_flag
         then do {   -- Rewrite inert using work-item
                   let work_item' | upgrade_flag = upgradeWanted work_item
                                  | otherwise    = work_item
                 ; updInertFunEqs $ \ feqs -> insertFunEq feqs tc args work_item'
                      -- Do the updInertFunEqs before the reactFunEq, so that
                      -- we don't kick out the inertItem as well as consuming it!
                 ; reactFunEq ev fsk ev_i fsk_i
                 ; stopWith ev "Work item rewrites inert" }
         else do {   -- Rewrite work-item using inert
                 ; when upgrade_flag $
                   updInertFunEqs $ \ feqs -> insertFunEq feqs tc args
                                                 (upgradeWanted inert_ct)
                 ; reactFunEq ev_i fsk_i ev fsk
                 ; stopWith ev "Inert rewrites work item" } }

  | otherwise   -- Try improvement
  = do { improveLocalFunEqs ev inerts tc args fsk
       ; continueWith work_item }

interactFunEq _ work_item = pprPanic "interactFunEq" (ppr work_item)

upgradeWanted :: Ct -> Ct
-- We are combining a [W] F tys ~ fmv1 and [D] F tys ~ fmv2
-- so upgrade the [W] to [WD] before putting it in the inert set
upgradeWanted ct = ct { cc_ev = upgrade_ev (cc_ev ct) }
  where
    upgrade_ev ev = ASSERT2( isWanted ev, ppr ct )
                    ev { ctev_nosh = WDeriv }

improveLocalFunEqs :: CtEvidence -> InertCans -> TyCon -> [TcType] -> TcTyVar
                   -> TcS ()
-- Generate derived improvement equalities, by comparing
-- the current work item with inert CFunEqs
-- E.g.   x + y ~ z,   x + y' ~ z   =>   [D] y ~ y'
--
-- See Note [FunDep and implicit parameter reactions]
improveLocalFunEqs ev inerts fam_tc args fsk
  | isGiven ev   -- See Note [No FunEq improvement for Givens]
  = return ()

  | null improvement_eqns
  = do { traceTcS "improveLocalFunEqs no improvements: " $
         vcat [ text "Candidates:" <+> ppr funeqs_for_tc
              , text "Inert eqs:" <+> ppr ieqs ]
       ; return () }

  | otherwise
  = do { traceTcS "improveLocalFunEqs improvements: " $
         vcat [ text "Eqns:" <+> ppr improvement_eqns
              , text "Candidates:" <+> ppr funeqs_for_tc
              , text "Inert eqs:" <+> ppr ieqs ]
       ; mapM_ (unifyDerived loc Nominal) improvement_eqns }

  where
    loc           = ctEvLoc ev
    ieqs          = inert_eqs inerts
    funeqs        = inert_funeqs inerts
    funeqs_for_tc = findFunEqsByTyCon funeqs fam_tc
    rhs           = lookupFlattenTyVar ieqs fsk
    fam_inj_info  = familyTyConInjectivityInfo fam_tc

    --------------------
    improvement_eqns
      | Just ops <- isBuiltInSynFamTyCon_maybe fam_tc
      =    -- Try built-in families, notably for arithmethic
         concatMap (do_one_built_in ops) funeqs_for_tc

      | Injective injective_args <- fam_inj_info
      =    -- Try improvement from type families with injectivity annotations
        concatMap (do_one_injective injective_args) funeqs_for_tc

      | otherwise
      = []

    --------------------
    do_one_built_in ops (CFunEqCan { cc_tyargs = iargs, cc_fsk = ifsk })
      = sfInteractInert ops args rhs iargs (lookupFlattenTyVar ieqs ifsk)
    do_one_built_in _ _ = pprPanic "interactFunEq 1" (ppr fam_tc)

    --------------------
    -- See Note [Type inference for type families with injectivity]
    do_one_injective inj_args (CFunEqCan { cc_tyargs = iargs, cc_fsk = ifsk })
      | rhs `tcEqType` lookupFlattenTyVar ieqs ifsk
      = [ Pair arg iarg
        | (arg, iarg, True) <- zip3 args iargs inj_args ]

      | otherwise = []

    do_one_injective _ _ = pprPanic "interactFunEq 2" (ppr fam_tc)

-------------
reactFunEq :: CtEvidence -> TcTyVar    -- From this  :: F args1 ~ fsk1
           -> CtEvidence -> TcTyVar    -- Solve this :: F args2 ~ fsk2
           -> TcS ()
reactFunEq from_this fsk1 solve_this fsk2
  | CtGiven { ctev_evar = evar, ctev_loc = loc } <- solve_this
  = do { let fsk_eq_co = mkTcSymCo (mkTcCoVarCo evar) `mkTcTransCo`
                         ctEvCoercion from_this
                         -- :: fsk2 ~ fsk1
             fsk_eq_pred = mkTcEqPredLikeEv solve_this
                             (mkTyVarTy fsk2) (mkTyVarTy fsk1)

       ; new_ev <- newGivenEvVar loc (fsk_eq_pred, EvCoercion fsk_eq_co)
       ; emitWorkNC [new_ev] }

  | CtDerived { ctev_loc = loc } <- solve_this
  = do { traceTcS "reactFunEq (Derived)" (ppr from_this $$ ppr fsk1 $$
                                          ppr solve_this $$ ppr fsk2)
       ; emitNewDerivedEq loc Nominal (mkTyVarTy fsk1) (mkTyVarTy fsk2) }
              -- FunEqs are always at Nominal role

  | otherwise  -- Wanted
  = do { traceTcS "reactFunEq" (ppr from_this $$ ppr fsk1 $$
                                ppr solve_this $$ ppr fsk2)
       ; dischargeFmv solve_this fsk2 (ctEvCoercion from_this) (mkTyVarTy fsk1)
       ; traceTcS "reactFunEq done" (ppr from_this $$ ppr fsk1 $$
                                     ppr solve_this $$ ppr fsk2) }

{- Note [Type inference for type families with injectivity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have a type family with an injectivity annotation:
    type family F a b = r | r -> b

Then if we have two CFunEqCan constraints for F with the same RHS
   F s1 t1 ~ rhs
   F s2 t2 ~ rhs
then we can use the injectivity to get a new Derived constraint on
the injective argument
  [D] t1 ~ t2

That in turn can help GHC solve constraints that would otherwise require
guessing.  For example, consider the ambiguity check for
   f :: F Int b -> Int
We get the constraint
   [W] F Int b ~ F Int beta
where beta is a unification variable.  Injectivity lets us pick beta ~ b.

Injectivity information is also used at the call sites. For example:
   g = f True
gives rise to
   [W] F Int b ~ Bool
from which we can derive b.  This requires looking at the defining equations of
a type family, ie. finding equation with a matching RHS (Bool in this example)
and infering values of type variables (b in this example) from the LHS patterns
of the matching equation.  For closed type families we have to perform
additional apartness check for the selected equation to check that the selected
is guaranteed to fire for given LHS arguments.

These new constraints are simply *Derived* constraints; they have no evidence.
We could go further and offer evidence from decomposing injective type-function
applications, but that would require new evidence forms, and an extension to
FC, so we don't do that right now (Dec 14).

See also Note [Injective type families] in TyCon


Note [Cache-caused loops]
~~~~~~~~~~~~~~~~~~~~~~~~~
It is very dangerous to cache a rewritten wanted family equation as 'solved' in our
solved cache (which is the default behaviour or xCtEvidence), because the interaction
may not be contributing towards a solution. Here is an example:

Initial inert set:
  [W] g1 : F a ~ beta1
Work item:
  [W] g2 : F a ~ beta2
The work item will react with the inert yielding the _same_ inert set plus:
    i)   Will set g2 := g1 `cast` g3
    ii)  Will add to our solved cache that [S] g2 : F a ~ beta2
    iii) Will emit [W] g3 : beta1 ~ beta2
Now, the g3 work item will be spontaneously solved to [G] g3 : beta1 ~ beta2
and then it will react the item in the inert ([W] g1 : F a ~ beta1). So it
will set
      g1 := g ; sym g3
and what is g? Well it would ideally be a new goal of type (F a ~ beta2) but
remember that we have this in our solved cache, and it is ... g2! In short we
created the evidence loop:

        g2 := g1 ; g3
        g3 := refl
        g1 := g2 ; sym g3

To avoid this situation we do not cache as solved any workitems (or inert)
which did not really made a 'step' towards proving some goal. Solved's are
just an optimization so we don't lose anything in terms of completeness of
solving.


Note [Efficient Orientation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we are interacting two FunEqCans with the same LHS:
          (inert)  ci :: (F ty ~ xi_i)
          (work)   cw :: (F ty ~ xi_w)
We prefer to keep the inert (else we pass the work item on down
the pipeline, which is a bit silly).  If we keep the inert, we
will (a) discharge 'cw'
     (b) produce a new equality work-item (xi_w ~ xi_i)
Notice the orientation (xi_w ~ xi_i) NOT (xi_i ~ xi_w):
    new_work :: xi_w ~ xi_i
    cw := ci ; sym new_work
Why?  Consider the simplest case when xi1 is a type variable.  If
we generate xi1~xi2, porcessing that constraint will kick out 'ci'.
If we generate xi2~xi1, there is less chance of that happening.
Of course it can and should still happen if xi1=a, xi1=Int, say.
But we want to avoid it happening needlessly.

Similarly, if we *can't* keep the inert item (because inert is Wanted,
and work is Given, say), we prefer to orient the new equality (xi_i ~
xi_w).

Note [Carefully solve the right CFunEqCan]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   ---- OLD COMMENT, NOW NOT NEEDED
   ---- because we now allow multiple
   ---- wanted FunEqs with the same head
Consider the constraints
  c1 :: F Int ~ a      -- Arising from an application line 5
  c2 :: F Int ~ Bool   -- Arising from an application line 10
Suppose that 'a' is a unification variable, arising only from
flattening.  So there is no error on line 5; it's just a flattening
variable.  But there is (or might be) an error on line 10.

Two ways to combine them, leaving either (Plan A)
  c1 :: F Int ~ a      -- Arising from an application line 5
  c3 :: a ~ Bool       -- Arising from an application line 10
or (Plan B)
  c2 :: F Int ~ Bool   -- Arising from an application line 10
  c4 :: a ~ Bool       -- Arising from an application line 5

Plan A will unify c3, leaving c1 :: F Int ~ Bool as an error
on the *totally innocent* line 5.  An example is test SimpleFail16
where the expected/actual message comes out backwards if we use
the wrong plan.

The second is the right thing to do.  Hence the isMetaTyVarTy
test when solving pairwise CFunEqCan.


**********************************************************************
*                                                                    *
                   interactTyVarEq
*                                                                    *
**********************************************************************
-}

inertsCanDischarge :: InertCans -> TcTyVar -> TcType -> CtEvidence
                   -> Maybe ( CtEvidence  -- The evidence for the inert
                            , SwapFlag    -- Whether we need mkSymCo
                            , Bool)       -- True <=> keep a [D] version
                                          --          of the [WD] constraint
inertsCanDischarge inerts tv rhs ev
  | (ev_i : _) <- [ ev_i | CTyEqCan { cc_ev = ev_i, cc_rhs = rhs_i }
                             <- findTyEqs inerts tv
                         , ev_i `eqCanDischarge` ev
                         , rhs_i `tcEqType` rhs ]
  =  -- Inert:     a ~ ty
     -- Work item: a ~ ty
    Just (ev_i, NotSwapped, keep_deriv ev_i)

  | Just tv_rhs <- getTyVar_maybe rhs
  , (ev_i : _) <- [ ev_i | CTyEqCan { cc_ev = ev_i, cc_rhs = rhs_i }
                             <- findTyEqs inerts tv_rhs
                         , ev_i `eqCanDischarge` ev
                         , rhs_i `tcEqType` mkTyVarTy tv ]
  =  -- Inert:     a ~ b
     -- Work item: b ~ a
     Just (ev_i, IsSwapped, keep_deriv ev_i)

  | otherwise
  = Nothing
  
  where
    keep_deriv ev_i
      | Wanted WOnly  <- ctEvFlavour ev_i  -- inert is [W]
      , Wanted WDeriv <- ctEvFlavour ev    -- work item is [WD]
      = True   -- Keep a derived verison of the work item
      | otherwise
      = False  -- Work item is fully discharged

interactTyVarEq :: InertCans -> Ct -> TcS (StopOrContinue Ct)
-- CTyEqCans are always consumed, so always returns Stop
interactTyVarEq inerts workItem@(CTyEqCan { cc_tyvar = tv
                                          , cc_rhs = rhs
                                          , cc_ev = ev
                                          , cc_eq_rel = eq_rel })
  | Just (ev_i, swapped, keep_deriv)
       <- inertsCanDischarge inerts tv rhs ev
  = do { setEvBindIfWanted ev $
         EvCoercion (maybeSym swapped $
                     tcDowngradeRole (eqRelRole eq_rel)
                                     (ctEvRole ev_i)
                                     (ctEvCoercion ev_i))

       ; let deriv_ev = CtDerived { ctev_pred = ctEvPred ev
                                  , ctev_loc  = ctEvLoc  ev }
       ; when keep_deriv $
         emitWork [workItem { cc_ev = deriv_ev }]
         -- As a Derived it might not be fully rewritten,
         -- so we emit it as new work
       
       ; stopWith ev "Solved from inert" }

  | ReprEq <- eq_rel   -- We never solve representational
  = unsolved_inert     -- equalities by unification

  | isGiven ev         -- See Note [Touchables and givens]
  = unsolved_inert

  | otherwise
  = do { tclvl <- getTcLevel
       ; if canSolveByUnification tclvl tv rhs
         then do { solveByUnification ev tv rhs
                 ; n_kicked <- kickOutAfterUnification tv
                 ; return (Stop ev (text "Solved by unification" <+> ppr_kicked n_kicked)) }

         else unsolved_inert }

  where
    unsolved_inert
      = do { traceTcS "Can't solve tyvar equality"
                (vcat [ text "LHS:" <+> ppr tv <+> dcolon <+> ppr (tyVarKind tv)
                      , ppWhen (isMetaTyVar tv) $
                        nest 4 (text "TcLevel of" <+> ppr tv
                                <+> text "is" <+> ppr (metaTyVarTcLevel tv))
                      , text "RHS:" <+> ppr rhs <+> dcolon <+> ppr (typeKind rhs) ])
           ; addInertEq workItem
           ; stopWith ev "Kept as inert" }

interactTyVarEq _ wi = pprPanic "interactTyVarEq" (ppr wi)

solveByUnification :: CtEvidence -> TcTyVar -> Xi -> TcS ()
-- Solve with the identity coercion
-- Precondition: kind(xi) equals kind(tv)
-- Precondition: CtEvidence is Wanted or Derived
-- Precondition: CtEvidence is nominal
-- Returns: workItem where
--        workItem = the new Given constraint
--
-- NB: No need for an occurs check here, because solveByUnification always
--     arises from a CTyEqCan, a *canonical* constraint.  Its invariants
--     say that in (a ~ xi), the type variable a does not appear in xi.
--     See TcRnTypes.Ct invariants.
--
-- Post: tv is unified (by side effect) with xi;
--       we often write tv := xi
solveByUnification wd tv xi
  = do { let tv_ty = mkTyVarTy tv
       ; traceTcS "Sneaky unification:" $
                       vcat [text "Unifies:" <+> ppr tv <+> text ":=" <+> ppr xi,
                             text "Coercion:" <+> pprEq tv_ty xi,
                             text "Left Kind is:" <+> ppr (typeKind tv_ty),
                             text "Right Kind is:" <+> ppr (typeKind xi) ]

       ; unifyTyVar tv xi
       ; setEvBindIfWanted wd (EvCoercion (mkTcNomReflCo xi)) }

ppr_kicked :: Int -> SDoc
ppr_kicked 0 = empty
ppr_kicked n = parens (int n <+> text "kicked out")

{- Note [Avoid double unifications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The spontaneous solver has to return a given which mentions the unified unification
variable *on the left* of the equality. Here is what happens if not:
  Original wanted:  (a ~ alpha),  (alpha ~ Int)
We spontaneously solve the first wanted, without changing the order!
      given : a ~ alpha      [having unified alpha := a]
Now the second wanted comes along, but he cannot rewrite the given, so we simply continue.
At the end we spontaneously solve that guy, *reunifying*  [alpha := Int]

We avoid this problem by orienting the resulting given so that the unification
variable is on the left.  [Note that alternatively we could attempt to
enforce this at canonicalization]

See also Note [No touchables as FunEq RHS] in TcSMonad; avoiding
double unifications is the main reason we disallow touchable
unification variables as RHS of type family equations: F xis ~ alpha.


************************************************************************
*                                                                      *
*          Functional dependencies, instantiation of equations
*                                                                      *
************************************************************************

When we spot an equality arising from a functional dependency,
we now use that equality (a "wanted") to rewrite the work-item
constraint right away.  This avoids two dangers

 Danger 1: If we send the original constraint on down the pipeline
           it may react with an instance declaration, and in delicate
           situations (when a Given overlaps with an instance) that
           may produce new insoluble goals: see Trac #4952

 Danger 2: If we don't rewrite the constraint, it may re-react
           with the same thing later, and produce the same equality
           again --> termination worries.

To achieve this required some refactoring of FunDeps.hs (nicer
now!).

Note [FunDep and implicit parameter reactions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Currently, our story of interacting two dictionaries (or a dictionary
and top-level instances) for functional dependencies, and implicit
parameters, is that we simply produce new Derived equalities.  So for example

        class D a b | a -> b where ...
    Inert:
        d1 :g D Int Bool
    WorkItem:
        d2 :w D Int alpha

    We generate the extra work item
        cv :d alpha ~ Bool
    where 'cv' is currently unused.  However, this new item can perhaps be
    spontaneously solved to become given and react with d2,
    discharging it in favour of a new constraint d2' thus:
        d2' :w D Int Bool
        d2 := d2' |> D Int cv
    Now d2' can be discharged from d1

We could be more aggressive and try to *immediately* solve the dictionary
using those extra equalities, but that requires those equalities to carry
evidence and derived do not carry evidence.

If that were the case with the same inert set and work item we might dischard
d2 directly:

        cv :w alpha ~ Bool
        d2 := d1 |> D Int cv

But in general it's a bit painful to figure out the necessary coercion,
so we just take the first approach. Here is a better example. Consider:
    class C a b c | a -> b
And:
     [Given]  d1 : C T Int Char
     [Wanted] d2 : C T beta Int
In this case, it's *not even possible* to solve the wanted immediately.
So we should simply output the functional dependency and add this guy
[but NOT its superclasses] back in the worklist. Even worse:
     [Given] d1 : C T Int beta
     [Wanted] d2: C T beta Int
Then it is solvable, but its very hard to detect this on the spot.

It's exactly the same with implicit parameters, except that the
"aggressive" approach would be much easier to implement.

Note [Weird fundeps]
~~~~~~~~~~~~~~~~~~~~
Consider   class Het a b | a -> b where
              het :: m (f c) -> a -> m b

           class GHet (a :: * -> *) (b :: * -> *) | a -> b
           instance            GHet (K a) (K [a])
           instance Het a b => GHet (K a) (K b)

The two instances don't actually conflict on their fundeps,
although it's pretty strange.  So they are both accepted. Now
try   [W] GHet (K Int) (K Bool)
This triggers fundeps from both instance decls;
      [D] K Bool ~ K [a]
      [D] K Bool ~ K beta
And there's a risk of complaining about Bool ~ [a].  But in fact
the Wanted matches the second instance, so we never get as far
as the fundeps.

Trac #7875 is a case in point.
-}

emitFunDepDeriveds :: [FunDepEqn CtLoc] -> TcS ()
-- See Note [FunDep and implicit parameter reactions]
emitFunDepDeriveds fd_eqns
  = mapM_ do_one_FDEqn fd_eqns
  where
    do_one_FDEqn (FDEqn { fd_qtvs = tvs, fd_eqs = eqs, fd_loc = loc })
     | null tvs  -- Common shortcut
     = mapM_ (unifyDerived loc Nominal) eqs
     | otherwise
     = do { (subst, _) <- instFlexiTcS tvs  -- Takes account of kind substitution
          ; mapM_ (do_one_eq loc subst) eqs }

    do_one_eq loc subst (Pair ty1 ty2)
       = unifyDerived loc Nominal $
         Pair (Type.substTyUnchecked subst ty1) (Type.substTyUnchecked subst ty2)

{-
**********************************************************************
*                                                                    *
                       The top-reaction Stage
*                                                                    *
**********************************************************************
-}

topReactionsStage :: WorkItem -> TcS (StopOrContinue Ct)
topReactionsStage wi
 = do { tir <- doTopReact wi
      ; case tir of
          ContinueWith wi -> continueWith wi
          Stop ev s       -> return (Stop ev (text "Top react:" <+> s)) }

doTopReact :: WorkItem -> TcS (StopOrContinue Ct)
-- The work item does not react with the inert set, so try interaction with top-level
-- instances. Note:
--
--   (a) The place to add superclasses in not here in doTopReact stage.
--       Instead superclasses are added in the worklist as part of the
--       canonicalization process. See Note [Adding superclasses].

doTopReact work_item
  = do { traceTcS "doTopReact" (ppr work_item)
       ; case work_item of
           CDictCan {}  -> do { inerts <- getTcSInerts
                              ; doTopReactDict inerts work_item }
           CFunEqCan {} -> doTopReactFunEq work_item
           _  -> -- Any other work item does not react with any top-level equations
                 continueWith work_item  }


--------------------
doTopReactFunEq :: Ct -> TcS (StopOrContinue Ct)
doTopReactFunEq work_item@(CFunEqCan { cc_ev = old_ev, cc_fun = fam_tc
                                     , cc_tyargs = args, cc_fsk = fsk })

  | fsk `elemVarSet` tyCoVarsOfTypes args
  = no_reduction    -- See Note [FunEq occurs-check principle]

  | otherwise  -- Note [Reduction for Derived CFunEqCans]
  = do { match_res <- matchFam fam_tc args
                           -- Look up in top-level instances, or built-in axiom
                           -- See Note [MATCHING-SYNONYMS]
       ; case match_res of
           Nothing         -> no_reduction
           Just match_info -> reduce_top_fun_eq old_ev fsk match_info }
  where
    no_reduction
      = do { improveTopFunEqs old_ev fam_tc args fsk
           ; continueWith work_item }

doTopReactFunEq w = pprPanic "doTopReactFunEq" (ppr w)

reduce_top_fun_eq :: CtEvidence -> TcTyVar -> (TcCoercion, TcType)
                  -> TcS (StopOrContinue Ct)
-- We have found an applicable top-level axiom: use it to reduce
-- Precondition: fsk is not free in rhs_ty
--               old_ev is not Derived
reduce_top_fun_eq old_ev fsk (ax_co, rhs_ty)
  | isDerived old_ev
  = do { emitNewDerivedEq loc Nominal (mkTyVarTy fsk) rhs_ty
       ; stopWith old_ev "Fun/Top (derived)" }
  
  | Just (tc, tc_args) <- tcSplitTyConApp_maybe rhs_ty
  , isTypeFamilyTyCon tc
  , tc_args `lengthIs` tyConArity tc    -- Short-cut
  = -- RHS is another type-family application
    -- Try shortcut; see Note [Top-level reductions for type functions]
    shortCutReduction old_ev fsk ax_co tc tc_args

  | isGiven old_ev  -- Not shortcut
  = do { let final_co = mkTcSymCo (ctEvCoercion old_ev) `mkTcTransCo` ax_co
              -- final_co :: fsk ~ rhs_ty
       ; new_ev <- newGivenEvVar deeper_loc (mkPrimEqPred (mkTyVarTy fsk) rhs_ty,
                                             EvCoercion final_co)
       ; emitWorkNC [new_ev] -- Non-cannonical; that will mean we flatten rhs_ty
       ; stopWith old_ev "Fun/Top (given)" }

  | otherwise   -- So old_ev is Wanted (cannot be Derived)
  = ASSERT2( not (fsk `elemVarSet` tyCoVarsOfType rhs_ty)
           , ppr old_ev $$ ppr rhs_ty )
           -- Guaranteed by Note [FunEq occurs-check principle]
    do { dischargeFmv old_ev fsk ax_co rhs_ty
       ; traceTcS "doTopReactFunEq" $
         vcat [ text "old_ev:" <+> ppr old_ev
              , nest 2 (text ":=") <+> ppr ax_co ]
       ; stopWith old_ev "Fun/Top (wanted)" }

  where
    loc = ctEvLoc old_ev
    deeper_loc = bumpCtLocDepth loc

improveTopFunEqs :: CtEvidence -> TyCon -> [TcType] -> TcTyVar -> TcS ()
-- See Note [FunDep and implicit parameter reactions]
improveTopFunEqs ev fam_tc args fsk
  | isGiven ev    -- See Note [No FunEq improvement for Givens]
  = return ()

  | otherwise
  = do { ieqs <- getInertEqs
       ; fam_envs <- getFamInstEnvs
       ; eqns <- improve_top_fun_eqs fam_envs fam_tc args
                                    (lookupFlattenTyVar ieqs fsk)
       ; traceTcS "improveTopFunEqs" (vcat [ ppr fam_tc <+> ppr args <+> ppr fsk
                                          , ppr eqns ])
       ; mapM_ (unifyDerived loc Nominal) eqns }
  where
    loc = ctEvLoc ev

improve_top_fun_eqs :: FamInstEnvs
                    -> TyCon -> [TcType] -> TcType
                    -> TcS [Eqn]
improve_top_fun_eqs fam_envs fam_tc args rhs_ty
  | Just ops <- isBuiltInSynFamTyCon_maybe fam_tc
  = return (sfInteractTop ops args rhs_ty)

  -- see Note [Type inference for type families with injectivity]
  | isOpenTypeFamilyTyCon fam_tc
  , Injective injective_args <- familyTyConInjectivityInfo fam_tc
  = -- it is possible to have several compatible equations in an open type
    -- family but we only want to derive equalities from one such equation.
    concatMapM (injImproveEqns injective_args) (take 1 $
      buildImprovementData (lookupFamInstEnvByTyCon fam_envs fam_tc)
                           fi_tys fi_rhs (const Nothing))

  | Just ax <- isClosedSynFamilyTyConWithAxiom_maybe fam_tc
  , Injective injective_args <- familyTyConInjectivityInfo fam_tc
  = concatMapM (injImproveEqns injective_args) $
      buildImprovementData (fromBranches (co_ax_branches ax))
                           cab_lhs cab_rhs Just

  | otherwise
  = return []

  where
      buildImprovementData
          :: [a]                     -- axioms for a TF (FamInst or CoAxBranch)
          -> (a -> [Type])           -- get LHS of an axiom
          -> (a -> Type)             -- get RHS of an axiom
          -> (a -> Maybe CoAxBranch) -- Just => apartness check required
          -> [( [Type], TCvSubst, [TyVar], Maybe CoAxBranch )]
             -- Result:
             -- ( [arguments of a matching axiom]
             -- , RHS-unifying substitution
             -- , axiom variables without substitution
             -- , Maybe matching axiom [Nothing - open TF, Just - closed TF ] )
      buildImprovementData axioms axiomLHS axiomRHS wrap =
          [ (ax_args, subst, unsubstTvs, wrap axiom)
          | axiom <- axioms
          , let ax_args = axiomLHS axiom
          , let ax_rhs  = axiomRHS axiom
          , Just subst <- [tcUnifyTyWithTFs False ax_rhs rhs_ty]
          , let tvs           = tyCoVarsOfTypesList ax_args
                notInSubst tv = not (tv `elemVarEnv` getTvSubstEnv subst)
                unsubstTvs    = filter (notInSubst <&&> isTyVar) tvs ]

      injImproveEqns :: [Bool]
                     -> ([Type], TCvSubst, [TyCoVar], Maybe CoAxBranch)
                     -> TcS [Eqn]
      injImproveEqns inj_args (ax_args, theta, unsubstTvs, cabr) = do
        (theta', _) <- instFlexiTcS unsubstTvs
        -- The use of deterministically ordered list for `unsubstTvs`
        -- is not strictly necessary here, we only use the substitution
        -- part of the result of instFlexiTcS. If we used the second
        -- part of the tuple, which is the range of the substitution then
        -- the order could be important.
        let subst = theta `unionTCvSubst` theta'
        return [ Pair (substTyUnchecked subst ax_arg) arg
                   -- NB: the ax_arg part is on the left
                   -- see Note [Improvement orientation]
               | case cabr of
                  Just cabr' -> apartnessCheck (substTys subst ax_args) cabr'
                  _          -> True
               , (ax_arg, arg, True) <- zip3 ax_args args inj_args ]


shortCutReduction :: CtEvidence -> TcTyVar -> TcCoercion
                  -> TyCon -> [TcType] -> TcS (StopOrContinue Ct)
-- See Note [Top-level reductions for type functions]
shortCutReduction old_ev fsk ax_co fam_tc tc_args
  = ASSERT( ctEvEqRel old_ev == NomEq)
    do { (xis, cos) <- flattenManyNom old_ev tc_args
               -- ax_co :: F args ~ G tc_args
               -- cos   :: xis ~ tc_args
               -- old_ev :: F args ~ fsk
               -- G cos ; sym ax_co ; old_ev :: G xis ~ fsk

       ; new_ev <- case ctEvFlavour old_ev of
           Given -> newGivenEvVar deeper_loc
                         ( mkPrimEqPred (mkTyConApp fam_tc xis) (mkTyVarTy fsk)
                         , EvCoercion (mkTcTyConAppCo Nominal fam_tc cos
                                        `mkTcTransCo` mkTcSymCo ax_co
                                        `mkTcTransCo` ctEvCoercion old_ev) )

           Wanted {} ->
             do { (new_ev, new_co) <- newWantedEq deeper_loc Nominal
                                        (mkTyConApp fam_tc xis) (mkTyVarTy fsk)
                ; setWantedEq (ctev_dest old_ev) $
                     ax_co `mkTcTransCo` mkTcSymCo (mkTcTyConAppCo Nominal
                                                      fam_tc cos)
                           `mkTcTransCo` new_co
                ; return new_ev }

           Derived -> pprPanic "shortCutReduction" (ppr old_ev)

       ; let new_ct = CFunEqCan { cc_ev = new_ev, cc_fun = fam_tc
                                , cc_tyargs = xis, cc_fsk = fsk }
       ; updWorkListTcS (extendWorkListFunEq new_ct)
       ; stopWith old_ev "Fun/Top (shortcut)" }
  where
    deeper_loc = bumpCtLocDepth (ctEvLoc old_ev)

dischargeFmv :: CtEvidence -> TcTyVar -> TcCoercion -> TcType -> TcS ()
-- (dischargeFmv x fmv co ty)
--     [W] ev :: F tys ~ fmv
--         co :: F tys ~ xi
-- Precondition: fmv is not filled, and fmv `notElem` xi
--               ev is Wanted
--
-- Then set fmv := xi,
--      set ev  := co
--      kick out any inert things that are now rewritable
--
-- Does not evaluate 'co' if 'ev' is Derived
dischargeFmv ev@(CtWanted { ctev_dest = dest }) fmv co xi
  = ASSERT2( not (fmv `elemVarSet` tyCoVarsOfType xi), ppr ev $$ ppr fmv $$ ppr xi )
    do { setWantedEvTerm dest (EvCoercion co)
       ; unflattenFmv fmv xi
       ; n_kicked <- kickOutAfterUnification fmv
       ; traceTcS "dischargeFmv" (ppr fmv <+> equals <+> ppr xi $$ ppr_kicked n_kicked) }
dischargeFmv ev _ _ _ = pprPanic "dischargeFmv" (ppr ev)

{- Note [Top-level reductions for type functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
c.f. Note [The flattening story] in TcFlatten

Suppose we have a CFunEqCan  F tys ~ fmv/fsk, and a matching axiom.
Here is what we do, in four cases:

* Wanteds: general firing rule
    (work item) [W]        x : F tys ~ fmv
    instantiate axiom: ax_co : F tys ~ rhs

   Then:
      Discharge   fmv := rhs
      Discharge   x := ax_co ; sym x2
   This is *the* way that fmv's get unified; even though they are
   "untouchable".

   NB: Given Note [FunEq occurs-check principle], fmv does not appear
   in tys, and hence does not appear in the instantiated RHS.  So
   the unification can't make an infinite type. 

* Wanteds: short cut firing rule
  Applies when the RHS of the axiom is another type-function application
      (work item)        [W] x : F tys ~ fmv
      instantiate axiom: ax_co : F tys ~ G rhs_tys

  It would be a waste to create yet another fmv for (G rhs_tys).
  Instead (shortCutReduction):
      - Flatten rhs_tys (cos : rhs_tys ~ rhs_xis)
      - Add G rhs_xis ~ fmv to flat cache  (note: the same old fmv)
      - New canonical wanted   [W] x2 : G rhs_xis ~ fmv  (CFunEqCan)
      - Discharge x := ax_co ; G cos ; x2

* Givens: general firing rule
      (work item)        [G] g : F tys ~ fsk
      instantiate axiom: ax_co : F tys ~ rhs

   Now add non-canonical given (since rhs is not flat)
      [G] (sym g ; ax_co) : fsk ~ rhs  (Non-canonical)

* Givens: short cut firing rule
  Applies when the RHS of the axiom is another type-function application
      (work item)        [G] g : F tys ~ fsk
      instantiate axiom: ax_co : F tys ~ G rhs_tys

  It would be a waste to create yet another fsk for (G rhs_tys).
  Instead (shortCutReduction):
     - Flatten rhs_tys: flat_cos : tys ~ flat_tys
     - Add new Canonical given
          [G] (sym (G flat_cos) ; co ; g) : G flat_tys ~ fsk   (CFunEqCan)

Note [FunEq occurs-check principle]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I have spent a lot of time finding a good way to deal with
CFunEqCan constraints like
    F (fuv, a) ~ fuv
where flatten-skolem occurs on the LHS.  Now in principle we
might may progress by doing a reduction, but in practice its
hard to find examples where it is useful, and easy to find examples
where we fall into an infinite reduction loop.  A rule that works
very well is this:

  *** FunEq occurs-check principle ***

      Do not reduce a CFunEqCan
          F tys ~ fsk
      if fsk appears free in tys
      Instead we treat it as stuck.

Examples:

* Trac #5837 has [G] a ~ TF (a,Int), with an instance
    type instance TF (a,b) = (TF a, TF b)
  This readily loops when solving givens.  But with the FunEq occurs
  check principle, it rapidly gets stuck which is fine.

* Trac #12444 is a good example, explained in comment:2.  We have
    type instance F (Succ x) = Succ (F x)
    [W] alpha ~ Succ (F alpha)
  If we allow the reduction to happen, we get an infinite loop

Note [Cached solved FunEqs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
When trying to solve, say (FunExpensive big-type ~ ty), it's important
to see if we have reduced (FunExpensive big-type) before, lest we
simply repeat it.  Hence the lookup in inert_solved_funeqs.  Moreover
we must use `funEqCanDischarge` because both uses might (say) be Wanteds,
and we *still* want to save the re-computation.

Note [MATCHING-SYNONYMS]
~~~~~~~~~~~~~~~~~~~~~~~~
When trying to match a dictionary (D tau) to a top-level instance, or a
type family equation (F taus_1 ~ tau_2) to a top-level family instance,
we do *not* need to expand type synonyms because the matcher will do that for us.

Note [Improvement orientation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A very delicate point is the orientation of derived equalities
arising from injectivity improvement (Trac #12522).  Suppse we have
  type family F x = t | t -> x
  type instance F (a, Int) = (Int, G a)
where G is injective; and wanted constraints

  [W] TF (alpha, beta) ~ fuv
  [W] fuv ~ (Int, <some type>)

The injectivity will give rise to derived constraints

  [D] gamma1 ~ alpha
  [D] Int ~ beta

The fresh unification variable gamma1 comes from the fact that we
can only do "partial improvement" here; see Section 5.2 of
"Injective type families for Haskell" (HS'15).

Now, it's very important to orient the equations this way round,
so that the fresh unification variable will be eliminated in
favour of alpha.  If we instead had
   [D] alpha ~ gamma1
then we would unify alpha := gamma1; and kick out the wanted
constraint.  But when we grough it back in, it'd look like
   [W] TF (gamma1, beta) ~ fuv
and exactly the same thing would happen again!  Infnite loop.

This all sesms fragile, and it might seem more robust to avoid
introducing gamma1 in the first place, in the case where the
actual argument (alpha, beta) partly matches the improvement
template.  But that's a bit tricky, esp when we remember that the
kinds much match too; so it's easier to let the normal machinery
handle it.  Instead we are careful to orient the new derived
equality with the template on the left.  Delicate, but it works.

Note [No FunEq improvement for Givens]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We don't do improvements (injectivity etc) for Givens. Why?

* It generates Derived constraints on skolems, which don't do us
  much good, except perhaps identify inaccessible branches.
  (They'd be perfectly valid though.)

* For type-nat stuff the derived constraints include type families;
  e.g.  (a < b), (b < c) ==> a < c If we generate a Derived for this,
  we'll generate a Derived/Wanted CFunEqCan; and, since the same
  InertCans (after solving Givens) are used for each iteration, that
  massively confused the unflattening step (TcFlatten.unflatten).

  In fact it led to some infinite loops:
     indexed-types/should_compile/T10806
     indexed-types/should_compile/T10507
     polykinds/T10742

Note [Reduction for Derived CFunEqCans]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You may wonder if it's important to use top-level instances to
simplify [D] CFunEqCan's.  But it is.  Here's an example (T10226).

   type instance F    Int = Int
   type instance FInv Int = Int

Suppose we have to solve
    [WD] FInv (F alpha) ~ alpha
    [WD] F alpha ~ Int

  --> flatten
    [WD] F alpha ~ fuv0
    [WD] FInv fuv0 ~ fuv1  -- (A)
    [WD] fuv1 ~ alpha
    [WD] fuv0 ~ Int        -- (B)

  --> Rewwrite (A) with (B), splitting it
    [WD] F alpha ~ fuv0
    [W] FInv fuv0 ~ fuv1
    [D] FInv Int ~ fuv1    -- (C)
    [WD] fuv1 ~ alpha
    [WD] fuv0 ~ Int
    
  --> Reduce (C) with top-level instance
      **** This is the key step ***
    [WD] F alpha ~ fuv0
    [W] FInv fuv0 ~ fuv1
    [D] fuv1 ~ Int        -- (D)
    [WD] fuv1 ~ alpha     -- (E)
    [WD] fuv0 ~ Int
    
  --> Rewrite (D) with (E)
    [WD] F alpha ~ fuv0
    [W] FInv fuv0 ~ fuv1
    [D] alpha ~ Int       -- (F)
    [WD] fuv1 ~ alpha
    [WD] fuv0 ~ Int

  --> unify (F)  alpha := Int, and that solves it

Another example is indexed-types/should_compile/T10634
-}

{- *******************************************************************
*                                                                    *
         Top-level reaction for class constraints (CDictCan)
*                                                                    *
**********************************************************************-}

doTopReactDict :: InertSet -> Ct -> TcS (StopOrContinue Ct)
-- Try to use type-class instance declarations to simplify the constraint
doTopReactDict inerts work_item@(CDictCan { cc_ev = fl, cc_class = cls
                                          , cc_tyargs = xis })
  | isGiven fl
  = do { try_fundep_improvement
       ; continueWith work_item }

  | Just ev <- lookupSolvedDict inerts cls xis   -- Cached
  = do { setEvBindIfWanted fl (ctEvTerm ev)
       ; stopWith fl "Dict/Top (cached)" }

  | isDerived fl  -- Use type-class instances for Deriveds, in the hope
                  -- of generating some improvements
                  -- C.f. Example 3 of Note [The improvement story]
                  -- It's easy because no evidence is involved
   = do { dflags <- getDynFlags
        ; lkup_inst_res <- matchClassInst dflags inerts cls xis dict_loc
        ; case lkup_inst_res of
               GenInst { lir_new_theta = preds
                       , lir_safe_over = s } ->
                 do { emitNewDeriveds dict_loc preds
                    ; unless s $ insertSafeOverlapFailureTcS work_item
                    ; stopWith fl "Dict/Top (solved)" }

               NoInstance ->
                 do { -- If there is no instance, try improvement
                      try_fundep_improvement
                    ; continueWith work_item } }

  | otherwise  -- Wanted, but not cached
   = do { dflags <- getDynFlags
        ; lkup_inst_res <- matchClassInst dflags inerts cls xis dict_loc
        ; case lkup_inst_res of
               GenInst { lir_new_theta = theta
                       , lir_mk_ev     = mk_ev
                       , lir_safe_over = s } ->
                 do { addSolvedDict fl cls xis
                    ; unless s $ insertSafeOverlapFailureTcS work_item
                    ; solve_from_instance theta mk_ev }
               NoInstance ->
                 do { try_fundep_improvement
                    ; continueWith work_item } }
   where
     dict_pred   = mkClassPred cls xis
     dict_loc    = ctEvLoc fl
     dict_origin = ctLocOrigin dict_loc
     deeper_loc  = zap_origin (bumpCtLocDepth dict_loc)

     zap_origin loc  -- After applying an instance we can set ScOrigin to
                     -- infinity, so that prohibitedSuperClassSolve never fires
       | ScOrigin {} <- dict_origin
       = setCtLocOrigin loc (ScOrigin infinity)
       | otherwise
       = loc

     solve_from_instance :: [TcPredType]
                         -> ([EvTerm] -> EvTerm) -> TcS (StopOrContinue Ct)
      -- Precondition: evidence term matches the predicate workItem
     solve_from_instance theta mk_ev
        | null theta
        = do { traceTcS "doTopReact/found nullary instance for" $ ppr fl
             ; setWantedEvBind (ctEvId fl) (mk_ev [])
             ; stopWith fl "Dict/Top (solved, no new work)" }
        | otherwise
        = do { checkReductionDepth deeper_loc dict_pred
             ; traceTcS "doTopReact/found non-nullary instance for" $ ppr fl
             ; evc_vars <- mapM (newWanted deeper_loc) theta
             ; setWantedEvBind (ctEvId fl) (mk_ev (map getEvTerm evc_vars))
             ; emitWorkNC (freshGoals evc_vars)
             ; stopWith fl "Dict/Top (solved, more work)" }

     -- We didn't solve it; so try functional dependencies with
     -- the instance environment, and return
     -- See also Note [Weird fundeps]
     try_fundep_improvement
        = do { traceTcS "try_fundeps" (ppr work_item)
             ; instEnvs <- getInstEnvs
             ; emitFunDepDeriveds $
               improveFromInstEnv instEnvs mk_ct_loc dict_pred }

     mk_ct_loc :: PredType   -- From instance decl
               -> SrcSpan    -- also from instance deol
               -> CtLoc
     mk_ct_loc inst_pred inst_loc
       = dict_loc { ctl_origin = FunDepOrigin2 dict_pred dict_origin
                                               inst_pred inst_loc }

doTopReactDict _ w = pprPanic "doTopReactDict" (ppr w)


{- *******************************************************************
*                                                                    *
                       Class lookup
*                                                                    *
**********************************************************************-}

-- | Indicates if Instance met the Safe Haskell overlapping instances safety
-- check.
--
-- See Note [Safe Haskell Overlapping Instances] in TcSimplify
-- See Note [Safe Haskell Overlapping Instances Implementation] in TcSimplify
type SafeOverlapping = Bool

data LookupInstResult
  = NoInstance
  | GenInst { lir_new_theta :: [TcPredType]
            , lir_mk_ev     :: [EvTerm] -> EvTerm
            , lir_safe_over :: SafeOverlapping }

instance Outputable LookupInstResult where
  ppr NoInstance = text "NoInstance"
  ppr (GenInst { lir_new_theta = ev
               , lir_safe_over = s })
    = text "GenInst" <+> vcat [ppr ev, ss]
    where ss = text $ if s then "[safe]" else "[unsafe]"


matchClassInst :: DynFlags -> InertSet -> Class -> [Type] -> CtLoc -> TcS LookupInstResult
matchClassInst dflags inerts clas tys loc
-- First check whether there is an in-scope Given that could
-- match this constraint.  In that case, do not use top-level
-- instances.  See Note [Instance and Given overlap]
  | not (xopt LangExt.IncoherentInstances dflags)
  , not (naturallyCoherentClass clas)
  , let matchable_givens = matchableGivens loc pred inerts
  , not (isEmptyBag matchable_givens)
  = do { traceTcS "Delaying instance application" $
           vcat [ text "Work item=" <+> pprClassPred clas tys
                , text "Potential matching givens:" <+> ppr matchable_givens ]
       ; return NoInstance }
  where
     pred = mkClassPred clas tys

matchClassInst dflags _ clas tys loc
 = do { traceTcS "matchClassInst" $ text "pred =" <+> ppr (mkClassPred clas tys) <+> char '{'
      ; res <- match_class_inst dflags clas tys loc
      ; traceTcS "} matchClassInst result" $ ppr res
      ; return res }

match_class_inst :: DynFlags -> Class -> [Type] -> CtLoc -> TcS LookupInstResult
match_class_inst dflags clas tys loc
  | cls_name == knownNatClassName     = matchKnownNat        clas tys
  | cls_name == knownSymbolClassName  = matchKnownSymbol     clas tys
  | isCTupleClass clas                = matchCTuple          clas tys
  | cls_name == typeableClassName     = matchTypeable        clas tys
  | clas `hasKey` heqTyConKey         = matchLiftedEquality       tys
  | clas `hasKey` coercibleTyConKey   = matchLiftedCoercible      tys
  | otherwise                         = matchInstEnv dflags clas tys loc
  where
    cls_name = className clas

{- Note [Instance and Given overlap]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Example, from the OutsideIn(X) paper:
       instance P x => Q [x]
       instance (x ~ y) => R y [x]

       wob :: forall a b. (Q [b], R b a) => a -> Int

       g :: forall a. Q [a] => [a] -> Int
       g x = wob x

From 'g' we get the impliation constraint:
            forall a. Q [a] => (Q [beta], R beta [a])
If we react (Q [beta]) with its top-level axiom, we end up with a
(P beta), which we have no way of discharging. On the other hand,
if we react R beta [a] with the top-level we get  (beta ~ a), which
is solvable and can help us rewrite (Q [beta]) to (Q [a]) which is
now solvable by the given Q [a].

The partial solution is that:
  In matchClassInst (and thus in topReact), we return a matching
  instance only when there is no Given in the inerts which is
  unifiable to this particular dictionary.

  We treat any meta-tyvar as "unifiable" for this purpose,
  *including* untouchable ones.  But not skolems like 'a' in
  the implication constraint above.

The end effect is that, much as we do for overlapping instances, we
delay choosing a class instance if there is a possibility of another
instance OR a given to match our constraint later on. This fixes
Trac #4981 and #5002.

Other notes:

* The check is done *first*, so that it also covers classes
  with built-in instance solving, such as
     - constraint tuples
     - natural numbers
     - Typeable

* The given-overlap problem is arguably not easy to appear in practice
  due to our aggressive prioritization of equality solving over other
  constraints, but it is possible. I've added a test case in
  typecheck/should-compile/GivenOverlapping.hs

* Another "live" example is Trac #10195; another is #10177.

* We ignore the overlap problem if -XIncoherentInstances is in force:
  see Trac #6002 for a worked-out example where this makes a
  difference.

* Moreover notice that our goals here are different than the goals of
  the top-level overlapping checks. There we are interested in
  validating the following principle:

      If we inline a function f at a site where the same global
      instance environment is available as the instance environment at
      the definition site of f then we should get the same behaviour.

  But for the Given Overlap check our goal is just related to completeness of
  constraint solving.

* The solution is only a partial one.  Consider the above example with
       g :: forall a. Q [a] => [a] -> Int
       g x = let v = wob x
             in v
  and suppose we have -XNoMonoLocalBinds, so that we attempt to find the most
  general type for 'v'.  When generalising v's type we'll simplify its
  Q [alpha] constraint, but we don't have Q [a] in the 'givens', so we
  will use the instance declaration after all. Trac #11948 was a case
  in point.

All of this is disgustingly delicate, so to discourage people from writing
simplifiable class givens, we warn about signatures that contain them;#
see TcValidity Note [Simplifiable given constraints].
-}


{- *******************************************************************
*                                                                    *
                Class lookup in the instance environment
*                                                                    *
**********************************************************************-}

matchInstEnv :: DynFlags -> Class -> [Type] -> CtLoc -> TcS LookupInstResult
matchInstEnv dflags clas tys loc
   = do { instEnvs <- getInstEnvs
        ; let safeOverlapCheck = safeHaskell dflags `elem` [Sf_Safe, Sf_Trustworthy]
              (matches, unify, unsafeOverlaps) = lookupInstEnv True instEnvs clas tys
              safeHaskFail = safeOverlapCheck && not (null unsafeOverlaps)
        ; case (matches, unify, safeHaskFail) of

            -- Nothing matches
            ([], _, _)
                -> do { traceTcS "matchClass not matching" $
                        vcat [ text "dict" <+> ppr pred ]
                      ; return NoInstance }

            -- A single match (& no safe haskell failure)
            ([(ispec, inst_tys)], [], False)
                -> do   { let dfun_id = instanceDFunId ispec
                        ; traceTcS "matchClass success" $
                          vcat [text "dict" <+> ppr pred,
                                text "witness" <+> ppr dfun_id
                                               <+> ppr (idType dfun_id) ]
                                  -- Record that this dfun is needed
                        ; match_one (null unsafeOverlaps) dfun_id inst_tys }

            -- More than one matches (or Safe Haskell fail!). Defer any
            -- reactions of a multitude until we learn more about the reagent
            (matches, _, _)
                -> do   { traceTcS "matchClass multiple matches, deferring choice" $
                          vcat [text "dict" <+> ppr pred,
                                text "matches" <+> ppr matches]
                        ; return NoInstance } }
   where
     pred = mkClassPred clas tys

     match_one :: SafeOverlapping -> DFunId -> [DFunInstType] -> TcS LookupInstResult
                  -- See Note [DFunInstType: instantiating types] in InstEnv
     match_one so dfun_id mb_inst_tys
       = do { checkWellStagedDFun pred dfun_id loc
            ; (tys, theta) <- instDFunType dfun_id mb_inst_tys
            ; return $ GenInst { lir_new_theta = theta
                               , lir_mk_ev     = EvDFunApp dfun_id tys
                               , lir_safe_over = so } }


{- ********************************************************************
*                                                                     *
                   Class lookup for CTuples
*                                                                     *
***********************************************************************-}

matchCTuple :: Class -> [Type] -> TcS LookupInstResult
matchCTuple clas tys   -- (isCTupleClass clas) holds
  = return (GenInst { lir_new_theta = tys
                    , lir_mk_ev     = tuple_ev
                    , lir_safe_over = True })
            -- The dfun *is* the data constructor!
  where
     data_con = tyConSingleDataCon (classTyCon clas)
     tuple_ev = EvDFunApp (dataConWrapId data_con) tys

{- ********************************************************************
*                                                                     *
                   Class lookup for Literals
*                                                                     *
***********************************************************************-}

matchKnownNat :: Class -> [Type] -> TcS LookupInstResult
matchKnownNat clas [ty]     -- clas = KnownNat
  | Just n <- isNumLitTy ty = makeLitDict clas ty (EvNum n)
matchKnownNat _ _           = return NoInstance

matchKnownSymbol :: Class -> [Type] -> TcS LookupInstResult
matchKnownSymbol clas [ty]  -- clas = KnownSymbol
  | Just n <- isStrLitTy ty = makeLitDict clas ty (EvStr n)
matchKnownSymbol _ _       = return NoInstance


makeLitDict :: Class -> Type -> EvLit -> TcS LookupInstResult
-- makeLitDict adds a coercion that will convert the literal into a dictionary
-- of the appropriate type.  See Note [KnownNat & KnownSymbol and EvLit]
-- in TcEvidence.  The coercion happens in 2 steps:
--
--     Integer -> SNat n     -- representation of literal to singleton
--     SNat n  -> KnownNat n -- singleton to dictionary
--
--     The process is mirrored for Symbols:
--     String    -> SSymbol n
--     SSymbol n -> KnownSymbol n -}
makeLitDict clas ty evLit
    | Just (_, co_dict) <- tcInstNewTyCon_maybe (classTyCon clas) [ty]
          -- co_dict :: KnownNat n ~ SNat n
    , [ meth ]   <- classMethods clas
    , Just tcRep <- tyConAppTyCon_maybe -- SNat
                      $ funResultTy         -- SNat n
                      $ dropForAlls         -- KnownNat n => SNat n
                      $ idType meth         -- forall n. KnownNat n => SNat n
    , Just (_, co_rep) <- tcInstNewTyCon_maybe tcRep [ty]
          -- SNat n ~ Integer
    , let ev_tm = mkEvCast (EvLit evLit) (mkTcSymCo (mkTcTransCo co_dict co_rep))
    = return $ GenInst { lir_new_theta = []
                       , lir_mk_ev     = \_ -> ev_tm
                       , lir_safe_over = True }

    | otherwise
    = panicTcS (text "Unexpected evidence for" <+> ppr (className clas)
                     $$ vcat (map (ppr . idType) (classMethods clas)))


{- ********************************************************************
*                                                                     *
                   Class lookup for Typeable
*                                                                     *
***********************************************************************-}

-- | Assumes that we've checked that this is the 'Typeable' class,
-- and it was applied to the correct argument.
matchTypeable :: Class -> [Type] -> TcS LookupInstResult
matchTypeable clas [k,t]  -- clas = Typeable
  -- For the first two cases, See Note [No Typeable for polytypes or qualified types]
  | isForAllTy k                      = return NoInstance   -- Polytype
  | isJust (tcSplitPredFunTy_maybe t) = return NoInstance   -- Qualified type

  -- Now cases that do work
  | k `eqType` typeNatKind                 = doTyLit knownNatClassName    t
  | k `eqType` typeSymbolKind              = doTyLit knownSymbolClassName t
  | Just (tc, ks) <- splitTyConApp_maybe t -- See Note [Typeable (T a b c)]
  , onlyNamedBndrsApplied tc ks            = doTyConApp clas t ks
  | Just (f,kt)   <- splitAppTy_maybe t    = doTyApp    clas t f kt

matchTypeable _ _ = return NoInstance

doTyConApp :: Class -> Type -> [Kind] -> TcS LookupInstResult
-- Representation for type constructor applied to some kinds
doTyConApp clas ty args
  = return $ GenInst (map (mk_typeable_pred clas) args)
                     (\tms -> EvTypeable ty $ EvTypeableTyCon tms)
                     True

-- Representation for concrete kinds.  We just use the kind itself,
-- but first we must make sure that we've instantiated all kind-
-- polymorphism, but no more.
onlyNamedBndrsApplied :: TyCon -> [KindOrType] -> Bool
onlyNamedBndrsApplied tc ks
 = all isNamedTyConBinder         used_bndrs &&
   all (not . isNamedTyConBinder) leftover_bndrs
 where
   bndrs                        = tyConBinders tc
   (used_bndrs, leftover_bndrs) = splitAtList ks bndrs

doTyApp :: Class -> Type -> Type -> KindOrType -> TcS LookupInstResult
-- Representation for an application of a type to a type-or-kind.
--  This may happen when the type expression starts with a type variable.
--  Example (ignoring kind parameter):
--    Typeable (f Int Char)                      -->
--    (Typeable (f Int), Typeable Char)          -->
--    (Typeable f, Typeable Int, Typeable Char)  --> (after some simp. steps)
--    Typeable f
doTyApp clas ty f tk
  | isForAllTy (typeKind f)
  = return NoInstance -- We can't solve until we know the ctr.
  | otherwise
  = do { traceTcS "doTyApp" (ppr clas $$ ppr ty $$ ppr f $$ ppr tk)
       ; return $ GenInst [mk_typeable_pred clas f, mk_typeable_pred clas tk]
                     (\[t1,t2] -> EvTypeable ty $ EvTypeableTyApp t1 t2)
                     True }

-- Emit a `Typeable` constraint for the given type.
mk_typeable_pred :: Class -> Type -> PredType
mk_typeable_pred clas ty = mkClassPred clas [ typeKind ty, ty ]

  -- Typeable is implied by KnownNat/KnownSymbol. In the case of a type literal
  -- we generate a sub-goal for the appropriate class. See #10348 for what
  -- happens when we fail to do this.
doTyLit :: Name -> Type -> TcS LookupInstResult
doTyLit kc t = do { kc_clas <- tcLookupClass kc
                  ; let kc_pred    = mkClassPred kc_clas [ t ]
                        mk_ev [ev] = EvTypeable t $ EvTypeableTyLit ev
                        mk_ev _    = panic "doTyLit"
                  ; return (GenInst [kc_pred] mk_ev True) }

{- Note [Typeable (T a b c)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For type applications we always decompose using binary application,
via doTyApp, until we get to a *kind* instantiation.  Exmaple
   Proxy :: forall k. k -> *

To solve Typeable (Proxy (* -> *) Maybe) we
  - First decompose with doTyApp,
    to get (Typeable (Proxy (* -> *))) and Typeable Maybe
  - Then solve (Typeable (Proxy (* -> *))) with doTyConApp

If we attempt to short-cut by solving it all at once, via
doTyCOnAPp


Note [No Typeable for polytypes or qualified types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We do not support impredicative typeable, such as
   Typeable (forall a. a->a)
   Typeable (Eq a => a -> a)
   Typeable (() => Int)
   Typeable (((),()) => Int)

See Trac #9858.  For forall's the case is clear: we simply don't have
a TypeRep for them.  For qualified but not polymorphic types, like
(Eq a => a -> a), things are murkier.  But:

 * We don't need a TypeRep for these things.  TypeReps are for
   monotypes only.

 * Perhaps we could treat `=>` as another type constructor for `Typeable`
   purposes, and thus support things like `Eq Int => Int`, however,
   at the current state of affairs this would be an odd exception as
   no other class works with impredicative types.
   For now we leave it off, until we have a better story for impredicativity.
-}

solveCallStack :: CtEvidence -> EvCallStack -> TcS ()
solveCallStack ev ev_cs = do
  -- We're given ev_cs :: CallStack, but the evidence term should be a
  -- dictionary, so we have to coerce ev_cs to a dictionary for
  -- `IP ip CallStack`. See Note [Overview of implicit CallStacks]
  let ev_tm = mkEvCast (EvCallStack ev_cs) (wrapIP (ctEvPred ev))
  setWantedEvBind (ctEvId ev) ev_tm

{- ********************************************************************
*                                                                     *
                   Class lookup for lifted equality
*                                                                     *
***********************************************************************-}

-- See also Note [The equality types story] in TysPrim
matchLiftedEquality :: [Type] -> TcS LookupInstResult
matchLiftedEquality args
  = return (GenInst { lir_new_theta = [ mkTyConApp eqPrimTyCon args ]
                    , lir_mk_ev     = EvDFunApp (dataConWrapId heqDataCon) args
                    , lir_safe_over = True })

-- See also Note [The equality types story] in TysPrim
matchLiftedCoercible :: [Type] -> TcS LookupInstResult
matchLiftedCoercible args@[k, t1, t2]
  = return (GenInst { lir_new_theta = [ mkTyConApp eqReprPrimTyCon args' ]
                    , lir_mk_ev     = EvDFunApp (dataConWrapId coercibleDataCon)
                                                args
                    , lir_safe_over = True })
  where
    args' = [k, k, t1, t2]
matchLiftedCoercible args = pprPanic "matchLiftedCoercible" (ppr args)