summaryrefslogtreecommitdiff
path: root/compiler/typecheck/TcMType.lhs
blob: 2c01d2300a4505c34164414c5f746b6d8f862d7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%

Monadic type operations

This module contains monadic operations over types that contain
mutable type variables

\begin{code}
module TcMType (
  TcTyVar, TcKind, TcType, TcTauType, TcThetaType, TcTyVarSet,

  --------------------------------
  -- Creating new mutable type variables
  newFlexiTyVar,
  newFlexiTyVarTy,		-- Kind -> TcM TcType
  newFlexiTyVarTys,		-- Int -> Kind -> TcM [TcType]
  newKindVar, newKindVars, 
  mkTcTyVarName,

  newMetaTyVar, readMetaTyVar, writeMetaTyVar, writeMetaTyVarRef,
  isFilledMetaTyVar, isFlexiMetaTyVar,

  --------------------------------
  -- Creating new evidence variables
  newEvVar, newCoVar, newEvVars,
  newIP, newDict, newSilentGiven, isSilentEvVar,

  newWantedEvVar, newWantedEvVars,
  newTcEvBinds, addTcEvBind,

  --------------------------------
  -- Instantiation
  tcInstTyVars, tcInstSigTyVars,
  tcInstType, 
  tcInstSkolTyVars, tcInstSuperSkolTyVars, tcInstSkolTyVar, tcInstSkolType,
  tcSkolDFunType, tcSuperSkolTyVars,

  --------------------------------
  -- Checking type validity
  Rank, UserTypeCtxt(..), checkValidType, checkValidMonoType,
  SourceTyCtxt(..), checkValidTheta, 
  checkValidInstHead, checkValidInstance, 
  checkInstTermination, checkValidTypeInst, checkTyFamFreeness, 
  arityErr, 
  growPredTyVars, growThetaTyVars, validDerivPred,

  --------------------------------
  -- Zonking
  zonkType, mkZonkTcTyVar, zonkTcPredType, 
  zonkTcTypeCarefully, skolemiseUnboundMetaTyVar,
  zonkTcTyVar, zonkTcTyVars, zonkTcTyVarsAndFV, zonkSigTyVar,
  zonkQuantifiedTyVar, zonkQuantifiedTyVars,
  zonkTcType, zonkTcTypes, zonkTcThetaType,
  zonkTcKindToKind, zonkTcKind, 
  zonkImplication, zonkEvVar, zonkWantedEvVar, zonkFlavoredEvVar,
  zonkWC, zonkWantedEvVars,
  zonkTcTypeAndSubst,
  tcGetGlobalTyVars, 


  readKindVar, writeKindVar
  ) where

#include "HsVersions.h"

-- friends:
import TypeRep
import TcType
import Type
import Class
import TyCon
import Var

-- others:
import HsSyn		-- HsType
import TcRnMonad        -- TcType, amongst others
import Id
import FunDeps
import Name
import VarSet
import ErrUtils
import DynFlags
import Util
import Maybes
import ListSetOps
import BasicTypes
import SrcLoc
import Outputable
import FastString
import Unique( Unique )
import Bag

import Control.Monad
import Data.List        ( (\\) )
\end{code}


%************************************************************************
%*									*
	Kind variables
%*									*
%************************************************************************

\begin{code}
newKindVar :: TcM TcKind
newKindVar = do	{ uniq <- newUnique
		; ref <- newMutVar Flexi
		; return (mkTyVarTy (mkKindVar uniq ref)) }

newKindVars :: Int -> TcM [TcKind]
newKindVars n = mapM (\ _ -> newKindVar) (nOfThem n ())
\end{code}


%************************************************************************
%*									*
     Evidence variables; range over constraints we can abstract over
%*									*
%************************************************************************

\begin{code}
newEvVars :: TcThetaType -> TcM [EvVar]
newEvVars theta = mapM newEvVar theta

newWantedEvVar :: TcPredType -> TcM EvVar 
newWantedEvVar (EqPred ty1 ty2) = newCoVar ty1 ty2
newWantedEvVar (ClassP cls tys) = newDict cls tys
newWantedEvVar (IParam ip ty)   = newIP ip ty

newWantedEvVars :: TcThetaType -> TcM [EvVar] 
newWantedEvVars theta = mapM newWantedEvVar theta 

--------------
newEvVar :: TcPredType -> TcM EvVar
-- Creates new *rigid* variables for predicates
newEvVar (EqPred ty1 ty2) = newCoVar ty1 ty2
newEvVar (ClassP cls tys) = newDict  cls tys
newEvVar (IParam ip ty)   = newIP    ip ty

newCoVar :: TcType -> TcType -> TcM CoVar
newCoVar ty1 ty2
  = do { name <- newName (mkVarOccFS (fsLit "co"))
       ; return (mkCoVar name (mkPredTy (EqPred ty1 ty2))) }

newIP :: IPName Name -> TcType -> TcM IpId
newIP ip ty
  = do 	{ name <- newName (getOccName (ipNameName ip))
        ; return (mkLocalId name (mkPredTy (IParam ip ty))) }

newDict :: Class -> [TcType] -> TcM DictId
newDict cls tys 
  = do { name <- newName (mkDictOcc (getOccName cls))
       ; return (mkLocalId name (mkPredTy (ClassP cls tys))) }

newName :: OccName -> TcM Name
newName occ
  = do { uniq <- newUnique
       ; loc  <- getSrcSpanM
       ; return (mkInternalName uniq occ loc) }

-----------------
newSilentGiven :: PredType -> TcM EvVar
-- Make a dictionary for a "silent" given dictionary
-- Behaves just like any EvVar except that it responds True to isSilentDict
-- This is used only to suppress confusing error reports
newSilentGiven (ClassP cls tys)
  = do { uniq <- newUnique
       ; let name = mkSystemName uniq (mkDictOcc (getOccName cls))
       ; return (mkLocalId name (mkPredTy (ClassP cls tys))) }
newSilentGiven (EqPred ty1 ty2)
  = do { uniq <- newUnique
       ; let name = mkSystemName uniq (mkTyVarOccFS (fsLit "co"))
       ; return (mkCoVar name (mkPredTy (EqPred ty1 ty2))) }
newSilentGiven pred@(IParam {})
  = pprPanic "newSilentDict" (ppr pred) -- Implicit parameters rejected earlier

isSilentEvVar :: EvVar -> Bool
isSilentEvVar v = isSystemName (Var.varName v)
  -- Notice that all *other* evidence variables get Internal Names
\end{code}


%************************************************************************
%*									*
	SkolemTvs (immutable)
%*									*
%************************************************************************

\begin{code}
tcInstType :: ([TyVar] -> TcM [TcTyVar]) 		-- How to instantiate the type variables
	   -> TcType 					-- Type to instantiate
	   -> TcM ([TcTyVar], TcThetaType, TcType)	-- Result
		-- (type vars (excl coercion vars), preds (incl equalities), rho)
tcInstType inst_tyvars ty
  = case tcSplitForAllTys ty of
	([],     rho) -> let	-- There may be overloading despite no type variables;
				-- 	(?x :: Int) => Int -> Int
			   (theta, tau) = tcSplitPhiTy rho
			 in
			 return ([], theta, tau)

	(tyvars, rho) -> do { tyvars' <- inst_tyvars tyvars

			    ; let  tenv = zipTopTvSubst tyvars (mkTyVarTys tyvars')
				-- Either the tyvars are freshly made, by inst_tyvars,
                                -- or any nested foralls have different binders.
                                -- Either way, zipTopTvSubst is ok

			    ; let  (theta, tau) = tcSplitPhiTy (substTy tenv rho)
			    ; return (tyvars', theta, tau) }

tcSkolDFunType :: Type -> TcM ([TcTyVar], TcThetaType, TcType)
-- Instantiate a type signature with skolem constants, but 
-- do *not* give them fresh names, because we want the name to
-- be in the type environment: it is lexically scoped.
tcSkolDFunType ty = tcInstType (\tvs -> return (tcSuperSkolTyVars tvs)) ty

tcSuperSkolTyVars :: [TyVar] -> [TcTyVar]
-- Make skolem constants, but do *not* give them new names, as above
-- Moreover, make them "super skolems"; see comments with superSkolemTv
tcSuperSkolTyVars tyvars
  = [ mkTcTyVar (tyVarName tv) (tyVarKind tv) superSkolemTv
    | tv <- tyvars ]

tcInstSkolTyVar :: Bool -> TyVar -> TcM TcTyVar
-- Instantiate the tyvar, using 
--	* the occ-name and kind of the supplied tyvar, 
--	* the unique from the monad,
--	* the location either from the tyvar (skol_info = SigSkol)
--                     or from the monad (otherwise)
tcInstSkolTyVar overlappable tyvar
  = do	{ uniq <- newUnique
        ; loc <-  getSrcSpanM
	; let new_name = mkInternalName uniq occ loc
        ; return (mkTcTyVar new_name kind (SkolemTv overlappable)) }
  where
    old_name = tyVarName tyvar
    occ      = nameOccName old_name
    kind     = tyVarKind tyvar

tcInstSkolTyVars :: [TyVar] -> TcM [TcTyVar]
tcInstSkolTyVars tyvars = mapM (tcInstSkolTyVar False) tyvars

tcInstSuperSkolTyVars :: [TyVar] -> TcM [TcTyVar]
tcInstSuperSkolTyVars tyvars = mapM (tcInstSkolTyVar True) tyvars

tcInstSkolType :: TcType -> TcM ([TcTyVar], TcThetaType, TcType)
-- Instantiate a type with fresh skolem constants
-- Binding location comes from the monad
tcInstSkolType ty = tcInstType tcInstSkolTyVars ty

tcInstSigTyVars :: [TyVar] -> TcM [TcTyVar]
-- Make meta SigTv type variables for patten-bound scoped type varaibles
-- We use SigTvs for them, so that they can't unify with arbitrary types
tcInstSigTyVars = mapM tcInstSigTyVar

tcInstSigTyVar :: TyVar -> TcM TcTyVar
tcInstSigTyVar tyvar
  = do	{ uniq <- newMetaUnique
 	; ref <- newMutVar Flexi
        ; let name = setNameUnique (tyVarName tyvar) uniq
   	        -- Use the same OccName so that the tidy-er 
		-- doesn't rename 'a' to 'a0' etc
	      kind = tyVarKind tyvar
	; return (mkTcTyVar name kind (MetaTv SigTv ref)) }
\end{code}


%************************************************************************
%*									*
	MetaTvs (meta type variables; mutable)
%*									*
%************************************************************************

\begin{code}
newMetaTyVar :: MetaInfo -> Kind -> TcM TcTyVar
-- Make a new meta tyvar out of thin air
newMetaTyVar meta_info kind
  = do	{ uniq <- newMetaUnique
 	; ref <- newMutVar Flexi
        ; let name = mkTcTyVarName uniq s
              s = case meta_info of
                        TauTv -> fsLit "t"
                        TcsTv -> fsLit "u"
                        SigTv -> fsLit "a"
	; return (mkTcTyVar name kind (MetaTv meta_info ref)) }

mkTcTyVarName :: Unique -> FastString -> Name
-- Make sure that fresh TcTyVar names finish with a digit
-- leaving the un-cluttered names free for user names
mkTcTyVarName uniq str = mkSysTvName uniq str

readMetaTyVar :: TyVar -> TcM MetaDetails
readMetaTyVar tyvar = ASSERT2( isMetaTyVar tyvar, ppr tyvar )
		      readMutVar (metaTvRef tyvar)

isFilledMetaTyVar :: TyVar -> TcM Bool
-- True of a filled-in (Indirect) meta type variable
isFilledMetaTyVar tv
  | not (isTcTyVar tv) = return False
  | MetaTv _ ref <- tcTyVarDetails tv
  = do 	{ details <- readMutVar ref
	; return (isIndirect details) }
  | otherwise = return False

isFlexiMetaTyVar :: TyVar -> TcM Bool
-- True of a un-filled-in (Flexi) meta type variable
isFlexiMetaTyVar tv
  | not (isTcTyVar tv) = return False
  | MetaTv _ ref <- tcTyVarDetails tv
  = do 	{ details <- readMutVar ref
	; return (isFlexi details) }
  | otherwise = return False

--------------------
writeMetaTyVar :: TcTyVar -> TcType -> TcM ()
-- Write into a currently-empty MetaTyVar

writeMetaTyVar tyvar ty
  | not debugIsOn 
  = writeMetaTyVarRef tyvar (metaTvRef tyvar) ty

-- Everything from here on only happens if DEBUG is on
  | not (isTcTyVar tyvar)
  = WARN( True, text "Writing to non-tc tyvar" <+> ppr tyvar )
    return ()

  | MetaTv _ ref <- tcTyVarDetails tyvar
  = writeMetaTyVarRef tyvar ref ty

  | otherwise
  = WARN( True, text "Writing to non-meta tyvar" <+> ppr tyvar )
    return ()

--------------------
writeMetaTyVarRef :: TcTyVar -> TcRef MetaDetails -> TcType -> TcM ()
-- Here the tyvar is for error checking only; 
-- the ref cell must be for the same tyvar
writeMetaTyVarRef tyvar ref ty
  | not debugIsOn 
  = do { traceTc "writeMetaTyVar" (ppr tyvar <+> text ":=" <+> ppr ty)
       ; writeMutVar ref (Indirect ty) }

-- Everything from here on only happens if DEBUG is on
  | not (isPredTy tv_kind)   -- Don't check kinds for updates to coercion variables
  , not (ty_kind `isSubKind` tv_kind)
  = WARN( True, hang (text "Ill-kinded update to meta tyvar")
                   2 (ppr tyvar $$ ppr tv_kind $$ ppr ty $$ ppr ty_kind) )
    return ()

  | otherwise
  = do { meta_details <- readMutVar ref; 
       ; ASSERT2( isFlexi meta_details, 
                  hang (text "Double update of meta tyvar")
                   2 (ppr tyvar $$ ppr meta_details) )

         traceTc "writeMetaTyVar" (ppr tyvar <+> text ":=" <+> ppr ty)
       ; writeMutVar ref (Indirect ty) }
  where
    tv_kind = tyVarKind tyvar
    ty_kind = typeKind ty
\end{code}


%************************************************************************
%*									*
	MetaTvs: TauTvs
%*									*
%************************************************************************

\begin{code}
newFlexiTyVar :: Kind -> TcM TcTyVar
newFlexiTyVar kind = newMetaTyVar TauTv kind

newFlexiTyVarTy  :: Kind -> TcM TcType
newFlexiTyVarTy kind = do
    tc_tyvar <- newFlexiTyVar kind
    return (TyVarTy tc_tyvar)

newFlexiTyVarTys :: Int -> Kind -> TcM [TcType]
newFlexiTyVarTys n kind = mapM newFlexiTyVarTy (nOfThem n kind)

tcInstTyVars :: [TyVar] -> TcM ([TcTyVar], [TcType], TvSubst)
-- Instantiate with META type variables
tcInstTyVars tyvars
  = do	{ tc_tvs <- mapM tcInstTyVar tyvars
	; let tys = mkTyVarTys tc_tvs
	; return (tc_tvs, tys, zipTopTvSubst tyvars tys) }
		-- Since the tyvars are freshly made,
		-- they cannot possibly be captured by
		-- any existing for-alls.  Hence zipTopTvSubst

tcInstTyVar :: TyVar -> TcM TcTyVar
-- Make a new unification variable tyvar whose Name and Kind 
-- come from an existing TyVar
tcInstTyVar tyvar
  = do	{ uniq <- newMetaUnique
 	; ref <- newMutVar Flexi
        ; let name = mkSystemName uniq (getOccName tyvar)
	      kind = tyVarKind tyvar
	; return (mkTcTyVar name kind (MetaTv TauTv ref)) }
\end{code}


%************************************************************************
%*									*
	MetaTvs: SigTvs
%*									*
%************************************************************************

\begin{code}
zonkSigTyVar :: TcTyVar -> TcM TcTyVar
zonkSigTyVar sig_tv 
  | isSkolemTyVar sig_tv 
  = return sig_tv	-- Happens in the call in TcBinds.checkDistinctTyVars
  | otherwise
  = ASSERT( isSigTyVar sig_tv )
    do { ty <- zonkTcTyVar sig_tv
       ; return (tcGetTyVar "zonkSigTyVar" ty) }
	-- 'ty' is bound to be a type variable, because SigTvs
	-- can only be unified with type variables
\end{code}



%************************************************************************
%*									*
\subsection{Zonking -- the exernal interfaces}
%*									*
%************************************************************************

@tcGetGlobalTyVars@ returns a fully-zonked set of tyvars free in the environment.
To improve subsequent calls to the same function it writes the zonked set back into
the environment.

\begin{code}
tcGetGlobalTyVars :: TcM TcTyVarSet
tcGetGlobalTyVars
  = do { (TcLclEnv {tcl_tyvars = gtv_var}) <- getLclEnv
       ; gbl_tvs  <- readMutVar gtv_var
       ; gbl_tvs' <- zonkTcTyVarsAndFV gbl_tvs
       ; writeMutVar gtv_var gbl_tvs'
       ; return gbl_tvs' }
\end{code}

-----------------  Type variables

\begin{code}
zonkTcTyVars :: [TcTyVar] -> TcM [TcType]
zonkTcTyVars tyvars = mapM zonkTcTyVar tyvars

zonkTcTyVarsAndFV :: TcTyVarSet -> TcM TcTyVarSet
zonkTcTyVarsAndFV tyvars = tyVarsOfTypes <$> mapM zonkTcTyVar (varSetElems tyvars)

-----------------  Types
zonkTcTypeCarefully :: TcType -> TcM TcType
-- Do not zonk type variables free in the environment
zonkTcTypeCarefully ty
  = do { env_tvs <- tcGetGlobalTyVars
       ; zonkType (zonk_tv env_tvs) ty }
  where
    zonk_tv env_tvs tv
      | tv `elemVarSet` env_tvs 
      = return (TyVarTy tv)
      | otherwise
      = ASSERT( isTcTyVar tv )
    	case tcTyVarDetails tv of
          SkolemTv {}   -> return (TyVarTy tv)
          RuntimeUnk {} -> return (TyVarTy tv)
          FlatSkol ty   -> zonkType (zonk_tv env_tvs) ty
          MetaTv _ ref  -> do { cts <- readMutVar ref
                              ; case cts of
			           Flexi       -> return (TyVarTy tv)
			           Indirect ty -> zonkType (zonk_tv env_tvs) ty }

zonkTcType :: TcType -> TcM TcType
-- Simply look through all Flexis
zonkTcType ty = zonkType zonkTcTyVar ty

zonkTcTyVar :: TcTyVar -> TcM TcType
-- Simply look through all Flexis
zonkTcTyVar tv
  = ASSERT2( isTcTyVar tv, ppr tv )
    case tcTyVarDetails tv of
      SkolemTv {}   -> return (TyVarTy tv)
      RuntimeUnk {} -> return (TyVarTy tv)
      FlatSkol ty   -> zonkTcType ty
      MetaTv _ ref  -> do { cts <- readMutVar ref
                          ; case cts of
		               Flexi       -> return (TyVarTy tv)
			       Indirect ty -> zonkTcType ty }

zonkTcTypeAndSubst :: TvSubst -> TcType -> TcM TcType
-- Zonk, and simultaneously apply a non-necessarily-idempotent substitution
zonkTcTypeAndSubst subst ty = zonkType zonk_tv ty
  where
    zonk_tv tv 
      = case tcTyVarDetails tv of
          SkolemTv {}   -> return (TyVarTy tv)
          RuntimeUnk {} -> return (TyVarTy tv)
          FlatSkol ty   -> zonkType zonk_tv ty
          MetaTv _ ref  -> do { cts <- readMutVar ref
                              ; case cts of
			           Flexi       -> zonk_flexi tv
			           Indirect ty -> zonkType zonk_tv ty }
    zonk_flexi tv
      = case lookupTyVar subst tv of
          Just ty -> zonkType zonk_tv ty
          Nothing -> return (TyVarTy tv)

zonkTcTypes :: [TcType] -> TcM [TcType]
zonkTcTypes tys = mapM zonkTcType tys

zonkTcThetaType :: TcThetaType -> TcM TcThetaType
zonkTcThetaType theta = mapM zonkTcPredType theta

zonkTcPredType :: TcPredType -> TcM TcPredType
zonkTcPredType (ClassP c ts)  = ClassP c <$> zonkTcTypes ts
zonkTcPredType (IParam n t)   = IParam n <$> zonkTcType t
zonkTcPredType (EqPred t1 t2) = EqPred <$> zonkTcType t1 <*> zonkTcType t2
\end{code}

-------------------  These ...ToType, ...ToKind versions
		     are used at the end of type checking

\begin{code}
zonkQuantifiedTyVars :: [TcTyVar] -> TcM [TcTyVar]
zonkQuantifiedTyVars = mapM zonkQuantifiedTyVar

zonkQuantifiedTyVar :: TcTyVar -> TcM TcTyVar
-- The quantified type variables often include meta type variables
-- we want to freeze them into ordinary type variables, and
-- default their kind (e.g. from OpenTypeKind to TypeKind)
-- 			-- see notes with Kind.defaultKind
-- The meta tyvar is updated to point to the new skolem TyVar.  Now any 
-- bound occurences of the original type variable will get zonked to 
-- the immutable version.
--
-- We leave skolem TyVars alone; they are immutable.
zonkQuantifiedTyVar tv
  = ASSERT2( isTcTyVar tv, ppr tv ) 
    case tcTyVarDetails tv of
      SkolemTv {} -> WARN( True, ppr tv )  -- Dec10: Can this really happen?
                     do { kind <- zonkTcType (tyVarKind tv)
                        ; return $ setTyVarKind tv kind }
	-- It might be a skolem type variable, 
	-- for example from a user type signature

      MetaTv _ _ref -> 
#ifdef DEBUG               
			-- [Sept 04] Check for non-empty.  
		 	-- See note [Silly Type Synonym]
                      (readMutVar _ref >>= \cts -> 
                       case cts of 
                             Flexi -> return ()
                             Indirect ty -> WARN( True, ppr tv $$ ppr ty )
                                            return ()) >>
#endif
                      skolemiseUnboundMetaTyVar tv vanillaSkolemTv
      _other -> pprPanic "zonkQuantifiedTyVar" (ppr tv) -- FlatSkol, RuntimeUnk

skolemiseUnboundMetaTyVar :: TcTyVar -> TcTyVarDetails -> TcM TyVar
-- We have a Meta tyvar with a ref-cell inside it
-- Skolemise it, including giving it a new Name, so that
--   we are totally out of Meta-tyvar-land
-- We create a skolem TyVar, not a regular TyVar
--   See Note [Zonking to Skolem]
skolemiseUnboundMetaTyVar tv details
  = ASSERT2( isMetaTyVar tv, ppr tv ) 
    do  { span <- getSrcSpanM    -- Get the location from "here"
                                 -- ie where we are generalising
        ; uniq <- newUnique      -- Remove it from TcMetaTyVar unique land
	; let final_kind = defaultKind (tyVarKind tv)
              final_name = mkInternalName uniq (getOccName tv) span
              final_tv   = mkTcTyVar final_name final_kind details
	; writeMetaTyVar tv (mkTyVarTy final_tv)
	; return final_tv }
\end{code}

\begin{code}
zonkImplication :: Implication -> TcM Implication
zonkImplication implic@(Implic { ic_given = given 
                               , ic_wanted = wanted
                               , ic_loc = loc })
  = do {    -- No need to zonk the skolems
       ; given'  <- mapM zonkEvVar given
       ; loc'    <- zonkGivenLoc loc
       ; wanted' <- zonkWC wanted
       ; return (implic { ic_given = given'
                        , ic_wanted = wanted'
                        , ic_loc = loc' }) }

zonkEvVar :: EvVar -> TcM EvVar
zonkEvVar var = do { ty' <- zonkTcType (varType var)
                   ; return (setVarType var ty') }

zonkFlavoredEvVar :: FlavoredEvVar -> TcM FlavoredEvVar
zonkFlavoredEvVar (EvVarX ev fl)
  = do { ev' <- zonkEvVar ev
       ; fl' <- zonkFlavor fl
       ; return (EvVarX ev' fl') }

zonkWC :: WantedConstraints -> TcM WantedConstraints
zonkWC (WC { wc_flat = flat, wc_impl = implic, wc_insol = insol })
  = do { flat'   <- zonkWantedEvVars flat
       ; implic' <- mapBagM zonkImplication implic
       ; insol'  <- mapBagM zonkFlavoredEvVar insol
       ; return (WC { wc_flat = flat', wc_impl = implic', wc_insol = insol' }) }

zonkWantedEvVars :: Bag WantedEvVar -> TcM (Bag WantedEvVar)
zonkWantedEvVars = mapBagM zonkWantedEvVar

zonkWantedEvVar :: WantedEvVar -> TcM WantedEvVar
zonkWantedEvVar (EvVarX v l) = do { v' <- zonkEvVar v; return (EvVarX v' l) }

zonkFlavor :: CtFlavor -> TcM CtFlavor
zonkFlavor (Given loc gk) = do { loc' <- zonkGivenLoc loc; return (Given loc' gk) }
zonkFlavor fl             = return fl

zonkGivenLoc :: GivenLoc -> TcM GivenLoc
-- GivenLocs may have unification variables inside them!
zonkGivenLoc (CtLoc skol_info span ctxt)
  = do { skol_info' <- zonkSkolemInfo skol_info
       ; return (CtLoc skol_info' span ctxt) }

zonkSkolemInfo :: SkolemInfo -> TcM SkolemInfo
zonkSkolemInfo (SigSkol cx ty)  = do { ty' <- zonkTcType ty
                                     ; return (SigSkol cx ty') }
zonkSkolemInfo (InferSkol ntys) = do { ntys' <- mapM do_one ntys
                                     ; return (InferSkol ntys') }
  where
    do_one (n, ty) = do { ty' <- zonkTcType ty; return (n, ty') }
zonkSkolemInfo skol_info = return skol_info
\end{code}

Note [Silly Type Synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
	type C u a = u	-- Note 'a' unused

	foo :: (forall a. C u a -> C u a) -> u
	foo x = ...

	bar :: Num u => u
	bar = foo (\t -> t + t)

* From the (\t -> t+t) we get type  {Num d} =>  d -> d
  where d is fresh.

* Now unify with type of foo's arg, and we get:
	{Num (C d a)} =>  C d a -> C d a
  where a is fresh.

* Now abstract over the 'a', but float out the Num (C d a) constraint
  because it does not 'really' mention a.  (see exactTyVarsOfType)
  The arg to foo becomes
	\/\a -> \t -> t+t

* So we get a dict binding for Num (C d a), which is zonked to give
	a = ()
  [Note Sept 04: now that we are zonking quantified type variables
  on construction, the 'a' will be frozen as a regular tyvar on
  quantification, so the floated dict will still have type (C d a).
  Which renders this whole note moot; happily!]

* Then the \/\a abstraction has a zonked 'a' in it.

All very silly.   I think its harmless to ignore the problem.  We'll end up with
a \/\a in the final result but all the occurrences of a will be zonked to ()

Note [Zonking to Skolem]
~~~~~~~~~~~~~~~~~~~~~~~~
We used to zonk quantified type variables to regular TyVars.  However, this
leads to problems.  Consider this program from the regression test suite:

  eval :: Int -> String -> String -> String
  eval 0 root actual = evalRHS 0 root actual

  evalRHS :: Int -> a
  evalRHS 0 root actual = eval 0 root actual

It leads to the deferral of an equality (wrapped in an implication constraint)

  forall a. (String -> String -> String) ~ a

which is propagated up to the toplevel (see TcSimplify.tcSimplifyInferCheck).
In the meantime `a' is zonked and quantified to form `evalRHS's signature.
This has the *side effect* of also zonking the `a' in the deferred equality
(which at this point is being handed around wrapped in an implication
constraint).

Finally, the equality (with the zonked `a') will be handed back to the
simplifier by TcRnDriver.tcRnSrcDecls calling TcSimplify.tcSimplifyTop.
If we zonk `a' with a regular type variable, we will have this regular type
variable now floating around in the simplifier, which in many places assumes to
only see proper TcTyVars.

We can avoid this problem by zonking with a skolem.  The skolem is rigid
(which we require for a quantified variable), but is still a TcTyVar that the
simplifier knows how to deal with.


%************************************************************************
%*									*
\subsection{Zonking -- the main work-horses: zonkType, zonkTyVar}
%*									*
%*		For internal use only!					*
%*									*
%************************************************************************

\begin{code}
-- For unbound, mutable tyvars, zonkType uses the function given to it
-- For tyvars bound at a for-all, zonkType zonks them to an immutable
--	type variable and zonks the kind too

zonkType :: (TcTyVar -> TcM Type)  -- What to do with TcTyVars
         -> TcType -> TcM Type
zonkType zonk_tc_tyvar ty
  = go ty
  where
    go (TyConApp tc tys) = do tys' <- mapM go tys
                              return (TyConApp tc tys')

    go (PredTy p)        = do p' <- go_pred p
                              return (PredTy p')

    go (FunTy arg res)   = do arg' <- go arg
                              res' <- go res
                              return (FunTy arg' res')

    go (AppTy fun arg)   = do fun' <- go fun
                              arg' <- go arg
                              return (mkAppTy fun' arg')
		-- NB the mkAppTy; we might have instantiated a
		-- type variable to a type constructor, so we need
		-- to pull the TyConApp to the top.

	-- The two interesting cases!
    go (TyVarTy tyvar) | isTcTyVar tyvar = zonk_tc_tyvar tyvar
		       | otherwise	 = return (TyVarTy tyvar)
		-- Ordinary (non Tc) tyvars occur inside quantified types

    go (ForAllTy tyvar ty) = ASSERT( isImmutableTyVar tyvar ) do
                             ty' <- go ty
                             tyvar' <- return tyvar
                             return (ForAllTy tyvar' ty')

    go_pred (ClassP c tys)   = do tys' <- mapM go tys
                                  return (ClassP c tys')
    go_pred (IParam n ty)    = do ty' <- go ty
                                  return (IParam n ty')
    go_pred (EqPred ty1 ty2) = do ty1' <- go ty1
                                  ty2' <- go ty2
                                  return (EqPred ty1' ty2')

mkZonkTcTyVar :: (TcTyVar -> TcM Type)	-- What to do for an *mutable Flexi* var
 	      -> TcTyVar -> TcM TcType
mkZonkTcTyVar unbound_var_fn tyvar 
  = ASSERT( isTcTyVar tyvar )
    case tcTyVarDetails tyvar of
      SkolemTv {}    -> return (TyVarTy tyvar)
      RuntimeUnk {}  -> return (TyVarTy tyvar)
      FlatSkol ty    -> zonkType (mkZonkTcTyVar unbound_var_fn) ty
      MetaTv _ ref   -> do { cts <- readMutVar ref
			   ; case cts of    
			       Flexi       -> unbound_var_fn tyvar  
			       Indirect ty -> zonkType (mkZonkTcTyVar unbound_var_fn) ty }
\end{code}



%************************************************************************
%*									*
			Zonking kinds
%*									*
%************************************************************************

\begin{code}
readKindVar  :: KindVar -> TcM (MetaDetails)
writeKindVar :: KindVar -> TcKind -> TcM ()
readKindVar  kv = readMutVar (kindVarRef kv)
writeKindVar kv val = writeMutVar (kindVarRef kv) (Indirect val)

-------------
zonkTcKind :: TcKind -> TcM TcKind
zonkTcKind k = zonkTcType k

-------------
zonkTcKindToKind :: TcKind -> TcM Kind
-- When zonking a TcKind to a kind, we need to instantiate kind variables,
-- Haskell specifies that * is to be used, so we follow that.
zonkTcKindToKind k 
  = zonkType (mkZonkTcTyVar (\ _ -> return liftedTypeKind)) k
\end{code}
			
%************************************************************************
%*									*
\subsection{Checking a user type}
%*									*
%************************************************************************

When dealing with a user-written type, we first translate it from an HsType
to a Type, performing kind checking, and then check various things that should 
be true about it.  We don't want to perform these checks at the same time
as the initial translation because (a) they are unnecessary for interface-file
types and (b) when checking a mutually recursive group of type and class decls,
we can't "look" at the tycons/classes yet.  Also, the checks are are rather
diverse, and used to really mess up the other code.

One thing we check for is 'rank'.  

	Rank 0: 	monotypes (no foralls)
	Rank 1:		foralls at the front only, Rank 0 inside
	Rank 2:		foralls at the front, Rank 1 on left of fn arrow,

	basic ::= tyvar | T basic ... basic

	r2  ::= forall tvs. cxt => r2a
	r2a ::= r1 -> r2a | basic
	r1  ::= forall tvs. cxt => r0
	r0  ::= r0 -> r0 | basic
	
Another thing is to check that type synonyms are saturated. 
This might not necessarily show up in kind checking.
	type A i = i
	data T k = MkT (k Int)
	f :: T A	-- BAD!

	
\begin{code}
checkValidType :: UserTypeCtxt -> Type -> TcM ()
-- Checks that the type is valid for the given context
checkValidType ctxt ty = do
    traceTc "checkValidType" (ppr ty)
    unboxed  <- xoptM Opt_UnboxedTuples
    rank2    <- xoptM Opt_Rank2Types
    rankn    <- xoptM Opt_RankNTypes
    polycomp <- xoptM Opt_PolymorphicComponents
    let 
	gen_rank n | rankn     = ArbitraryRank
	           | rank2     = Rank 2
	           | otherwise = Rank n
	rank
	  = case ctxt of
		 DefaultDeclCtxt-> MustBeMonoType
		 ResSigCtxt	-> MustBeMonoType
		 LamPatSigCtxt	-> gen_rank 0
		 BindPatSigCtxt	-> gen_rank 0
		 TySynCtxt _    -> gen_rank 0
		 GenPatCtxt	-> gen_rank 1
			-- This one is a bit of a hack
			-- See the forall-wrapping in TcClassDcl.mkGenericInstance		

		 ExprSigCtxt 	-> gen_rank 1
		 FunSigCtxt _   -> gen_rank 1
		 ConArgCtxt _   | polycomp -> gen_rank 2
                                -- We are given the type of the entire
                                -- constructor, hence rank 1
 				| otherwise -> gen_rank 1

		 ForSigCtxt _	-> gen_rank 1
		 SpecInstCtxt   -> gen_rank 1
                 ThBrackCtxt    -> gen_rank 1
                 GenSigCtxt     -> panic "checkValidType"
                                     -- Can't happen; GenSigCtxt not used for *user* sigs

	actual_kind = typeKind ty

	kind_ok = case ctxt of
			TySynCtxt _  -> True -- Any kind will do
			ThBrackCtxt  -> True -- Any kind will do
			ResSigCtxt   -> isSubOpenTypeKind actual_kind
			ExprSigCtxt  -> isSubOpenTypeKind actual_kind
			GenPatCtxt   -> isLiftedTypeKind actual_kind
			ForSigCtxt _ -> isLiftedTypeKind actual_kind
			_            -> isSubArgTypeKind actual_kind
	
	ubx_tup = case ctxt of
	              TySynCtxt _ | unboxed -> UT_Ok
	              ExprSigCtxt | unboxed -> UT_Ok
	              ThBrackCtxt | unboxed -> UT_Ok
	              _                     -> UT_NotOk

	-- Check the internal validity of the type itself
    check_type rank ubx_tup ty

	-- Check that the thing has kind Type, and is lifted if necessary
	-- Do this second, becuase we can't usefully take the kind of an 
	-- ill-formed type such as (a~Int)
    checkTc kind_ok (kindErr actual_kind)

    traceTc "checkValidType done" (ppr ty)

checkValidMonoType :: Type -> TcM ()
checkValidMonoType ty = check_mono_type MustBeMonoType ty
\end{code}


\begin{code}
data Rank = ArbitraryRank	  -- Any rank ok
          | MustBeMonoType  	  -- Monotype regardless of flags
	  | TyConArgMonoType	  -- Monotype but could be poly if -XImpredicativeTypes
	  | SynArgMonoType	  -- Monotype but could be poly if -XLiberalTypeSynonyms
          | Rank Int		  -- Rank n, but could be more with -XRankNTypes

decRank :: Rank -> Rank		  -- Function arguments
decRank (Rank 0)   = Rank 0
decRank (Rank n)   = Rank (n-1)
decRank other_rank = other_rank

nonZeroRank :: Rank -> Bool
nonZeroRank ArbitraryRank = True
nonZeroRank (Rank n) 	  = n>0
nonZeroRank _        	  = False

----------------------------------------
data UbxTupFlag = UT_Ok	| UT_NotOk
	-- The "Ok" version means "ok if UnboxedTuples is on"

----------------------------------------
check_mono_type :: Rank -> Type -> TcM ()	-- No foralls anywhere
				      		-- No unlifted types of any kind
check_mono_type rank ty
   = do { check_type rank UT_NotOk ty
	; checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty) }

check_type :: Rank -> UbxTupFlag -> Type -> TcM ()
-- The args say what the *type context* requires, independent
-- of *flag* settings.  You test the flag settings at usage sites.
-- 
-- Rank is allowed rank for function args
-- Rank 0 means no for-alls anywhere

check_type rank ubx_tup ty
  | not (null tvs && null theta)
  = do	{ checkTc (nonZeroRank rank) (forAllTyErr rank ty)
		-- Reject e.g. (Maybe (?x::Int => Int)), 
		-- with a decent error message
	; check_valid_theta SigmaCtxt theta
	; check_type rank ubx_tup tau	-- Allow foralls to right of arrow
	; checkAmbiguity tvs theta (tyVarsOfType tau) }
  where
    (tvs, theta, tau) = tcSplitSigmaTy ty
   
-- Naked PredTys should, I think, have been rejected before now
check_type _ _ ty@(PredTy {})
  = failWithTc (text "Predicate" <+> ppr ty <+> text "used as a type") 

check_type _ _ (TyVarTy _) = return ()

check_type rank _ (FunTy arg_ty res_ty)
  = do	{ check_type (decRank rank) UT_NotOk arg_ty
	; check_type rank 	    UT_Ok    res_ty }

check_type rank _ (AppTy ty1 ty2)
  = do	{ check_arg_type rank ty1
	; check_arg_type rank ty2 }

check_type rank ubx_tup ty@(TyConApp tc tys)
  | isSynTyCon tc
  = do	{ 	-- Check that the synonym has enough args
		-- This applies equally to open and closed synonyms
	 	-- It's OK to have an *over-applied* type synonym
		--	data Tree a b = ...
		--	type Foo a = Tree [a]
		--	f :: Foo a b -> ...
 	  checkTc (tyConArity tc <= length tys) arity_msg

	-- See Note [Liberal type synonyms]
	; liberal <- xoptM Opt_LiberalTypeSynonyms
	; if not liberal || isSynFamilyTyCon tc then
		-- For H98 and synonym families, do check the type args
		mapM_ (check_mono_type SynArgMonoType) tys

	  else	-- In the liberal case (only for closed syns), expand then check
	  case tcView ty of   
	     Just ty' -> check_type rank ubx_tup ty' 
	     Nothing  -> pprPanic "check_tau_type" (ppr ty)
    }
    
  | isUnboxedTupleTyCon tc
  = do	{ ub_tuples_allowed <- xoptM Opt_UnboxedTuples
	; checkTc (ubx_tup_ok ub_tuples_allowed) ubx_tup_msg

	; impred <- xoptM Opt_ImpredicativeTypes	
	; let rank' = if impred then ArbitraryRank else TyConArgMonoType
		-- c.f. check_arg_type
		-- However, args are allowed to be unlifted, or
		-- more unboxed tuples, so can't use check_arg_ty
	; mapM_ (check_type rank' UT_Ok) tys }

  | otherwise
  = mapM_ (check_arg_type rank) tys

  where
    ubx_tup_ok ub_tuples_allowed = case ubx_tup of
                                   UT_Ok -> ub_tuples_allowed
                                   _     -> False

    n_args    = length tys
    tc_arity  = tyConArity tc

    arity_msg   = arityErr "Type synonym" (tyConName tc) tc_arity n_args
    ubx_tup_msg = ubxArgTyErr ty

check_type _ _ ty = pprPanic "check_type" (ppr ty)

----------------------------------------
check_arg_type :: Rank -> Type -> TcM ()
-- The sort of type that can instantiate a type variable,
-- or be the argument of a type constructor.
-- Not an unboxed tuple, but now *can* be a forall (since impredicativity)
-- Other unboxed types are very occasionally allowed as type
-- arguments depending on the kind of the type constructor
-- 
-- For example, we want to reject things like:
--
--	instance Ord a => Ord (forall s. T s a)
-- and
--	g :: T s (forall b.b)
--
-- NB: unboxed tuples can have polymorphic or unboxed args.
--     This happens in the workers for functions returning
--     product types with polymorphic components.
--     But not in user code.
-- Anyway, they are dealt with by a special case in check_tau_type

check_arg_type rank ty 
  = do	{ impred <- xoptM Opt_ImpredicativeTypes
	; let rank' = case rank of 	    -- Predictive => must be monotype
	      	        MustBeMonoType     -> MustBeMonoType  -- Monotype, regardless
			_other | impred    -> ArbitraryRank
			       | otherwise -> TyConArgMonoType
			-- Make sure that MustBeMonoType is propagated, 
			-- so that we don't suggest -XImpredicativeTypes in
			--    (Ord (forall a.a)) => a -> a
			-- and so that if it Must be a monotype, we check that it is!

	; check_type rank' UT_NotOk ty
	; checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty) }

----------------------------------------
forAllTyErr :: Rank -> Type -> SDoc
forAllTyErr rank ty 
   = vcat [ hang (ptext (sLit "Illegal polymorphic or qualified type:")) 2 (ppr ty)
          , suggestion ]
  where
    suggestion = case rank of
    	       	   Rank _ -> ptext (sLit "Perhaps you intended to use -XRankNTypes or -XRank2Types")
    	       	   TyConArgMonoType -> ptext (sLit "Perhaps you intended to use -XImpredicativeTypes")
    	       	   SynArgMonoType -> ptext (sLit "Perhaps you intended to use -XLiberalTypeSynonyms")
		   _ -> empty      -- Polytype is always illegal

unliftedArgErr, ubxArgTyErr :: Type -> SDoc
unliftedArgErr  ty = sep [ptext (sLit "Illegal unlifted type:"), ppr ty]
ubxArgTyErr     ty = sep [ptext (sLit "Illegal unboxed tuple type as function argument:"), ppr ty]

kindErr :: Kind -> SDoc
kindErr kind       = sep [ptext (sLit "Expecting an ordinary type, but found a type of kind"), ppr kind]
\end{code}

Note [Liberal type synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If -XLiberalTypeSynonyms is on, expand closed type synonyms *before*
doing validity checking.  This allows us to instantiate a synonym defn
with a for-all type, or with a partially-applied type synonym.
	e.g.   type T a b = a
	       type S m   = m ()
	       f :: S (T Int)
Here, T is partially applied, so it's illegal in H98.  But if you
expand S first, then T we get just
	       f :: Int
which is fine.

IMPORTANT: suppose T is a type synonym.  Then we must do validity
checking on an appliation (T ty1 ty2)

	*either* before expansion (i.e. check ty1, ty2)
	*or* after expansion (i.e. expand T ty1 ty2, and then check)
	BUT NOT BOTH

If we do both, we get exponential behaviour!!

  data TIACons1 i r c = c i ::: r c
  type TIACons2 t x = TIACons1 t (TIACons1 t x)
  type TIACons3 t x = TIACons2 t (TIACons1 t x)
  type TIACons4 t x = TIACons2 t (TIACons2 t x)
  type TIACons7 t x = TIACons4 t (TIACons3 t x)


%************************************************************************
%*									*
\subsection{Checking a theta or source type}
%*									*
%************************************************************************

\begin{code}
-- Enumerate the contexts in which a "source type", <S>, can occur
--	Eq a 
-- or 	?x::Int
-- or 	r <: {x::Int}
-- or 	(N a) where N is a newtype

data SourceTyCtxt
  = ClassSCCtxt Name	-- Superclasses of clas
			-- 	class <S> => C a where ...
  | SigmaCtxt		-- Theta part of a normal for-all type
			--	f :: <S> => a -> a
  | DataTyCtxt Name	-- Theta part of a data decl
			--	data <S> => T a = MkT a
  | TypeCtxt 		-- Source type in an ordinary type
			-- 	f :: N a -> N a
  | InstThetaCtxt	-- Context of an instance decl
			--	instance <S> => C [a] where ...
		
pprSourceTyCtxt :: SourceTyCtxt -> SDoc
pprSourceTyCtxt (ClassSCCtxt c) = ptext (sLit "the super-classes of class") <+> quotes (ppr c)
pprSourceTyCtxt SigmaCtxt       = ptext (sLit "the context of a polymorphic type")
pprSourceTyCtxt (DataTyCtxt tc) = ptext (sLit "the context of the data type declaration for") <+> quotes (ppr tc)
pprSourceTyCtxt InstThetaCtxt   = ptext (sLit "the context of an instance declaration")
pprSourceTyCtxt TypeCtxt        = ptext (sLit "the context of a type")
\end{code}

\begin{code}
checkValidTheta :: SourceTyCtxt -> ThetaType -> TcM ()
checkValidTheta ctxt theta 
  = addErrCtxt (checkThetaCtxt ctxt theta) (check_valid_theta ctxt theta)

-------------------------
check_valid_theta :: SourceTyCtxt -> [PredType] -> TcM ()
check_valid_theta _ []
  = return ()
check_valid_theta ctxt theta = do
    dflags <- getDOpts
    warnTc (notNull dups) (dupPredWarn dups)
    mapM_ (check_pred_ty dflags ctxt) theta
  where
    (_,dups) = removeDups cmpPred theta

-------------------------
check_pred_ty :: DynFlags -> SourceTyCtxt -> PredType -> TcM ()
check_pred_ty dflags ctxt pred@(ClassP cls tys)
  = do {	-- Class predicates are valid in all contexts
       ; checkTc (arity == n_tys) arity_err

		-- Check the form of the argument types
       ; mapM_ checkValidMonoType tys
       ; checkTc (check_class_pred_tys dflags ctxt tys)
		 (predTyVarErr pred $$ how_to_allow)
       }
  where
    class_name = className cls
    arity      = classArity cls
    n_tys      = length tys
    arity_err  = arityErr "Class" class_name arity n_tys
    how_to_allow = parens (ptext (sLit "Use -XFlexibleContexts to permit this"))


check_pred_ty dflags ctxt pred@(EqPred ty1 ty2)
  = do {	-- Equational constraints are valid in all contexts if type
		-- families are permitted
       ; checkTc (xopt Opt_TypeFamilies dflags) (eqPredTyErr pred)
       ; checkTc (case ctxt of ClassSCCtxt {} -> False; _ -> True)
                 (eqSuperClassErr pred)

		-- Check the form of the argument types
       ; checkValidMonoType ty1
       ; checkValidMonoType ty2
       }

check_pred_ty _ SigmaCtxt (IParam _ ty) = checkValidMonoType ty
	-- Implicit parameters only allowed in type
	-- signatures; not in instance decls, superclasses etc
	-- The reason for not allowing implicit params in instances is a bit
	-- subtle.
	-- If we allowed	instance (?x::Int, Eq a) => Foo [a] where ...
	-- then when we saw (e :: (?x::Int) => t) it would be unclear how to 
	-- discharge all the potential usas of the ?x in e.   For example, a
	-- constraint Foo [Int] might come out of e,and applying the
	-- instance decl would show up two uses of ?x.

-- Catch-all
check_pred_ty _ _ sty = failWithTc (badPredTyErr sty)

-------------------------
check_class_pred_tys :: DynFlags -> SourceTyCtxt -> [Type] -> Bool
check_class_pred_tys dflags ctxt tys 
  = case ctxt of
	TypeCtxt      -> True	-- {-# SPECIALISE instance Eq (T Int) #-} is fine
	InstThetaCtxt -> flexible_contexts || undecidable_ok || all tcIsTyVarTy tys
				-- Further checks on head and theta in
				-- checkInstTermination
	_             -> flexible_contexts || all tyvar_head tys
  where
    flexible_contexts = xopt Opt_FlexibleContexts dflags
    undecidable_ok = xopt Opt_UndecidableInstances dflags

-------------------------
tyvar_head :: Type -> Bool
tyvar_head ty			-- Haskell 98 allows predicates of form 
  | tcIsTyVarTy ty = True	-- 	C (a ty1 .. tyn)
  | otherwise			-- where a is a type variable
  = case tcSplitAppTy_maybe ty of
	Just (ty, _) -> tyvar_head ty
	Nothing	     -> False
\end{code}

Check for ambiguity
~~~~~~~~~~~~~~~~~~~
	  forall V. P => tau
is ambiguous if P contains generic variables
(i.e. one of the Vs) that are not mentioned in tau

However, we need to take account of functional dependencies
when we speak of 'mentioned in tau'.  Example:
	class C a b | a -> b where ...
Then the type
	forall x y. (C x y) => x
is not ambiguous because x is mentioned and x determines y

NB; the ambiguity check is only used for *user* types, not for types
coming from inteface files.  The latter can legitimately have
ambiguous types. Example

   class S a where s :: a -> (Int,Int)
   instance S Char where s _ = (1,1)
   f:: S a => [a] -> Int -> (Int,Int)
   f (_::[a]) x = (a*x,b)
	where (a,b) = s (undefined::a)

Here the worker for f gets the type
	fw :: forall a. S a => Int -> (# Int, Int #)

If the list of tv_names is empty, we have a monotype, and then we
don't need to check for ambiguity either, because the test can't fail
(see is_ambig).

In addition, GHC insists that at least one type variable
in each constraint is in V.  So we disallow a type like
	forall a. Eq b => b -> b
even in a scope where b is in scope.

\begin{code}
checkAmbiguity :: [TyVar] -> ThetaType -> TyVarSet -> TcM ()
checkAmbiguity forall_tyvars theta tau_tyvars
  = mapM_ complain (filter is_ambig theta)
  where
    complain pred     = addErrTc (ambigErr pred)
    extended_tau_vars = growThetaTyVars theta tau_tyvars

	-- See Note [Implicit parameters and ambiguity] in TcSimplify
    is_ambig pred     = isClassPred  pred &&
			any ambig_var (varSetElems (tyVarsOfPred pred))

    ambig_var ct_var  = (ct_var `elem` forall_tyvars) &&
		        not (ct_var `elemVarSet` extended_tau_vars)

ambigErr :: PredType -> SDoc
ambigErr pred
  = sep [ptext (sLit "Ambiguous constraint") <+> quotes (pprPredTy pred),
	 nest 2 (ptext (sLit "At least one of the forall'd type variables mentioned by the constraint") $$
		 ptext (sLit "must be reachable from the type after the '=>'"))]
\end{code}

Note [Growing the tau-tvs using constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(growInstsTyVars insts tvs) is the result of extending the set 
    of tyvars tvs using all conceivable links from pred

E.g. tvs = {a}, preds = {H [a] b, K (b,Int) c, Eq e}
Then grow precs tvs = {a,b,c}

\begin{code}
growThetaTyVars :: TcThetaType -> TyVarSet -> TyVarSet
-- See Note [Growing the tau-tvs using constraints]
growThetaTyVars theta tvs
  | null theta = tvs
  | otherwise  = fixVarSet mk_next tvs
  where
    mk_next tvs = foldr grow_one tvs theta
    grow_one pred tvs = growPredTyVars pred tvs `unionVarSet` tvs

growPredTyVars :: TcPredType
               -> TyVarSet	-- The set to extend
	       -> TyVarSet	-- TyVars of the predicate if it intersects
	       	  		-- the set, or is implicit parameter
growPredTyVars pred tvs 
  | IParam {} <- pred               = pred_tvs	-- See Note [Implicit parameters and ambiguity]
  | pred_tvs `intersectsVarSet` tvs = pred_tvs
  | otherwise                       = emptyVarSet
  where
    pred_tvs = tyVarsOfPred pred
\end{code}
    
Note [Implicit parameters and ambiguity] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Only a *class* predicate can give rise to ambiguity
An *implicit parameter* cannot.  For example:
	foo :: (?x :: [a]) => Int
	foo = length ?x
is fine.  The call site will suppply a particular 'x'

Furthermore, the type variables fixed by an implicit parameter
propagate to the others.  E.g.
	foo :: (Show a, ?x::[a]) => Int
	foo = show (?x++?x)
The type of foo looks ambiguous.  But it isn't, because at a call site
we might have
	let ?x = 5::Int in foo
and all is well.  In effect, implicit parameters are, well, parameters,
so we can take their type variables into account as part of the
"tau-tvs" stuff.  This is done in the function 'FunDeps.grow'.


\begin{code}
checkThetaCtxt :: SourceTyCtxt -> ThetaType -> SDoc
checkThetaCtxt ctxt theta
  = vcat [ptext (sLit "In the context:") <+> pprTheta theta,
	  ptext (sLit "While checking") <+> pprSourceTyCtxt ctxt ]

eqSuperClassErr :: PredType -> SDoc
eqSuperClassErr pred
  = hang (ptext (sLit "Alas, GHC 7.0 still cannot handle equality superclasses:"))
       2 (ppr pred)

badPredTyErr, eqPredTyErr, predTyVarErr :: PredType -> SDoc
badPredTyErr pred = ptext (sLit "Illegal constraint") <+> pprPredTy pred
eqPredTyErr  pred = ptext (sLit "Illegal equational constraint") <+> pprPredTy pred
		    $$
		    parens (ptext (sLit "Use -XTypeFamilies to permit this"))
predTyVarErr pred  = sep [ptext (sLit "Non type-variable argument"),
			  nest 2 (ptext (sLit "in the constraint:") <+> pprPredTy pred)]
dupPredWarn :: [[PredType]] -> SDoc
dupPredWarn dups   = ptext (sLit "Duplicate constraint(s):") <+> pprWithCommas pprPredTy (map head dups)

arityErr :: Outputable a => String -> a -> Int -> Int -> SDoc
arityErr kind name n m
  = hsep [ text kind, quotes (ppr name), ptext (sLit "should have"),
	   n_arguments <> comma, text "but has been given", 
           if m==0 then text "none" else int m]
    where
	n_arguments | n == 0 = ptext (sLit "no arguments")
		    | n == 1 = ptext (sLit "1 argument")
		    | True   = hsep [int n, ptext (sLit "arguments")]
\end{code}

%************************************************************************
%*									*
\subsection{Checking for a decent instance head type}
%*									*
%************************************************************************

@checkValidInstHead@ checks the type {\em and} its syntactic constraints:
it must normally look like: @instance Foo (Tycon a b c ...) ...@

The exceptions to this syntactic checking: (1)~if the @GlasgowExts@
flag is on, or (2)~the instance is imported (they must have been
compiled elsewhere). In these cases, we let them go through anyway.

We can also have instances for functions: @instance Foo (a -> b) ...@.

\begin{code}
checkValidInstHead :: Class -> [Type] -> TcM ()
checkValidInstHead clas tys
  = do { dflags <- getDOpts

           -- If GlasgowExts then check at least one isn't a type variable
       ; checkTc (xopt Opt_TypeSynonymInstances dflags ||
                  all tcInstHeadTyNotSynonym tys)
                 (instTypeErr pp_pred head_type_synonym_msg)
       ; checkTc (xopt Opt_FlexibleInstances dflags ||
                  all tcInstHeadTyAppAllTyVars tys)
                 (instTypeErr pp_pred head_type_args_tyvars_msg)
       ; checkTc (xopt Opt_MultiParamTypeClasses dflags ||
                  isSingleton tys)
                 (instTypeErr pp_pred head_one_type_msg)
         -- May not contain type family applications
       ; mapM_ checkTyFamFreeness tys

       ; mapM_ checkValidMonoType tys
	-- For now, I only allow tau-types (not polytypes) in 
	-- the head of an instance decl.  
	-- 	E.g.  instance C (forall a. a->a) is rejected
	-- One could imagine generalising that, but I'm not sure
	-- what all the consequences might be
       }

  where
    pp_pred = pprClassPred clas tys
    head_type_synonym_msg = parens (
                text "All instance types must be of the form (T t1 ... tn)" $$
                text "where T is not a synonym." $$
                text "Use -XTypeSynonymInstances if you want to disable this.")

    head_type_args_tyvars_msg = parens (vcat [
                text "All instance types must be of the form (T a1 ... an)",
                text "where a1 ... an are *distinct type variables*,",
                text "and each type variable appears at most once in the instance head.",
                text "Use -XFlexibleInstances if you want to disable this."])

    head_one_type_msg = parens (
                text "Only one type can be given in an instance head." $$
                text "Use -XMultiParamTypeClasses if you want to allow more.")

instTypeErr :: SDoc -> SDoc -> SDoc
instTypeErr pp_ty msg
  = sep [ptext (sLit "Illegal instance declaration for") <+> quotes pp_ty, 
	 nest 2 msg]
\end{code}


%************************************************************************
%*									*
\subsection{Checking instance for termination}
%*									*
%************************************************************************

\begin{code}
checkValidInstance :: LHsType Name -> [TyVar] -> ThetaType
                   -> Class -> [TcType] -> TcM ()
checkValidInstance hs_type tyvars theta clas inst_tys
  = setSrcSpan (getLoc hs_type) $
    do  { setSrcSpan head_loc (checkValidInstHead clas inst_tys)
        ; checkValidTheta InstThetaCtxt theta
	; checkAmbiguity tyvars theta (tyVarsOfTypes inst_tys)

	-- Check that instance inference will terminate (if we care)
	-- For Haskell 98 this will already have been done by checkValidTheta,
        -- but as we may be using other extensions we need to check.
	; undecidable_ok <- xoptM Opt_UndecidableInstances
        ; unless undecidable_ok $
	  mapM_ addErrTc (checkInstTermination inst_tys theta)
	
	-- The Coverage Condition
	; checkTc (undecidable_ok || checkInstCoverage clas inst_tys)
	  	  (instTypeErr (pprClassPred clas inst_tys) msg)
        }
  where
    msg  = parens (vcat [ptext (sLit "the Coverage Condition fails for one of the functional dependencies;"),
			 undecidableMsg])

        -- The location of the "head" of the instance
    head_loc = case hs_type of
                 L _ (HsForAllTy _ _ _ (L loc _)) -> loc
                 L loc _                          -> loc
\end{code}

Termination test: the so-called "Paterson conditions" (see Section 5 of
"Understanding functionsl dependencies via Constraint Handling Rules, 
JFP Jan 2007).

We check that each assertion in the context satisfies:
 (1) no variable has more occurrences in the assertion than in the head, and
 (2) the assertion has fewer constructors and variables (taken together
     and counting repetitions) than the head.
This is only needed with -fglasgow-exts, as Haskell 98 restrictions
(which have already been checked) guarantee termination. 

The underlying idea is that 

    for any ground substitution, each assertion in the
    context has fewer type constructors than the head.


\begin{code}
checkInstTermination :: [TcType] -> ThetaType -> [Message]
checkInstTermination tys theta
  = mapCatMaybes check theta
  where
   fvs  = fvTypes tys
   size = sizeTypes tys
   check pred 
      | not (null (fvPred pred \\ fvs)) 
      = Just (predUndecErr pred nomoreMsg $$ parens undecidableMsg)
      | sizePred pred >= size
      = Just (predUndecErr pred smallerMsg $$ parens undecidableMsg)
      | otherwise
      = Nothing

predUndecErr :: PredType -> SDoc -> SDoc
predUndecErr pred msg = sep [msg,
			nest 2 (ptext (sLit "in the constraint:") <+> pprPredTy pred)]

nomoreMsg, smallerMsg, undecidableMsg :: SDoc
nomoreMsg = ptext (sLit "Variable occurs more often in a constraint than in the instance head")
smallerMsg = ptext (sLit "Constraint is no smaller than the instance head")
undecidableMsg = ptext (sLit "Use -XUndecidableInstances to permit this")
\end{code}

validDeivPred checks for OK 'deriving' context.  See Note [Exotic
derived instance contexts] in TcSimplify.  However the predicate is
here because it uses sizeTypes, fvTypes.

\begin{code}
validDerivPred :: PredType -> Bool
validDerivPred (ClassP _ tys) = hasNoDups fvs && sizeTypes tys == length fvs
                              where fvs = fvTypes tys
validDerivPred _              = False
\end{code}


%************************************************************************
%*									*
	Checking type instance well-formedness and termination
%*									*
%************************************************************************

\begin{code}
-- Check that a "type instance" is well-formed (which includes decidability
-- unless -XUndecidableInstances is given).
--
checkValidTypeInst :: [Type] -> Type -> TcM ()
checkValidTypeInst typats rhs
  = do { -- left-hand side contains no type family applications
         -- (vanilla synonyms are fine, though)
       ; mapM_ checkTyFamFreeness typats

         -- the right-hand side is a tau type
       ; checkValidMonoType rhs

         -- we have a decidable instance unless otherwise permitted
       ; undecidable_ok <- xoptM Opt_UndecidableInstances
       ; unless undecidable_ok $
	   mapM_ addErrTc (checkFamInst typats (tyFamInsts rhs))
       }

-- Make sure that each type family instance is 
--   (1) strictly smaller than the lhs,
--   (2) mentions no type variable more often than the lhs, and
--   (3) does not contain any further type family instances.
--
checkFamInst :: [Type]                  -- lhs
             -> [(TyCon, [Type])]       -- type family instances
             -> [Message]
checkFamInst lhsTys famInsts
  = mapCatMaybes check famInsts
  where
   size = sizeTypes lhsTys
   fvs  = fvTypes lhsTys
   check (tc, tys)
      | not (all isTyFamFree tys)
      = Just (famInstUndecErr famInst nestedMsg $$ parens undecidableMsg)
      | not (null (fvTypes tys \\ fvs))
      = Just (famInstUndecErr famInst nomoreVarMsg $$ parens undecidableMsg)
      | size <= sizeTypes tys
      = Just (famInstUndecErr famInst smallerAppMsg $$ parens undecidableMsg)
      | otherwise
      = Nothing
      where
        famInst = TyConApp tc tys

-- Ensure that no type family instances occur in a type.
--
checkTyFamFreeness :: Type -> TcM ()
checkTyFamFreeness ty
  = checkTc (isTyFamFree ty) $
      tyFamInstIllegalErr ty

-- Check that a type does not contain any type family applications.
--
isTyFamFree :: Type -> Bool
isTyFamFree = null . tyFamInsts

-- Error messages

tyFamInstIllegalErr :: Type -> SDoc
tyFamInstIllegalErr ty
  = hang (ptext (sLit "Illegal type synonym family application in instance") <> 
         colon) 2 $
      ppr ty

famInstUndecErr :: Type -> SDoc -> SDoc
famInstUndecErr ty msg 
  = sep [msg, 
         nest 2 (ptext (sLit "in the type family application:") <+> 
                 pprType ty)]

nestedMsg, nomoreVarMsg, smallerAppMsg :: SDoc
nestedMsg     = ptext (sLit "Nested type family application")
nomoreVarMsg  = ptext (sLit "Variable occurs more often than in instance head")
smallerAppMsg = ptext (sLit "Application is no smaller than the instance head")
\end{code}


%************************************************************************
%*									*
\subsection{Auxiliary functions}
%*									*
%************************************************************************

\begin{code}
-- Free variables of a type, retaining repetitions, and expanding synonyms
fvType :: Type -> [TyVar]
fvType ty | Just exp_ty <- tcView ty = fvType exp_ty
fvType (TyVarTy tv)        = [tv]
fvType (TyConApp _ tys)    = fvTypes tys
fvType (PredTy pred)       = fvPred pred
fvType (FunTy arg res)     = fvType arg ++ fvType res
fvType (AppTy fun arg)     = fvType fun ++ fvType arg
fvType (ForAllTy tyvar ty) = filter (/= tyvar) (fvType ty)

fvTypes :: [Type] -> [TyVar]
fvTypes tys                = concat (map fvType tys)

fvPred :: PredType -> [TyVar]
fvPred (ClassP _ tys')     = fvTypes tys'
fvPred (IParam _ ty)       = fvType ty
fvPred (EqPred ty1 ty2)    = fvType ty1 ++ fvType ty2

-- Size of a type: the number of variables and constructors
sizeType :: Type -> Int
sizeType ty | Just exp_ty <- tcView ty = sizeType exp_ty
sizeType (TyVarTy _)       = 1
sizeType (TyConApp _ tys)  = sizeTypes tys + 1
sizeType (PredTy pred)     = sizePred pred
sizeType (FunTy arg res)   = sizeType arg + sizeType res + 1
sizeType (AppTy fun arg)   = sizeType fun + sizeType arg
sizeType (ForAllTy _ ty)   = sizeType ty

sizeTypes :: [Type] -> Int
sizeTypes xs               = sum (map sizeType xs)

-- Size of a predicate
--
-- We are considering whether *class* constraints terminate
-- Once we get into an implicit parameter or equality we
-- can't get back to a class constraint, so it's safe
-- to say "size 0".  See Trac #4200.
sizePred :: PredType -> Int
sizePred (ClassP _ tys')   = sizeTypes tys'
sizePred (IParam {})       = 0
sizePred (EqPred {})       = 0
\end{code}