summaryrefslogtreecommitdiff
path: root/compiler/typecheck/TcMType.lhs
blob: 518a40363cc5935333113f30fd4ae274d6c27b77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%

Monadic type operations

This module contains monadic operations over types that contain
mutable type variables

\begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

module TcMType (
  TcTyVar, TcKind, TcType, TcTauType, TcThetaType, TcTyVarSet,

  --------------------------------
  -- Creating new mutable type variables
  newFlexiTyVar,
  newFlexiTyVarTy,		-- Kind -> TcM TcType
  newFlexiTyVarTys,		-- Int -> Kind -> TcM [TcType]
  newMetaKindVar, newMetaKindVars,
  mkTcTyVarName,

  newMetaTyVar, readMetaTyVar, writeMetaTyVar, writeMetaTyVarRef,
  isFilledMetaTyVar, isFlexiMetaTyVar,

  --------------------------------
  -- Creating new evidence variables
  newEvVar, newEvVars,
  newEq, newIP, newDict,

  newWantedEvVar, newWantedEvVars,
  newTcEvBinds, addTcEvBind,

  --------------------------------
  -- Instantiation
  tcInstTyVars, tcInstSigTyVars,
  tcInstType, 
  tcInstSkolTyVars, tcInstSuperSkolTyVars,
  tcInstSkolTyVarsX, tcInstSuperSkolTyVarsX,
  tcInstSkolTyVar, tcInstSkolType,
  tcSkolDFunType, tcSuperSkolTyVars,

  --------------------------------
  -- Checking type validity
  Rank, UserTypeCtxt(..), checkValidType, checkValidMonoType,
  expectedKindInCtxt, 
  checkValidTheta, 
  checkValidInstHead, checkValidInstance, validDerivPred,
  checkInstTermination, checkValidFamInst, checkTyFamFreeness, 
  arityErr, 
  growPredTyVars, growThetaTyVars, 

  --------------------------------
  -- Zonking
  zonkType, zonkKind, zonkTcPredType, 
  skolemiseUnboundMetaTyVar,
  zonkTcTyVar, zonkTcTyVars, zonkTcTyVarsAndFV, zonkSigTyVar,
  zonkQuantifiedTyVar, zonkQuantifiedTyVars,
  zonkTcType, zonkTcTypes, zonkTcThetaType,

  zonkTcKind, defaultKindVarToStar, zonkCt, zonkCts,
  zonkImplication, zonkEvVar, zonkWC, 

  zonkTcTypeAndSubst,
  tcGetGlobalTyVars, 
  ) where

#include "HsVersions.h"

-- friends:
import TypeRep
import TcType
import Type
import Kind
import Class
import TyCon
import Var

-- others:
import HsSyn		-- HsType
import TcRnMonad        -- TcType, amongst others
import IParam
import Id
import FunDeps
import Name
import VarSet
import ErrUtils
import DynFlags
import Util
import Maybes
import ListSetOps
import BasicTypes
import SrcLoc
import Outputable
import FastString
import Unique( Unique )
import Bag

import Control.Monad
import Data.List        ( (\\), partition, mapAccumL )
\end{code}


%************************************************************************
%*									*
	Kind variables
%*									*
%************************************************************************

\begin{code}
newMetaKindVar :: TcM TcKind
newMetaKindVar = do	{ uniq <- newUnique
		; ref <- newMutVar Flexi
		; return (mkTyVarTy (mkMetaKindVar uniq ref)) }

newMetaKindVars :: Int -> TcM [TcKind]
newMetaKindVars n = mapM (\ _ -> newMetaKindVar) (nOfThem n ())
\end{code}


%************************************************************************
%*									*
     Evidence variables; range over constraints we can abstract over
%*									*
%************************************************************************

\begin{code}
newEvVars :: TcThetaType -> TcM [EvVar]
newEvVars theta = mapM newEvVar theta

newWantedEvVar :: TcPredType -> TcM EvVar 
newWantedEvVar = newEvVar

newWantedEvVars :: TcThetaType -> TcM [EvVar] 
newWantedEvVars theta = mapM newWantedEvVar theta 

--------------

newEvVar :: TcPredType -> TcM EvVar
-- Creates new *rigid* variables for predicates
newEvVar ty = do { name <- newName (predTypeOccName ty) 
                 ; return (mkLocalId name ty) }

newEq :: TcType -> TcType -> TcM EvVar
newEq ty1 ty2
  = do { name <- newName (mkVarOccFS (fsLit "cobox"))
       ; return (mkLocalId name (mkEqPred (ty1, ty2))) }

newIP :: IPName Name -> TcType -> TcM IpId
newIP ip ty
  = do 	{ name <- newName (mkVarOccFS (ipFastString ip))
        ; return (mkLocalId name (mkIPPred ip ty)) }

newDict :: Class -> [TcType] -> TcM DictId
newDict cls tys 
  = do { name <- newName (mkDictOcc (getOccName cls))
       ; return (mkLocalId name (mkClassPred cls tys)) }

predTypeOccName :: PredType -> OccName
predTypeOccName ty = case classifyPredType ty of
    ClassPred cls _ -> mkDictOcc (getOccName cls)
    IPPred ip _     -> mkVarOccFS (ipFastString ip)
    EqPred _ _      -> mkVarOccFS (fsLit "cobox")
    TuplePred _     -> mkVarOccFS (fsLit "tup")
    IrredPred _     -> mkVarOccFS (fsLit "irred")
\end{code}


%************************************************************************
%*									*
	SkolemTvs (immutable)
%*									*
%************************************************************************

\begin{code}
tcInstType :: ([TyVar] -> TcM [TcTyVar]) 		-- How to instantiate the type variables
	   -> TcType 					-- Type to instantiate
	   -> TcM ([TcTyVar], TcThetaType, TcType)	-- Result
		-- (type vars (excl coercion vars), preds (incl equalities), rho)
tcInstType inst_tyvars ty
  = case tcSplitForAllTys ty of
	([],     rho) -> let	-- There may be overloading despite no type variables;
				-- 	(?x :: Int) => Int -> Int
			   (theta, tau) = tcSplitPhiTy rho
			 in
			 return ([], theta, tau)

	(tyvars, rho) -> do { tyvars' <- inst_tyvars tyvars

			    ; let  tenv = zipTopTvSubst tyvars (mkTyVarTys tyvars')
				-- Either the tyvars are freshly made, by inst_tyvars,
                                -- or any nested foralls have different binders.
                                -- Either way, zipTopTvSubst is ok

			    ; let  (theta, tau) = tcSplitPhiTy (substTy tenv rho)
			    ; return (tyvars', theta, tau) }

tcSkolDFunType :: Type -> TcM ([TcTyVar], TcThetaType, TcType)
-- Instantiate a type signature with skolem constants, but 
-- do *not* give them fresh names, because we want the name to
-- be in the type environment: it is lexically scoped.
tcSkolDFunType ty = tcInstType (\tvs -> return (tcSuperSkolTyVars tvs)) ty

tcSuperSkolTyVars :: [TyVar] -> [TcTyVar]
-- Make skolem constants, but do *not* give them new names, as above
-- Moreover, make them "super skolems"; see comments with superSkolemTv
-- see Note [Kind substitution when instantiating]
-- Precondition: tyvars should be ordered (kind vars first)
tcSuperSkolTyVars = snd . mapAccumL tcSuperSkolTyVar (mkTopTvSubst [])

tcSuperSkolTyVar :: TvSubst -> TyVar -> (TvSubst, TcTyVar)
tcSuperSkolTyVar subst tv
  = (extendTvSubst subst tv (mkTyVarTy new_tv), new_tv)
  where
    kind   = substTy subst (tyVarKind tv)
    new_tv = mkTcTyVar (tyVarName tv) kind superSkolemTv

tcInstSkolTyVar :: Bool -> TvSubst -> TyVar -> TcM (TvSubst, TcTyVar)
-- Instantiate the tyvar, using 
--      * the occ-name and kind of the supplied tyvar, 
--      * the unique from the monad,
--      * the location either from the tyvar (skol_info = SigSkol)
--                     or from the monad (otherwise)
tcInstSkolTyVar overlappable subst tyvar
  = do  { uniq <- newUnique
        ; loc  <- getSrcSpanM
        ; let new_name = mkInternalName uniq occ loc
              new_tv   = mkTcTyVar new_name kind (SkolemTv overlappable)
        ; return (extendTvSubst subst tyvar (mkTyVarTy new_tv), new_tv) }
  where
    old_name = tyVarName tyvar
    occ      = nameOccName old_name
    kind     = substTy subst (tyVarKind tyvar)

tcInstSkolTyVars' :: Bool -> TvSubst -> [TyVar] -> TcM (TvSubst, [TcTyVar])
-- Precondition: tyvars should be ordered (kind vars first)
-- see Note [Kind substitution when instantiating]
tcInstSkolTyVars' isSuperSkol = mapAccumLM (tcInstSkolTyVar isSuperSkol)

-- Wrappers
tcInstSkolTyVars, tcInstSuperSkolTyVars :: [TyVar] -> TcM [TcTyVar]
tcInstSkolTyVars      = fmap snd . tcInstSkolTyVars' False (mkTopTvSubst [])
tcInstSuperSkolTyVars = fmap snd . tcInstSkolTyVars' True  (mkTopTvSubst [])

tcInstSkolTyVarsX, tcInstSuperSkolTyVarsX
  :: TvSubst -> [TyVar] -> TcM (TvSubst, [TcTyVar])
tcInstSkolTyVarsX      subst = tcInstSkolTyVars' False subst
tcInstSuperSkolTyVarsX subst = tcInstSkolTyVars' True  subst

tcInstSkolType :: TcType -> TcM ([TcTyVar], TcThetaType, TcType)
-- Instantiate a type with fresh skolem constants
-- Binding location comes from the monad
tcInstSkolType ty = tcInstType tcInstSkolTyVars ty

tcInstSigTyVars :: [TyVar] -> TcM [TcTyVar]
-- Make meta SigTv type variables for patten-bound scoped type varaibles
-- We use SigTvs for them, so that they can't unify with arbitrary types
-- Precondition: tyvars should be ordered (kind vars first)
-- see Note [Kind substitution when instantiating]
tcInstSigTyVars = fmap snd . mapAccumLM tcInstSigTyVar (mkTopTvSubst [])

tcInstSigTyVar :: TvSubst -> TyVar -> TcM (TvSubst, TcTyVar)
tcInstSigTyVar subst tv
  = do { uniq <- newMetaUnique
       ; ref <- newMutVar Flexi
       ; let name   = setNameUnique (tyVarName tv) uniq
                      -- Use the same OccName so that the tidy-er
                      -- doesn't rename 'a' to 'a0' etc
             kind   = substTy subst (tyVarKind tv)
             new_tv = mkTcTyVar name kind (MetaTv SigTv ref)
       ; return (extendTvSubst subst tv (mkTyVarTy new_tv), new_tv) }
\end{code}

Note [Kind substitution when instantiating]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we instantiate a bunch of kind and type variables, first we
expect them to be sorted (kind variables first, then type variables).
Then we have to instantiate the kind variables, build a substitution
from old variables to the new variables, then instantiate the type
variables substituting the original kind.

Exemple: If we want to instantiate
  [(k1 :: BOX), (k2 :: BOX), (a :: k1 -> k2), (b :: k1)]
we want
  [(?k1 :: BOX), (?k2 :: BOX), (?a :: ?k1 -> ?k2), (?b :: ?k1)]
instead of the buggous
  [(?k1 :: BOX), (?k2 :: BOX), (?a :: k1 -> k2), (?b :: k1)]


%************************************************************************
%*									*
	MetaTvs (meta type variables; mutable)
%*									*
%************************************************************************

\begin{code}
newMetaTyVar :: MetaInfo -> Kind -> TcM TcTyVar
-- Make a new meta tyvar out of thin air
newMetaTyVar meta_info kind
  = do	{ uniq <- newMetaUnique
 	; ref <- newMutVar Flexi
        ; let name = mkTcTyVarName uniq s
              s = case meta_info of
                        TauTv -> fsLit "t"
                        TcsTv -> fsLit "u"
                        SigTv -> fsLit "a"
	; return (mkTcTyVar name kind (MetaTv meta_info ref)) }

mkTcTyVarName :: Unique -> FastString -> Name
-- Make sure that fresh TcTyVar names finish with a digit
-- leaving the un-cluttered names free for user names
mkTcTyVarName uniq str = mkSysTvName uniq str

-- Works for both type and kind variables
readMetaTyVar :: TyVar -> TcM MetaDetails
readMetaTyVar tyvar = ASSERT2( isMetaTyVar tyvar, ppr tyvar )
		      readMutVar (metaTvRef tyvar)

isFilledMetaTyVar :: TyVar -> TcM Bool
-- True of a filled-in (Indirect) meta type variable
isFilledMetaTyVar tv
  | not (isTcTyVar tv) = return False
  | MetaTv _ ref <- tcTyVarDetails tv
  = do 	{ details <- readMutVar ref
	; return (isIndirect details) }
  | otherwise = return False

isFlexiMetaTyVar :: TyVar -> TcM Bool
-- True of a un-filled-in (Flexi) meta type variable
isFlexiMetaTyVar tv
  | not (isTcTyVar tv) = return False
  | MetaTv _ ref <- tcTyVarDetails tv
  = do 	{ details <- readMutVar ref
	; return (isFlexi details) }
  | otherwise = return False

--------------------
-- Works with both type and kind variables
writeMetaTyVar :: TcTyVar -> TcType -> TcM ()
-- Write into a currently-empty MetaTyVar

writeMetaTyVar tyvar ty
  | not debugIsOn 
  = writeMetaTyVarRef tyvar (metaTvRef tyvar) ty

-- Everything from here on only happens if DEBUG is on
  | not (isTcTyVar tyvar)
  = WARN( True, text "Writing to non-tc tyvar" <+> ppr tyvar )
    return ()

  | MetaTv _ ref <- tcTyVarDetails tyvar
  = writeMetaTyVarRef tyvar ref ty

  | otherwise
  = WARN( True, text "Writing to non-meta tyvar" <+> ppr tyvar )
    return ()

--------------------
writeMetaTyVarRef :: TcTyVar -> TcRef MetaDetails -> TcType -> TcM ()
-- Here the tyvar is for error checking only; 
-- the ref cell must be for the same tyvar
writeMetaTyVarRef tyvar ref ty
  | not debugIsOn 
  = do { traceTc "writeMetaTyVar" (ppr tyvar <+> text ":=" <+> ppr ty)
       ; writeMutVar ref (Indirect ty) }

-- Everything from here on only happens if DEBUG is on
  | otherwise
  = do { meta_details <- readMutVar ref; 
       -- Zonk kinds to allow the error check to work
       ; zonked_tv_kind <- zonkTcKind tv_kind 
       ; zonked_ty_kind <- zonkTcKind ty_kind

       -- Check for double updates
       ; ASSERT2( isFlexi meta_details, 
                  hang (text "Double update of meta tyvar")
                   2 (ppr tyvar $$ ppr meta_details) )

         traceTc "writeMetaTyVar" (ppr tyvar <+> text ":=" <+> ppr ty)
       ; writeMutVar ref (Indirect ty) 
       ; when (   not (isPredTy tv_kind) 
                    -- Don't check kinds for updates to coercion variables
               && not (zonked_ty_kind `tcIsSubKind` zonked_tv_kind))
       $ WARN( True, hang (text "Ill-kinded update to meta tyvar")
                        2 (    ppr tyvar <+> text "::" <+> ppr tv_kind 
                           <+> text ":=" 
                           <+> ppr ty    <+> text "::" <+> ppr ty_kind) )
         (return ()) }
  where
    tv_kind = tyVarKind tyvar
    ty_kind = typeKind ty
\end{code}


%************************************************************************
%*									*
	MetaTvs: TauTvs
%*									*
%************************************************************************

\begin{code}
newFlexiTyVar :: Kind -> TcM TcTyVar
newFlexiTyVar kind = newMetaTyVar TauTv kind

newFlexiTyVarTy  :: Kind -> TcM TcType
newFlexiTyVarTy kind = do
    tc_tyvar <- newFlexiTyVar kind
    return (TyVarTy tc_tyvar)

newFlexiTyVarTys :: Int -> Kind -> TcM [TcType]
newFlexiTyVarTys n kind = mapM newFlexiTyVarTy (nOfThem n kind)

tcInstTyVars :: [TKVar] -> TcM ([TcTyVar], [TcType], TvSubst)
-- Instantiate with META type variables
-- Note that this works for a sequence of kind and type
-- variables.  Eg    [ (k:BOX), (a:k->k) ]
--             Gives [ (k7:BOX), (a8:k7->k7) ]
tcInstTyVars tyvars = tcInstTyVarsX emptyTvSubst tyvars
    -- emptyTvSubst has an empty in-scope set, but that's fine here
    -- Since the tyvars are freshly made, they cannot possibly be
    -- captured by any existing for-alls.

tcInstTyVarsX :: TvSubst -> [TKVar] -> TcM ([TcTyVar], [TcType], TvSubst)
-- The "X" part is because of extending the substitution
tcInstTyVarsX subst tyvars =
  do { (subst', tyvars') <- mapAccumLM tcInstTyVarX subst tyvars
     ; return (tyvars', mkTyVarTys tyvars', subst') }

tcInstTyVarX :: TvSubst -> TKVar -> TcM (TvSubst, TcTyVar)
-- Make a new unification variable tyvar whose Name and Kind come from
-- an existing TyVar. We substitute kind variables in the kind.
tcInstTyVarX subst tyvar
  = do  { uniq <- newMetaUnique
        ; ref <- newMutVar Flexi
        ; let name   = mkSystemName uniq (getOccName tyvar)
              kind   = substTy subst (tyVarKind tyvar)
              new_tv = mkTcTyVar name kind (MetaTv TauTv ref)
        ; return (extendTvSubst subst tyvar (mkTyVarTy new_tv), new_tv) }
\end{code}


%************************************************************************
%*									*
	MetaTvs: SigTvs
%*									*
%************************************************************************

\begin{code}
zonkSigTyVar :: TcTyVar -> TcM TcTyVar
zonkSigTyVar sig_tv 
  | isSkolemTyVar sig_tv 
  = return sig_tv	-- Happens in the call in TcBinds.checkDistinctTyVars
  | otherwise
  = ASSERT( isSigTyVar sig_tv )
    do { ty <- zonkTcTyVar sig_tv
       ; return (tcGetTyVar "zonkSigTyVar" ty) }
	-- 'ty' is bound to be a type variable, because SigTvs
	-- can only be unified with type variables
\end{code}



%************************************************************************
%*									*
\subsection{Zonking -- the exernal interfaces}
%*									*
%************************************************************************

@tcGetGlobalTyVars@ returns a fully-zonked set of tyvars free in the environment.
To improve subsequent calls to the same function it writes the zonked set back into
the environment.

\begin{code}
tcGetGlobalTyVars :: TcM TcTyVarSet
tcGetGlobalTyVars
  = do { (TcLclEnv {tcl_tyvars = gtv_var}) <- getLclEnv
       ; gbl_tvs <- readMutVar gtv_var
       ; tys     <- mapM zonk_tv (varSetElems gbl_tvs)
       ; let gbl_tvs' = tyVarsOfTypes tys
       ; writeMutVar gtv_var gbl_tvs'
       ; return gbl_tvs' }
  where
    zonk_tv tv | isTcTyVar tv = zonkTcTyVar tv
               | otherwise    = return (mkTyVarTy tv)
    -- Hackily, the global tyvars can contain non-TcTyVars
    -- These are added (only) in TcHsType.tcTyClTyVars, but it seems
    -- painful to make them into TcTyVars there
\end{code}

-----------------  Type variables

\begin{code}
zonkTcTyVars :: [TcTyVar] -> TcM [TcType]
zonkTcTyVars tyvars = mapM zonkTcTyVar tyvars

zonkTcTyVarsAndFV :: TcTyVarSet -> TcM TcTyVarSet
zonkTcTyVarsAndFV tyvars = tyVarsOfTypes <$> mapM zonkTcTyVar (varSetElems tyvars)

-----------------  Types
zonkTcType :: TcType -> TcM TcType
-- Simply look through all Flexis
zonkTcType ty = zonkType zonkTcTyVar ty

zonkTcTyVar :: TcTyVar -> TcM TcType
-- Simply look through all Flexis
zonkTcTyVar tv
  = ASSERT2( isTcTyVar tv, ppr tv ) do
    case tcTyVarDetails tv of
      SkolemTv {}   -> zonk_kind_and_return
      RuntimeUnk {} -> zonk_kind_and_return
      FlatSkol ty   -> zonkTcType ty
      MetaTv _ ref  -> do { cts <- readMutVar ref
                          ; case cts of
		               Flexi       -> zonk_kind_and_return
			       Indirect ty -> zonkTcType ty }
  where
    zonk_kind_and_return = do { z_tv <- zonkTyVarKind tv
                              ; return (TyVarTy z_tv) }

zonkTyVarKind :: TyVar -> TcM TyVar
zonkTyVarKind tv = do { kind' <- zonkTcKind (tyVarKind tv)
                      ; return (setTyVarKind tv kind') }

zonkTcTypeAndSubst :: TvSubst -> TcType -> TcM TcType
-- Zonk, and simultaneously apply a non-necessarily-idempotent substitution
zonkTcTypeAndSubst subst ty = zonkType zonk_tv ty
  where
    zonk_tv tv
      = do { z_tv <- updateTyVarKindM zonkTcKind tv
           ; ASSERT ( isTcTyVar tv )
             case tcTyVarDetails tv of
                SkolemTv {}   -> return (TyVarTy z_tv)
                RuntimeUnk {} -> return (TyVarTy z_tv)
                FlatSkol ty   -> zonkType zonk_tv ty
                MetaTv _ ref  -> do { cts <- readMutVar ref
                                    ; case cts of
      			           Flexi       -> zonk_flexi z_tv
      			           Indirect ty -> zonkType zonk_tv ty } }
    zonk_flexi tv
      = case lookupTyVar subst tv of
          Just ty -> zonkType zonk_tv ty
          Nothing -> return (TyVarTy tv)

zonkTcTypes :: [TcType] -> TcM [TcType]
zonkTcTypes tys = mapM zonkTcType tys

zonkTcThetaType :: TcThetaType -> TcM TcThetaType
zonkTcThetaType theta = mapM zonkTcPredType theta

zonkTcPredType :: TcPredType -> TcM TcPredType
zonkTcPredType = zonkTcType
\end{code}

-------------------  These ...ToType, ...ToKind versions
		     are used at the end of type checking

\begin{code}
defaultKindVarToStar :: TcTyVar -> TcM Kind
-- We have a meta-kind: unify it with '*'
defaultKindVarToStar kv 
  = do { ASSERT ( isKindVar kv && isMetaTyVar kv )
         writeMetaTyVar kv liftedTypeKind
       ; return liftedTypeKind }

zonkQuantifiedTyVars :: [TcTyVar] -> TcM [TcTyVar]
-- A kind variable k may occur *after* a tyvar mentioning k in its kind
zonkQuantifiedTyVars tyvars
  = do { let (kvs, tvs) = partition isKindVar tyvars
       ; poly_kinds <- xoptM Opt_PolyKinds
       ; if poly_kinds then
             mapM zonkQuantifiedTyVar (kvs ++ tvs)
           -- Because of the order, any kind variables
           -- mentioned in the kinds of the type variables refer to
           -- the now-quantified versions
         else
             -- In the non-PolyKinds case, default the kind variables
             -- to *, and zonk the tyvars as usual.  Notice that this
             -- may make zonkQuantifiedTyVars return a shorter list
             -- than it was passed, but that's ok
             do { let (meta_kvs, skolem_kvs) = partition isMetaTyVar kvs
                ; WARN ( not (null skolem_kvs), ppr skolem_kvs )
                  mapM_ defaultKindVarToStar meta_kvs
                ; mapM zonkQuantifiedTyVar (skolem_kvs ++ tvs) } }

zonkQuantifiedTyVar :: TcTyVar -> TcM TcTyVar
-- The quantified type variables often include meta type variables
-- we want to freeze them into ordinary type variables, and
-- default their kind (e.g. from OpenTypeKind to TypeKind)
-- 			-- see notes with Kind.defaultKind
-- The meta tyvar is updated to point to the new skolem TyVar.  Now any 
-- bound occurences of the original type variable will get zonked to 
-- the immutable version.
--
-- We leave skolem TyVars alone; they are immutable.
--
-- This function is called on both kind and type variables,
-- but kind variables *only* if PolyKinds is on.
zonkQuantifiedTyVar tv
  = ASSERT2( isTcTyVar tv, ppr tv ) 
    case tcTyVarDetails tv of
      SkolemTv {} -> do { kind <- zonkTcKind (tyVarKind tv)
                        ; return $ setTyVarKind tv kind }
	-- It might be a skolem type variable, 
	-- for example from a user type signature

      MetaTv _ ref ->
          do when debugIsOn $ do
                 -- [Sept 04] Check for non-empty.
                 -- See note [Silly Type Synonym]
                 cts <- readMutVar ref
                 case cts of
                     Flexi -> return ()
                     Indirect ty -> WARN( True, ppr tv $$ ppr ty )
                                    return ()
             skolemiseUnboundMetaTyVar tv vanillaSkolemTv
      _other -> pprPanic "zonkQuantifiedTyVar" (ppr tv) -- FlatSkol, RuntimeUnk

skolemiseUnboundMetaTyVar :: TcTyVar -> TcTyVarDetails -> TcM TyVar
-- We have a Meta tyvar with a ref-cell inside it
-- Skolemise it, including giving it a new Name, so that
--   we are totally out of Meta-tyvar-land
-- We create a skolem TyVar, not a regular TyVar
--   See Note [Zonking to Skolem]
skolemiseUnboundMetaTyVar tv details
  = ASSERT2( isMetaTyVar tv, ppr tv ) 
    do  { span <- getSrcSpanM    -- Get the location from "here"
                                 -- ie where we are generalising
        ; uniq <- newUnique      -- Remove it from TcMetaTyVar unique land
        ; kind <- zonkTcKind (tyVarKind tv)
        ; let final_kind = defaultKind kind
              final_name = mkInternalName uniq (getOccName tv) span
              final_tv   = mkTcTyVar final_name final_kind details

        ; writeMetaTyVar tv (mkTyVarTy final_tv)
        ; return final_tv }
\end{code}

\begin{code}
zonkImplication :: Implication -> TcM Implication
zonkImplication implic@(Implic { ic_given = given 
                               , ic_wanted = wanted
                               , ic_loc = loc })
  = do {    -- No need to zonk the skolems
       ; given'  <- mapM zonkEvVar given
       ; loc'    <- zonkGivenLoc loc
       ; wanted' <- zonkWC wanted
       ; return (implic { ic_given = given'
                        , ic_wanted = wanted'
                        , ic_loc = loc' }) }

zonkEvVar :: EvVar -> TcM EvVar
zonkEvVar var = do { ty' <- zonkTcType (varType var)
                   ; return (setVarType var ty') }


zonkWC :: WantedConstraints -> TcM WantedConstraints
zonkWC (WC { wc_flat = flat, wc_impl = implic, wc_insol = insol })
  = do { flat'   <- mapBagM zonkCt flat 
       ; implic' <- mapBagM zonkImplication implic
       ; insol'  <- mapBagM zonkCt insol
       ; return (WC { wc_flat = flat', wc_impl = implic', wc_insol = insol' }) }

zonkCt :: Ct -> TcM Ct 
-- Zonking a Ct conservatively gives back a CNonCanonical
zonkCt ct 
  = do { v'  <- zonkEvVar (cc_id ct)
       ; fl' <- zonkFlavor (cc_flavor ct)
       ; return $ 
         CNonCanonical { cc_id = v'
                       , cc_flavor = fl'
                       , cc_depth = cc_depth ct } }
zonkCts :: Cts -> TcM Cts
zonkCts = mapBagM zonkCt

zonkFlavor :: CtFlavor -> TcM CtFlavor
zonkFlavor (Given loc gk) = do { loc' <- zonkGivenLoc loc; return (Given loc' gk) }
zonkFlavor fl             = return fl

zonkGivenLoc :: GivenLoc -> TcM GivenLoc
-- GivenLocs may have unification variables inside them!
zonkGivenLoc (CtLoc skol_info span ctxt)
  = do { skol_info' <- zonkSkolemInfo skol_info
       ; return (CtLoc skol_info' span ctxt) }

zonkSkolemInfo :: SkolemInfo -> TcM SkolemInfo
zonkSkolemInfo (SigSkol cx ty)  = do { ty' <- zonkTcType ty
                                     ; return (SigSkol cx ty') }
zonkSkolemInfo (InferSkol ntys) = do { ntys' <- mapM do_one ntys
                                     ; return (InferSkol ntys') }
  where
    do_one (n, ty) = do { ty' <- zonkTcType ty; return (n, ty') }
zonkSkolemInfo skol_info = return skol_info
\end{code}

Note [Silly Type Synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
	type C u a = u	-- Note 'a' unused

	foo :: (forall a. C u a -> C u a) -> u
	foo x = ...

	bar :: Num u => u
	bar = foo (\t -> t + t)

* From the (\t -> t+t) we get type  {Num d} =>  d -> d
  where d is fresh.

* Now unify with type of foo's arg, and we get:
	{Num (C d a)} =>  C d a -> C d a
  where a is fresh.

* Now abstract over the 'a', but float out the Num (C d a) constraint
  because it does not 'really' mention a.  (see exactTyVarsOfType)
  The arg to foo becomes
	\/\a -> \t -> t+t

* So we get a dict binding for Num (C d a), which is zonked to give
	a = ()
  [Note Sept 04: now that we are zonking quantified type variables
  on construction, the 'a' will be frozen as a regular tyvar on
  quantification, so the floated dict will still have type (C d a).
  Which renders this whole note moot; happily!]

* Then the \/\a abstraction has a zonked 'a' in it.

All very silly.   I think its harmless to ignore the problem.  We'll end up with
a \/\a in the final result but all the occurrences of a will be zonked to ()

Note [Zonking to Skolem]
~~~~~~~~~~~~~~~~~~~~~~~~
We used to zonk quantified type variables to regular TyVars.  However, this
leads to problems.  Consider this program from the regression test suite:

  eval :: Int -> String -> String -> String
  eval 0 root actual = evalRHS 0 root actual

  evalRHS :: Int -> a
  evalRHS 0 root actual = eval 0 root actual

It leads to the deferral of an equality (wrapped in an implication constraint)

  forall a. () => ((String -> String -> String) ~ a)

which is propagated up to the toplevel (see TcSimplify.tcSimplifyInferCheck).
In the meantime `a' is zonked and quantified to form `evalRHS's signature.
This has the *side effect* of also zonking the `a' in the deferred equality
(which at this point is being handed around wrapped in an implication
constraint).

Finally, the equality (with the zonked `a') will be handed back to the
simplifier by TcRnDriver.tcRnSrcDecls calling TcSimplify.tcSimplifyTop.
If we zonk `a' with a regular type variable, we will have this regular type
variable now floating around in the simplifier, which in many places assumes to
only see proper TcTyVars.

We can avoid this problem by zonking with a skolem.  The skolem is rigid
(which we require for a quantified variable), but is still a TcTyVar that the
simplifier knows how to deal with.


%************************************************************************
%*									*
\subsection{Zonking -- the main work-horses: zonkType, zonkTyVar}
%*									*
%*		For internal use only!					*
%*									*
%************************************************************************

\begin{code}
-- For unbound, mutable tyvars, zonkType uses the function given to it
-- For tyvars bound at a for-all, zonkType zonks them to an immutable
--	type variable and zonks the kind too

zonkKind :: (TcTyVar -> TcM Kind) -> TcKind -> TcM Kind
zonkKind = zonkType

zonkType :: (TcTyVar -> TcM Type)  -- What to do with TcTyVars
         -> TcType -> TcM Type
zonkType zonk_tc_tyvar ty
  = go ty
  where
    go (TyConApp tc tys) = do tys' <- mapM go tys
                              return (TyConApp tc tys')

    go (FunTy arg res)   = do arg' <- go arg
                              res' <- go res
                              return (FunTy arg' res')

    go (AppTy fun arg)   = do fun' <- go fun
                              arg' <- go arg
                              return (mkAppTy fun' arg')
		-- NB the mkAppTy; we might have instantiated a
		-- type variable to a type constructor, so we need
		-- to pull the TyConApp to the top.

	-- The two interesting cases!
    go (TyVarTy tyvar) | isTcTyVar tyvar = zonk_tc_tyvar tyvar
		       | otherwise	 = TyVarTy <$> updateTyVarKindM zonkTcKind tyvar
		-- Ordinary (non Tc) tyvars occur inside quantified types

    go (ForAllTy tyvar ty) = ASSERT( isImmutableTyVar tyvar ) do
                             ty' <- go ty
                             tyvar' <- updateTyVarKindM zonkTcKind tyvar
                             return (ForAllTy tyvar' ty')
\end{code}



%************************************************************************
%*									*
			Zonking kinds
%*									*
%************************************************************************

\begin{code}
zonkTcKind :: TcKind -> TcM TcKind
zonkTcKind k = zonkTcType k
\end{code}
			
%************************************************************************
%*									*
\subsection{Checking a user type}
%*									*
%************************************************************************

When dealing with a user-written type, we first translate it from an HsType
to a Type, performing kind checking, and then check various things that should 
be true about it.  We don't want to perform these checks at the same time
as the initial translation because (a) they are unnecessary for interface-file
types and (b) when checking a mutually recursive group of type and class decls,
we can't "look" at the tycons/classes yet.  Also, the checks are are rather
diverse, and used to really mess up the other code.

One thing we check for is 'rank'.  

	Rank 0: 	monotypes (no foralls)
	Rank 1:		foralls at the front only, Rank 0 inside
	Rank 2:		foralls at the front, Rank 1 on left of fn arrow,

	basic ::= tyvar | T basic ... basic

	r2  ::= forall tvs. cxt => r2a
	r2a ::= r1 -> r2a | basic
	r1  ::= forall tvs. cxt => r0
	r0  ::= r0 -> r0 | basic
	
Another thing is to check that type synonyms are saturated. 
This might not necessarily show up in kind checking.
	type A i = i
	data T k = MkT (k Int)
	f :: T A	-- BAD!

	
\begin{code}
-- Depending on the context, we might accept any kind (for instance, in a TH
-- splice), or only certain kinds (like in type signatures).
expectedKindInCtxt :: UserTypeCtxt -> Maybe Kind
expectedKindInCtxt (TySynCtxt _)  = Nothing -- Any kind will do
expectedKindInCtxt ThBrackCtxt    = Nothing
expectedKindInCtxt GhciCtxt       = Nothing
expectedKindInCtxt ResSigCtxt     = Just openTypeKind
expectedKindInCtxt ExprSigCtxt    = Just openTypeKind
expectedKindInCtxt (ForSigCtxt _) = Just liftedTypeKind
expectedKindInCtxt _              = Just argTypeKind

checkValidType :: UserTypeCtxt -> Type -> TcM ()
-- Checks that the type is valid for the given context
checkValidType ctxt ty = do
    traceTc "checkValidType" (ppr ty <+> text "::" <+> ppr (typeKind ty))
    unboxed         <- xoptM Opt_UnboxedTuples
    rank2           <- xoptM Opt_Rank2Types
    rankn           <- xoptM Opt_RankNTypes
    polycomp        <- xoptM Opt_PolymorphicComponents
    constraintKinds <- xoptM Opt_ConstraintKinds
    let 
	gen_rank n | rankn     = ArbitraryRank
	           | rank2     = Rank 2
	           | otherwise = Rank n
	rank
	  = case ctxt of
		 DefaultDeclCtxt-> MustBeMonoType
		 ResSigCtxt	-> MustBeMonoType
		 LamPatSigCtxt	-> gen_rank 0
		 BindPatSigCtxt	-> gen_rank 0
		 TySynCtxt _    -> gen_rank 0

		 ExprSigCtxt 	-> gen_rank 1
		 FunSigCtxt _   -> gen_rank 1
		 InfSigCtxt _   -> ArbitraryRank	-- Inferred type
		 ConArgCtxt _   | polycomp -> gen_rank 2
                                -- We are given the type of the entire
                                -- constructor, hence rank 1
 				| otherwise -> gen_rank 1

		 ForSigCtxt _	-> gen_rank 1
		 SpecInstCtxt   -> gen_rank 1
                 ThBrackCtxt    -> gen_rank 1
		 GhciCtxt       -> ArbitraryRank
                 _              -> panic "checkValidType"
                                     -- Can't happen; not used for *user* sigs

	actual_kind = typeKind ty

        kind_ok = case expectedKindInCtxt ctxt of
                    Nothing -> True
                    Just k  -> tcIsSubKind actual_kind k
	
	ubx_tup 
         | not unboxed = UT_NotOk
         | otherwise   = case ctxt of
	              	   TySynCtxt _ -> UT_Ok
	              	   ExprSigCtxt -> UT_Ok
	              	   ThBrackCtxt -> UT_Ok
		      	   GhciCtxt    -> UT_Ok
	              	   _           -> UT_NotOk

	-- Check the internal validity of the type itself
    check_type rank ubx_tup ty

	-- Check that the thing has kind Type, and is lifted if necessary
	-- Do this second, because we can't usefully take the kind of an 
	-- ill-formed type such as (a~Int)
    checkTc kind_ok (kindErr actual_kind)

        -- Check that the thing does not have kind Constraint,
        -- if -XConstraintKinds isn't enabled
    unless constraintKinds
      $ checkTc (not (isConstraintKind actual_kind)) (predTupleErr ty)

checkValidMonoType :: Type -> TcM ()
checkValidMonoType ty = check_mono_type MustBeMonoType ty
\end{code}


\begin{code}
data Rank = ArbitraryRank	  -- Any rank ok
          | MustBeMonoType  	  -- Monotype regardless of flags
	  | TyConArgMonoType	  -- Monotype but could be poly if -XImpredicativeTypes
	  | SynArgMonoType	  -- Monotype but could be poly if -XLiberalTypeSynonyms
          | Rank Int		  -- Rank n, but could be more with -XRankNTypes

decRank :: Rank -> Rank		  -- Function arguments
decRank (Rank 0)   = Rank 0
decRank (Rank n)   = Rank (n-1)
decRank other_rank = other_rank

nonZeroRank :: Rank -> Bool
nonZeroRank ArbitraryRank = True
nonZeroRank (Rank n) 	  = n>0
nonZeroRank _        	  = False

----------------------------------------
data UbxTupFlag = UT_Ok	| UT_NotOk
	-- The "Ok" version means "ok if UnboxedTuples is on"

----------------------------------------
check_mono_type :: Rank -> KindOrType -> TcM ()	-- No foralls anywhere
				      		-- No unlifted types of any kind
check_mono_type rank ty
  | isKind ty = return ()  -- IA0_NOTE: Do we need to check kinds?
  | otherwise
   = do { check_type rank UT_NotOk ty
	; checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty) }

check_type :: Rank -> UbxTupFlag -> Type -> TcM ()
-- The args say what the *type context* requires, independent
-- of *flag* settings.  You test the flag settings at usage sites.
-- 
-- Rank is allowed rank for function args
-- Rank 0 means no for-alls anywhere

check_type rank ubx_tup ty
  | not (null tvs && null theta)
  = do	{ checkTc (nonZeroRank rank) (forAllTyErr rank ty)
		-- Reject e.g. (Maybe (?x::Int => Int)), 
		-- with a decent error message
	; check_valid_theta SigmaCtxt theta
	; check_type rank ubx_tup tau	-- Allow foralls to right of arrow
	; checkAmbiguity tvs theta (tyVarsOfType tau) }
  where
    (tvs, theta, tau) = tcSplitSigmaTy ty
   
check_type _ _ (TyVarTy _) = return ()

check_type rank _ (FunTy arg_ty res_ty)
  = do	{ check_type (decRank rank) UT_NotOk arg_ty
	; check_type rank 	    UT_Ok    res_ty }

check_type rank _ (AppTy ty1 ty2)
  = do	{ check_arg_type rank ty1
	; check_arg_type rank ty2 }

check_type rank ubx_tup ty@(TyConApp tc tys)
  | isSynTyCon tc
  = do	{ 	-- Check that the synonym has enough args
		-- This applies equally to open and closed synonyms
	 	-- It's OK to have an *over-applied* type synonym
		--	data Tree a b = ...
		--	type Foo a = Tree [a]
		--	f :: Foo a b -> ...
 	  checkTc (tyConArity tc <= length tys) arity_msg

	-- See Note [Liberal type synonyms]
	; liberal <- xoptM Opt_LiberalTypeSynonyms
	; if not liberal || isSynFamilyTyCon tc then
		-- For H98 and synonym families, do check the type args
		mapM_ (check_mono_type SynArgMonoType) tys

	  else	-- In the liberal case (only for closed syns), expand then check
	  case tcView ty of   
	     Just ty' -> check_type rank ubx_tup ty' 
	     Nothing  -> pprPanic "check_tau_type" (ppr ty)
    }
    
  | isUnboxedTupleTyCon tc
  = do	{ ub_tuples_allowed <- xoptM Opt_UnboxedTuples
	; checkTc (ubx_tup_ok ub_tuples_allowed) ubx_tup_msg

	; impred <- xoptM Opt_ImpredicativeTypes	
	; let rank' = if impred then ArbitraryRank else TyConArgMonoType
		-- c.f. check_arg_type
		-- However, args are allowed to be unlifted, or
		-- more unboxed tuples, so can't use check_arg_ty
	; mapM_ (check_type rank' UT_Ok) tys }

  | otherwise
  = mapM_ (check_arg_type rank) tys

  where
    ubx_tup_ok ub_tuples_allowed = case ubx_tup of
                                   UT_Ok -> ub_tuples_allowed
                                   _     -> False

    n_args    = length tys
    tc_arity  = tyConArity tc

    arity_msg   = arityErr "Type synonym" (tyConName tc) tc_arity n_args
    ubx_tup_msg = ubxArgTyErr ty

check_type _ _ ty = pprPanic "check_type" (ppr ty)

----------------------------------------
check_arg_type :: Rank -> KindOrType -> TcM ()
-- The sort of type that can instantiate a type variable,
-- or be the argument of a type constructor.
-- Not an unboxed tuple, but now *can* be a forall (since impredicativity)
-- Other unboxed types are very occasionally allowed as type
-- arguments depending on the kind of the type constructor
-- 
-- For example, we want to reject things like:
--
--	instance Ord a => Ord (forall s. T s a)
-- and
--	g :: T s (forall b.b)
--
-- NB: unboxed tuples can have polymorphic or unboxed args.
--     This happens in the workers for functions returning
--     product types with polymorphic components.
--     But not in user code.
-- Anyway, they are dealt with by a special case in check_tau_type

check_arg_type rank ty
  | isKind ty = return ()  -- IA0_NOTE: Do we need to check a kind?
  | otherwise
  = do	{ impred <- xoptM Opt_ImpredicativeTypes
	; let rank' = case rank of 	    -- Predictive => must be monotype
	      	        MustBeMonoType     -> MustBeMonoType  -- Monotype, regardless
			_other | impred    -> ArbitraryRank
			       | otherwise -> TyConArgMonoType
			-- Make sure that MustBeMonoType is propagated, 
			-- so that we don't suggest -XImpredicativeTypes in
			--    (Ord (forall a.a)) => a -> a
			-- and so that if it Must be a monotype, we check that it is!

	; check_type rank' UT_NotOk ty
	; checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty) }
             -- NB the isUnLiftedType test also checks for 
             --    T State#
             -- where there is an illegal partial application of State# (which has
             -- kind * -> #); see Note [The kind invariant] in TypeRep

----------------------------------------
forAllTyErr :: Rank -> Type -> SDoc
forAllTyErr rank ty 
   = vcat [ hang (ptext (sLit "Illegal polymorphic or qualified type:")) 2 (ppr ty)
          , suggestion ]
  where
    suggestion = case rank of
    	       	   Rank _ -> ptext (sLit "Perhaps you intended to use -XRankNTypes or -XRank2Types")
    	       	   TyConArgMonoType -> ptext (sLit "Perhaps you intended to use -XImpredicativeTypes")
    	       	   SynArgMonoType -> ptext (sLit "Perhaps you intended to use -XLiberalTypeSynonyms")
		   _ -> empty      -- Polytype is always illegal

unliftedArgErr, ubxArgTyErr :: Type -> SDoc
unliftedArgErr  ty = sep [ptext (sLit "Illegal unlifted type:"), ppr ty]
ubxArgTyErr     ty = sep [ptext (sLit "Illegal unboxed tuple type as function argument:"), ppr ty]

kindErr :: Kind -> SDoc
kindErr kind       = sep [ptext (sLit "Expecting an ordinary type, but found a type of kind"), ppr kind]
\end{code}

Note [Liberal type synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If -XLiberalTypeSynonyms is on, expand closed type synonyms *before*
doing validity checking.  This allows us to instantiate a synonym defn
with a for-all type, or with a partially-applied type synonym.
	e.g.   type T a b = a
	       type S m   = m ()
	       f :: S (T Int)
Here, T is partially applied, so it's illegal in H98.  But if you
expand S first, then T we get just
	       f :: Int
which is fine.

IMPORTANT: suppose T is a type synonym.  Then we must do validity
checking on an appliation (T ty1 ty2)

	*either* before expansion (i.e. check ty1, ty2)
	*or* after expansion (i.e. expand T ty1 ty2, and then check)
	BUT NOT BOTH

If we do both, we get exponential behaviour!!

  data TIACons1 i r c = c i ::: r c
  type TIACons2 t x = TIACons1 t (TIACons1 t x)
  type TIACons3 t x = TIACons2 t (TIACons1 t x)
  type TIACons4 t x = TIACons2 t (TIACons2 t x)
  type TIACons7 t x = TIACons4 t (TIACons3 t x)


%************************************************************************
%*									*
\subsection{Checking a theta or source type}
%*									*
%************************************************************************

\begin{code}
checkValidTheta :: UserTypeCtxt -> ThetaType -> TcM ()
checkValidTheta ctxt theta 
  = addErrCtxt (checkThetaCtxt ctxt theta) (check_valid_theta ctxt theta)

-------------------------
check_valid_theta :: UserTypeCtxt -> [PredType] -> TcM ()
check_valid_theta _ []
  = return ()
check_valid_theta ctxt theta = do
    dflags <- getDynFlags
    warnTc (notNull dups) (dupPredWarn dups)
    mapM_ (check_pred_ty dflags ctxt) theta
  where
    (_,dups) = removeDups cmpPred theta

-------------------------
check_pred_ty :: DynFlags -> UserTypeCtxt -> PredType -> TcM ()
check_pred_ty dflags ctxt pred = check_pred_ty' dflags ctxt (shallowPredTypePredTree pred)

check_pred_ty' :: DynFlags -> UserTypeCtxt -> PredTree -> TcM ()
check_pred_ty' dflags ctxt (ClassPred cls tys)
  = do {	-- Class predicates are valid in all contexts
       ; checkTc (arity == n_tys) arity_err

		-- Check the form of the argument types
       ; mapM_ checkValidMonoType tys
       ; checkTc (check_class_pred_tys dflags ctxt tys)
		 (predTyVarErr (mkClassPred cls tys) $$ how_to_allow)
       }
  where
    class_name = className cls
    arity      = classArity cls
    n_tys      = length tys
    arity_err  = arityErr "Class" class_name arity n_tys
    how_to_allow = parens (ptext (sLit "Use -XFlexibleContexts to permit this"))


check_pred_ty' dflags _ctxt (EqPred ty1 ty2)
  = do {	-- Equational constraints are valid in all contexts if type
		-- families are permitted
       ; checkTc (xopt Opt_TypeFamilies dflags || xopt Opt_GADTs dflags) 
                 (eqPredTyErr (mkEqPred (ty1, ty2)))

		-- Check the form of the argument types
       ; checkValidMonoType ty1
       ; checkValidMonoType ty2
       }

check_pred_ty' _ _ctxt (IPPred _ ty) = checkValidMonoType ty
	-- Contrary to GHC 7.2 and below, we allow implicit parameters not only
	-- in type signatures but also in instance decls, superclasses etc
	-- The reason we didn't allow implicit params in instances is a bit
	-- subtle:
	-- If we allowed	instance (?x::Int, Eq a) => Foo [a] where ...
	-- then when we saw (e :: (?x::Int) => t) it would be unclear how to 
	-- discharge all the potential usas of the ?x in e.   For example, a
	-- constraint Foo [Int] might come out of e,and applying the
	-- instance decl would show up two uses of ?x.
        --
        -- Happily this is not an issue in the new constraint solver.

check_pred_ty' dflags ctxt t@(TuplePred ts)
  = do { checkTc (xopt Opt_ConstraintKinds dflags)
                 (predTupleErr (predTreePredType t))
       ; mapM_ (check_pred_ty dflags ctxt) ts }
    -- This case will not normally be executed because without -XConstraintKinds
    -- tuple types are only kind-checked as *

check_pred_ty' dflags ctxt (IrredPred pred)
    -- Allowing irreducible predicates in class superclasses is somewhat dangerous
    -- because we can write:
    --
    --  type family Fooish x :: * -> Constraint
    --  type instance Fooish () = Foo
    --  class Fooish () a => Foo a where
    --
    -- This will cause the constraint simplifier to loop because every time we canonicalise a
    -- (Foo a) class constraint we add a (Fooish () a) constraint which will be immediately
    -- solved to add+canonicalise another (Foo a) constraint.
    --
    -- It is equally dangerous to allow them in instance heads because in that case the
    -- Paterson conditions may not detect duplication of a type variable or size change.
    --
    -- In both cases it's OK if the predicate is actually a synonym, though.
    -- We'll also allow it if
  = do checkTc (xopt Opt_ConstraintKinds dflags)
               (predIrredErr pred)
       case tcView pred of
         Just pred' -> 
           -- Synonym: just look through
           check_pred_ty dflags ctxt pred'
         Nothing
           | xopt Opt_UndecidableInstances dflags -> return ()
           | otherwise -> do
             -- Make sure it is OK to have an irred pred in this context
             checkTc (case ctxt of ClassSCCtxt _ -> False; InstDeclCtxt -> False; _ -> True)
                     (predIrredBadCtxtErr pred)

-------------------------
check_class_pred_tys :: DynFlags -> UserTypeCtxt -> [KindOrType] -> Bool
check_class_pred_tys dflags ctxt kts
  = case ctxt of
	SpecInstCtxt -> True	-- {-# SPECIALISE instance Eq (T Int) #-} is fine
	InstDeclCtxt -> flexible_contexts || undecidable_ok || all tcIsTyVarTy tys
				-- Further checks on head and theta in
				-- checkInstTermination
	_             -> flexible_contexts || all tyvar_head tys
  where
    (_, tys) = span isKind kts  -- see Note [Kind polymorphic type classes]
    flexible_contexts = xopt Opt_FlexibleContexts dflags
    undecidable_ok = xopt Opt_UndecidableInstances dflags

{-
Note [Kind polymorphic type classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

class C f where
  empty :: f a
-- C :: forall k. k -> Constraint
-- empty :: forall (a :: k). f a

MultiParam:
~~~~~~~~~~~

instance C Maybe where
  empty = Nothing

The dictionary gets type [C * Maybe] even if it's not a MultiParam
type class.

Flexible:
~~~~~~~~~

data D a = D
-- D :: forall k. k -> *

instance C D where
  empty = D

The dictionary gets type [C * (D *)]. IA0_TODO it should be
generalized actually.

-}

-------------------------
tyvar_head :: Type -> Bool
tyvar_head ty			-- Haskell 98 allows predicates of form 
  | tcIsTyVarTy ty = True	-- 	C (a ty1 .. tyn)
  | otherwise			-- where a is a type variable
  = case tcSplitAppTy_maybe ty of
	Just (ty, _) -> tyvar_head ty
	Nothing	     -> False
\end{code}

Check for ambiguity
~~~~~~~~~~~~~~~~~~~
	  forall V. P => tau
is ambiguous if P contains generic variables
(i.e. one of the Vs) that are not mentioned in tau

However, we need to take account of functional dependencies
when we speak of 'mentioned in tau'.  Example:
	class C a b | a -> b where ...
Then the type
	forall x y. (C x y) => x
is not ambiguous because x is mentioned and x determines y

NB; the ambiguity check is only used for *user* types, not for types
coming from inteface files.  The latter can legitimately have
ambiguous types. Example

   class S a where s :: a -> (Int,Int)
   instance S Char where s _ = (1,1)
   f:: S a => [a] -> Int -> (Int,Int)
   f (_::[a]) x = (a*x,b)
	where (a,b) = s (undefined::a)

Here the worker for f gets the type
	fw :: forall a. S a => Int -> (# Int, Int #)

If the list of tv_names is empty, we have a monotype, and then we
don't need to check for ambiguity either, because the test can't fail
(see is_ambig).

In addition, GHC insists that at least one type variable
in each constraint is in V.  So we disallow a type like
	forall a. Eq b => b -> b
even in a scope where b is in scope.

\begin{code}
checkAmbiguity :: [TyVar] -> ThetaType -> TyVarSet -> TcM ()
checkAmbiguity forall_tyvars theta tau_tyvars
  = mapM_ complain (filter is_ambig theta)
  where
    complain pred     = addErrTc (ambigErr pred)
    extended_tau_vars = growThetaTyVars theta tau_tyvars

	-- See Note [Implicit parameters and ambiguity] in TcSimplify
    is_ambig pred     = isClassPred  pred &&
			any ambig_var (varSetElems (tyVarsOfType pred))

    ambig_var ct_var  = (ct_var `elem` forall_tyvars) &&
		        not (ct_var `elemVarSet` extended_tau_vars)

ambigErr :: PredType -> SDoc
ambigErr pred
  = sep [ptext (sLit "Ambiguous constraint") <+> quotes (pprType pred),
	 nest 2 (ptext (sLit "At least one of the forall'd type variables mentioned by the constraint") $$
		 ptext (sLit "must be reachable from the type after the '=>'"))]
\end{code}

Note [Growing the tau-tvs using constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(growInstsTyVars insts tvs) is the result of extending the set 
    of tyvars tvs using all conceivable links from pred

E.g. tvs = {a}, preds = {H [a] b, K (b,Int) c, Eq e}
Then grow precs tvs = {a,b,c}

\begin{code}
growThetaTyVars :: TcThetaType -> TyVarSet -> TyVarSet
-- See Note [Growing the tau-tvs using constraints]
growThetaTyVars theta tvs
  | null theta = tvs
  | otherwise  = fixVarSet mk_next tvs
  where
    mk_next tvs = foldr grow_one tvs theta
    grow_one pred tvs = growPredTyVars pred tvs `unionVarSet` tvs

growPredTyVars :: TcPredType
               -> TyVarSet	-- The set to extend
	       -> TyVarSet	-- TyVars of the predicate if it intersects
	       	  		-- the set, or is implicit parameter
growPredTyVars pred tvs = go (classifyPredType pred)
  where
    grow pred_tvs | pred_tvs `intersectsVarSet` tvs = pred_tvs
                  | otherwise                       = emptyVarSet

    go (IPPred _ ty)     = tyVarsOfType ty -- See Note [Implicit parameters and ambiguity]
    go (ClassPred _ tys) = grow (tyVarsOfTypes tys)
    go (EqPred ty1 ty2)  = grow (tyVarsOfType ty1 `unionVarSet` tyVarsOfType ty2)
    go (TuplePred ts)    = unionVarSets (map (go . classifyPredType) ts)
    go (IrredPred ty)    = grow (tyVarsOfType ty)
\end{code}
    
Note [Implicit parameters and ambiguity] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Only a *class* predicate can give rise to ambiguity
An *implicit parameter* cannot.  For example:
	foo :: (?x :: [a]) => Int
	foo = length ?x
is fine.  The call site will suppply a particular 'x'

Furthermore, the type variables fixed by an implicit parameter
propagate to the others.  E.g.
	foo :: (Show a, ?x::[a]) => Int
	foo = show (?x++?x)
The type of foo looks ambiguous.  But it isn't, because at a call site
we might have
	let ?x = 5::Int in foo
and all is well.  In effect, implicit parameters are, well, parameters,
so we can take their type variables into account as part of the
"tau-tvs" stuff.  This is done in the function 'FunDeps.grow'.


\begin{code}
checkThetaCtxt :: UserTypeCtxt -> ThetaType -> SDoc
checkThetaCtxt ctxt theta
  = vcat [ptext (sLit "In the context:") <+> pprTheta theta,
	  ptext (sLit "While checking") <+> pprUserTypeCtxt ctxt ]

eqPredTyErr, predTyVarErr, predTupleErr, predIrredErr, predIrredBadCtxtErr :: PredType -> SDoc
eqPredTyErr  pred = ptext (sLit "Illegal equational constraint") <+> pprType pred
		    $$
		    parens (ptext (sLit "Use -XGADTs or -XTypeFamilies to permit this"))
predTyVarErr pred  = sep [ptext (sLit "Non type-variable argument"),
			  nest 2 (ptext (sLit "in the constraint:") <+> pprType pred)]
predTupleErr pred  = ptext (sLit "Illegal tuple constraint") <+> pprType pred $$
                     parens (ptext (sLit "Use -XConstraintKinds to permit this"))
predIrredErr pred  = ptext (sLit "Illegal irreducible constraint") <+> pprType pred $$
                     parens (ptext (sLit "Use -XConstraintKinds to permit this"))
predIrredBadCtxtErr pred = ptext (sLit "Illegal irreducible constraint") <+> pprType pred $$
                           ptext (sLit "in superclass/instance head context") <+>
                           parens (ptext (sLit "Use -XUndecidableInstances to permit this"))
dupPredWarn :: [[PredType]] -> SDoc
dupPredWarn dups   = ptext (sLit "Duplicate constraint(s):") <+> pprWithCommas pprType (map head dups)

arityErr :: Outputable a => String -> a -> Int -> Int -> SDoc
arityErr kind name n m
  = hsep [ text kind, quotes (ppr name), ptext (sLit "should have"),
	   n_arguments <> comma, text "but has been given", 
           if m==0 then text "none" else int m]
    where
	n_arguments | n == 0 = ptext (sLit "no arguments")
		    | n == 1 = ptext (sLit "1 argument")
		    | True   = hsep [int n, ptext (sLit "arguments")]
\end{code}

%************************************************************************
%*									*
\subsection{Checking for a decent instance head type}
%*									*
%************************************************************************

@checkValidInstHead@ checks the type {\em and} its syntactic constraints:
it must normally look like: @instance Foo (Tycon a b c ...) ...@

The exceptions to this syntactic checking: (1)~if the @GlasgowExts@
flag is on, or (2)~the instance is imported (they must have been
compiled elsewhere). In these cases, we let them go through anyway.

We can also have instances for functions: @instance Foo (a -> b) ...@.

\begin{code}
checkValidInstHead :: UserTypeCtxt -> Class -> [Type] -> TcM ()
checkValidInstHead ctxt clas tys
  = do { dflags <- getDynFlags

           -- Check language restrictions; 
           -- but not for SPECIALISE isntance pragmas
       ; unless spec_inst_prag $
         do { checkTc (xopt Opt_TypeSynonymInstances dflags ||
                       all tcInstHeadTyNotSynonym tys)
                 (instTypeErr pp_pred head_type_synonym_msg)
            ; checkTc (xopt Opt_FlexibleInstances dflags ||
                       all tcInstHeadTyAppAllTyVars tys)
                 (instTypeErr pp_pred head_type_args_tyvars_msg)
            ; checkTc (xopt Opt_MultiParamTypeClasses dflags ||
                       isSingleton (dropWhile isKind tys))  -- IA0_NOTE: only count type arguments
                 (instTypeErr pp_pred head_one_type_msg) }

         -- May not contain type family applications
       ; mapM_ checkTyFamFreeness tys

       ; mapM_ checkValidMonoType tys
	-- For now, I only allow tau-types (not polytypes) in 
	-- the head of an instance decl.  
	-- 	E.g.  instance C (forall a. a->a) is rejected
	-- One could imagine generalising that, but I'm not sure
	-- what all the consequences might be
       }

  where
    spec_inst_prag = case ctxt of { SpecInstCtxt -> True; _ -> False }

    pp_pred = pprClassPred clas tys
    head_type_synonym_msg = parens (
                text "All instance types must be of the form (T t1 ... tn)" $$
                text "where T is not a synonym." $$
                text "Use -XTypeSynonymInstances if you want to disable this.")

    head_type_args_tyvars_msg = parens (vcat [
                text "All instance types must be of the form (T a1 ... an)",
                text "where a1 ... an are *distinct type variables*,",
                text "and each type variable appears at most once in the instance head.",
                text "Use -XFlexibleInstances if you want to disable this."])

    head_one_type_msg = parens (
                text "Only one type can be given in an instance head." $$
                text "Use -XMultiParamTypeClasses if you want to allow more.")

instTypeErr :: SDoc -> SDoc -> SDoc
instTypeErr pp_ty msg
  = sep [ptext (sLit "Illegal instance declaration for") <+> quotes pp_ty, 
	 nest 2 msg]
\end{code}

validDeivPred checks for OK 'deriving' context.  See Note [Exotic
derived instance contexts] in TcSimplify.  However the predicate is
here because it uses sizeTypes, fvTypes.

Also check for a bizarre corner case, when the derived instance decl 
would look like
    instance C a b => D (T a) where ...
Note that 'b' isn't a parameter of T.  This gives rise to all sorts of
problems; in particular, it's hard to compare solutions for equality
when finding the fixpoint, and that means the inferContext loop does
not converge.  See Trac #5287.

\begin{code}
validDerivPred :: TyVarSet -> PredType -> Bool
validDerivPred tv_set ty = case getClassPredTys_maybe ty of
  Just (_, tys) | let fvs = fvTypes tys
                -> hasNoDups fvs 
                && sizeTypes tys == length fvs
                && all (`elemVarSet` tv_set) fvs
  _ -> False
\end{code}


%************************************************************************
%*									*
\subsection{Checking instance for termination}
%*									*
%************************************************************************

\begin{code}
checkValidInstance :: UserTypeCtxt -> LHsType Name -> [TyVar] -> ThetaType
                   -> Class -> [TcType] -> TcM ()
checkValidInstance ctxt hs_type tyvars theta clas inst_tys
  = setSrcSpan (getLoc hs_type) $
    do  { setSrcSpan head_loc (checkValidInstHead ctxt clas inst_tys)
        ; checkValidTheta ctxt theta
	; checkAmbiguity tyvars theta (tyVarsOfTypes inst_tys)

	-- Check that instance inference will terminate (if we care)
	-- For Haskell 98 this will already have been done by checkValidTheta,
        -- but as we may be using other extensions we need to check.
	; undecidable_ok <- xoptM Opt_UndecidableInstances
        ; unless undecidable_ok $
	  mapM_ addErrTc (checkInstTermination inst_tys theta)
	
	-- The Coverage Condition
	; checkTc (undecidable_ok || checkInstCoverage clas inst_tys)
	  	  (instTypeErr (pprClassPred clas inst_tys) msg)
        }
  where
    msg  = parens (vcat [ptext (sLit "the Coverage Condition fails for one of the functional dependencies;"),
			 undecidableMsg])

        -- The location of the "head" of the instance
    head_loc = case hs_type of
                 L _ (HsForAllTy _ _ _ (L loc _)) -> loc
                 L loc _                          -> loc
\end{code}

Note [Paterson conditions]
~~~~~~~~~~~~~~~~~~~~~~~~~~

Termination test: the so-called "Paterson conditions" (see Section 5 of
"Understanding functionsl dependencies via Constraint Handling Rules, 
JFP Jan 2007).

We check that each assertion in the context satisfies:
 (1) no variable has more occurrences in the assertion than in the head, and
 (2) the assertion has fewer constructors and variables (taken together
     and counting repetitions) than the head.
This is only needed with -fglasgow-exts, as Haskell 98 restrictions
(which have already been checked) guarantee termination. 

The underlying idea is that 

    for any ground substitution, each assertion in the
    context has fewer type constructors than the head.


\begin{code}
checkInstTermination :: [TcType] -> ThetaType -> [MsgDoc]
checkInstTermination tys theta
  = mapCatMaybes check theta
  where
   fvs  = fvTypes tys
   size = sizeTypes tys
   check pred 
      | not (null (fvType pred \\ fvs)) 
      = Just (predUndecErr pred nomoreMsg $$ parens undecidableMsg)
      | sizePred pred >= size
      = Just (predUndecErr pred smallerMsg $$ parens undecidableMsg)
      | otherwise
      = Nothing

predUndecErr :: PredType -> SDoc -> SDoc
predUndecErr pred msg = sep [msg,
			nest 2 (ptext (sLit "in the constraint:") <+> pprType pred)]

nomoreMsg, smallerMsg, undecidableMsg :: SDoc
nomoreMsg = ptext (sLit "Variable occurs more often in a constraint than in the instance head")
smallerMsg = ptext (sLit "Constraint is no smaller than the instance head")
undecidableMsg = ptext (sLit "Use -XUndecidableInstances to permit this")
\end{code}


%************************************************************************
%*									*
	Checking type instance well-formedness and termination
%*									*
%************************************************************************

\begin{code}
-- Check that a "type instance" is well-formed (which includes decidability
-- unless -XUndecidableInstances is given).
--
checkValidFamInst :: [Type] -> Type -> TcM ()
checkValidFamInst typats rhs
  = do { -- left-hand side contains no type family applications
         -- (vanilla synonyms are fine, though)
       ; mapM_ checkTyFamFreeness typats

         -- the right-hand side is a tau type
       ; checkValidMonoType rhs

         -- we have a decidable instance unless otherwise permitted
       ; undecidable_ok <- xoptM Opt_UndecidableInstances
       ; unless undecidable_ok $
	   mapM_ addErrTc (checkFamInstRhs typats (tcTyFamInsts rhs))
       }

-- Make sure that each type family instance is 
--   (1) strictly smaller than the lhs,
--   (2) mentions no type variable more often than the lhs, and
--   (3) does not contain any further type family instances.
--
checkFamInstRhs :: [Type]                  -- lhs
             	-> [(TyCon, [Type])]       -- type family instances
             	-> [MsgDoc]
checkFamInstRhs lhsTys famInsts
  = mapCatMaybes check famInsts
  where
   size = sizeTypes lhsTys
   fvs  = fvTypes lhsTys
   check (tc, tys)
      | not (all isTyFamFree tys)
      = Just (famInstUndecErr famInst nestedMsg $$ parens undecidableMsg)
      | not (null (fvTypes tys \\ fvs))
      = Just (famInstUndecErr famInst nomoreVarMsg $$ parens undecidableMsg)
      | size <= sizeTypes tys
      = Just (famInstUndecErr famInst smallerAppMsg $$ parens undecidableMsg)
      | otherwise
      = Nothing
      where
        famInst = TyConApp tc tys

-- Ensure that no type family instances occur in a type.
--
checkTyFamFreeness :: Type -> TcM ()
checkTyFamFreeness ty
  = checkTc (isTyFamFree ty) $
      tyFamInstIllegalErr ty

-- Check that a type does not contain any type family applications.
--
isTyFamFree :: Type -> Bool
isTyFamFree = null . tcTyFamInsts

-- Error messages

tyFamInstIllegalErr :: Type -> SDoc
tyFamInstIllegalErr ty
  = hang (ptext (sLit "Illegal type synonym family application in instance") <> 
         colon) 2 $
      ppr ty

famInstUndecErr :: Type -> SDoc -> SDoc
famInstUndecErr ty msg 
  = sep [msg, 
         nest 2 (ptext (sLit "in the type family application:") <+> 
                 pprType ty)]

nestedMsg, nomoreVarMsg, smallerAppMsg :: SDoc
nestedMsg     = ptext (sLit "Nested type family application")
nomoreVarMsg  = ptext (sLit "Variable occurs more often than in instance head")
smallerAppMsg = ptext (sLit "Application is no smaller than the instance head")
\end{code}


%************************************************************************
%*									*
\subsection{Auxiliary functions}
%*									*
%************************************************************************

\begin{code}
-- Free variables of a type, retaining repetitions, and expanding synonyms
fvType :: Type -> [TyVar]
fvType ty | Just exp_ty <- tcView ty = fvType exp_ty
fvType (TyVarTy tv)        = [tv]
fvType (TyConApp _ tys)    = fvTypes tys
fvType (FunTy arg res)     = fvType arg ++ fvType res
fvType (AppTy fun arg)     = fvType fun ++ fvType arg
fvType (ForAllTy tyvar ty) = filter (/= tyvar) (fvType ty)

fvTypes :: [Type] -> [TyVar]
fvTypes tys                = concat (map fvType tys)

sizeType :: Type -> Int
-- Size of a type: the number of variables and constructors
sizeType ty | Just exp_ty <- tcView ty = sizeType exp_ty
sizeType (TyVarTy _)       = 1
sizeType (TyConApp _ tys)  = sizeTypes tys + 1
sizeType (FunTy arg res)   = sizeType arg + sizeType res + 1
sizeType (AppTy fun arg)   = sizeType fun + sizeType arg
sizeType (ForAllTy _ ty)   = sizeType ty

sizeTypes :: [Type] -> Int
-- IA0_NOTE: Avoid kinds.
sizeTypes xs = sum (map sizeType tys)
  where tys = filter (not . isKind) xs

-- Size of a predicate
--
-- We are considering whether *class* constraints terminate
-- Once we get into an implicit parameter or equality we
-- can't get back to a class constraint, so it's safe
-- to say "size 0".  See Trac #4200.
sizePred :: PredType -> Int
sizePred ty = go (classifyPredType ty)
  where
    go (ClassPred _ tys') = sizeTypes tys'
    go (IPPred {})        = 0
    go (EqPred {})        = 0
    go (TuplePred ts)     = sum (map (go . classifyPredType) ts)
    go (IrredPred ty)     = sizeType ty
\end{code}

Note [Paterson conditions on PredTypes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We are considering whether *class* constraints terminate
(see Note [Paterson conditions]). Precisely, the Paterson conditions
would have us check that "the constraint has fewer constructors and variables
(taken together and counting repetitions) than the head.".

However, we can be a bit more refined by looking at which kind of constraint
this actually is. There are two main tricks:

 1. It seems like it should be OK not to count the tuple type constructor
    for a PredType like (Show a, Eq a) :: Constraint, since we don't
    count the "implicit" tuple in the ThetaType itself.

    In fact, the Paterson test just checks *each component* of the top level
    ThetaType against the size bound, one at a time. By analogy, it should be
    OK to return the size of the *largest* tuple component as the size of the
    whole tuple.

 2. Once we get into an implicit parameter or equality we
    can't get back to a class constraint, so it's safe
    to say "size 0".  See Trac #4200.

NB: we don't want to detect PredTypes in sizeType (and then call 
sizePred on them), or we might get an infinite loop if that PredType
is irreducible. See Trac #5581.