summaryrefslogtreecommitdiff
path: root/compiler/typecheck/TcPatSyn.hs
blob: 0c6d713c3a19145de0b4145d60be98d804d236c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

\section[TcPatSyn]{Typechecking pattern synonym declarations}
-}

{-# LANGUAGE CPP #-}

module TcPatSyn ( tcPatSynSig, tcInferPatSynDecl, tcCheckPatSynDecl
                , tcPatSynBuilderBind, tcPatSynBuilderOcc, nonBidirectionalErr
  ) where

import HsSyn
import TcPat
import TcHsType( tcImplicitTKBndrs, tcHsTyVarBndrs
               , tcHsContext, tcHsLiftedType, tcHsOpenType )
import TcRnMonad
import TcEnv
import TcMType
import TysPrim
import TysWiredIn  ( levityTy )
import Name
import SrcLoc
import PatSyn
import NameSet
import Panic
import Outputable
import FastString
import Var
import Id
import IdInfo( RecSelParent(..))
import TcBinds
import BasicTypes
import TcSimplify
import TcUnify
import TcType
import TcEvidence
import BuildTyCl
import VarSet
import MkId
import TcTyDecls
import ConLike
import FieldLabel
import Bag
import Util
import Data.Maybe
import Control.Monad ( unless, zipWithM )
import Data.List( partition )
import Pair( Pair(..) )

#include "HsVersions.h"

{- *********************************************************************
*                                                                      *
        Type checking a pattern synonym signature
*                                                                      *
************************************************************************

Note [Pattern synonym signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pattern synonym signatures are surprisingly tricky (see Trac #11224 for example).
In general they look like this:

   pattern P :: forall univ_tvs. req
             => forall ex_tvs. prov
             => arg1 -> .. -> argn -> body_ty

For parsing and renaming we treat the signature as an ordinary LHsSigType.

Once we get to type checking, we decompose it into its parts, in tcPatSynSig.

* Note that 'forall univ_tvs' and 'req =>'
        and 'forall ex_tvs'   and 'prov =>'
  are all optional.  We gather the pieces at the the top of tcPatSynSig

* Initially the implicitly-bound tyvars (added by the renamer) include both
  universal and existential vars.

* After we kind-check the pieces and convert to Types, we do kind generalisation.

* Note [Splitting the implicit tyvars in a pattern synonym]
  Now the tricky bit: we must split
     the implicitly-bound variables, and
     the kind-generalised variables
  into universal and existential.  We do so as follows:

     Note [The pattern-synonym signature splitting rule]
     the universals are the ones mentioned in
          - univ_tvs (and the kinds thereof)
          - prov
          - body_ty
     the existential are the rest

* Moreover see Note
-}

tcPatSynSig :: Name -> LHsSigType Name -> TcM TcPatSynInfo
tcPatSynSig name sig_ty
  | HsIB { hsib_vars = implicit_hs_tvs
         , hsib_body = hs_ty }  <- sig_ty
  , (univ_hs_tvs, hs_req,  hs_ty1) <- splitLHsSigmaTy hs_ty
  , (ex_hs_tvs,   hs_prov, hs_ty2) <- splitLHsSigmaTy hs_ty1
  , (hs_arg_tys, hs_body_ty)       <- splitHsFunType  hs_ty2
  = do { (implicit_tvs, (univ_tvs, req, ex_tvs, prov, arg_tys, body_ty))
           <- solveEqualities $
              tcImplicitTKBndrs implicit_hs_tvs $
              tcHsTyVarBndrs univ_hs_tvs  $ \ univ_tvs ->
              tcHsTyVarBndrs ex_hs_tvs    $ \ ex_tvs   ->
              do { req     <- tcHsContext hs_req
                 ; prov    <- tcHsContext hs_prov
                 ; arg_tys <- mapM tcHsOpenType (hs_arg_tys :: [LHsType Name])
                 ; body_ty <- tcHsLiftedType hs_body_ty
                 ; let bound_tvs
                         = unionVarSets [ allBoundVariabless req
                                        , allBoundVariabless prov
                                        , allBoundVariabless (body_ty : arg_tys)
                                        ]
                 ; return ( (univ_tvs, req, ex_tvs, prov, arg_tys, body_ty)
                          , bound_tvs) }

       -- These are /signatures/ so we zonk to squeeze out any kind
       -- unification variables.
       -- ToDo: checkValidType?
       ; implicit_tvs <- mapM zonkTcTyCoVarBndr implicit_tvs
       ; univ_tvs     <- mapM zonkTcTyCoVarBndr univ_tvs
       ; ex_tvs       <- mapM zonkTcTyCoVarBndr ex_tvs
       ; req          <- zonkTcTypes req
       ; prov         <- zonkTcTypes prov
       ; arg_tys      <- zonkTcTypes arg_tys
       ; body_ty      <- zonkTcType  body_ty

       -- Kind generalisation; c.f. kindGeneralise
       ; let free_kvs = tyCoVarsOfTelescope (implicit_tvs ++ univ_tvs ++ ex_tvs) $
                        tyCoVarsOfTypes (body_ty : req ++ prov ++ arg_tys)

       ; kvs <- quantifyTyVars emptyVarSet (Pair free_kvs emptyVarSet)

       -- Complain about:  pattern P :: () => forall x. x -> P x
       -- The renamer thought it was fine, but the existential 'x'
       -- should not appear in the result type
       ; let bad_tvs = filter (`elemVarSet` tyCoVarsOfType body_ty) ex_tvs
       ; unless (null bad_tvs) $ addErr $
         hang (text "The result type" <+> quotes (ppr body_ty))
            2 (text "mentions existential type variable" <> plural bad_tvs
               <+> pprQuotedList bad_tvs)

         -- Split [Splitting the implicit tyvars in a pattern synonym]
       ; let univ_fvs = closeOverKinds $
                        (tyCoVarsOfTypes (body_ty : req) `extendVarSetList` univ_tvs)
             (extra_univ, extra_ex) = partition (`elemVarSet` univ_fvs) $
                                      kvs ++ implicit_tvs
       ; traceTc "tcTySig }" $
         vcat [ text "implicit_tvs" <+> ppr implicit_tvs
              , text "kvs" <+> ppr kvs
              , text "extra_univ" <+> ppr extra_univ
              , text "univ_tvs" <+> ppr univ_tvs
              , text "req" <+> ppr req
              , text "extra_ex" <+> ppr extra_ex
              , text "ex_tvs_" <+> ppr ex_tvs
              , text "prov" <+> ppr prov
              , text "arg_tys" <+> ppr arg_tys
              , text "body_ty" <+> ppr body_ty ]
       ; return (TPSI { patsig_name = name
                      , patsig_univ_tvs = extra_univ ++ univ_tvs
                      , patsig_req      = req
                      , patsig_ex_tvs   = extra_ex   ++ ex_tvs
                      , patsig_prov     = prov
                      , patsig_arg_tys  = arg_tys
                      , patsig_body_ty  = body_ty }) }


{-
************************************************************************
*                                                                      *
                    Type checking a pattern synonym
*                                                                      *
************************************************************************
-}

tcInferPatSynDecl :: PatSynBind Name Name
                  -> TcM (LHsBinds Id, TcGblEnv)
tcInferPatSynDecl PSB{ psb_id = lname@(L _ name), psb_args = details,
                       psb_def = lpat, psb_dir = dir }
  = addPatSynCtxt lname $
    do { traceTc "tcInferPatSynDecl {" $ ppr name
       ; tcCheckPatSynPat lpat

       ; let (arg_names, rec_fields, is_infix) = collectPatSynArgInfo details
       ; (tclvl, wanted, (lpat', (args, pat_ty)))
            <- pushLevelAndCaptureConstraints  $
               do { pat_ty <- newOpenFlexiTyVarTy
                  ; tcPat PatSyn lpat pat_ty $
               do { args <- mapM tcLookupId arg_names
                  ; return (args, pat_ty) } }

       ; let named_taus = (name, pat_ty) : map (\arg -> (getName arg, varType arg)) args

       ; (qtvs, req_dicts, ev_binds) <- simplifyInfer tclvl False [] named_taus wanted

       ; let (ex_vars, prov_dicts) = tcCollectEx lpat'
             univ_tvs   = filter (not . (`elemVarSet` ex_vars)) qtvs
             ex_tvs     = varSetElems ex_vars
             prov_theta = map evVarPred prov_dicts
             req_theta  = map evVarPred req_dicts

       ; traceTc "tcInferPatSynDecl }" $ ppr name
       ; tc_patsyn_finish lname dir False {- no sig -} is_infix lpat'
                          (univ_tvs, req_theta,  ev_binds, req_dicts)
                          (ex_tvs,   mkTyVarTys ex_tvs, prov_theta, map EvId prov_dicts)
                          (map nlHsVar args, map idType args)
                          pat_ty rec_fields }


tcCheckPatSynDecl :: PatSynBind Name Name
                  -> TcPatSynInfo
                  -> TcM (LHsBinds Id, TcGblEnv)
tcCheckPatSynDecl PSB{ psb_id = lname@(L _ name), psb_args = details
                     , psb_def = lpat, psb_dir = dir }
                  TPSI{ patsig_univ_tvs = univ_tvs, patsig_prov = prov_theta
                      , patsig_ex_tvs   = ex_tvs,   patsig_req  = req_theta
                      , patsig_arg_tys  = arg_tys,  patsig_body_ty = pat_ty }
  = addPatSynCtxt lname $
    do { let origin     = PatOrigin -- TODO
             skol_info  = SigSkol (PatSynCtxt name) (mkFunTys arg_tys pat_ty)
             decl_arity = length arg_names
             ty_arity   = length arg_tys
             (arg_names, rec_fields, is_infix) = collectPatSynArgInfo details

       ; traceTc "tcCheckPatSynDecl" $
         vcat [ ppr univ_tvs, ppr req_theta, ppr ex_tvs
              , ppr prov_theta, ppr arg_tys, ppr pat_ty ]

       ; checkTc (decl_arity == ty_arity)
                 (wrongNumberOfParmsErr name decl_arity ty_arity)

       ; tcCheckPatSynPat lpat

       -- Right!  Let's check the pattern against the signature
       -- See Note [Checking against a pattern signature]
       ; req_dicts <- newEvVars req_theta
       ; (tclvl, wanted, (lpat', (ex_tvs', prov_dicts, args'))) <-
           ASSERT2( equalLength arg_names arg_tys, ppr name $$ ppr arg_names $$ ppr arg_tys )
           pushLevelAndCaptureConstraints $
           tcExtendTyVarEnv univ_tvs      $
           tcPat PatSyn lpat pat_ty $
           do { (subst, ex_tvs') <- if   isUnidirectional dir
                                    then newMetaTyVars    ex_tvs
                                    else newMetaSigTyVars ex_tvs
                    -- See the "Existential type variables part of
                    -- Note [Checking against a pattern signature]
              ; prov_dicts <- mapM (emitWanted origin) (substTheta subst prov_theta)
              ; args'      <- zipWithM (tc_arg subst) arg_names arg_tys
              ; return (ex_tvs', prov_dicts, args') }

       ; (implics, ev_binds) <- buildImplicationFor tclvl skol_info univ_tvs req_dicts wanted

       -- Solve the constraints now, because we are about to make a PatSyn,
       -- which should not contain unification variables and the like (Trac #10997)
       -- Since all the inputs are implications the returned bindings will be empty
       ; _ <- simplifyTop (mkImplicWC implics)

       -- ToDo: in the bidirectional case, check that the ex_tvs' are all distinct
       -- Otherwise we may get a type error when typechecking the builder,
       -- when that should be impossible

       ; traceTc "tcCheckPatSynDecl }" $ ppr name
       ; tc_patsyn_finish lname dir True {- has a sig -} is_infix lpat'
                          (univ_tvs, req_theta, ev_binds, req_dicts)
                          (ex_tvs, mkTyVarTys ex_tvs', prov_theta, prov_dicts)
                          (args', arg_tys)
                          pat_ty rec_fields }
  where
    tc_arg :: TCvSubst -> Name -> Type -> TcM (LHsExpr TcId)
    tc_arg subst arg_name arg_ty
      = do {   -- Look up the variable actually bound by lpat
               -- and check that it has the expected type
             arg_id <- tcLookupId arg_name
           ; coi <- unifyType (Just arg_id)
                              (idType arg_id)
                              (substTyUnchecked subst arg_ty)
           ; return (mkLHsWrapCo coi $ nlHsVar arg_id) }

{- Note [Checking against a pattern signature]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When checking the actual supplied pattern against the pattern synonym
signature, we need to be quite careful.

----- Provided constraints
Example

    data T a where
      MkT :: Ord a => a -> T a

    pattern P :: () => Eq a => a -> [T a]
    pattern P x = [MkT x]

We must check that the (Eq a) that P claims to bind (and to
make available to matches against P, is derivable from the
acutal pattern.  For example:
    f (P (x::a)) = ...here (Eq a) should be available...
And yes, (Eq a) is derivable from the (Ord a) bound by P's rhs.

----- Existential type variables
Unusually, we instantiate the existential tyvars of the pattern with
*meta* type variables.  For example

    data S where
      MkS :: Eq a => [a] -> S

    pattern P :: () => Eq x => x -> S
    pattern P x <- MkS x

The pattern synonym conceals from its client the fact that MkS has a
list inside it.  The client just thinks it's a type 'x'.  So we must
unify x := [a] during type checking, and then use the instantiating type
[a] (called ex_tys) when building the matcher.  In this case we'll get

   $mP :: S -> (forall x. Ex x => x -> r) -> r -> r
   $mP x k = case x of
               MkS a (d:Eq a) (ys:[a]) -> let dl :: Eq [a]
                                              dl = $dfunEqList d
                                          in k [a] dl ys

This "concealing" story works for /uni-directional/ pattern synonmys,
but obviously not for bidirectional ones.  So in the bidirectional case
we use SigTv, rather than a generic TauTv, meta-tyvar so that.  And
we should really check that those SigTvs don't get unified with each
other.

-}

collectPatSynArgInfo :: HsPatSynDetails (Located Name) -> ([Name], [Name], Bool)
collectPatSynArgInfo details =
  case details of
    PrefixPatSyn names      -> (map unLoc names, [], False)
    InfixPatSyn name1 name2 -> (map unLoc [name1, name2], [], True)
    RecordPatSyn names ->
      let (vars, sels) = unzip (map splitRecordPatSyn names)
      in (vars, sels, False)

  where
    splitRecordPatSyn :: RecordPatSynField (Located Name) -> (Name, Name)
    splitRecordPatSyn (RecordPatSynField { recordPatSynPatVar = L _ patVar
                                         , recordPatSynSelectorId = L _ selId })
      = (patVar, selId)

addPatSynCtxt :: Located Name -> TcM a -> TcM a
addPatSynCtxt (L loc name) thing_inside
  = setSrcSpan loc $
    addErrCtxt (text "In the declaration for pattern synonym"
                <+> quotes (ppr name)) $
    thing_inside

wrongNumberOfParmsErr :: Name -> Arity -> Arity -> SDoc
wrongNumberOfParmsErr name decl_arity ty_arity
  = hang (text "Patten synonym" <+> quotes (ppr name) <+> ptext (sLit "has")
          <+> speakNOf decl_arity (text "argument"))
       2 (text "but its type signature has" <+> speakN ty_arity)

-------------------------
-- Shared by both tcInferPatSyn and tcCheckPatSyn
tc_patsyn_finish :: Located Name  -- ^ PatSyn Name
                 -> HsPatSynDir Name  -- ^ PatSyn type (Uni/Bidir/ExplicitBidir)
                 -> Bool              -- ^ True <=> signature provided
                 -> Bool              -- ^ Whether infix
                 -> LPat Id           -- ^ Pattern of the PatSyn
                 -> ([TcTyVar], [PredType], TcEvBinds, [EvVar])
                 -> ([TcTyVar], [TcType], [PredType], [EvTerm])
                 -> ([LHsExpr TcId], [TcType])   -- ^ Pattern arguments and types
                 -> TcType              -- ^ Pattern type
                 -> [Name]              -- ^ Selector names
                 -- ^ Whether fields, empty if not record PatSyn
                 -> TcM (LHsBinds Id, TcGblEnv)
tc_patsyn_finish lname dir has_sig is_infix lpat'
                 (univ_tvs, req_theta, req_ev_binds, req_dicts)
                 (ex_tvs, ex_tys, prov_theta, prov_dicts)
                 (args, arg_tys)
                 pat_ty field_labels
  = do { -- Zonk everything.  We are about to build a final PatSyn
         -- so there had better be no unification variables in there
         univ_tvs     <- mapMaybeM zonkQuantifiedTyVar univ_tvs
       ; ex_tvs       <- mapMaybeM zonkQuantifiedTyVar ex_tvs
       ; prov_theta   <- zonkTcTypes prov_theta
       ; req_theta    <- zonkTcTypes req_theta
       ; pat_ty       <- zonkTcType pat_ty
       ; arg_tys      <- zonkTcTypes arg_tys

       ; traceTc "tc_patsyn_finish {" $
           ppr (unLoc lname) $$ ppr (unLoc lpat') $$
           ppr (univ_tvs, req_theta, req_ev_binds, req_dicts) $$
           ppr (ex_tvs, prov_theta, prov_dicts) $$
           ppr args $$
           ppr arg_tys $$
           ppr pat_ty

       -- Make the 'matcher'
       ; (matcher_id, matcher_bind) <- tcPatSynMatcher has_sig lname lpat'
                                         (univ_tvs, req_theta, req_ev_binds, req_dicts)
                                         (ex_tvs, ex_tys, prov_theta, prov_dicts)
                                         (args, arg_tys)
                                         pat_ty


       -- Make the 'builder'
       ; builder_id <- mkPatSynBuilderId has_sig dir lname
                                         univ_tvs req_theta
                                         ex_tvs   prov_theta
                                         arg_tys pat_ty

         -- TODO: Make this have the proper information
       ; let mkFieldLabel name = FieldLabel (occNameFS (nameOccName name)) False name
             field_labels' = (map mkFieldLabel field_labels)


       -- Make the PatSyn itself
       ; let patSyn = mkPatSyn (unLoc lname) is_infix
                        (univ_tvs, req_theta)
                        (ex_tvs, prov_theta)
                        arg_tys
                        pat_ty
                        matcher_id builder_id
                        field_labels'

       -- Selectors
       ; let (sigs, selector_binds) =
                unzip (mkPatSynRecSelBinds patSyn (patSynFieldLabels patSyn))
       ; let tything = AConLike (PatSynCon patSyn)
       ; tcg_env <-
          tcExtendGlobalEnv [tything] $
            tcRecSelBinds
              (ValBindsOut (zip (repeat NonRecursive) selector_binds) sigs)

       ; traceTc "tc_patsyn_finish }" empty
       ; return (matcher_bind, tcg_env) }

{-
************************************************************************
*                                                                      *
         Constructing the "matcher" Id and its binding
*                                                                      *
************************************************************************
-}

tcPatSynMatcher :: Bool  -- True <=> signature provided
                -> Located Name
                -> LPat Id
                -> ([TcTyVar], ThetaType, TcEvBinds, [EvVar])
                -> ([TcTyVar], [TcType], ThetaType, [EvTerm])
                -> ([LHsExpr TcId], [TcType])
                -> TcType
                -> TcM ((Id, Bool), LHsBinds Id)
-- See Note [Matchers and builders for pattern synonyms] in PatSyn
tcPatSynMatcher has_sig (L loc name) lpat
                (univ_tvs, req_theta, req_ev_binds, req_dicts)
                (ex_tvs, ex_tys, prov_theta, prov_dicts)
                (args, arg_tys) pat_ty
  = do { lev_uniq <- newUnique
       ; tv_uniq  <- newUnique
       ; let lev_name = mkInternalName lev_uniq (mkTyVarOcc "rlev") loc
             tv_name  = mkInternalName tv_uniq (mkTyVarOcc "r") loc
             lev_tv   = mkTcTyVar lev_name levityTy   (SkolemTv False)
             lev      = mkTyVarTy lev_tv
             res_tv   = mkTcTyVar tv_name  (tYPE lev) (SkolemTv False)
             is_unlifted = null args && null prov_dicts
             res_ty = mkTyVarTy res_tv
             (cont_args, cont_arg_tys)
               | is_unlifted = ([nlHsVar voidPrimId], [voidPrimTy])
               | otherwise   = (args,                 arg_tys)
             mk_sigma = if has_sig then mkSpecSigmaTy else mkInvSigmaTy
             cont_ty = mk_sigma ex_tvs prov_theta $
                       mkFunTys cont_arg_tys res_ty

             fail_ty  = mkFunTy voidPrimTy res_ty

       ; matcher_name <- newImplicitBinder name mkMatcherOcc
       ; scrutinee    <- newSysLocalId (fsLit "scrut") pat_ty
       ; cont         <- newSysLocalId (fsLit "cont")  cont_ty
       ; fail         <- newSysLocalId (fsLit "fail")  fail_ty

       ; let matcher_tau   = mkFunTys [pat_ty, cont_ty, fail_ty] res_ty
             matcher_sigma = mkInvSigmaTy (lev_tv:res_tv:univ_tvs) req_theta matcher_tau
             matcher_id    = mkExportedVanillaId matcher_name matcher_sigma
                             -- See Note [Exported LocalIds] in Id

             inst_wrap = mkWpEvApps prov_dicts <.> mkWpTyApps ex_tys
             cont' = foldl nlHsApp (mkLHsWrap inst_wrap (nlHsVar cont)) cont_args

             fail' = nlHsApps fail [nlHsVar voidPrimId]

             args = map nlVarPat [scrutinee, cont, fail]
             lwpat = noLoc $ WildPat pat_ty
             cases = if isIrrefutableHsPat lpat
                     then [mkSimpleHsAlt lpat  cont']
                     else [mkSimpleHsAlt lpat  cont',
                           mkSimpleHsAlt lwpat fail']
             body = mkLHsWrap (mkWpLet req_ev_binds) $
                    L (getLoc lpat) $
                    HsCase (nlHsVar scrutinee) $
                    MG{ mg_alts = L (getLoc lpat) cases
                      , mg_arg_tys = [pat_ty]
                      , mg_res_ty = res_ty
                      , mg_origin = Generated
                      }
             body' = noLoc $
                     HsLam $
                     MG{ mg_alts = noLoc [mkSimpleMatch args body]
                       , mg_arg_tys = [pat_ty, cont_ty, res_ty]
                       , mg_res_ty = res_ty
                       , mg_origin = Generated
                       }
             match = mkMatch [] (mkHsLams (lev_tv:res_tv:univ_tvs) req_dicts body')
                             (noLoc EmptyLocalBinds)
             mg = MG{ mg_alts = L (getLoc match) [match]
                    , mg_arg_tys = []
                    , mg_res_ty = res_ty
                    , mg_origin = Generated
                    }

       ; let bind = FunBind{ fun_id = L loc matcher_id
                           , fun_matches = mg
                           , fun_co_fn = idHsWrapper
                           , bind_fvs = emptyNameSet
                           , fun_tick = [] }
             matcher_bind = unitBag (noLoc bind)

       ; traceTc "tcPatSynMatcher" (ppr name $$ ppr (idType matcher_id))
       ; traceTc "tcPatSynMatcher" (ppr matcher_bind)

       ; return ((matcher_id, is_unlifted), matcher_bind) }

mkPatSynRecSelBinds :: PatSyn
                    -> [FieldLabel]
                    -- ^ Visible field labels
                    -> [(LSig Name, LHsBinds Name)]
mkPatSynRecSelBinds ps fields = map mkRecSel fields
  where
    mkRecSel fld_lbl =
      case mkOneRecordSelector [PatSynCon ps] (RecSelPatSyn ps) fld_lbl of
        (name, (_rec_flag, binds)) -> (name, binds)

isUnidirectional :: HsPatSynDir a -> Bool
isUnidirectional Unidirectional          = True
isUnidirectional ImplicitBidirectional   = False
isUnidirectional ExplicitBidirectional{} = False

{-
************************************************************************
*                                                                      *
         Constructing the "builder" Id
*                                                                      *
************************************************************************
-}

mkPatSynBuilderId :: Bool  -- True <=> signature provided
                  -> HsPatSynDir a -> Located Name
                  -> [TyVar] -> ThetaType
                  -> [TyVar] -> ThetaType
                  -> [Type] -> Type
                  -> TcM (Maybe (Id, Bool))
mkPatSynBuilderId has_sig dir (L _ name)
                  univ_tvs req_theta ex_tvs prov_theta
                  arg_tys pat_ty
  | isUnidirectional dir
  = return Nothing
  | otherwise
  = do { builder_name <- newImplicitBinder name mkBuilderOcc
       ; let qtvs           = univ_tvs ++ ex_tvs
             theta          = req_theta ++ prov_theta
             mk_sigma       = if has_sig then mkSpecSigmaTy else mkInvSigmaTy
             need_dummy_arg = isUnLiftedType pat_ty && null arg_tys && null theta
             builder_sigma  = add_void need_dummy_arg $
                              mk_sigma qtvs theta (mkFunTys arg_tys pat_ty)
             builder_id     = mkExportedVanillaId builder_name builder_sigma
              -- See Note [Exported LocalIds] in Id

       ; return (Just (builder_id, need_dummy_arg)) }
  where

add_void :: Bool -> Type -> Type
add_void need_dummy_arg ty
  | need_dummy_arg = mkFunTy voidPrimTy ty
  | otherwise      = ty

tcPatSynBuilderBind :: TcSigFun
                    -> PatSynBind Name Name
                    -> TcM (LHsBinds Id)
-- See Note [Matchers and builders for pattern synonyms] in PatSyn
tcPatSynBuilderBind sig_fun PSB{ psb_id = L loc name, psb_def = lpat
                               , psb_dir = dir, psb_args = details }
  | isUnidirectional dir
  = return emptyBag

  | isNothing mb_match_group       -- Can't invert the pattern
  = setSrcSpan (getLoc lpat) $ failWithTc $
    hang (text "Right-hand side of bidirectional pattern synonym cannot be used as an expression")
       2 (ppr lpat)

  | otherwise  -- Bidirectional
  = do { patsyn <- tcLookupPatSyn name
       ; traceTc "tcPatSynBuilderBind {" $ ppr patsyn
       ; let Just (builder_id, need_dummy_arg) = patSynBuilder patsyn
                   -- Bidirectional, so patSynBuilder returns Just

             match_group' | need_dummy_arg = add_dummy_arg match_group
                          | otherwise      = match_group

             bind = FunBind { fun_id      = L loc (idName builder_id)
                            , fun_matches = match_group'
                            , fun_co_fn   = idHsWrapper
                            , bind_fvs    = placeHolderNamesTc
                            , fun_tick    = [] }

       ; sig <- get_builder_sig sig_fun name builder_id need_dummy_arg

       ; (builder_binds, _) <- tcPolyCheck NonRecursive emptyPragEnv sig (noLoc bind)
       ; traceTc "tcPatSynBuilderBind }" $ ppr builder_binds
       ; return builder_binds }
  where
    Just match_group = mb_match_group
    mb_match_group
       = case dir of
           Unidirectional                    -> Nothing
           ExplicitBidirectional explicit_mg -> Just explicit_mg
           ImplicitBidirectional             -> fmap mk_mg (tcPatToExpr args lpat)

    mk_mg :: LHsExpr Name -> MatchGroup Name (LHsExpr Name)
    mk_mg body = mkMatchGroupName Generated [builder_match]
             where
               builder_args  = [L loc (VarPat (L loc n)) | L loc n <- args]
               builder_match = mkMatch builder_args body (noLoc EmptyLocalBinds)

    args = case details of
              PrefixPatSyn args     -> args
              InfixPatSyn arg1 arg2 -> [arg1, arg2]
              RecordPatSyn args     -> map recordPatSynPatVar args

    add_dummy_arg :: MatchGroup Name (LHsExpr Name)
                  -> MatchGroup Name (LHsExpr Name)
    add_dummy_arg mg@(MG { mg_alts
                            = L l [L loc (Match NonFunBindMatch [] ty grhss)] })
      = mg { mg_alts
                = L l [L loc (Match NonFunBindMatch [nlWildPatName] ty grhss)] }
    add_dummy_arg other_mg = pprPanic "add_dummy_arg" $
                             pprMatches (PatSyn :: HsMatchContext Name) other_mg

get_builder_sig :: TcSigFun -> Name -> Id -> Bool -> TcM TcIdSigInfo
get_builder_sig sig_fun name builder_id need_dummy_arg
  | Just (TcPatSynSig sig) <- sig_fun name
  , TPSI { patsig_univ_tvs = univ_tvs
         , patsig_req      = req
         , patsig_ex_tvs   = ex_tvs
         , patsig_prov     = prov
         , patsig_arg_tys  = arg_tys
         , patsig_body_ty  = body_ty } <- sig
  = -- Constuct a TcIdSigInfo from a TcPatSynInfo
    -- This does unfortunately mean that we have to know how to
    -- make the builder Id's type from the TcPatSynInfo, which
    -- duplicates the construction in mkPatSynBuilderId
    -- But we really want to use the scoped type variables from
    -- the actual sigature, so this is really the Right Thing
    return (TISI { sig_bndr  = CompleteSig builder_id
                 , sig_skols = [(tyVarName tv, tv) | tv <- univ_tvs ++ ex_tvs]
                 , sig_theta = req ++ prov
                 , sig_tau   = add_void need_dummy_arg $
                               mkFunTys arg_tys body_ty
                 , sig_ctxt  = PatSynCtxt name
                 , sig_loc   = getSrcSpan name })
  | otherwise
  = -- No signature, so fake up a TcIdSigInfo from the builder Id
    instTcTySigFromId builder_id
    -- See Note [Redundant constraints for builder]

tcPatSynBuilderOcc :: PatSyn -> TcM (HsExpr TcId, TcSigmaType)
-- monadic only for failure
tcPatSynBuilderOcc ps
  | Just (builder_id, add_void_arg) <- builder
  , let builder_expr = HsVar (noLoc builder_id)
        builder_ty   = idType builder_id
  = return $
    if add_void_arg
    then ( HsApp (noLoc $ builder_expr) (nlHsVar voidPrimId)
         , tcFunResultTy builder_ty )
    else (builder_expr, builder_ty)

  | otherwise  -- Unidirectional
  = nonBidirectionalErr name
  where
    name    = patSynName ps
    builder = patSynBuilder ps

{-
Note [Redundant constraints for builder]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The builder can have redundant constraints, which are awkard to eliminate.
Consider
   pattern P = Just 34
To match against this pattern we need (Eq a, Num a).  But to build
(Just 34) we need only (Num a).  Fortunately instTcSigFromId sets
sig_warn_redundant to False.

************************************************************************
*                                                                      *
         Helper functions
*                                                                      *
************************************************************************

Note [As-patterns in pattern synonym definitions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The rationale for rejecting as-patterns in pattern synonym definitions
is that an as-pattern would introduce nonindependent pattern synonym
arguments, e.g. given a pattern synonym like:

        pattern K x y = x@(Just y)

one could write a nonsensical function like

        f (K Nothing x) = ...

or
        g (K (Just True) False) = ...

Note [Type signatures and the builder expression]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   pattern L x = Left x :: Either [a] [b]

In tc{Infer/Check}PatSynDecl we will check that the pattern has the
specified type.  We check the pattern *as a pattern*, so the type
signature is a pattern signature, and so brings 'a' and 'b' into
scope.  But we don't have a way to bind 'a, b' in the LHS, as we do
'x', say.  Nevertheless, the sigature may be useful to constrain
the type.

When making the binding for the *builder*, though, we don't want
  $buildL x = Left x :: Either [a] [b]
because that wil either mean (forall a b. Either [a] [b]), or we'll
get a complaint that 'a' and 'b' are out of scope. (Actually the
latter; Trac #9867.)  No, the job of the signature is done, so when
converting the pattern to an expression (for the builder RHS) we
simply discard the signature.

Note [Record PatSyn Desugaring]
-------------------------------
It is important that prov_theta comes before req_theta as this ordering is used
when desugaring record pattern synonym updates.

Any change to this ordering should make sure to change deSugar/DsExpr.hs if you
want to avoid difficult to decipher core lint errors!
 -}

tcCheckPatSynPat :: LPat Name -> TcM ()
tcCheckPatSynPat = go
  where
    go :: LPat Name -> TcM ()
    go = addLocM go1

    go1 :: Pat Name -> TcM ()
    go1   (ConPatIn _ info)   = mapM_ go (hsConPatArgs info)
    go1   VarPat{}            = return ()
    go1   WildPat{}           = return ()
    go1 p@(AsPat _ _)         = asPatInPatSynErr p
    go1   (LazyPat pat)       = go pat
    go1   (ParPat pat)        = go pat
    go1   (BangPat pat)       = go pat
    go1   (PArrPat pats _)    = mapM_ go pats
    go1   (ListPat pats _ _)  = mapM_ go pats
    go1   (TuplePat pats _ _) = mapM_ go pats
    go1   LitPat{}            = return ()
    go1   NPat{}              = return ()
    go1   (SigPatIn pat _)    = go pat
    go1   (ViewPat _ pat _)   = go pat
    go1 p@SplicePat{}         = thInPatSynErr p
    go1 p@NPlusKPat{}         = nPlusKPatInPatSynErr p
    go1   ConPatOut{}         = panic "ConPatOut in output of renamer"
    go1   SigPatOut{}         = panic "SigPatOut in output of renamer"
    go1   CoPat{}             = panic "CoPat in output of renamer"

asPatInPatSynErr :: OutputableBndr name => Pat name -> TcM a
asPatInPatSynErr pat
  = failWithTc $
    hang (text "Pattern synonym definition cannot contain as-patterns (@):")
       2 (ppr pat)

thInPatSynErr :: OutputableBndr name => Pat name -> TcM a
thInPatSynErr pat
  = failWithTc $
    hang (text "Pattern synonym definition cannot contain Template Haskell:")
       2 (ppr pat)

nPlusKPatInPatSynErr :: OutputableBndr name => Pat name -> TcM a
nPlusKPatInPatSynErr pat
  = failWithTc $
    hang (text "Pattern synonym definition cannot contain n+k-pattern:")
       2 (ppr pat)

nonBidirectionalErr :: Outputable name => name -> TcM a
nonBidirectionalErr name = failWithTc $
    text "non-bidirectional pattern synonym"
    <+> quotes (ppr name) <+> text "used in an expression"

tcPatToExpr :: [Located Name] -> LPat Name -> Maybe (LHsExpr Name)
tcPatToExpr args = go
  where
    lhsVars = mkNameSet (map unLoc args)

    go :: LPat Name -> Maybe (LHsExpr Name)
    go (L loc (ConPatIn (L _ con) info))
      = do { exprs <- mapM go (hsConPatArgs info)
           ; return $ L loc $
             foldl (\x y -> HsApp (L loc x) y) (HsVar (L loc con)) exprs }

    go (L _ (SigPatIn pat _)) = go pat
        -- See Note [Type signatures and the builder expression]

    go (L loc p) = fmap (L loc) $ go1 p

    go1 :: Pat Name -> Maybe (HsExpr Name)
    go1   (VarPat (L l var))
      | var `elemNameSet` lhsVars     = return $ HsVar (L l var)
      | otherwise                     = Nothing
    go1   (LazyPat pat)               = fmap HsPar $ go pat
    go1   (ParPat pat)                = fmap HsPar $ go pat
    go1   (BangPat pat)               = fmap HsPar $ go pat
    go1   (PArrPat pats ptt)          = do { exprs <- mapM go pats
                                           ; return $ ExplicitPArr ptt exprs }
    go1   (ListPat pats ptt reb)      = do { exprs <- mapM go pats
                                           ; return $ ExplicitList ptt (fmap snd reb) exprs }
    go1   (TuplePat pats box _)       = do { exprs <- mapM go pats
                                           ; return $ ExplicitTuple
                                                (map (noLoc . Present) exprs) box }
    go1   (LitPat lit)                = return $ HsLit lit
    go1   (NPat (L _ n) Nothing _)    = return $ HsOverLit n
    go1   (NPat (L _ n) (Just neg) _) = return $ noLoc neg `HsApp` noLoc (HsOverLit n)
    go1   (ConPatOut{})               = panic "ConPatOut in output of renamer"
    go1   (SigPatOut{})               = panic "SigPatOut in output of renamer"
    go1   (CoPat{})                   = panic "CoPat in output of renamer"
    go1   _                           = Nothing

-- Walk the whole pattern and for all ConPatOuts, collect the
-- existentially-bound type variables and evidence binding variables.
--
-- These are used in computing the type of a pattern synonym and also
-- in generating matcher functions, since success continuations need
-- to be passed these pattern-bound evidences.
tcCollectEx :: LPat Id -> (TyVarSet, [EvVar])
tcCollectEx pat = go pat
  where
    go :: LPat Id -> (TyVarSet, [EvVar])
    go = go1 . unLoc

    go1 :: Pat Id -> (TyVarSet, [EvVar])
    go1 (LazyPat p)         = go p
    go1 (AsPat _ p)         = go p
    go1 (ParPat p)          = go p
    go1 (BangPat p)         = go p
    go1 (ListPat ps _ _)    = mconcat . map go $ ps
    go1 (TuplePat ps _ _)   = mconcat . map go $ ps
    go1 (PArrPat ps _)      = mconcat . map go $ ps
    go1 (ViewPat _ p _)     = go p
    go1 con@ConPatOut{}     = mappend (mkVarSet (pat_tvs con), pat_dicts con) $
                                 goConDetails $ pat_args con
    go1 (SigPatOut p _)     = go p
    go1 (CoPat _ p _)       = go1 p
    go1 (NPlusKPat n k geq subtract)
      = pprPanic "TODO: NPlusKPat" $ ppr n $$ ppr k $$ ppr geq $$ ppr subtract
    go1 _                   = mempty

    goConDetails :: HsConPatDetails Id -> (TyVarSet, [EvVar])
    goConDetails (PrefixCon ps) = mconcat . map go $ ps
    goConDetails (InfixCon p1 p2) = go p1 `mappend` go p2
    goConDetails (RecCon HsRecFields{ rec_flds = flds })
      = mconcat . map goRecFd $ flds

    goRecFd :: LHsRecField Id (LPat Id) -> (TyVarSet, [EvVar])
    goRecFd (L _ HsRecField{ hsRecFieldArg = p }) = go p