summaryrefslogtreecommitdiff
path: root/compiler/typecheck/TcRnTypes.lhs
blob: 57b2ec2692f607611710afe99165f57d425e0010 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034

% (c) The University of Glasgow 2006-2012
% (c) The GRASP Project, Glasgow University, 1992-2002
%

Various types used during typechecking, please see TcRnMonad as well for
operations on these types. You probably want to import it, instead of this
module.

All the monads exported here are built on top of the same IOEnv monad. The
monad functions like a Reader monad in the way it passes the environment
around. This is done to allow the environment to be manipulated in a stack
like fashion when entering expressions... ect.

For state that is global and should be returned at the end (e.g not part
of the stack mechanism), you should use an TcRef (= IORef) to store them.

\begin{code}
{-# LANGUAGE CPP, ExistentialQuantification #-}

module TcRnTypes(
        TcRnIf, TcRn, TcM, RnM, IfM, IfL, IfG, -- The monad is opaque outside this module
        TcRef,

        -- The environment types
        Env(..),
        TcGblEnv(..), TcLclEnv(..),
        IfGblEnv(..), IfLclEnv(..),

        -- Ranamer types
        ErrCtxt, RecFieldEnv(..),
        ImportAvails(..), emptyImportAvails, plusImportAvails,
        WhereFrom(..), mkModDeps,

        -- Typechecker types
        TcTypeEnv, TcIdBinder(..), TcTyThing(..), PromotionErr(..),
        pprTcTyThingCategory, pprPECategory,

        -- Template Haskell
        ThStage(..), PendingStuff(..), topStage, topAnnStage, topSpliceStage,
        ThLevel, impLevel, outerLevel, thLevel,

        -- Arrows
        ArrowCtxt(NoArrowCtxt), newArrowScope, escapeArrowScope,

        -- Canonical constraints
        Xi, Ct(..), Cts, emptyCts, andCts, andManyCts, pprCts,
        singleCt, listToCts, ctsElts, consCts, snocCts, extendCtsList,
        isEmptyCts, isCTyEqCan, isCFunEqCan,
        isCDictCan_Maybe, isCFunEqCan_maybe,
        isCIrredEvCan, isCNonCanonical, isWantedCt, isDerivedCt,
        isGivenCt, isHoleCt,
        ctEvidence, ctLoc, ctPred,
        mkNonCanonical, mkNonCanonicalCt,
        ctEvPred, ctEvLoc, ctEvTerm, ctEvCoercion, ctEvId, ctEvCheckDepth,

        WantedConstraints(..), insolubleWC, emptyWC, isEmptyWC,
        andWC, unionsWC, addFlats, addImplics, mkFlatWC, addInsols,
        dropDerivedWC,

        Implication(..),
        SubGoalCounter(..),
        SubGoalDepth, initialSubGoalDepth, maxSubGoalDepth,
        bumpSubGoalDepth, subGoalCounterValue, subGoalDepthExceeded,
        CtLoc(..), ctLocSpan, ctLocEnv, ctLocOrigin,
        ctLocDepth, bumpCtLocDepth,
        setCtLocOrigin, setCtLocEnv,
        CtOrigin(..), pprCtOrigin,
        pushErrCtxt, pushErrCtxtSameOrigin,

        SkolemInfo(..),

        CtEvidence(..),
        mkGivenLoc,
        isWanted, isGiven, isDerived,

        -- Constraint solver plugins
        TcPlugin(..), TcPluginResult(..), TcPluginSolver,
        TcPluginM, runTcPluginM, unsafeTcPluginTcM,

        -- Pretty printing
        pprEvVarTheta, 
        pprEvVars, pprEvVarWithType,
        pprArising, pprArisingAt,

        -- Misc other types
        TcId, TcIdSet, TcTyVarBind(..), TcTyVarBinds

  ) where

#include "HsVersions.h"

import HsSyn
import HscTypes
import TcEvidence
import Type
import Class    ( Class )
import TyCon    ( TyCon )
import ConLike  ( ConLike(..) )
import DataCon  ( DataCon, dataConUserType, dataConOrigArgTys )
import PatSyn   ( PatSyn, patSynType )
import TysWiredIn ( coercibleClass )
import TcType
import Annotations
import InstEnv
import FamInstEnv
import IOEnv
import RdrName
import Name
import NameEnv
import NameSet
import Avail
import Var
import VarEnv
import Module
import SrcLoc
import VarSet
import ErrUtils
import UniqFM
import UniqSupply
import BasicTypes
import Bag
import DynFlags
import Outputable
import ListSetOps
import FastString

import Data.Set (Set)
import Control.Monad (ap, liftM)

#ifdef GHCI
import Data.Map      ( Map )
import Data.Dynamic  ( Dynamic )
import Data.Typeable ( TypeRep )

import qualified Language.Haskell.TH as TH
#endif
\end{code}


%************************************************************************
%*                                                                      *
               Standard monad definition for TcRn
    All the combinators for the monad can be found in TcRnMonad
%*                                                                      *
%************************************************************************

The monad itself has to be defined here, because it is mentioned by ErrCtxt

\begin{code}
type TcRef a     = IORef a
type TcId        = Id
type TcIdSet     = IdSet


type TcRnIf a b = IOEnv (Env a b)
type IfM lcl  = TcRnIf IfGblEnv lcl         -- Iface stuff

type IfG  = IfM ()                          -- Top level
type IfL  = IfM IfLclEnv                    -- Nested
type TcRn = TcRnIf TcGblEnv TcLclEnv
type RnM  = TcRn            -- Historical
type TcM  = TcRn            -- Historical
\end{code}

Representation of type bindings to uninstantiated meta variables used during
constraint solving.

\begin{code}
data TcTyVarBind = TcTyVarBind TcTyVar TcType

type TcTyVarBinds = Bag TcTyVarBind

instance Outputable TcTyVarBind where
  ppr (TcTyVarBind tv ty) = ppr tv <+> text ":=" <+> ppr ty
\end{code}


%************************************************************************
%*                                                                      *
                The main environment types
%*                                                                      *
%************************************************************************

\begin{code}
-- We 'stack' these envs through the Reader like monad infastructure
-- as we move into an expression (although the change is focused in
-- the lcl type).
data Env gbl lcl
  = Env {
        env_top  :: HscEnv,  -- Top-level stuff that never changes
                             -- Includes all info about imported things

        env_us   :: {-# UNPACK #-} !(IORef UniqSupply),
                             -- Unique supply for local varibles

        env_gbl  :: gbl,     -- Info about things defined at the top level
                             -- of the module being compiled

        env_lcl  :: lcl      -- Nested stuff; changes as we go into
    }

instance ContainsDynFlags (Env gbl lcl) where
    extractDynFlags env = hsc_dflags (env_top env)
    replaceDynFlags env dflags
        = env {env_top = replaceDynFlags (env_top env) dflags}

instance ContainsModule gbl => ContainsModule (Env gbl lcl) where
    extractModule env = extractModule (env_gbl env)

-- TcGblEnv describes the top-level of the module at the
-- point at which the typechecker is finished work.
-- It is this structure that is handed on to the desugarer
-- For state that needs to be updated during the typechecking
-- phase and returned at end, use a TcRef (= IORef).

data TcGblEnv
  = TcGblEnv {
        tcg_mod     :: Module,         -- ^ Module being compiled
        tcg_src     :: HscSource,
          -- ^ What kind of module (regular Haskell, hs-boot, ext-core)
        tcg_sig_of  :: Maybe Module,
          -- ^ Are we being compiled as a signature of an implementation?
        tcg_impl_rdr_env :: Maybe GlobalRdrEnv,
          -- ^ Environment used only during -sig-of for resolving top level
          -- bindings.  See Note [Signature parameters in TcGblEnv and DynFlags]

        tcg_rdr_env :: GlobalRdrEnv,   -- ^ Top level envt; used during renaming
        tcg_default :: Maybe [Type],
          -- ^ Types used for defaulting. @Nothing@ => no @default@ decl

        tcg_fix_env   :: FixityEnv,     -- ^ Just for things in this module
        tcg_field_env :: RecFieldEnv,   -- ^ Just for things in this module
                                        -- See Note [The interactive package] in HscTypes

        tcg_type_env :: TypeEnv,
          -- ^ Global type env for the module we are compiling now.  All
          -- TyCons and Classes (for this module) end up in here right away,
          -- along with their derived constructors, selectors.
          --
          -- (Ids defined in this module start in the local envt, though they
          --  move to the global envt during zonking)
          --
          -- NB: for what "things in this module" means, see
          -- Note [The interactive package] in HscTypes

        tcg_type_env_var :: TcRef TypeEnv,
                -- Used only to initialise the interface-file
                -- typechecker in initIfaceTcRn, so that it can see stuff
                -- bound in this module when dealing with hi-boot recursions
                -- Updated at intervals (e.g. after dealing with types and classes)

        tcg_inst_env     :: InstEnv,
          -- ^ Instance envt for all /home-package/ modules;
          -- Includes the dfuns in tcg_insts
        tcg_fam_inst_env :: FamInstEnv, -- ^ Ditto for family instances
        tcg_ann_env      :: AnnEnv,     -- ^ And for annotations

                -- Now a bunch of things about this module that are simply
                -- accumulated, but never consulted until the end.
                -- Nevertheless, it's convenient to accumulate them along
                -- with the rest of the info from this module.
        tcg_exports :: [AvailInfo],     -- ^ What is exported
        tcg_imports :: ImportAvails,
          -- ^ Information about what was imported from where, including
          -- things bound in this module. Also store Safe Haskell info
          -- here about transative trusted packaage requirements.

        tcg_dus :: DefUses,   -- ^ What is defined in this module and what is used.
        tcg_used_rdrnames :: TcRef (Set RdrName),
          -- See Note [Tracking unused binding and imports]

        tcg_keep :: TcRef NameSet,
          -- ^ Locally-defined top-level names to keep alive.
          --
          -- "Keep alive" means give them an Exported flag, so that the
          -- simplifier does not discard them as dead code, and so that they
          -- are exposed in the interface file (but not to export to the
          -- user).
          --
          -- Some things, like dict-fun Ids and default-method Ids are "born"
          -- with the Exported flag on, for exactly the above reason, but some
          -- we only discover as we go.  Specifically:
          --
          --   * The to/from functions for generic data types
          --
          --   * Top-level variables appearing free in the RHS of an orphan
          --     rule
          --
          --   * Top-level variables appearing free in a TH bracket

        tcg_th_used :: TcRef Bool,
          -- ^ @True@ <=> Template Haskell syntax used.
          --
          -- We need this so that we can generate a dependency on the
          -- Template Haskell package, because the desugarer is going
          -- to emit loads of references to TH symbols.  The reference
          -- is implicit rather than explicit, so we have to zap a
          -- mutable variable.

        tcg_th_splice_used :: TcRef Bool,
          -- ^ @True@ <=> A Template Haskell splice was used.
          --
          -- Splices disable recompilation avoidance (see #481)

        tcg_dfun_n  :: TcRef OccSet,
          -- ^ Allows us to choose unique DFun names.

        -- The next fields accumulate the payload of the module
        -- The binds, rules and foreign-decl fields are collected
        -- initially in un-zonked form and are finally zonked in tcRnSrcDecls

        tcg_rn_exports :: Maybe [Located (IE Name)],
        tcg_rn_imports :: [LImportDecl Name],
                -- Keep the renamed imports regardless.  They are not
                -- voluminous and are needed if you want to report unused imports

        tcg_rn_decls :: Maybe (HsGroup Name),
          -- ^ Renamed decls, maybe.  @Nothing@ <=> Don't retain renamed
          -- decls.

        tcg_dependent_files :: TcRef [FilePath], -- ^ dependencies from addDependentFile

#ifdef GHCI
        tcg_th_topdecls :: TcRef [LHsDecl RdrName],
        -- ^ Top-level declarations from addTopDecls

        tcg_th_topnames :: TcRef NameSet,
        -- ^ Exact names bound in top-level declarations in tcg_th_topdecls

        tcg_th_modfinalizers :: TcRef [TH.Q ()],
        -- ^ Template Haskell module finalizers

        tcg_th_state :: TcRef (Map TypeRep Dynamic),
        -- ^ Template Haskell state
#endif /* GHCI */

        tcg_ev_binds  :: Bag EvBind,        -- Top-level evidence bindings

        -- Things defined in this module, or (in GHCi) in the interactive package
        --   For the latter, see Note [The interactive package] in HscTypes
        tcg_binds     :: LHsBinds Id,       -- Value bindings in this module
        tcg_sigs      :: NameSet,           -- ...Top-level names that *lack* a signature
        tcg_imp_specs :: [LTcSpecPrag],     -- ...SPECIALISE prags for imported Ids
        tcg_warns     :: Warnings,          -- ...Warnings and deprecations
        tcg_anns      :: [Annotation],      -- ...Annotations
        tcg_tcs       :: [TyCon],           -- ...TyCons and Classes
        tcg_insts     :: [ClsInst],         -- ...Instances
        tcg_fam_insts :: [FamInst],         -- ...Family instances
        tcg_rules     :: [LRuleDecl Id],    -- ...Rules
        tcg_fords     :: [LForeignDecl Id], -- ...Foreign import & exports
        tcg_vects     :: [LVectDecl Id],    -- ...Vectorisation declarations
        tcg_patsyns   :: [PatSyn],          -- ...Pattern synonyms

        tcg_doc_hdr   :: Maybe LHsDocString, -- ^ Maybe Haddock header docs
        tcg_hpc       :: AnyHpcUsage,        -- ^ @True@ if any part of the
                                             --  prog uses hpc instrumentation.

        tcg_main      :: Maybe Name,         -- ^ The Name of the main
                                             -- function, if this module is
                                             -- the main module.
        tcg_safeInfer :: TcRef Bool,         -- Has the typechecker
                                             -- inferred this module
                                             -- as -XSafe (Safe Haskell)

        -- | A list of user-defined plugins for the constraint solver.
        tcg_tc_plugins :: [TcPluginSolver]
    }

-- Note [Signature parameters in TcGblEnv and DynFlags]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- When compiling signature files, we need to know which implementation
-- we've actually linked against the signature.  There are three seemingly
-- redundant places where this information is stored: in DynFlags, there
-- is sigOf, and in TcGblEnv, there is tcg_sig_of and tcg_impl_rdr_env.
-- Here's the difference between each of them:
--
-- * DynFlags.sigOf is global per invocation of GHC.  If we are compiling
--   with --make, there may be multiple signature files being compiled; in
--   which case this parameter is a map from local module name to implementing
--   Module.
--
-- * HscEnv.tcg_sig_of is global per the compilation of a single file, so
--   it is simply the result of looking up tcg_mod in the DynFlags.sigOf
--   parameter.  It's setup in TcRnMonad.initTc.  This prevents us
--   from having to repeatedly do a lookup in DynFlags.sigOf.
--
-- * HscEnv.tcg_impl_rdr_env is a RdrEnv that lets us look up names
--   according to the sig-of module.  It's setup in TcRnDriver.tcRnSignature.
--   Here is an example showing why we need this map:
--
--  module A where
--      a = True
--
--  module ASig where
--      import B
--      a :: Bool
--
--  module B where
--      b = False
--
-- When we compile ASig --sig-of main:A, the default
-- global RdrEnv (tcg_rdr_env) has an entry for b, but not for a
-- (we never imported A).  So we have to look in a different environment
-- to actually get the original name.
--
-- By the way, why do we need to do the lookup; can't we just use A:a
-- as the name directly?  Well, if A is reexporting the entity from another
-- module, then the original name needs to be the real original name:
--
--  module C where
--      a = True
--
--  module A(a) where
--      import C

instance ContainsModule TcGblEnv where
    extractModule env = tcg_mod env

data RecFieldEnv
  = RecFields (NameEnv [Name])  -- Maps a constructor name *in this module*
                                -- to the fields for that constructor
              NameSet           -- Set of all fields declared *in this module*;
                                -- used to suppress name-shadowing complaints
                                -- when using record wild cards
                                -- E.g.  let fld = e in C {..}
        -- This is used when dealing with ".." notation in record
        -- construction and pattern matching.
        -- The FieldEnv deals *only* with constructors defined in *this*
        -- module.  For imported modules, we get the same info from the
        -- TypeEnv
\end{code}

Note [Tracking unused binding and imports]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We gather two sorts of usage information
 * tcg_dus (defs/uses)
      Records *defined* Names (local, top-level)
          and *used*    Names (local or imported)

      Used (a) to report "defined but not used"
               (see RnNames.reportUnusedNames)
           (b) to generate version-tracking usage info in interface
               files (see MkIface.mkUsedNames)
   This usage info is mainly gathered by the renamer's
   gathering of free-variables

 * tcg_used_rdrnames
      Records used *imported* (not locally-defined) RdrNames
      Used only to report unused import declarations
      Notice that they are RdrNames, not Names, so we can
      tell whether the reference was qualified or unqualified, which
      is esssential in deciding whether a particular import decl
      is unnecessary.  This info isn't present in Names.


%************************************************************************
%*                                                                      *
                The interface environments
              Used when dealing with IfaceDecls
%*                                                                      *
%************************************************************************

\begin{code}
data IfGblEnv
  = IfGblEnv {
        -- The type environment for the module being compiled,
        -- in case the interface refers back to it via a reference that
        -- was originally a hi-boot file.
        -- We need the module name so we can test when it's appropriate
        -- to look in this env.
        if_rec_types :: Maybe (Module, IfG TypeEnv)
                -- Allows a read effect, so it can be in a mutable
                -- variable; c.f. handling the external package type env
                -- Nothing => interactive stuff, no loops possible
    }

data IfLclEnv
  = IfLclEnv {
        -- The module for the current IfaceDecl
        -- So if we see   f = \x -> x
        -- it means M.f = \x -> x, where M is the if_mod
        if_mod :: Module,

        -- The field is used only for error reporting
        -- if (say) there's a Lint error in it
        if_loc :: SDoc,
                -- Where the interface came from:
                --      .hi file, or GHCi state, or ext core
                -- plus which bit is currently being examined

        if_tv_env  :: UniqFM TyVar,     -- Nested tyvar bindings
                                        -- (and coercions)
        if_id_env  :: UniqFM Id         -- Nested id binding
    }
\end{code}


%************************************************************************
%*                                                                      *
                The local typechecker environment
%*                                                                      *
%************************************************************************

The Global-Env/Local-Env story
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
During type checking, we keep in the tcg_type_env
        * All types and classes
        * All Ids derived from types and classes (constructors, selectors)

At the end of type checking, we zonk the local bindings,
and as we do so we add to the tcg_type_env
        * Locally defined top-level Ids

Why?  Because they are now Ids not TcIds.  This final GlobalEnv is
        a) fed back (via the knot) to typechecking the
           unfoldings of interface signatures
        b) used in the ModDetails of this module

\begin{code}
data TcLclEnv           -- Changes as we move inside an expression
                        -- Discarded after typecheck/rename; not passed on to desugarer
  = TcLclEnv {
        tcl_loc        :: SrcSpan,         -- Source span
        tcl_ctxt       :: [ErrCtxt],       -- Error context, innermost on top
        tcl_untch      :: Untouchables,    -- Birthplace for new unification variables

        tcl_th_ctxt    :: ThStage,         -- Template Haskell context
        tcl_th_bndrs   :: ThBindEnv,       -- Binding level of in-scope Names
                                           -- defined in this module (not imported)

        tcl_arrow_ctxt :: ArrowCtxt,       -- Arrow-notation context

        tcl_rdr :: LocalRdrEnv,         -- Local name envt
                -- Maintained during renaming, of course, but also during
                -- type checking, solely so that when renaming a Template-Haskell
                -- splice we have the right environment for the renamer.
                --
                --   Does *not* include global name envt; may shadow it
                --   Includes both ordinary variables and type variables;
                --   they are kept distinct because tyvar have a different
                --   occurrence contructor (Name.TvOcc)
                -- We still need the unsullied global name env so that
                --   we can look up record field names

        tcl_env  :: TcTypeEnv,    -- The local type environment:
                                  -- Ids and TyVars defined in this module

        tcl_bndrs :: [TcIdBinder],   -- Stack of locally-bound Ids, innermost on top
                                     -- Used only for error reporting

        tcl_tidy :: TidyEnv,      -- Used for tidying types; contains all
                                  -- in-scope type variables (but not term variables)

        tcl_tyvars :: TcRef TcTyVarSet, -- The "global tyvars"
                        -- Namely, the in-scope TyVars bound in tcl_env,
                        -- plus the tyvars mentioned in the types of Ids bound
                        -- in tcl_lenv.
                        -- Why mutable? see notes with tcGetGlobalTyVars

        tcl_lie  :: TcRef WantedConstraints,    -- Place to accumulate type constraints
        tcl_errs :: TcRef Messages              -- Place to accumulate errors
    }

type TcTypeEnv = NameEnv TcTyThing

type ThBindEnv = NameEnv (TopLevelFlag, ThLevel)
   -- Domain = all Ids bound in this module (ie not imported)
   -- The TopLevelFlag tells if the binding is syntactically top level.
   -- We need to know this, because the cross-stage persistence story allows
   -- cross-stage at arbitrary types if the Id is bound at top level.
   --
   -- Nota bene: a ThLevel of 'outerLevel' is *not* the same as being
   -- bound at top level!  See Note [Template Haskell levels] in TcSplice

data TcIdBinder
  = TcIdBndr
       TcId
       TopLevelFlag    -- Tells whether the bindind is syntactically top-level
                       -- (The monomorphic Ids for a recursive group count
                       --  as not-top-level for this purpose.)

{- Note [Given Insts]
   ~~~~~~~~~~~~~~~~~~
Because of GADTs, we have to pass inwards the Insts provided by type signatures
and existential contexts. Consider
        data T a where { T1 :: b -> b -> T [b] }
        f :: Eq a => T a -> Bool
        f (T1 x y) = [x]==[y]

The constructor T1 binds an existential variable 'b', and we need Eq [b].
Well, we have it, because Eq a refines to Eq [b], but we can only spot that if we
pass it inwards.

-}

---------------------------
-- Template Haskell stages and levels
---------------------------

data ThStage    -- See Note [Template Haskell state diagram] in TcSplice
  = Splice      -- Inside a top-level splice splice
                -- This code will be run *at compile time*;
                --   the result replaces the splice
                -- Binding level = 0
      Bool      -- True if in a typed splice, False otherwise

  | Comp        -- Ordinary Haskell code
                -- Binding level = 1

  | Brack                       -- Inside brackets
      ThStage                   --   Enclosing stage
      PendingStuff

data PendingStuff
  = RnPendingUntyped              -- Renaming the inside of an *untyped* bracket
      (TcRef [PendingRnSplice])   -- Pending splices in here

  | RnPendingTyped                -- Renaming the inside of a *typed* bracket

  | TcPending                     -- Typechecking the inside of a typed bracket
      (TcRef [PendingTcSplice])   --   Accumulate pending splices here
      (TcRef WantedConstraints)   --     and type constraints here

topStage, topAnnStage, topSpliceStage :: ThStage
topStage       = Comp
topAnnStage    = Splice False
topSpliceStage = Splice False

instance Outputable ThStage where
   ppr (Splice _)  = text "Splice"
   ppr Comp        = text "Comp"
   ppr (Brack s _) = text "Brack" <> parens (ppr s)

type ThLevel = Int
    -- NB: see Note [Template Haskell levels] in TcSplice
    -- Incremented when going inside a bracket,
    -- decremented when going inside a splice
    -- NB: ThLevel is one greater than the 'n' in Fig 2 of the
    --     original "Template meta-programming for Haskell" paper

impLevel, outerLevel :: ThLevel
impLevel = 0    -- Imported things; they can be used inside a top level splice
outerLevel = 1  -- Things defined outside brackets

thLevel :: ThStage -> ThLevel
thLevel (Splice _)  = 0
thLevel Comp        = 1
thLevel (Brack s _) = thLevel s + 1

---------------------------
-- Arrow-notation context
---------------------------

{- Note [Escaping the arrow scope]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In arrow notation, a variable bound by a proc (or enclosed let/kappa)
is not in scope to the left of an arrow tail (-<) or the head of (|..|).
For example

        proc x -> (e1 -< e2)

Here, x is not in scope in e1, but it is in scope in e2.  This can get
a bit complicated:

        let x = 3 in
        proc y -> (proc z -> e1) -< e2

Here, x and z are in scope in e1, but y is not.

We implement this by
recording the environment when passing a proc (using newArrowScope),
and returning to that (using escapeArrowScope) on the left of -< and the
head of (|..|).

All this can be dealt with by the *renamer*; by the time we get to
the *type checker* we have sorted out the scopes
-}

data ArrowCtxt
  = NoArrowCtxt
  | ArrowCtxt (Env TcGblEnv TcLclEnv)

-- Record the current environment (outside a proc)
newArrowScope :: TcM a -> TcM a
newArrowScope
  = updEnv $ \env ->
        env { env_lcl = (env_lcl env) { tcl_arrow_ctxt = ArrowCtxt env } }

-- Return to the stored environment (from the enclosing proc)
escapeArrowScope :: TcM a -> TcM a
escapeArrowScope
  = updEnv $ \ env -> case tcl_arrow_ctxt (env_lcl env) of
        NoArrowCtxt -> env
        ArrowCtxt env' -> env'

---------------------------
-- TcTyThing
---------------------------

data TcTyThing
  = AGlobal TyThing             -- Used only in the return type of a lookup

  | ATcId   {           -- Ids defined in this module; may not be fully zonked
        tct_id     :: TcId,
        tct_closed :: TopLevelFlag }   -- See Note [Bindings with closed types]

  | ATyVar  Name TcTyVar        -- The type variable to which the lexically scoped type
                                -- variable is bound. We only need the Name
                                -- for error-message purposes; it is the corresponding
                                -- Name in the domain of the envt

  | AThing  TcKind   -- Used temporarily, during kind checking, for the
                     -- tycons and clases in this recursive group
                     -- Can be a mono-kind or a poly-kind; in TcTyClsDcls see
                     -- Note [Type checking recursive type and class declarations]

  | APromotionErr PromotionErr

data PromotionErr
  = TyConPE          -- TyCon used in a kind before we are ready
                     --     data T :: T -> * where ...
  | ClassPE          -- Ditto Class

  | FamDataConPE     -- Data constructor for a data family
                     -- See Note [AFamDataCon: not promoting data family constructors] in TcRnDriver

  | RecDataConPE     -- Data constructor in a recursive loop
                     -- See Note [ARecDataCon: recusion and promoting data constructors] in TcTyClsDecls
  | NoDataKinds      -- -XDataKinds not enabled

instance Outputable TcTyThing where     -- Debugging only
   ppr (AGlobal g)      = pprTyThing g
   ppr elt@(ATcId {})   = text "Identifier" <>
                          brackets (ppr (tct_id elt) <> dcolon
                                 <> ppr (varType (tct_id elt)) <> comma
                                 <+> ppr (tct_closed elt))
   ppr (ATyVar n tv)    = text "Type variable" <+> quotes (ppr n) <+> equals <+> ppr tv
   ppr (AThing k)       = text "AThing" <+> ppr k
   ppr (APromotionErr err) = text "APromotionErr" <+> ppr err

instance Outputable PromotionErr where
  ppr ClassPE      = text "ClassPE"
  ppr TyConPE      = text "TyConPE"
  ppr FamDataConPE = text "FamDataConPE"
  ppr RecDataConPE = text "RecDataConPE"
  ppr NoDataKinds  = text "NoDataKinds"

pprTcTyThingCategory :: TcTyThing -> SDoc
pprTcTyThingCategory (AGlobal thing)    = pprTyThingCategory thing
pprTcTyThingCategory (ATyVar {})        = ptext (sLit "Type variable")
pprTcTyThingCategory (ATcId {})         = ptext (sLit "Local identifier")
pprTcTyThingCategory (AThing {})        = ptext (sLit "Kinded thing")
pprTcTyThingCategory (APromotionErr pe) = pprPECategory pe

pprPECategory :: PromotionErr -> SDoc
pprPECategory ClassPE      = ptext (sLit "Class")
pprPECategory TyConPE      = ptext (sLit "Type constructor")
pprPECategory FamDataConPE = ptext (sLit "Data constructor")
pprPECategory RecDataConPE = ptext (sLit "Data constructor")
pprPECategory NoDataKinds  = ptext (sLit "Data constructor")
\end{code}


Note [Bindings with closed types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

  f x = let g ys = map not ys
        in ...

Can we generalise 'g' under the OutsideIn algorithm?  Yes,
because all g's free variables are top-level; that is they themselves
have no free type variables, and it is the type variables in the
environment that makes things tricky for OutsideIn generalisation.

Definition:

   A variable is "closed", and has tct_closed set to TopLevel,
      iff
   a) all its free variables are imported, or are themselves closed
   b) generalisation is not restricted by the monomorphism restriction

Under OutsideIn we are free to generalise a closed let-binding.
This is an extension compared to the JFP paper on OutsideIn, which
used "top-level" as a proxy for "closed".  (It's not a good proxy
anyway -- the MR can make a top-level binding with a free type
variable.)

Note that:
  * A top-level binding may not be closed, if it suffer from the MR

  * A nested binding may be closed (eg 'g' in the example we started with)
    Indeed, that's the point; whether a function is defined at top level
    or nested is orthogonal to the question of whether or not it is closed

  * A binding may be non-closed because it mentions a lexically scoped
    *type variable*  Eg
        f :: forall a. blah
        f x = let g y = ...(y::a)...


\begin{code}
type ErrCtxt = (Bool, TidyEnv -> TcM (TidyEnv, MsgDoc))
        -- Monadic so that we have a chance
        -- to deal with bound type variables just before error
        -- message construction

        -- Bool:  True <=> this is a landmark context; do not
        --                 discard it when trimming for display
\end{code}


%************************************************************************
%*                                                                      *
        Operations over ImportAvails
%*                                                                      *
%************************************************************************

\begin{code}
-- | 'ImportAvails' summarises what was imported from where, irrespective of
-- whether the imported things are actually used or not.  It is used:
--
--  * when processing the export list,
--
--  * when constructing usage info for the interface file,
--
--  * to identify the list of directly imported modules for initialisation
--    purposes and for optimised overlap checking of family instances,
--
--  * when figuring out what things are really unused
--
data ImportAvails
   = ImportAvails {
        imp_mods :: ImportedMods,
          --      = ModuleEnv [(ModuleName, Bool, SrcSpan, Bool)],
          -- ^ Domain is all directly-imported modules
          -- The 'ModuleName' is what the module was imported as, e.g. in
          -- @
          --     import Foo as Bar
          -- @
          -- it is @Bar@.
          --
          -- The 'Bool' means:
          --
          --  - @True@ => import was @import Foo ()@
          --
          --  - @False@ => import was some other form
          --
          -- Used
          --
          --   (a) to help construct the usage information in the interface
          --       file; if we import something we need to recompile if the
          --       export version changes
          --
          --   (b) to specify what child modules to initialise
          --
          -- We need a full ModuleEnv rather than a ModuleNameEnv here,
          -- because we might be importing modules of the same name from
          -- different packages. (currently not the case, but might be in the
          -- future).

        imp_dep_mods :: ModuleNameEnv (ModuleName, IsBootInterface),
          -- ^ Home-package modules needed by the module being compiled
          --
          -- It doesn't matter whether any of these dependencies
          -- are actually /used/ when compiling the module; they
          -- are listed if they are below it at all.  For
          -- example, suppose M imports A which imports X.  Then
          -- compiling M might not need to consult X.hi, but X
          -- is still listed in M's dependencies.

        imp_dep_pkgs :: [PackageKey],
          -- ^ Packages needed by the module being compiled, whether directly,
          -- or via other modules in this package, or via modules imported
          -- from other packages.

        imp_trust_pkgs :: [PackageKey],
          -- ^ This is strictly a subset of imp_dep_pkgs and records the
          -- packages the current module needs to trust for Safe Haskell
          -- compilation to succeed. A package is required to be trusted if
          -- we are dependent on a trustworthy module in that package.
          -- While perhaps making imp_dep_pkgs a tuple of (PackageKey, Bool)
          -- where True for the bool indicates the package is required to be
          -- trusted is the more logical  design, doing so complicates a lot
          -- of code not concerned with Safe Haskell.
          -- See Note [RnNames . Tracking Trust Transitively]

        imp_trust_own_pkg :: Bool,
          -- ^ Do we require that our own package is trusted?
          -- This is to handle efficiently the case where a Safe module imports
          -- a Trustworthy module that resides in the same package as it.
          -- See Note [RnNames . Trust Own Package]

        imp_orphs :: [Module],
          -- ^ Orphan modules below us in the import tree (and maybe including
          -- us for imported modules)

        imp_finsts :: [Module]
          -- ^ Family instance modules below us in the import tree (and maybe
          -- including us for imported modules)
      }

mkModDeps :: [(ModuleName, IsBootInterface)]
          -> ModuleNameEnv (ModuleName, IsBootInterface)
mkModDeps deps = foldl add emptyUFM deps
               where
                 add env elt@(m,_) = addToUFM env m elt

emptyImportAvails :: ImportAvails
emptyImportAvails = ImportAvails { imp_mods          = emptyModuleEnv,
                                   imp_dep_mods      = emptyUFM,
                                   imp_dep_pkgs      = [],
                                   imp_trust_pkgs    = [],
                                   imp_trust_own_pkg = False,
                                   imp_orphs         = [],
                                   imp_finsts        = [] }

-- | Union two ImportAvails
--
-- This function is a key part of Import handling, basically
-- for each import we create a separate ImportAvails structure
-- and then union them all together with this function.
plusImportAvails ::  ImportAvails ->  ImportAvails ->  ImportAvails
plusImportAvails
  (ImportAvails { imp_mods = mods1,
                  imp_dep_mods = dmods1, imp_dep_pkgs = dpkgs1,
                  imp_trust_pkgs = tpkgs1, imp_trust_own_pkg = tself1,
                  imp_orphs = orphs1, imp_finsts = finsts1 })
  (ImportAvails { imp_mods = mods2,
                  imp_dep_mods = dmods2, imp_dep_pkgs = dpkgs2,
                  imp_trust_pkgs = tpkgs2, imp_trust_own_pkg = tself2,
                  imp_orphs = orphs2, imp_finsts = finsts2 })
  = ImportAvails { imp_mods          = plusModuleEnv_C (++) mods1 mods2,
                   imp_dep_mods      = plusUFM_C plus_mod_dep dmods1 dmods2,
                   imp_dep_pkgs      = dpkgs1 `unionLists` dpkgs2,
                   imp_trust_pkgs    = tpkgs1 `unionLists` tpkgs2,
                   imp_trust_own_pkg = tself1 || tself2,
                   imp_orphs         = orphs1 `unionLists` orphs2,
                   imp_finsts        = finsts1 `unionLists` finsts2 }
  where
    plus_mod_dep (m1, boot1) (m2, boot2)
        = WARN( not (m1 == m2), (ppr m1 <+> ppr m2) $$ (ppr boot1 <+> ppr boot2) )
                -- Check mod-names match
          (m1, boot1 && boot2) -- If either side can "see" a non-hi-boot interface, use that
\end{code}

%************************************************************************
%*                                                                      *
\subsection{Where from}
%*                                                                      *
%************************************************************************

The @WhereFrom@ type controls where the renamer looks for an interface file

\begin{code}
data WhereFrom
  = ImportByUser IsBootInterface        -- Ordinary user import (perhaps {-# SOURCE #-})
  | ImportBySystem                      -- Non user import.
  | ImportByPlugin                      -- Importing a plugin;
                                        -- See Note [Care with plugin imports] in LoadIface

instance Outputable WhereFrom where
  ppr (ImportByUser is_boot) | is_boot     = ptext (sLit "{- SOURCE -}")
                             | otherwise   = empty
  ppr ImportBySystem                       = ptext (sLit "{- SYSTEM -}")
  ppr ImportByPlugin                       = ptext (sLit "{- PLUGIN -}")
\end{code}

%************************************************************************
%*                                                                      *
%*                       Canonical constraints                          *
%*                                                                      *
%*   These are the constraints the low-level simplifier works with      *
%*                                                                      *
%************************************************************************


\begin{code}
-- The syntax of xi types:
-- xi ::= a | T xis | xis -> xis | ... | forall a. tau
-- Two important notes:
--      (i) No type families, unless we are under a ForAll
--      (ii) Note that xi types can contain unexpanded type synonyms;
--           however, the (transitive) expansions of those type synonyms
--           will not contain any type functions, unless we are under a ForAll.
-- We enforce the structure of Xi types when we flatten (TcCanonical)

type Xi = Type       -- In many comments, "xi" ranges over Xi

type Cts = Bag Ct

data Ct
  -- Atomic canonical constraints
  = CDictCan {  -- e.g.  Num xi
      cc_ev     :: CtEvidence, -- See Note [Ct/evidence invariant]
      cc_class  :: Class,
      cc_tyargs :: [Xi]        -- cc_tyargs are function-free, hence Xi
    }

  | CIrredEvCan {  -- These stand for yet-unusable predicates
      cc_ev :: CtEvidence   -- See Note [Ct/evidence invariant]
        -- The ctev_pred of the evidence is
        -- of form   (tv xi1 xi2 ... xin)
        --      or   (tv1 ~ ty2)   where the CTyEqCan  kind invariant fails
        --      or   (F tys ~ ty)  where the CFunEqCan kind invariant fails
        -- See Note [CIrredEvCan constraints]
    }

  | CTyEqCan {  -- tv ~ rhs
       -- Invariants:
       --   * See Note [Applying the inert substitution] in TcFlatten
       --   * tv not in tvs(xi)   (occurs check)
       --   * If tv is a TauTv, then rhs has no foralls
       --       (this avoids substituting a forall for the tyvar in other types)
       --   * typeKind ty `subKind` typeKind tv
       --       See Note [Kind orientation for CTyEqCan]
       --   * rhs is not necessarily function-free,
       --       but it has no top-level function.
       --     E.g. a ~ [F b]  is fine
       --     but  a ~ F b    is not
       --   * If rhs is also a tv, then it is oriented to give best chance of
       --     unification happening; eg if rhs is touchable then lhs is too
      cc_ev     :: CtEvidence, -- See Note [Ct/evidence invariant]
      cc_tyvar  :: TcTyVar,
      cc_rhs    :: TcType      -- Not necessarily function-free (hence not Xi)
                               -- See invariants above
    }

  | CFunEqCan {  -- F xis ~ fsk
       -- Invariants:
       --   * isSynFamilyTyCon cc_fun
       --   * typeKind (F xis) = tyVarKind fsk
       --   * always Nominal role
       --   * always Given or Wanted, never Derived
      cc_ev     :: CtEvidence,  -- See Note [Ct/evidence invariant]
      cc_fun    :: TyCon,       -- A type function

      cc_tyargs :: [Xi],        -- cc_tyargs are function-free (hence Xi)
        -- Either under-saturated or exactly saturated
        --    *never* over-saturated (because if so
        --    we should have decomposed)

      cc_fsk    :: TcTyVar  -- [Given]  always a FlatSkol skolem
                            -- [Wanted] always a FlatMetaTv unification variable
        -- See Note [The flattening story] in TcFlatten
    }

  | CNonCanonical {        -- See Note [NonCanonical Semantics]
      cc_ev  :: CtEvidence
    }

  | CHoleCan {             -- Treated as an "insoluble" constraint
                           -- See Note [Insoluble constraints]
      cc_ev  :: CtEvidence,
      cc_occ :: OccName    -- The name of this hole
    }
\end{code}

Note [Kind orientation for CTyEqCan]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given an equality (t:* ~ s:Open), we can't solve it by updating t:=s,
ragardless of how touchable 't' is, because the kinds don't work.

Instead we absolutely must re-orient it. Reason: if that gets into the
inert set we'll start replacing t's by s's, and that might make a
kind-correct type into a kind error.  After re-orienting,
we may be able to solve by updating s:=t.

Hence in a CTyEqCan, (t:k1 ~ xi:k2) we require that k2 is a subkind of k1.

If the two have incompatible kinds, we just don't use a CTyEqCan at all.
See Note [Equalities with incompatible kinds] in TcCanonical

We can't require *equal* kinds, because
     * wanted constraints don't necessarily have identical kinds
               eg   alpha::? ~ Int
     * a solved wanted constraint becomes a given

Note [Kind orientation for CFunEqCan]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For (F xis ~ rhs) we require that kind(lhs) is a subkind of kind(rhs).
This really only maters when rhs is an Open type variable (since only type
variables have Open kinds):
   F ty ~ (a:Open)
which can happen, say, from
      f :: F a b
      f = undefined   -- The a:Open comes from instantiating 'undefined'

Note that the kind invariant is maintained by rewriting.
Eg wanted1 rewrites wanted2; if both were compatible kinds before,
   wanted2 will be afterwards.  Similarly givens.

Caveat:
  - Givens from higher-rank, such as:
          type family T b :: * -> * -> *
          type instance T Bool = (->)

          f :: forall a. ((T a ~ (->)) => ...) -> a -> ...
          flop = f (...) True
     Whereas we would be able to apply the type instance, we would not be able to
     use the given (T Bool ~ (->)) in the body of 'flop'


Note [CIrredEvCan constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CIrredEvCan constraints are used for constraints that are "stuck"
   - we can't solve them (yet)
   - we can't use them to solve other constraints
   - but they may become soluble if we substitute for some
     of the type variables in the constraint

Example 1:  (c Int), where c :: * -> Constraint.  We can't do anything
            with this yet, but if later c := Num, *then* we can solve it

Example 2:  a ~ b, where a :: *, b :: k, where k is a kind variable
            We don't want to use this to substitute 'b' for 'a', in case
            'k' is subequently unifed with (say) *->*, because then
            we'd have ill-kinded types floating about.  Rather we want
            to defer using the equality altogether until 'k' get resolved.

Note [Ct/evidence invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If  ct :: Ct, then extra fields of 'ct' cache precisely the ctev_pred field
of (cc_ev ct), and is fully rewritten wrt the substitution.   Eg for CDictCan,
   ctev_pred (cc_ev ct) = (cc_class ct) (cc_tyargs ct)
This holds by construction; look at the unique place where CDictCan is
built (in TcCanonical).

In contrast, the type of the evidence *term* (ccev_evtm or ctev_evar) in
the evidence may *not* be fully zonked; we are careful not to look at it
during constraint solving.  See Note [Evidence field of CtEvidence]

\begin{code}
mkNonCanonical :: CtEvidence -> Ct
mkNonCanonical ev = CNonCanonical { cc_ev = ev }

mkNonCanonicalCt :: Ct -> Ct
mkNonCanonicalCt ct = CNonCanonical { cc_ev = cc_ev ct }

ctEvidence :: Ct -> CtEvidence
ctEvidence = cc_ev

ctLoc :: Ct -> CtLoc
ctLoc = ctEvLoc . ctEvidence

ctPred :: Ct -> PredType
-- See Note [Ct/evidence invariant]
ctPred ct = ctEvPred (cc_ev ct)

dropDerivedWC :: WantedConstraints -> WantedConstraints
-- See Note [Dropping derived constraints]
dropDerivedWC wc@(WC { wc_flat = flats })
  = wc { wc_flat  = filterBag isWantedCt flats }
    -- The wc_impl implications are already (recursively) filtered
\end{code}

Note [Dropping derived constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general we discard derived constraints at the end of constraint solving;
see dropDerivedWC.  For example
 * If we have an unsolved (Ord a), we don't want to complain about
   an unsolved (Eq a) as well.

But we keep Derived *insoluble* constraints because they indicate a solid,
comprehensible error.  Particularly:

 * Insolubles Givens indicate unreachable code

 * Insoluble kind equalities (e.g. [D] * ~ (* -> *)) may arise from
   a type equality a ~ Int#, say

 * Insoluble derived wanted equalities (e.g. [D] Int ~ Bool) may
   arise from functional dependency interactions.  We are careful
   to keep a good CtOrigin on such constraints (FunDepOrigin1, FunDepOrigin2)
   so that we can produce a good error message (Trac #9612)

Since we leave these Derived constraints in the residual WantedConstraints,
we must filter them out when we re-process the WantedConstraint,
in TcSimplify.solve_wanteds.


%************************************************************************
%*                                                                      *
                    CtEvidence
         The "flavor" of a canonical constraint
%*                                                                      *
%************************************************************************

\begin{code}
isWantedCt :: Ct -> Bool
isWantedCt = isWanted . cc_ev

isGivenCt :: Ct -> Bool
isGivenCt = isGiven . cc_ev

isDerivedCt :: Ct -> Bool
isDerivedCt = isDerived . cc_ev

isCTyEqCan :: Ct -> Bool
isCTyEqCan (CTyEqCan {})  = True
isCTyEqCan (CFunEqCan {}) = False
isCTyEqCan _              = False

isCDictCan_Maybe :: Ct -> Maybe Class
isCDictCan_Maybe (CDictCan {cc_class = cls })  = Just cls
isCDictCan_Maybe _              = Nothing

isCIrredEvCan :: Ct -> Bool
isCIrredEvCan (CIrredEvCan {}) = True
isCIrredEvCan _                = False

isCFunEqCan_maybe :: Ct -> Maybe (TyCon, [Type])
isCFunEqCan_maybe (CFunEqCan { cc_fun = tc, cc_tyargs = xis }) = Just (tc, xis)
isCFunEqCan_maybe _ = Nothing

isCFunEqCan :: Ct -> Bool
isCFunEqCan (CFunEqCan {}) = True
isCFunEqCan _ = False

isCNonCanonical :: Ct -> Bool
isCNonCanonical (CNonCanonical {}) = True
isCNonCanonical _ = False

isHoleCt:: Ct -> Bool
isHoleCt (CHoleCan {}) = True
isHoleCt _ = False

\end{code}

\begin{code}
instance Outputable Ct where
  ppr ct = ppr (cc_ev ct) <+> parens (text ct_sort)
         where ct_sort = case ct of
                           CTyEqCan {}      -> "CTyEqCan"
                           CFunEqCan {}     -> "CFunEqCan"
                           CNonCanonical {} -> "CNonCanonical"
                           CDictCan {}      -> "CDictCan"
                           CIrredEvCan {}   -> "CIrredEvCan"
                           CHoleCan {}      -> "CHoleCan"
\end{code}

\begin{code}
singleCt :: Ct -> Cts
singleCt = unitBag

andCts :: Cts -> Cts -> Cts
andCts = unionBags

listToCts :: [Ct] -> Cts
listToCts = listToBag

ctsElts :: Cts -> [Ct]
ctsElts = bagToList

consCts :: Ct -> Cts -> Cts
consCts = consBag

snocCts :: Cts -> Ct -> Cts
snocCts = snocBag

extendCtsList :: Cts -> [Ct] -> Cts
extendCtsList cts xs | null xs   = cts
                     | otherwise = cts `unionBags` listToBag xs

andManyCts :: [Cts] -> Cts
andManyCts = unionManyBags

emptyCts :: Cts
emptyCts = emptyBag

isEmptyCts :: Cts -> Bool
isEmptyCts = isEmptyBag

pprCts :: Cts -> SDoc
pprCts cts = vcat (map ppr (bagToList cts))
\end{code}

%************************************************************************
%*                                                                      *
                Wanted constraints
     These are forced to be in TcRnTypes because
           TcLclEnv mentions WantedConstraints
           WantedConstraint mentions CtLoc
           CtLoc mentions ErrCtxt
           ErrCtxt mentions TcM
%*                                                                      *
v%************************************************************************

\begin{code}

data WantedConstraints
  = WC { wc_flat  :: Cts               -- Unsolved constraints, all wanted
       , wc_impl  :: Bag Implication
       , wc_insol :: Cts               -- Insoluble constraints, can be
                                       -- wanted, given, or derived
                                       -- See Note [Insoluble constraints]
    }

emptyWC :: WantedConstraints
emptyWC = WC { wc_flat = emptyBag, wc_impl = emptyBag, wc_insol = emptyBag }

mkFlatWC :: [Ct] -> WantedConstraints
mkFlatWC cts
  = WC { wc_flat = listToBag cts, wc_impl = emptyBag, wc_insol = emptyBag }

isEmptyWC :: WantedConstraints -> Bool
isEmptyWC (WC { wc_flat = f, wc_impl = i, wc_insol = n })
  = isEmptyBag f && isEmptyBag i && isEmptyBag n

insolubleWC :: WantedConstraints -> Bool
-- True if there are any insoluble constraints in the wanted bag
insolubleWC wc = not (isEmptyBag (wc_insol wc))
               || anyBag ic_insol (wc_impl wc)

andWC :: WantedConstraints -> WantedConstraints -> WantedConstraints
andWC (WC { wc_flat = f1, wc_impl = i1, wc_insol = n1 })
      (WC { wc_flat = f2, wc_impl = i2, wc_insol = n2 })
  = WC { wc_flat  = f1 `unionBags` f2
       , wc_impl  = i1 `unionBags` i2
       , wc_insol = n1 `unionBags` n2 }

unionsWC :: [WantedConstraints] -> WantedConstraints
unionsWC = foldr andWC emptyWC

addFlats :: WantedConstraints -> Bag Ct -> WantedConstraints
addFlats wc cts
  = wc { wc_flat = wc_flat wc `unionBags` cts }

addImplics :: WantedConstraints -> Bag Implication -> WantedConstraints
addImplics wc implic = wc { wc_impl = wc_impl wc `unionBags` implic }

addInsols :: WantedConstraints -> Bag Ct -> WantedConstraints
addInsols wc cts
  = wc { wc_insol = wc_insol wc `unionBags` cts }

instance Outputable WantedConstraints where
  ppr (WC {wc_flat = f, wc_impl = i, wc_insol = n})
   = ptext (sLit "WC") <+> braces (vcat
        [ ppr_bag (ptext (sLit "wc_flat")) f
        , ppr_bag (ptext (sLit "wc_insol")) n
        , ppr_bag (ptext (sLit "wc_impl")) i ])

ppr_bag :: Outputable a => SDoc -> Bag a -> SDoc
ppr_bag doc bag
 | isEmptyBag bag = empty
 | otherwise      = hang (doc <+> equals) 
                       2 (foldrBag (($$) . ppr) empty bag)
\end{code}


%************************************************************************
%*                                                                      *
                Implication constraints
%*                                                                      *
%************************************************************************

\begin{code}
data Implication
  = Implic {
      ic_untch :: Untouchables, -- Untouchables: unification variables
                                -- free in the environment

      ic_skols  :: [TcTyVar],    -- Introduced skolems
      ic_info  :: SkolemInfo,    -- See Note [Skolems in an implication]
                                 -- See Note [Shadowing in a constraint]

      ic_given  :: [EvVar],      -- Given evidence variables
                                 --   (order does not matter)
                                 -- See Invariant (GivenInv) in TcType

      ic_no_eqs :: Bool,         -- True  <=> ic_givens have no equalities, for sure
                                 -- False <=> ic_givens might have equalities

      ic_env   :: TcLclEnv,      -- Gives the source location and error context
                                 -- for the implicatdion, and hence for all the
                                 -- given evidence variables

      ic_wanted :: WantedConstraints,  -- The wanted
      ic_insol  :: Bool,               -- True iff insolubleWC ic_wanted is true

      ic_binds  :: EvBindsVar   -- Points to the place to fill in the
                                -- abstraction and bindings
    }

instance Outputable Implication where
  ppr (Implic { ic_untch = untch, ic_skols = skols
              , ic_given = given, ic_no_eqs = no_eqs
              , ic_wanted = wanted, ic_insol = insol
              , ic_binds = binds, ic_info = info })
   = hang (ptext (sLit "Implic") <+> lbrace)
        2 (sep [ ptext (sLit "Untouchables =") <+> ppr untch
               , ptext (sLit "Skolems =") <+> pprTvBndrs skols
               , ptext (sLit "No-eqs =") <+> ppr no_eqs
               , ptext (sLit "Insol =") <+> ppr insol
               , hang (ptext (sLit "Given ="))  2 (pprEvVars given)
               , hang (ptext (sLit "Wanted =")) 2 (ppr wanted)
               , ptext (sLit "Binds =") <+> ppr binds
               , pprSkolInfo info ] <+> rbrace)
\end{code}

Note [Shadowing in a constraint]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We assume NO SHADOWING in a constraint.  Specifically
 * The unification variables are all implicitly quantified at top
   level, and are all unique
 * The skolem varibles bound in ic_skols are all freah when the
   implication is created.
So we can safely substitute. For example, if we have
   forall a.  a~Int => ...(forall b. ...a...)...
we can push the (a~Int) constraint inwards in the "givens" without
worrying that 'b' might clash.

Note [Skolems in an implication]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The skolems in an implication are not there to perform a skolem escape
check.  That happens because all the environment variables are in the
untouchables, and therefore cannot be unified with anything at all,
let alone the skolems.

Instead, ic_skols is used only when considering floating a constraint
outside the implication in TcSimplify.floatEqualities or
TcSimplify.approximateImplications

Note [Insoluble constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some of the errors that we get during canonicalization are best
reported when all constraints have been simplified as much as
possible. For instance, assume that during simplification the
following constraints arise:

 [Wanted]   F alpha ~  uf1
 [Wanted]   beta ~ uf1 beta

When canonicalizing the wanted (beta ~ uf1 beta), if we eagerly fail
we will simply see a message:
    'Can't construct the infinite type  beta ~ uf1 beta'
and the user has no idea what the uf1 variable is.

Instead our plan is that we will NOT fail immediately, but:
    (1) Record the "frozen" error in the ic_insols field
    (2) Isolate the offending constraint from the rest of the inerts
    (3) Keep on simplifying/canonicalizing

At the end, we will hopefully have substituted uf1 := F alpha, and we
will be able to report a more informative error:
    'Can't construct the infinite type beta ~ F alpha beta'

Insoluble constraints *do* include Derived constraints. For example,
a functional dependency might give rise to [D] Int ~ Bool, and we must
report that.  If insolubles did not contain Deriveds, reportErrors would
never see it.


%************************************************************************
%*                                                                      *
            Pretty printing
%*                                                                      *
%************************************************************************

\begin{code}
pprEvVars :: [EvVar] -> SDoc    -- Print with their types
pprEvVars ev_vars = vcat (map pprEvVarWithType ev_vars)

pprEvVarTheta :: [EvVar] -> SDoc
pprEvVarTheta ev_vars = pprTheta (map evVarPred ev_vars)

pprEvVarWithType :: EvVar -> SDoc
pprEvVarWithType v = ppr v <+> dcolon <+> pprType (evVarPred v)
\end{code}

%************************************************************************
%*                                                                      *
            CtEvidence
%*                                                                      *
%************************************************************************

Note [Evidence field of CtEvidence]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
During constraint solving we never look at the type of ctev_evtm, or
ctev_evar; instead we look at the cte_pred field.  The evtm/evar field
may be un-zonked.

\begin{code}
data CtEvidence
  = CtGiven { ctev_pred :: TcPredType      -- See Note [Ct/evidence invariant]
            , ctev_evtm :: EvTerm          -- See Note [Evidence field of CtEvidence]
            , ctev_loc  :: CtLoc }
    -- Truly given, not depending on subgoals
    -- NB: Spontaneous unifications belong here

  | CtWanted { ctev_pred :: TcPredType     -- See Note [Ct/evidence invariant]
             , ctev_evar :: EvVar          -- See Note [Evidence field of CtEvidence]
             , ctev_loc  :: CtLoc }
    -- Wanted goal

  | CtDerived { ctev_pred :: TcPredType
              , ctev_loc  :: CtLoc }
    -- A goal that we don't really have to solve and can't immediately
    -- rewrite anything other than a derived (there's no evidence!)
    -- but if we do manage to solve it may help in solving other goals.

ctEvPred :: CtEvidence -> TcPredType
-- The predicate of a flavor
ctEvPred = ctev_pred

ctEvLoc :: CtEvidence -> CtLoc
ctEvLoc = ctev_loc

ctEvTerm :: CtEvidence -> EvTerm
ctEvTerm (CtGiven   { ctev_evtm = tm }) = tm
ctEvTerm (CtWanted  { ctev_evar = ev }) = EvId ev
ctEvTerm ctev@(CtDerived {}) = pprPanic "ctEvTerm: derived constraint cannot have id"
                                      (ppr ctev)

ctEvCoercion :: CtEvidence -> TcCoercion
-- ctEvCoercion ev = evTermCoercion (ctEvTerm ev)
ctEvCoercion (CtGiven   { ctev_evtm = tm }) = evTermCoercion tm
ctEvCoercion (CtWanted  { ctev_evar = v })  = mkTcCoVarCo v
ctEvCoercion ctev@(CtDerived {}) = pprPanic "ctEvCoercion: derived constraint cannot have id"
                                      (ppr ctev)

ctEvId :: CtEvidence -> TcId
ctEvId (CtWanted  { ctev_evar = ev }) = ev
ctEvId ctev = pprPanic "ctEvId:" (ppr ctev)

instance Outputable CtEvidence where
  ppr fl = case fl of
             CtGiven {}   -> ptext (sLit "[G]") <+> ppr (ctev_evtm fl) <+> ppr_pty
             CtWanted {}  -> ptext (sLit "[W]") <+> ppr (ctev_evar fl) <+> ppr_pty
             CtDerived {} -> ptext (sLit "[D]") <+> text "_" <+> ppr_pty
         where ppr_pty = dcolon <+> ppr (ctEvPred fl)

isWanted :: CtEvidence -> Bool
isWanted (CtWanted {}) = True
isWanted _ = False

isGiven :: CtEvidence -> Bool
isGiven (CtGiven {})  = True
isGiven _ = False

isDerived :: CtEvidence -> Bool
isDerived (CtDerived {}) = True
isDerived _              = False
\end{code}


%************************************************************************
%*                                                                      *
            SubGoalDepth
%*                                                                      *
%************************************************************************

Note [SubGoalDepth]
~~~~~~~~~~~~~~~~~~~
The 'SubGoalCounter' takes care of stopping the constraint solver from looping.
Because of the different use-cases of regular constaints and type function
applications, there are two independent counters. Therefore, this datatype is
abstract. See Note [WorkList]

Each counter starts at zero and increases.

* The "dictionary constraint counter" counts the depth of type class
  instance declarations.  Example:
     [W] d{7} : Eq [Int]
  That is d's dictionary-constraint depth is 7.  If we use the instance
     $dfEqList :: Eq a => Eq [a]
  to simplify it, we get
     d{7} = $dfEqList d'{8}
  where d'{8} : Eq Int, and d' has dictionary-constraint depth 8.

  For civilised (decidable) instance declarations, each increase of
  depth removes a type constructor from the type, so the depth never
  gets big; i.e. is bounded by the structural depth of the type.

  The flag -fcontext-stack=n (not very well named!) fixes the maximium
  level.

* The "type function reduction counter" does the same thing when resolving
* qualities involving type functions. Example:
  Assume we have a wanted at depth 7:
    [W] d{7} : F () ~ a
  If thre is an type function equation "F () = Int", this would be rewritten to
    [W] d{8} : Int ~ a
  and remembered as having depth 8.

  Again, without UndecidableInstances, this counter is bounded, but without it
  can resolve things ad infinitum. Hence there is a maximum level. But we use a
  different maximum, as we expect possibly many more type function reductions
  in sensible programs than type class constraints.

  The flag -ftype-function-depth=n fixes the maximium level.

\begin{code}
data SubGoalCounter = CountConstraints | CountTyFunApps

data SubGoalDepth  -- See Note [SubGoalDepth]
   = SubGoalDepth
         {-# UNPACK #-} !Int      -- Dictionary constraints
         {-# UNPACK #-} !Int      -- Type function reductions
  deriving (Eq, Ord)

instance Outputable SubGoalDepth where
 ppr (SubGoalDepth c f) =  angleBrackets $
        char 'C' <> colon <> int c <> comma <>
        char 'F' <> colon <> int f

initialSubGoalDepth :: SubGoalDepth
initialSubGoalDepth = SubGoalDepth 0 0

maxSubGoalDepth :: DynFlags -> SubGoalDepth
maxSubGoalDepth dflags = SubGoalDepth (ctxtStkDepth dflags) (tyFunStkDepth dflags)

bumpSubGoalDepth :: SubGoalCounter -> SubGoalDepth -> SubGoalDepth
bumpSubGoalDepth CountConstraints (SubGoalDepth c f) = SubGoalDepth (c+1) f
bumpSubGoalDepth CountTyFunApps   (SubGoalDepth c f) = SubGoalDepth c (f+1)

subGoalCounterValue :: SubGoalCounter -> SubGoalDepth -> Int
subGoalCounterValue CountConstraints (SubGoalDepth c _) = c
subGoalCounterValue CountTyFunApps   (SubGoalDepth _ f) = f

subGoalDepthExceeded :: SubGoalDepth -> SubGoalDepth -> Maybe SubGoalCounter
subGoalDepthExceeded (SubGoalDepth mc mf) (SubGoalDepth c f)
        | c > mc    = Just CountConstraints
        | f > mf    = Just CountTyFunApps
        | otherwise = Nothing

-- | Checks whether the evidence can be used to solve a goal with the given minimum depth
-- See Note [Preventing recursive dictionaries]
ctEvCheckDepth :: Class -> CtLoc -> CtEvidence -> Bool
ctEvCheckDepth cls target ev
  | isWanted ev
  , cls == coercibleClass  -- The restriction applies only to Coercible
  = ctLocDepth target <= ctLocDepth (ctEvLoc ev)
  | otherwise = True
\end{code}

Note [Preventing recursive dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NB: this will go away when we start treating Coercible as an equality.

We have some classes where it is not very useful to build recursive
dictionaries (Coercible, at the moment). So we need the constraint solver to
prevent that. We conservatively ensure this property using the subgoal depth of
the constraints: When solving a Coercible constraint at depth d, we do not
consider evidence from a depth <= d as suitable.

Therefore we need to record the minimum depth allowed to solve a CtWanted. This
is done in the SubGoalDepth field of CtWanted. Most code now uses mkCtWanted,
which initializes it to initialSubGoalDepth (i.e. 0); but when requesting a
Coercible instance (requestCoercible in TcInteract), we bump the current depth
by one and use that.

There are two spots where wanted contraints attempted to be solved
using existing constraints: lookupInertDict and lookupSolvedDict in
TcSMonad.  Both use ctEvCheckDepth to make the check. That function
ensures that a Given constraint can always be used to solve a goal
(i.e. they are at depth infinity, for our purposes)


%************************************************************************
%*                                                                      *
            CtLoc
%*                                                                      *
%************************************************************************

The 'CtLoc' gives information about where a constraint came from.
This is important for decent error message reporting because
dictionaries don't appear in the original source code.
type will evolve...

\begin{code}
data CtLoc = CtLoc { ctl_origin :: CtOrigin
                   , ctl_env    :: TcLclEnv
                   , ctl_depth  :: !SubGoalDepth }
  -- The TcLclEnv includes particularly
  --    source location:  tcl_loc   :: SrcSpan
  --    context:          tcl_ctxt  :: [ErrCtxt]
  --    binder stack:     tcl_bndrs :: [TcIdBinders]
  --    level:            tcl_untch :: Untouchables

mkGivenLoc :: Untouchables -> SkolemInfo -> TcLclEnv -> CtLoc
mkGivenLoc untch skol_info env 
  = CtLoc { ctl_origin = GivenOrigin skol_info
          , ctl_env    = env { tcl_untch = untch }
          , ctl_depth  = initialSubGoalDepth }

ctLocEnv :: CtLoc -> TcLclEnv
ctLocEnv = ctl_env

ctLocDepth :: CtLoc -> SubGoalDepth
ctLocDepth = ctl_depth

ctLocOrigin :: CtLoc -> CtOrigin
ctLocOrigin = ctl_origin

ctLocSpan :: CtLoc -> SrcSpan
ctLocSpan (CtLoc { ctl_env = lcl}) = tcl_loc lcl

bumpCtLocDepth :: SubGoalCounter -> CtLoc -> CtLoc
bumpCtLocDepth cnt loc@(CtLoc { ctl_depth = d }) = loc { ctl_depth = bumpSubGoalDepth cnt d }

setCtLocOrigin :: CtLoc -> CtOrigin -> CtLoc
setCtLocOrigin ctl orig = ctl { ctl_origin = orig }

setCtLocEnv :: CtLoc -> TcLclEnv -> CtLoc
setCtLocEnv ctl env = ctl { ctl_env = env }

pushErrCtxt :: CtOrigin -> ErrCtxt -> CtLoc -> CtLoc
pushErrCtxt o err loc@(CtLoc { ctl_env = lcl })
  = loc { ctl_origin = o, ctl_env = lcl { tcl_ctxt = err : tcl_ctxt lcl } }

pushErrCtxtSameOrigin :: ErrCtxt -> CtLoc -> CtLoc
-- Just add information w/o updating the origin!
pushErrCtxtSameOrigin err loc@(CtLoc { ctl_env = lcl })
  = loc { ctl_env = lcl { tcl_ctxt = err : tcl_ctxt lcl } }

pprArising :: CtOrigin -> SDoc
-- Used for the main, top-level error message
-- We've done special processing for TypeEq and FunDep origins
pprArising (TypeEqOrigin {}) = empty
pprArising orig              = pprCtOrigin orig

pprArisingAt :: CtLoc -> SDoc
pprArisingAt (CtLoc { ctl_origin = o, ctl_env = lcl})
  = sep [ pprCtOrigin o
        , text "at" <+> ppr (tcl_loc lcl)]
\end{code}

%************************************************************************
%*                                                                      *
                SkolemInfo
%*                                                                      *
%************************************************************************

\begin{code}
-- SkolemInfo gives the origin of *given* constraints
--   a) type variables are skolemised
--   b) an implication constraint is generated
data SkolemInfo
  = SigSkol UserTypeCtxt        -- A skolem that is created by instantiating
            Type                -- a programmer-supplied type signature
                                -- Location of the binding site is on the TyVar

        -- The rest are for non-scoped skolems
  | ClsSkol Class       -- Bound at a class decl
  | InstSkol            -- Bound at an instance decl
  | DataSkol            -- Bound at a data type declaration
  | FamInstSkol         -- Bound at a family instance decl
  | PatSkol             -- An existential type variable bound by a pattern for
      ConLike           -- a data constructor with an existential type.
      (HsMatchContext Name)
             -- e.g.   data T = forall a. Eq a => MkT a
             --        f (MkT x) = ...
             -- The pattern MkT x will allocate an existential type
             -- variable for 'a'.

  | ArrowSkol           -- An arrow form (see TcArrows)

  | IPSkol [HsIPName]   -- Binding site of an implicit parameter

  | RuleSkol RuleName   -- The LHS of a RULE

  | InferSkol [(Name,TcType)]
                        -- We have inferred a type for these (mutually-recursivive)
                        -- polymorphic Ids, and are now checking that their RHS
                        -- constraints are satisfied.

  | BracketSkol         -- Template Haskell bracket

  | UnifyForAllSkol     -- We are unifying two for-all types
       [TcTyVar]        -- The instantiated skolem variables
       TcType           -- The instantiated type *inside* the forall

  | UnkSkol             -- Unhelpful info (until I improve it)

instance Outputable SkolemInfo where
  ppr = pprSkolInfo

pprSkolInfo :: SkolemInfo -> SDoc
-- Complete the sentence "is a rigid type variable bound by..."
pprSkolInfo (SigSkol (FunSigCtxt f) ty)
                            = hang (ptext (sLit "the type signature for"))
                                 2 (pprPrefixOcc f <+> dcolon <+> ppr ty)
pprSkolInfo (SigSkol cx ty) = hang (pprUserTypeCtxt cx <> colon)
                                 2 (ppr ty)
pprSkolInfo (IPSkol ips)    = ptext (sLit "the implicit-parameter binding") <> plural ips <+> ptext (sLit "for")
                              <+> pprWithCommas ppr ips
pprSkolInfo (ClsSkol cls)   = ptext (sLit "the class declaration for") <+> quotes (ppr cls)
pprSkolInfo InstSkol        = ptext (sLit "the instance declaration")
pprSkolInfo DataSkol        = ptext (sLit "the data type declaration")
pprSkolInfo FamInstSkol     = ptext (sLit "the family instance declaration")
pprSkolInfo BracketSkol     = ptext (sLit "a Template Haskell bracket")
pprSkolInfo (RuleSkol name) = ptext (sLit "the RULE") <+> doubleQuotes (ftext name)
pprSkolInfo ArrowSkol       = ptext (sLit "the arrow form")
pprSkolInfo (PatSkol cl mc) = case cl of
    RealDataCon dc -> sep [ ptext (sLit "a pattern with constructor")
                          , nest 2 $ ppr dc <+> dcolon
                            <+> pprType (dataConUserType dc) <> comma
                            -- pprType prints forall's regardless of -fprint-explict-foralls
                            -- which is what we want here, since we might be saying
                            -- type variable 't' is bound by ...
                          , ptext (sLit "in") <+> pprMatchContext mc ]
    PatSynCon ps -> sep [ ptext (sLit "a pattern with pattern synonym")
                        , nest 2 $ ppr ps <+> dcolon
                          <+> pprType (patSynType ps) <> comma
                        , ptext (sLit "in") <+> pprMatchContext mc ]
pprSkolInfo (InferSkol ids) = sep [ ptext (sLit "the inferred type of")
                                  , vcat [ ppr name <+> dcolon <+> ppr ty
                                         | (name,ty) <- ids ]]
pprSkolInfo (UnifyForAllSkol tvs ty) = ptext (sLit "the type") <+> ppr (mkForAllTys tvs ty)

-- UnkSkol
-- For type variables the others are dealt with by pprSkolTvBinding.
-- For Insts, these cases should not happen
pprSkolInfo UnkSkol = WARN( True, text "pprSkolInfo: UnkSkol" ) ptext (sLit "UnkSkol")
\end{code}


%************************************************************************
%*                                                                      *
            CtOrigin
%*                                                                      *
%************************************************************************

\begin{code}
data CtOrigin
  = GivenOrigin SkolemInfo

  -- All the others are for *wanted* constraints
  | OccurrenceOf Name           -- Occurrence of an overloaded identifier
  | AppOrigin                   -- An application of some kind

  | SpecPragOrigin Name         -- Specialisation pragma for identifier

  | TypeEqOrigin { uo_actual   :: TcType
                 , uo_expected :: TcType }
  | KindEqOrigin
      TcType TcType             -- A kind equality arising from unifying these two types
      CtOrigin                  -- originally arising from this

  | IPOccOrigin  HsIPName       -- Occurrence of an implicit parameter

  | LiteralOrigin (HsOverLit Name)      -- Occurrence of a literal
  | NegateOrigin                        -- Occurrence of syntactic negation

  | ArithSeqOrigin (ArithSeqInfo Name) -- [x..], [x..y] etc
  | PArrSeqOrigin  (ArithSeqInfo Name) -- [:x..y:] and [:x,y..z:]
  | SectionOrigin
  | TupleOrigin                        -- (..,..)
  | AmbigOrigin UserTypeCtxt    -- Will be FunSigCtxt, InstDeclCtxt, or SpecInstCtxt
  | ExprSigOrigin       -- e :: ty
  | PatSigOrigin        -- p :: ty
  | PatOrigin           -- Instantiating a polytyped pattern at a constructor
  | RecordUpdOrigin
  | ViewPatOrigin

  | ScOrigin            -- Typechecking superclasses of an instance declaration
  | DerivOrigin         -- Typechecking deriving
  | DerivOriginDC DataCon Int
                        -- Checking constraints arising from this data con and field index
  | DerivOriginCoerce Id Type Type
                        -- DerivOriginCoerce id ty1 ty2: Trying to coerce class method `id` from
                        -- `ty1` to `ty2`.
  | StandAloneDerivOrigin -- Typechecking stand-alone deriving
  | DefaultOrigin       -- Typechecking a default decl
  | DoOrigin            -- Arising from a do expression
  | MCompOrigin         -- Arising from a monad comprehension
  | IfOrigin            -- Arising from an if statement
  | ProcOrigin          -- Arising from a proc expression
  | AnnOrigin           -- An annotation

  | FunDepOrigin1       -- A functional dependency from combining
        PredType CtLoc      -- This constraint arising from ...
        PredType CtLoc      -- and this constraint arising from ...

  | FunDepOrigin2       -- A functional dependency from combining
        PredType CtOrigin   -- This constraint arising from ...
        PredType SrcSpan    -- and this instance
        -- We only need a CtOrigin on the first, because the location
        -- is pinned on the entire error message

  | HoleOrigin
  | UnboundOccurrenceOf RdrName
  | ListOrigin          -- An overloaded list

ctoHerald :: SDoc
ctoHerald = ptext (sLit "arising from")

pprCtOrigin :: CtOrigin -> SDoc

pprCtOrigin (GivenOrigin sk) = ctoHerald <+> ppr sk

pprCtOrigin (FunDepOrigin1 pred1 loc1 pred2 loc2)
  = hang (ctoHerald <+> ptext (sLit "a functional dependency between constraints:"))
       2 (vcat [ hang (quotes (ppr pred1)) 2 (pprArisingAt loc1)
               , hang (quotes (ppr pred2)) 2 (pprArisingAt loc2) ])

pprCtOrigin (FunDepOrigin2 pred1 orig1 pred2 loc2)
  = hang (ctoHerald <+> ptext (sLit "a functional dependency between:"))
       2 (vcat [ hang (ptext (sLit "constraint") <+> quotes (ppr pred1))
                    2 (pprArising orig1 )
               , hang (ptext (sLit "instance") <+> quotes (ppr pred2))
                    2 (ptext (sLit "at") <+> ppr loc2) ])

pprCtOrigin (KindEqOrigin t1 t2 _)
  = hang (ctoHerald <+> ptext (sLit "a kind equality arising from"))
       2 (sep [ppr t1, char '~', ppr t2])

pprCtOrigin (UnboundOccurrenceOf name)
  = ctoHerald <+> ptext (sLit "an undeclared identifier") <+> quotes (ppr name)

pprCtOrigin (DerivOriginDC dc n)
  = hang (ctoHerald <+> ptext (sLit "the") <+> speakNth n
          <+> ptext (sLit "field of") <+> quotes (ppr dc))
       2 (parens (ptext (sLit "type") <+> quotes (ppr ty)))
  where
    ty = dataConOrigArgTys dc !! (n-1)

pprCtOrigin (AmbigOrigin ctxt)
  = ctoHerald <+> ptext (sLit "the ambiguity check for")
    <+> case ctxt of
           FunSigCtxt name -> quotes (ppr name)
           InfSigCtxt name -> quotes (ppr name)
           _               -> pprUserTypeCtxt ctxt

pprCtOrigin (DerivOriginCoerce meth ty1 ty2)
  = hang (ctoHerald <+> ptext (sLit "the coercion of the method") <+> quotes (ppr meth))
       2 (sep [ ptext (sLit "from type") <+> quotes (ppr ty1)
              , ptext (sLit "  to type") <+> quotes (ppr ty2) ])

pprCtOrigin simple_origin
  = ctoHerald <+> pprCtO simple_origin

----------------
pprCtO :: CtOrigin -> SDoc  -- Ones that are short one-liners
pprCtO (OccurrenceOf name)   = hsep [ptext (sLit "a use of"), quotes (ppr name)]
pprCtO AppOrigin             = ptext (sLit "an application")
pprCtO (SpecPragOrigin name) = hsep [ptext (sLit "a specialisation pragma for"), quotes (ppr name)]
pprCtO (IPOccOrigin name)    = hsep [ptext (sLit "a use of implicit parameter"), quotes (ppr name)]
pprCtO RecordUpdOrigin       = ptext (sLit "a record update")
pprCtO ExprSigOrigin         = ptext (sLit "an expression type signature")
pprCtO PatSigOrigin          = ptext (sLit "a pattern type signature")
pprCtO PatOrigin             = ptext (sLit "a pattern")
pprCtO ViewPatOrigin         = ptext (sLit "a view pattern")
pprCtO IfOrigin              = ptext (sLit "an if statement")
pprCtO (LiteralOrigin lit)   = hsep [ptext (sLit "the literal"), quotes (ppr lit)]
pprCtO (ArithSeqOrigin seq)  = hsep [ptext (sLit "the arithmetic sequence"), quotes (ppr seq)]
pprCtO (PArrSeqOrigin seq)   = hsep [ptext (sLit "the parallel array sequence"), quotes (ppr seq)]
pprCtO SectionOrigin         = ptext (sLit "an operator section")
pprCtO TupleOrigin           = ptext (sLit "a tuple")
pprCtO NegateOrigin          = ptext (sLit "a use of syntactic negation")
pprCtO ScOrigin              = ptext (sLit "the superclasses of an instance declaration")
pprCtO DerivOrigin           = ptext (sLit "the 'deriving' clause of a data type declaration")
pprCtO StandAloneDerivOrigin = ptext (sLit "a 'deriving' declaration")
pprCtO DefaultOrigin         = ptext (sLit "a 'default' declaration")
pprCtO DoOrigin              = ptext (sLit "a do statement")
pprCtO MCompOrigin           = ptext (sLit "a statement in a monad comprehension")
pprCtO ProcOrigin            = ptext (sLit "a proc expression")
pprCtO (TypeEqOrigin t1 t2)  = ptext (sLit "a type equality") <+> sep [ppr t1, char '~', ppr t2]
pprCtO AnnOrigin             = ptext (sLit "an annotation")
pprCtO HoleOrigin            = ptext (sLit "a use of") <+> quotes (ptext $ sLit "_")
pprCtO ListOrigin            = ptext (sLit "an overloaded list")
pprCtO _                     = panic "pprCtOrigin"
\end{code}





Constraint Solver Plugins
-------------------------


\begin{code}

type TcPluginSolver = [Ct]    -- given
                   -> [Ct]    -- derived
                   -> [Ct]    -- wanted
                   -> TcPluginM TcPluginResult

newtype TcPluginM a = TcPluginM (TcM a)

instance Functor     TcPluginM where
  fmap = liftM

instance Applicative TcPluginM where
  pure  = return
  (<*>) = ap

instance Monad TcPluginM where
  return x = TcPluginM (return x)
  fail x   = TcPluginM (fail x)
  TcPluginM m >>= k =
    TcPluginM (do a <- m
                  let TcPluginM m1 = k a
                  m1)

runTcPluginM :: TcPluginM a -> TcM a
runTcPluginM (TcPluginM m) = m

-- | This function provides an escape for direct access to
-- the 'TcM` monad.  It should not be used lightly, and
-- the provided 'TcPluginM' API should be favoured instead.
unsafeTcPluginTcM :: TcM a -> TcPluginM a
unsafeTcPluginTcM = TcPluginM

data TcPlugin = forall s. TcPlugin
  { tcPluginInit  :: [String] -> TcPluginM s
    -- ^ Initialize plugin, when entering type-checker.

  , tcPluginSolve :: s -> TcPluginSolver
    -- ^ Solve some constraints.
    -- TODO: WRITE MORE DETAILS ON HOW THIS WORKS.

  , tcPluginStop  :: s -> TcPluginM ()
   -- ^ Clean up after the plugin, when exiting the type-checker.
  }

data TcPluginResult
  = TcPluginContradiction [Ct]
    -- ^ The plugin found a contradiction.
    -- The returned constraints are removed from the inert set,
    -- and recorded as insoluable.

  | TcPluginOk [(EvTerm,Ct)] [Ct]
    -- ^ The first field is for constraints that were solved.
    -- These are removed from the inert set,
    -- and the evidence for them is recorded.
    -- The second field contains new work, that should be processed by
    -- the constraint solver.

\end{code}