summaryrefslogtreecommitdiff
path: root/compiler/typecheck/TcSMonad.lhs
blob: 7d86d157a0b272a4e24382ca394a4d04dfb225d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
\begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

-- Type definitions for the constraint solver
module TcSMonad ( 

       -- Canonical constraints, definition is now in TcRnTypes

    WorkList(..), isEmptyWorkList, emptyWorkList,
    workListFromEq, workListFromNonEq, workListFromCt, 
    extendWorkListEq, extendWorkListNonEq, extendWorkListCt, 
    appendWorkListCt, appendWorkListEqs, unionWorkList, selectWorkItem,

    getTcSWorkList, updWorkListTcS, updWorkListTcS_return, keepWanted,
    getTcSWorkListTvs, 
    
    getTcSImplics, updTcSImplics, emitTcSImplication, 

    Ct(..), Xi, tyVarsOfCt, tyVarsOfCts, tyVarsOfCDicts, 
    emitFrozenError,

    isWanted, isDerived, 
    isGivenCt, isWantedCt, isDerivedCt, pprFlavorArising,

    isFlexiTcsTv,

    canRewrite, canSolve,
    mkGivenLoc, ctWantedLoc,

    TcS, runTcS, failTcS, panicTcS, traceTcS, -- Basic functionality 
    traceFireTcS, bumpStepCountTcS, doWithInert,
    tryTcS, nestImplicTcS, recoverTcS,
    wrapErrTcS, wrapWarnTcS,

    SimplContext(..), isInteractive, performDefaulting,

    -- Getting and setting the flattening cache
    getFlatCache, updFlatCache, addToSolved, addSolvedFunEq,
    
    deferTcSForAllEq, 
    
    setEvBind,
    XEvTerm(..),
    MaybeNew (..), isFresh, freshGoals, getEvTerms,

    xCtFlavor, -- Transform a CtEvidence during a step 
    rewriteCtFlavor,          -- Specialized version of xCtFlavor for coercions
    newWantedEvVar, instDFunConstraints, newKindConstraint,
    newDerived,
    xCtFlavor_cache, rewriteCtFlavor_cache,
    
       -- Creation of evidence variables
    setWantedTyBind,

    getInstEnvs, getFamInstEnvs,                -- Getting the environments
    getTopEnv, getGblEnv, getTcEvBinds, getUntouchables,
    getTcEvBindsMap, getTcSContext, getTcSTyBinds, getTcSTyBindsMap,


    newFlattenSkolemTy,                         -- Flatten skolems 

        -- Inerts 
    InertSet(..), InertCans(..), 
    getInertEqs, getCtCoercion,
    emptyInert, getTcSInerts, lookupInInerts, 
    extractUnsolved,
    extractUnsolvedTcS, modifyInertTcS,
    updInertSetTcS, partitionCCanMap, partitionEqMap,
    getRelevantCts, extractRelevantInerts,
    CCanMap(..), CtTypeMap, CtFamHeadMap, CtPredMap,
    PredMap, FamHeadMap,
    partCtFamHeadMap, lookupFamHead,


    instDFunType,                              -- Instantiation
    newFlexiTcSTy, instFlexiTcS,

    compatKind, mkKindErrorCtxtTcS,

    TcsUntouchables,
    isTouchableMetaTyVar,
    isTouchableMetaTyVar_InRange, 

    getDefaultInfo, getDynFlags,

    matchClass, matchFam, MatchInstResult (..), 
    checkWellStagedDFun, 
    warnTcS,
    pprEq                                    -- Smaller utils, re-exported from TcM
                                             -- TODO (DV): these are only really used in the 
                                             -- instance matcher in TcSimplify. I am wondering
                                             -- if the whole instance matcher simply belongs
                                             -- here 
) where 

#include "HsVersions.h"

import HscTypes
import BasicTypes 

import Inst
import InstEnv 
import FamInst 
import FamInstEnv

import qualified TcRnMonad as TcM
import qualified TcMType as TcM
import qualified TcEnv as TcM 
       ( checkWellStaged, topIdLvl, tcGetDefaultTys )
import {-# SOURCE #-} qualified TcUnify as TcM ( mkKindErrorCtxt )
import Kind
import TcType
import DynFlags
import Type

import TcEvidence
import Class
import TyCon

import Name
import Var
import VarEnv
import Outputable
import Bag
import MonadUtils
import VarSet

import FastString
import Util
import Id 
import TcRnTypes

import Unique 
import UniqFM
import Maybes ( orElse, catMaybes )


import Control.Monad( when, zipWithM )
import StaticFlags( opt_PprStyle_Debug )
import Data.IORef
import TrieMap

\end{code}


\begin{code}
compatKind :: Kind -> Kind -> Bool
compatKind k1 k2 = k1 `tcIsSubKind` k2 || k2 `tcIsSubKind` k1 

mkKindErrorCtxtTcS :: Type -> Kind 
                   -> Type -> Kind 
                   -> ErrCtxt
mkKindErrorCtxtTcS ty1 ki1 ty2 ki2
  = (False,TcM.mkKindErrorCtxt ty1 ty2 ki1 ki2)

\end{code}

%************************************************************************
%*									*
%*                            Worklists                                *
%*  Canonical and non-canonical constraints that the simplifier has to  *
%*  work on. Including their simplification depths.                     *
%*                                                                      *
%*									*
%************************************************************************

Note [WorkList]
~~~~~~~~~~~~~~~

A WorkList contains canonical and non-canonical items (of all flavors). 
Notice that each Ct now has a simplification depth. We may 
consider using this depth for prioritization as well in the future. 

As a simple form of priority queue, our worklist separates out
equalities (wl_eqs) from the rest of the canonical constraints, 
so that it's easier to deal with them first, but the separation 
is not strictly necessary. Notice that non-canonical constraints 
are also parts of the worklist. 

Note [NonCanonical Semantics]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note that canonical constraints involve a CNonCanonical constructor. In the worklist
we use this constructor for constraints that have not yet been canonicalized such as 
   [Int] ~ [a] 
In other words, all constraints start life as NonCanonicals. 

On the other hand, in the Inert Set (see below) the presence of a NonCanonical somewhere
means that we have a ``frozen error''. 

NonCanonical constraints never interact directly with other constraints -- but they can
be rewritten by equalities (for instance if a non canonical exists in the inert, we'd 
better rewrite it as much as possible before reporting it as an error to the user)

\begin{code}

-- See Note [WorkList]
data WorkList = WorkList { wl_eqs    :: [Ct]
                         , wl_funeqs :: [Ct]
                         , wl_rest   :: [Ct] 
                         }


unionWorkList :: WorkList -> WorkList -> WorkList
unionWorkList new_wl orig_wl = 
   WorkList { wl_eqs    = wl_eqs new_wl ++ wl_eqs orig_wl
            , wl_funeqs = wl_funeqs new_wl ++ wl_funeqs orig_wl
            , wl_rest   = wl_rest new_wl ++ wl_rest orig_wl }


extendWorkListEq :: Ct -> WorkList -> WorkList
-- Extension by equality
extendWorkListEq ct wl 
  | Just {} <- isCFunEqCan_Maybe ct
  = wl { wl_funeqs = ct : wl_funeqs wl }
  | otherwise
  = wl { wl_eqs = ct : wl_eqs wl }

extendWorkListNonEq :: Ct -> WorkList -> WorkList
-- Extension by non equality
extendWorkListNonEq ct wl 
  = wl { wl_rest = ct : wl_rest wl }

extendWorkListCt :: Ct -> WorkList -> WorkList
-- Agnostic
extendWorkListCt ct wl
 | isEqPred (ctPred ct) = extendWorkListEq ct wl
 | otherwise = extendWorkListNonEq ct wl

appendWorkListCt :: [Ct] -> WorkList -> WorkList
-- Agnostic
appendWorkListCt cts wl = foldr extendWorkListCt wl cts

appendWorkListEqs :: [Ct] -> WorkList -> WorkList
-- Append a list of equalities
appendWorkListEqs cts wl = foldr extendWorkListEq wl cts

isEmptyWorkList :: WorkList -> Bool
isEmptyWorkList wl 
  = null (wl_eqs wl) &&  null (wl_rest wl) && null (wl_funeqs wl)

emptyWorkList :: WorkList
emptyWorkList = WorkList { wl_eqs  = [], wl_rest = [], wl_funeqs = [] }

workListFromEq :: Ct -> WorkList
workListFromEq ct = extendWorkListEq ct emptyWorkList

workListFromNonEq :: Ct -> WorkList
workListFromNonEq ct = extendWorkListNonEq ct emptyWorkList

workListFromCt :: Ct -> WorkList
-- Agnostic 
workListFromCt ct | isEqPred (ctPred ct) = workListFromEq ct 
                  | otherwise            = workListFromNonEq ct


selectWorkItem :: WorkList -> (Maybe Ct, WorkList)
selectWorkItem wl@(WorkList { wl_eqs = eqs, wl_funeqs = feqs, wl_rest = rest })
  = case (eqs,feqs,rest) of
      (ct:cts,_,_)     -> (Just ct, wl { wl_eqs    = cts })
      (_,(ct:cts),_)   -> (Just ct, wl { wl_funeqs = cts })
      (_,_,(ct:cts))   -> (Just ct, wl { wl_rest   = cts })
      (_,_,_)          -> (Nothing,wl)

-- Pretty printing 
instance Outputable WorkList where 
  ppr wl = vcat [ text "WorkList (eqs)   = " <+> ppr (wl_eqs wl)
                , text "WorkList (funeqs)= " <+> ppr (wl_funeqs wl)
                , text "WorkList (rest)  = " <+> ppr (wl_rest wl)
                ]

keepWanted :: Cts -> Cts
keepWanted = filterBag isWantedCt
    -- DV: there used to be a note here that read: 
    -- ``Important: use fold*r*Bag to preserve the order of the evidence variables'' 
    -- DV: Is this still relevant? 

-- Canonical constraint maps
data CCanMap a = CCanMap { cts_given   :: UniqFM Cts
                                          -- Invariant: all Given
                         , cts_derived :: UniqFM Cts 
                                          -- Invariant: all Derived
                         , cts_wanted  :: UniqFM Cts } 
                                          -- Invariant: all Wanted

cCanMapToBag :: CCanMap a -> Cts 
cCanMapToBag cmap = foldUFM unionBags rest_wder (cts_given cmap)
  where rest_wder = foldUFM unionBags rest_der  (cts_wanted cmap) 
        rest_der  = foldUFM unionBags emptyCts  (cts_derived cmap)

emptyCCanMap :: CCanMap a 
emptyCCanMap = CCanMap { cts_given = emptyUFM, cts_derived = emptyUFM, cts_wanted = emptyUFM } 

updCCanMap:: Uniquable a => (a,Ct) -> CCanMap a -> CCanMap a 
updCCanMap (a,ct) cmap 
  = case cc_ev ct of 
      Wanted {}  -> cmap { cts_wanted  = insert_into (cts_wanted cmap)  } 
      Given {}   -> cmap { cts_given   = insert_into (cts_given cmap)   }
      Derived {} -> cmap { cts_derived = insert_into (cts_derived cmap) }
  where 
    insert_into m = addToUFM_C unionBags m a (singleCt ct)

getRelevantCts :: Uniquable a => a -> CCanMap a -> (Cts, CCanMap a) 
-- Gets the relevant constraints and returns the rest of the CCanMap
getRelevantCts a cmap 
    = let relevant = lookup (cts_wanted cmap) `unionBags`
                     lookup (cts_given cmap)  `unionBags`
                     lookup (cts_derived cmap) 
          residual_map = cmap { cts_wanted  = delFromUFM (cts_wanted cmap) a
                              , cts_given   = delFromUFM (cts_given cmap) a
                              , cts_derived = delFromUFM (cts_derived cmap) a }
      in (relevant, residual_map) 
  where
    lookup map = lookupUFM map a `orElse` emptyCts

lookupCCanMap :: Uniquable a => a -> (CtEvidence -> Bool) -> CCanMap a -> Maybe CtEvidence
lookupCCanMap a pick_me map
  = findEvidence pick_me possible_cts
  where
     possible_cts = lookupUFM (cts_given map)   a `plus` (
                    lookupUFM (cts_wanted map)  a `plus` (
                    lookupUFM (cts_derived map) a `plus` emptyCts))

     plus Nothing     cts2 = cts2
     plus (Just cts1) cts2 = cts1 `unionBags` cts2

findEvidence :: (CtEvidence -> Bool) -> Cts -> Maybe CtEvidence
findEvidence pick_me cts
  = foldrBag pick Nothing cts
  where
     pick :: Ct -> Maybe CtEvidence -> Maybe CtEvidence
     pick ct deflt | let ctev = cc_ev ct, pick_me ctev = Just ctev
                   | otherwise                             = deflt

partitionCCanMap :: (Ct -> Bool) -> CCanMap a -> (Cts,CCanMap a) 
-- All constraints that /match/ the predicate go in the bag, the rest remain in the map
partitionCCanMap pred cmap
  = let (ws_map,ws) = foldUFM_Directly aux (emptyUFM,emptyCts) (cts_wanted cmap) 
        (ds_map,ds) = foldUFM_Directly aux (emptyUFM,emptyCts) (cts_derived cmap)
        (gs_map,gs) = foldUFM_Directly aux (emptyUFM,emptyCts) (cts_given cmap) 
    in (ws `andCts` ds `andCts` gs, cmap { cts_wanted  = ws_map
                                         , cts_given   = gs_map
                                         , cts_derived = ds_map }) 
  where aux k this_cts (mp,acc_cts) = (new_mp, new_acc_cts)
                                    where new_mp      = addToUFM mp k cts_keep
                                          new_acc_cts = acc_cts `andCts` cts_out
                                          (cts_out, cts_keep) = partitionBag pred this_cts

partitionEqMap :: (Ct -> Bool) -> TyVarEnv (Ct,TcCoercion) -> ([Ct], TyVarEnv (Ct,TcCoercion))
partitionEqMap pred isubst 
  = let eqs_out = foldVarEnv extend_if_pred [] isubst
        eqs_in  = filterVarEnv_Directly (\_ (ct,_) -> not (pred ct)) isubst
    in (eqs_out, eqs_in)
  where extend_if_pred (ct,_) cts = if pred ct then ct : cts else cts


extractUnsolvedCMap :: CCanMap a -> (Cts, CCanMap a)
-- Gets the wanted or derived constraints and returns a residual
-- CCanMap with only givens.
extractUnsolvedCMap cmap =
  let wntd = foldUFM unionBags emptyCts (cts_wanted cmap)
      derd = foldUFM unionBags emptyCts (cts_derived cmap)
  in (wntd `unionBags` derd, 
      cmap { cts_wanted = emptyUFM, cts_derived = emptyUFM })


-- Maps from PredTypes to Constraints
type CtTypeMap    = TypeMap    Ct
type CtPredMap    = PredMap    Ct
type CtFamHeadMap = FamHeadMap Ct

newtype PredMap    a = PredMap    { unPredMap    :: TypeMap a } -- Indexed by TcPredType
newtype FamHeadMap a = FamHeadMap { unFamHeadMap :: TypeMap a } -- Indexed by family head

instance Outputable a => Outputable (PredMap a) where
   ppr (PredMap m) = ppr (foldTM (:) m [])

instance Outputable a => Outputable (FamHeadMap a) where
   ppr (FamHeadMap m) = ppr (foldTM (:) m [])

ctTypeMapCts :: TypeMap Ct -> Cts
ctTypeMapCts ctmap = foldTM (\ct cts -> extendCts cts ct) ctmap emptyCts

lookupFamHead :: FamHeadMap a -> TcType -> Maybe a
lookupFamHead (FamHeadMap m) key = lookupTM key m

partCtFamHeadMap :: (Ct -> Bool) 
                 -> CtFamHeadMap 
                 -> (Cts, CtFamHeadMap)
partCtFamHeadMap f ctmap
  = let (cts,tymap_final) = foldTM upd_acc tymap_inside (emptyBag, tymap_inside)
    in (cts, FamHeadMap tymap_final)
  where
    tymap_inside = unFamHeadMap ctmap 
    upd_acc ct (cts,acc_map)
         | f ct      = (extendCts cts ct, alterTM ct_key (\_ -> Nothing) acc_map)
         | otherwise = (cts,acc_map)
         where ct_key | EqPred ty1 _ <- classifyPredType (ctPred ct)
                      = ty1 
                      | otherwise 
                      = panic "partCtFamHeadMap, encountered non equality!"
\end{code}

%************************************************************************
%*									*
%*                            Inert Sets                                *
%*                                                                      *
%*									*
%************************************************************************

\begin{code}
-- All Given (fully known) or Wanted or Derived
-- See Note [Detailed InertCans Invariants] for more
data InertCans 
  = IC { inert_eqs :: TyVarEnv Ct
              -- Must all be CTyEqCans! If an entry exists of the form: 
              --   a |-> ct,co
              -- Then ct = CTyEqCan { cc_tyvar = a, cc_rhs = xi } 
              -- And  co : a ~ xi
       , inert_eq_tvs :: InScopeSet
              -- Superset of the type variables of inert_eqs
       , inert_dicts :: CCanMap Class
              -- Dictionaries only, index is the class
              -- NB: index is /not/ the whole type because FD reactions 
              -- need to match the class but not necessarily the whole type.
       , inert_ips :: CCanMap (IPName Name)
              -- Implicit parameters, index is the name
              -- NB: index is /not/ the whole type because IP reactions need 
              -- to match the ip name but not necessarily the whole type.
       , inert_funeqs :: CtFamHeadMap
              -- Family equations, index is the whole family head type.
       , inert_irreds :: Cts       
              -- Irreducible predicates
       }
    
                     
\end{code}

Note [Detailed InertCans Invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The InertCans represents a collection of constraints with the following properties:
  1 All canonical
  2 All Given or Wanted or Derived. No (partially) Solved
  3 No two dictionaries with the same head
  4 No two family equations with the same head 
      NB: This is enforced by construction since we use a CtFamHeadMap for inert_funeqs
  5 Family equations inert wrt top-level family axioms
  6 Dictionaries have no matching top-level instance 
  
  7 Non-equality constraints are fully rewritten with respect to the equalities (CTyEqCan)

  8 Equalities _do_not_ form an idempotent substitution but they are guarranteed to not have
    any occurs errors. Additional notes: 

       - The lack of idempotence of the inert substitution implies that we must make sure 
         that when we rewrite a constraint we apply the substitution /recursively/ to the 
         types involved. Currently the one AND ONLY way in the whole constraint solver 
         that we rewrite types and constraints wrt to the inert substitution is 
         TcCanonical/flattenTyVar.

       - In the past we did try to have the inert substituion as idempotent as possible but
         this would only be true for constraints of the same flavor, so in total the inert 
         substitution could not be idempotent, due to flavor-related issued. 
         Note [Non-idempotent inert substitution] explains what is going on. 

       - Whenever a constraint ends up in the worklist we do recursively apply exhaustively
         the inert substitution to it to check for occurs errors but if an equality is already
         in the inert set and we can guarantee that adding a new equality will not cause the
         first equality to have an occurs check then we do not rewrite the inert equality. 
         This happens in TcInteract, rewriteInertEqsFromInertEq. 
         
         See Note [Delicate equality kick-out] to see which inert equalities can safely stay
         in the inert set and which must be kicked out to be rewritten and re-checked for 
         occurs errors. 

  9 Given family or dictionary constraints don't mention touchable unification variables

Note [Solved constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~
When we take a step to simplify a constraint 'c', we call the original constraint "solved".
For example:   Wanted:    ev  :: [s] ~ [t]
               New goal:  ev1 :: s ~ t
               Then 'ev' is now "solved".

The reason for all this is simply to avoid re-solving goals we have solved already.

* A solved Wanted may depend on as-yet-unsolved goals, so (for example) we should not
  use it to rewrite a Given; in that sense the solved goal is still a Wanted

* A solved Given is just given

* A solved Derived is possible; purpose is to avoid creating tons of identical
  Derived goals.


\begin{code}
-- The Inert Set
data InertSet
  = IS { inert_cans :: InertCans
              -- Canonical Given, Wanted, Derived (no Solved)
	      -- Sometimes called "the inert set"

       , inert_frozen :: Cts       
              -- Frozen errors (as non-canonicals)
                               
       , inert_flat_cache :: CtFamHeadMap 
              -- All ``flattening equations'' are kept here. 
              -- Always canonical CTyFunEqs (Given or Wanted only!)
              -- Key is by family head. We use this field during flattening only
              -- Not necessarily inert wrt top-level equations (or inert_cans)

       , inert_solved_funeqs :: FamHeadMap CtEvidence  -- Of form co :: F xis ~ xi
       , inert_solved        :: PredMap    CtEvidence  -- All others
       	      -- These two fields constitute a cache of solved (only!) constraints
              -- See Note [Solved constraints]
       	      -- - Constraints of form (F xis ~ xi) live in inert_solved_funeqs, 
       	      --   all the others are in inert_solved
       	      -- - Used to avoid creating a new EvVar when we have a new goal that we
       	      --   have solvedin the past
       	      -- - Stored not necessarily as fully rewritten 
       	      --   (ToDo: rewrite lazily when we lookup)
       }


instance Outputable InertCans where 
  ppr ics = vcat [ vcat (map ppr (varEnvElts (inert_eqs ics)))
                 , vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_dicts ics)))
                 , vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_ips ics))) 
                 , vcat (map ppr (Bag.bagToList $ 
                                  ctTypeMapCts (unFamHeadMap $ inert_funeqs ics)))
                 , vcat (map ppr (Bag.bagToList $ inert_irreds ics))
                 ]
            
instance Outputable InertSet where 
  ppr is = vcat [ ppr $ inert_cans is
                , text "Frozen errors =" <+> -- Clearly print frozen errors
                    braces (vcat (map ppr (Bag.bagToList $ inert_frozen is)))
                , text "Solved and cached" <+>
                    int (foldTypeMap (\_ x -> x+1) 0 
                             (unPredMap $ inert_solved is)) <+> 
                    text "more constraints" ]

emptyInert :: InertSet
emptyInert
  = IS { inert_cans = IC { inert_eqs    = emptyVarEnv
                         , inert_eq_tvs = emptyInScopeSet
                         , inert_dicts  = emptyCCanMap
                         , inert_ips    = emptyCCanMap
                         , inert_funeqs = FamHeadMap emptyTM 
                         , inert_irreds = emptyCts }
       , inert_frozen        = emptyCts
       , inert_flat_cache    = FamHeadMap emptyTM
       , inert_solved        = PredMap emptyTM 
       , inert_solved_funeqs = FamHeadMap emptyTM }

updSolvedSet :: InertSet -> CtEvidence -> InertSet 
updSolvedSet is item 
  = let pty = ctEvPred item
        upd_solved Nothing = Just item
        upd_solved (Just _existing_solved) = Just item 
               -- .. or Just existing_solved? Is this even possible to happen?
    in is { inert_solved = 
               PredMap $ 
               alterTM pty upd_solved (unPredMap $ inert_solved is) }


updInertSet :: InertSet -> Ct -> InertSet 
-- Add a new inert element to the inert set. 
updInertSet is item 
  | isCNonCanonical item 
    -- NB: this may happen if we decide to kick some frozen error 
    -- out to rewrite him. Frozen errors are just NonCanonicals
  = is { inert_frozen = inert_frozen is `Bag.snocBag` item }
    
  | otherwise  
    -- A canonical Given, Wanted, or Derived
  = is { inert_cans = upd_inert_cans (inert_cans is) item }
  
  where upd_inert_cans :: InertCans -> Ct -> InertCans
        -- Precondition: item /is/ canonical
        upd_inert_cans ics item
          | isCTyEqCan item                     
          = let upd_err a b = pprPanic "updInertSet" $
                              vcat [ text "Multiple inert equalities:"
                                   , text "Old (already inert):" <+> ppr a
                                   , text "Trying to insert   :" <+> ppr b ]
        
                eqs'     = extendVarEnv_C upd_err (inert_eqs ics) 
                                                  (cc_tyvar item) item        
                inscope' = extendInScopeSetSet (inert_eq_tvs ics)
                                               (tyVarsOfCt item)
                
            in ics { inert_eqs = eqs', inert_eq_tvs = inscope' }

          | Just x  <- isCIPCan_Maybe item      -- IP 
          = ics { inert_ips   = updCCanMap (x,item) (inert_ips ics) }  
            
          | isCIrredEvCan item                  -- Presently-irreducible evidence
          = ics { inert_irreds = inert_irreds ics `Bag.snocBag` item }

          | Just cls <- isCDictCan_Maybe item   -- Dictionary 
          = ics { inert_dicts = updCCanMap (cls,item) (inert_dicts ics) }

          | Just _tc <- isCFunEqCan_Maybe item  -- Function equality
          = let fam_head = mkTyConApp (cc_fun item) (cc_tyargs item)
                upd_funeqs Nothing = Just item
                upd_funeqs (Just _already_there) 
                  = panic "updInertSet: item already there!"
            in ics { inert_funeqs = FamHeadMap 
                                      (alterTM fam_head upd_funeqs $ 
                                         (unFamHeadMap $ inert_funeqs ics)) }
          | otherwise
          = pprPanic "upd_inert set: can't happen! Inserting " $ 
            ppr item 

updInertSetTcS :: Ct -> TcS ()
-- Add a new item in the inerts of the monad
updInertSetTcS item
  = do { traceTcS "updInertSetTcs {" $ 
         text "Trying to insert new inert item:" <+> ppr item

       ; modifyInertTcS (\is -> ((), updInertSet is item)) 
                        
       ; traceTcS "updInertSetTcs }" $ empty }


addToSolved :: CtEvidence -> TcS ()
-- Add a new item in the solved set of the monad
addToSolved item
  | isIPPred (ctEvPred item)    -- Never cache "solved" implicit parameters (not sure why!)
  = return () 
  | otherwise
  = do { traceTcS "updSolvedSetTcs {" $ 
         text "Trying to insert new solved item:" <+> ppr item

       ; modifyInertTcS (\is -> ((), updSolvedSet is item)) 
                        
       ; traceTcS "updSolvedSetTcs }" $ empty }

addSolvedFunEq :: CtEvidence -> TcS ()
addSolvedFunEq fun_eq
  = modifyInertTcS $ \inert -> ((), upd_inert inert)
  where 
    upd_inert inert 
      = let slvd = unFamHeadMap (inert_solved_funeqs inert)
        in inert { inert_solved_funeqs =
                      FamHeadMap (alterTM key upd_funeqs slvd) }       
    upd_funeqs Nothing    = Just fun_eq
    upd_funeqs (Just _ct) = Just fun_eq 
         -- Or _ct? depends on which caches more steps of computation
    key = ctEvPred fun_eq

modifyInertTcS :: (InertSet -> (a,InertSet)) -> TcS a 
-- Modify the inert set with the supplied function
modifyInertTcS upd 
  = do { is_var <- getTcSInertsRef
       ; curr_inert <- wrapTcS (TcM.readTcRef is_var)
       ; let (a, new_inert) = upd curr_inert
       ; wrapTcS (TcM.writeTcRef is_var new_inert)
       ; return a }


extractUnsolvedTcS :: TcS (Cts,Cts) 
-- Extracts frozen errors and remaining unsolved and sets the 
-- inert set to be the remaining! 
extractUnsolvedTcS = modifyInertTcS extractUnsolved 

extractUnsolved :: InertSet -> ((Cts,Cts), InertSet)
-- Postcondition
-- -------------
-- When: 
--   ((frozen,cts),is_solved) <- extractUnsolved inert
-- Then: 
-- -----------------------------------------------------------------------------
--  cts       |  The unsolved (Derived or Wanted only) residual 
--            |  canonical constraints, that is, no CNonCanonicals.
-- -----------|-----------------------------------------------------------------
--  frozen    | The CNonCanonicals of the original inert (frozen errors), 
--            | of all flavors
-- -----------|-----------------------------------------------------------------
--  is_solved | Whatever remains from the inert after removing the previous two. 
-- -----------------------------------------------------------------------------
extractUnsolved (IS { inert_cans = IC { inert_eqs    = eqs
                                      , inert_eq_tvs = eq_tvs
                                      , inert_irreds = irreds
                                      , inert_ips    = ips
                                      , inert_funeqs = funeqs
                                      , inert_dicts  = dicts
                                      }
                    , inert_frozen = frozen
                    , inert_solved = solved
                    , inert_flat_cache = flat_cache 
                    , inert_solved_funeqs = funeq_cache
                    })
  
  = let is_solved  = IS { inert_cans = IC { inert_eqs    = solved_eqs
                                          , inert_eq_tvs = eq_tvs
                                          , inert_dicts  = solved_dicts
                                          , inert_ips    = solved_ips
                                          , inert_irreds = solved_irreds
                                          , inert_funeqs = solved_funeqs }
                        , inert_frozen = emptyCts -- All out
                                         
                              -- At some point, I used to flush all the solved, in 
                              -- fear of evidence loops. But I think we are safe, 
                              -- flushing is why T3064 had become slower
                        , inert_solved        = solved      -- PredMap emptyTM
                        , inert_flat_cache    = flat_cache  -- FamHeadMap emptyTM
                        , inert_solved_funeqs = funeq_cache -- FamHeadMap emptyTM
                        }
    in ((frozen, unsolved), is_solved)

  where solved_eqs = filterVarEnv_Directly (\_ ct -> isGivenCt ct) eqs
        unsolved_eqs = foldVarEnv (\ct cts -> cts `extendCts` ct) emptyCts $
                       eqs `minusVarEnv` solved_eqs

        (unsolved_irreds, solved_irreds) = Bag.partitionBag (not.isGivenCt) irreds
        (unsolved_ips, solved_ips)       = extractUnsolvedCMap ips
        (unsolved_dicts, solved_dicts)   = extractUnsolvedCMap dicts
        (unsolved_funeqs, solved_funeqs) = partCtFamHeadMap (not . isGivenCt) funeqs

        unsolved = unsolved_eqs `unionBags` unsolved_irreds `unionBags`
                   unsolved_ips `unionBags` unsolved_dicts `unionBags` unsolved_funeqs



extractRelevantInerts :: Ct -> TcS Cts
-- Returns the constraints from the inert set that are 'relevant' to react with 
-- this constraint. The monad is left with the 'thinner' inerts. 
-- NB: This function contains logic specific to the constraint solver, maybe move there?
extractRelevantInerts wi 
  = modifyInertTcS (extract_relevants wi)
  where extract_relevants wi is 
          = let (cts,ics') = extract_ics_relevants wi (inert_cans is)
            in (cts, is { inert_cans = ics' }) 
            
        extract_ics_relevants (CDictCan {cc_class = cl}) ics = 
            let (cts,dict_map) = getRelevantCts cl (inert_dicts ics) 
            in (cts, ics { inert_dicts = dict_map })
        extract_ics_relevants ct@(CFunEqCan {}) ics = 
            let (cts,feqs_map)  = 
                  let funeq_map = unFamHeadMap $ inert_funeqs ics
                      fam_head = mkTyConApp (cc_fun ct) (cc_tyargs ct)
                      lkp = lookupTM fam_head funeq_map
                      new_funeq_map = alterTM fam_head xtm funeq_map
                      xtm Nothing    = Nothing
                      xtm (Just _ct) = Nothing
                  in case lkp of 
                    Nothing -> (emptyCts, funeq_map)
                    Just ct -> (singleCt ct, new_funeq_map)
            in (cts, ics { inert_funeqs = FamHeadMap feqs_map })
        extract_ics_relevants (CIPCan { cc_ip_nm = nm } ) ics = 
            let (cts, ips_map) = getRelevantCts nm (inert_ips ics) 
            in (cts, ics { inert_ips = ips_map })
        extract_ics_relevants (CIrredEvCan { }) ics = 
            let cts = inert_irreds ics 
            in (cts, ics { inert_irreds = emptyCts })
        extract_ics_relevants _ ics = (emptyCts,ics)
        

lookupInInerts :: InertSet -> TcPredType -> Maybe CtEvidence
-- Is this exact predicate type cached in the solved or canonicals of the InertSet
lookupInInerts (IS { inert_solved = solved, inert_cans = ics }) pty
  = case lookupInSolved solved pty of
      Just ctev -> return ctev
      Nothing   -> lookupInInertCans ics pty

lookupInSolved :: PredMap CtEvidence -> TcPredType -> Maybe CtEvidence
-- Returns just if exactly this predicate type exists in the solved.
lookupInSolved tm pty = lookupTM pty $ unPredMap tm

lookupInInertCans :: InertCans -> TcPredType -> Maybe CtEvidence
-- Returns Just if exactly this pred type exists in the inert canonicals
lookupInInertCans ics pty
  = case (classifyPredType pty) of
      ClassPred cls _ 
         -> lookupCCanMap cls (\ct -> ctEvPred ct `eqType` pty) (inert_dicts ics)

      EqPred ty1 _ty2 
         | Just tv <- getTyVar_maybe ty1      -- Tyvar equation
         , Just ct <- lookupVarEnv (inert_eqs ics) tv
      	 , let ctev = ctEvidence ct
      	 , ctEvPred ctev `eqType` pty
      	 -> Just ctev

      	 | Just _ <- splitTyConApp_maybe ty1  -- Family equation
      	 , Just ct <- lookupTM ty1 (unFamHeadMap $ inert_funeqs ics)
      	 , let ctev = ctEvidence ct
      	 , ctEvPred ctev `eqType` pty
      	 -> Just ctev

      IrredPred {} -> findEvidence (\ct -> ctEvPred ct `eqType` pty) (inert_irreds ics)
    
      _other -> Nothing -- NB: No caching for IPs
\end{code}




%************************************************************************
%*									*
%*		The TcS solver monad                                    *
%*									*
%************************************************************************

Note [The TcS monad]
~~~~~~~~~~~~~~~~~~~~
The TcS monad is a weak form of the main Tc monad

All you can do is
    * fail
    * allocate new variables
    * fill in evidence variables

Filling in a dictionary evidence variable means to create a binding
for it, so TcS carries a mutable location where the binding can be
added.  This is initialised from the innermost implication constraint.

\begin{code}
data TcSEnv
  = TcSEnv { 
      tcs_ev_binds    :: EvBindsVar,
      
      tcs_ty_binds :: IORef (TyVarEnv (TcTyVar, TcType)),
          -- Global type bindings

      tcs_context :: SimplContext,
                     
      tcs_untch :: TcsUntouchables,

      tcs_ic_depth   :: Int,       -- Implication nesting depth
      tcs_count      :: IORef Int, -- Global step count

      tcs_inerts   :: IORef InertSet, -- Current inert set
      tcs_worklist :: IORef WorkList, -- Current worklist
      
      -- Residual implication constraints that are generated 
      -- while solving the current worklist.
      tcs_implics  :: IORef (Bag Implication)
    }

type TcsUntouchables = (Untouchables,TcTyVarSet)
-- Like the TcM Untouchables, 
-- but records extra TcsTv variables generated during simplification
-- See Note [Extra TcsTv untouchables] in TcSimplify
\end{code}

\begin{code}
data SimplContext
  = SimplInfer SDoc	   -- Inferring type of a let-bound thing
  | SimplInteractive	   -- Inferring type at GHCi prompt
  | SimplCheck SDoc	   -- Checking a type signature or RULE rhs

instance Outputable SimplContext where
  ppr (SimplInfer d)   = ptext (sLit "SimplInfer") <+> d
  ppr (SimplCheck d)   = ptext (sLit "SimplCheck") <+> d
  ppr SimplInteractive = ptext (sLit "SimplInteractive")

isInteractive :: SimplContext -> Bool
isInteractive SimplInteractive = True
isInteractive _                = False

performDefaulting :: SimplContext -> Bool
performDefaulting (SimplInfer {})   = False
performDefaulting SimplInteractive  = True
performDefaulting (SimplCheck {})   = True

---------------
newtype TcS a = TcS { unTcS :: TcSEnv -> TcM a } 

instance Functor TcS where
  fmap f m = TcS $ fmap f . unTcS m

instance Monad TcS where 
  return x  = TcS (\_ -> return x) 
  fail err  = TcS (\_ -> fail err) 
  m >>= k   = TcS (\ebs -> unTcS m ebs >>= \r -> unTcS (k r) ebs)

-- Basic functionality 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
wrapTcS :: TcM a -> TcS a 
-- Do not export wrapTcS, because it promotes an arbitrary TcM to TcS,
-- and TcS is supposed to have limited functionality
wrapTcS = TcS . const -- a TcM action will not use the TcEvBinds

wrapErrTcS :: TcM a -> TcS a 
-- The thing wrapped should just fail
-- There's no static check; it's up to the user
-- Having a variant for each error message is too painful
wrapErrTcS = wrapTcS

wrapWarnTcS :: TcM a -> TcS a 
-- The thing wrapped should just add a warning, or no-op
-- There's no static check; it's up to the user
wrapWarnTcS = wrapTcS

failTcS, panicTcS :: SDoc -> TcS a
failTcS      = wrapTcS . TcM.failWith
panicTcS doc = pprPanic "TcCanonical" doc

traceTcS :: String -> SDoc -> TcS ()
traceTcS herald doc = wrapTcS (TcM.traceTc herald doc)

bumpStepCountTcS :: TcS ()
bumpStepCountTcS = TcS $ \env -> do { let ref = tcs_count env
                                    ; n <- TcM.readTcRef ref
                                    ; TcM.writeTcRef ref (n+1) }

traceFireTcS :: SubGoalDepth -> SDoc -> TcS ()
-- Dump a rule-firing trace
traceFireTcS depth doc 
  = TcS $ \env -> 
    TcM.ifDOptM Opt_D_dump_cs_trace $ 
    do { n <- TcM.readTcRef (tcs_count env)
       ; let msg = int n 
                <> text (replicate (tcs_ic_depth env) '>')
                <> brackets (int depth) <+> doc
       ; TcM.dumpTcRn msg }

runTcS :: SimplContext
       -> Untouchables 	       -- Untouchables
       -> InertSet             -- Initial inert set
       -> WorkList             -- Initial work list
       -> TcS a		       -- What to run
       -> TcM (a, Bag EvBind)
runTcS context untouch is wl tcs 
  = do { ty_binds_var <- TcM.newTcRef emptyVarEnv
       ; ev_binds_var <- TcM.newTcEvBinds
       ; impl_var <- TcM.newTcRef emptyBag
       ; step_count <- TcM.newTcRef 0

       ; inert_var <- TcM.newTcRef is 
       ; wl_var <- TcM.newTcRef wl

       ; let env = TcSEnv { tcs_ev_binds = ev_binds_var
                          , tcs_ty_binds = ty_binds_var
                          , tcs_context  = context
                          , tcs_untch    = (untouch, emptyVarSet) -- No Tcs untouchables yet
			  , tcs_count    = step_count
			  , tcs_ic_depth = 0
                          , tcs_inerts   = inert_var
                          , tcs_worklist = wl_var 
                          , tcs_implics  = impl_var }

	     -- Run the computation
       ; res <- unTcS tcs env
	     -- Perform the type unifications required
       ; ty_binds <- TcM.readTcRef ty_binds_var
       ; mapM_ do_unification (varEnvElts ty_binds)

       ; when debugIsOn $ do {
             count <- TcM.readTcRef step_count
           ; when (opt_PprStyle_Debug && count > 0) $
             TcM.debugDumpTcRn (ptext (sLit "Constraint solver steps =") 
                                <+> int count <+> ppr context)
         }
             -- And return
       ; ev_binds <- TcM.getTcEvBinds ev_binds_var
       ; return (res, ev_binds) }
  where
    do_unification (tv,ty) = TcM.writeMetaTyVar tv ty


doWithInert :: InertSet -> TcS a -> TcS a 
doWithInert inert (TcS action)
  = TcS $ \env -> do { new_inert_var <- TcM.newTcRef inert
                     ; action (env { tcs_inerts = new_inert_var }) }

nestImplicTcS :: EvBindsVar -> TcsUntouchables -> TcS a -> TcS a 
nestImplicTcS ref (inner_range, inner_tcs) (TcS thing_inside) 
  = TcS $ \ TcSEnv { tcs_ty_binds = ty_binds
                   , tcs_untch = (_outer_range, outer_tcs)
                   , tcs_count = count
                   , tcs_ic_depth = idepth
                   , tcs_context = ctxt
                   , tcs_inerts = inert_var
                   , tcs_worklist = wl_var 
                   , tcs_implics = _impl_var } -> 
    do { let inner_untch = (inner_range, outer_tcs `unionVarSet` inner_tcs)
       		   -- The inner_range should be narrower than the outer one
		   -- (thus increasing the set of untouchables) but 
		   -- the inner Tcs-untouchables must be unioned with the
		   -- outer ones!

         -- Inherit the inerts from the outer scope
       ; orig_inerts <- TcM.readTcRef inert_var
       ; new_inert_var <- TcM.newTcRef orig_inerts
         -- Inherit residual implications from outer scope (?) or create
         -- fresh var?                 
--     ; orig_implics <- TcM.readTcRef impl_var                   
       ; new_implics_var <- TcM.newTcRef emptyBag
                           
       ; let nest_env = TcSEnv { tcs_ev_binds    = ref
                               , tcs_ty_binds    = ty_binds
                               , tcs_untch       = inner_untch
                               , tcs_count       = count
                               , tcs_ic_depth    = idepth+1
                               , tcs_context     = ctxt 
                               , tcs_inerts      = new_inert_var
                               , tcs_worklist    = wl_var 
                               -- NB: worklist is going to be empty anyway, 
                               -- so reuse the same ref cell
                               , tcs_implics     = new_implics_var
                               }
       ; thing_inside nest_env } 

recoverTcS :: TcS a -> TcS a -> TcS a
recoverTcS (TcS recovery_code) (TcS thing_inside)
  = TcS $ \ env ->
    TcM.recoverM (recovery_code env) (thing_inside env)

tryTcS :: TcS a -> TcS a
-- Like runTcS, but from within the TcS monad 
-- Completely afresh inerts and worklist, be careful! 
-- Moreover, we will simply throw away all the evidence generated. 
tryTcS tcs
  = TcS (\env -> 
             do { wl_var <- TcM.newTcRef emptyWorkList
                ; is_var <- TcM.newTcRef emptyInert

                ; ty_binds_var <- TcM.newTcRef emptyVarEnv
                ; ev_binds_var <- TcM.newTcEvBinds

                ; let env1 = env { tcs_ev_binds = ev_binds_var
                                 , tcs_ty_binds = ty_binds_var
                                 , tcs_inerts   = is_var
                                 , tcs_worklist = wl_var } 
                ; unTcS tcs env1 })

-- Getters and setters of TcEnv fields
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- Getter of inerts and worklist
getTcSInertsRef :: TcS (IORef InertSet)
getTcSInertsRef = TcS (return . tcs_inerts)

getTcSWorkListRef :: TcS (IORef WorkList) 
getTcSWorkListRef = TcS (return . tcs_worklist) 

getTcSInerts :: TcS InertSet 
getTcSInerts = getTcSInertsRef >>= wrapTcS . (TcM.readTcRef) 


getTcSImplicsRef :: TcS (IORef (Bag Implication))
getTcSImplicsRef = TcS (return . tcs_implics) 

getTcSImplics :: TcS (Bag Implication)
getTcSImplics = getTcSImplicsRef >>= wrapTcS . (TcM.readTcRef)

getTcSWorkList :: TcS WorkList
getTcSWorkList = getTcSWorkListRef >>= wrapTcS . (TcM.readTcRef) 


getTcSWorkListTvs :: TcS TyVarSet
-- Return the variables of the worklist
getTcSWorkListTvs 
  = do { wl <- getTcSWorkList
       ; return $
         cts_tvs (wl_eqs wl) `unionVarSet` cts_tvs (wl_funeqs wl) `unionVarSet` cts_tvs (wl_rest wl) }
  where cts_tvs = foldr (unionVarSet . tyVarsOfCt) emptyVarSet 


updWorkListTcS :: (WorkList -> WorkList) -> TcS () 
updWorkListTcS f 
  = updWorkListTcS_return (\w -> ((),f w))

updWorkListTcS_return :: (WorkList -> (a,WorkList)) -> TcS a
updWorkListTcS_return f
  = do { wl_var <- getTcSWorkListRef
       ; wl_curr <- wrapTcS (TcM.readTcRef wl_var)
       ; let (res,new_work) = f wl_curr
       ; wrapTcS (TcM.writeTcRef wl_var new_work)
       ; return res }
    

updTcSImplics :: (Bag Implication -> Bag Implication) -> TcS ()
updTcSImplics f 
 = do { impl_ref <- getTcSImplicsRef
      ; implics <- wrapTcS (TcM.readTcRef impl_ref)
      ; let new_implics = f implics
      ; wrapTcS (TcM.writeTcRef impl_ref new_implics) }

emitTcSImplication :: Implication -> TcS ()
emitTcSImplication imp = updTcSImplics (consBag imp)


emitFrozenError :: CtEvidence -> SubGoalDepth -> TcS ()
-- Emits a non-canonical constraint that will stand for a frozen error in the inerts. 
emitFrozenError fl depth 
  = do { traceTcS "Emit frozen error" (ppr (ctEvPred fl))
       ; inert_ref <- getTcSInertsRef 
       ; inerts <- wrapTcS (TcM.readTcRef inert_ref)
       ; let ct = CNonCanonical { cc_ev = fl
                                , cc_depth = depth } 
             inerts_new = inerts { inert_frozen = extendCts (inert_frozen inerts) ct } 
       ; wrapTcS (TcM.writeTcRef inert_ref inerts_new) }

instance HasDynFlags TcS where
    getDynFlags = wrapTcS getDynFlags

getTcSContext :: TcS SimplContext
getTcSContext = TcS (return . tcs_context)

getTcEvBinds :: TcS EvBindsVar
getTcEvBinds = TcS (return . tcs_ev_binds) 

getFlatCache :: TcS CtTypeMap 
getFlatCache = getTcSInerts >>= (return . unFamHeadMap . inert_flat_cache)

updFlatCache :: Ct -> TcS ()
-- Pre: constraint is a flat family equation (equal to a flatten skolem)
updFlatCache flat_eq@(CFunEqCan { cc_ev = fl, cc_fun = tc, cc_tyargs = xis })
  = modifyInertTcS upd_inert_cache
  where upd_inert_cache is = ((), is { inert_flat_cache = FamHeadMap new_fc })
                           where new_fc = alterTM pred_key upd_cache fc
                                 fc = unFamHeadMap $ inert_flat_cache is
        pred_key = mkTyConApp tc xis
        upd_cache (Just ct) | cc_ev ct `canSolve` fl = Just ct 
        upd_cache (Just _ct) = Just flat_eq 
        upd_cache Nothing    = Just flat_eq
updFlatCache other_ct = pprPanic "updFlatCache: non-family constraint" $
                        ppr other_ct
                        

getUntouchables :: TcS TcsUntouchables
getUntouchables = TcS (return . tcs_untch)

getTcSTyBinds :: TcS (IORef (TyVarEnv (TcTyVar, TcType)))
getTcSTyBinds = TcS (return . tcs_ty_binds)

getTcSTyBindsMap :: TcS (TyVarEnv (TcTyVar, TcType))
getTcSTyBindsMap = getTcSTyBinds >>= wrapTcS . (TcM.readTcRef) 

getTcEvBindsMap :: TcS EvBindMap
getTcEvBindsMap
  = do { EvBindsVar ev_ref _ <- getTcEvBinds 
       ; wrapTcS $ TcM.readTcRef ev_ref }

setWantedTyBind :: TcTyVar -> TcType -> TcS () 
-- Add a type binding
-- We never do this twice!
setWantedTyBind tv ty 
  = do { ref <- getTcSTyBinds
       ; wrapTcS $ 
         do { ty_binds <- TcM.readTcRef ref
            ; when debugIsOn $
                  TcM.checkErr (not (tv `elemVarEnv` ty_binds)) $
                  vcat [ text "TERRIBLE ERROR: double set of meta type variable"
                       , ppr tv <+> text ":=" <+> ppr ty
                       , text "Old value =" <+> ppr (lookupVarEnv_NF ty_binds tv)]
            ; TcM.writeTcRef ref (extendVarEnv ty_binds tv (tv,ty)) } }


\end{code}
Note [Optimizing Spontaneously Solved Coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Spontaneously solved coercions such as alpha := tau used to be bound as everything else
in the evidence binds. Subsequently they were used for rewriting other wanted or solved
goals. For instance: 

WorkItem = [S] g1 : a ~ tau
Inerts   = [S] g2 : b ~ [a]
           [S] g3 : c ~ [(a,a)]

Would result, eventually, after the workitem rewrites the inerts, in the
following evidence bindings:

        g1 = ReflCo tau
        g2 = ReflCo [a]
        g3 = ReflCo [(a,a)]
        g2' = g2 ; [g1] 
        g3' = g3 ; [(g1,g1)]

This ia annoying because it puts way too much stress to the zonker and
desugarer, since we /know/ at the generation time (spontaneously
solving) that the evidence for a particular evidence variable is the
identity.

For this reason, our solution is to cache inside the GivenSolved
flavor of a constraint the term which is actually solving this
constraint. Whenever we perform a setEvBind, a new flavor is returned
so that if it was a GivenSolved to start with, it remains a
GivenSolved with a new evidence term inside. Then, when we use solved
goals to rewrite other constraints we simply use whatever is in the
GivenSolved flavor and not the constraint cc_id.

In our particular case we'd get the following evidence bindings, eventually: 

       g1 = ReflCo tau
       g2 = ReflCo [a]
       g3 = ReflCo [(a,a)]
       g2'= ReflCo [a]
       g3'= ReflCo [(a,a)]

Since we use smart constructors to get rid of g;ReflCo t ~~> g etc.

\begin{code}


warnTcS :: CtLoc orig -> Bool -> SDoc -> TcS ()
warnTcS loc warn_if doc 
  | warn_if   = wrapTcS $ TcM.setCtLoc loc $ TcM.addWarnTc doc
  | otherwise = return ()

getDefaultInfo ::  TcS (SimplContext, [Type], (Bool, Bool))
getDefaultInfo 
  = do { ctxt <- getTcSContext
       ; (tys, flags) <- wrapTcS TcM.tcGetDefaultTys
       ; return (ctxt, tys, flags) }

-- Just get some environments needed for instance looking up and matching
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

getInstEnvs :: TcS (InstEnv, InstEnv) 
getInstEnvs = wrapTcS $ Inst.tcGetInstEnvs 

getFamInstEnvs :: TcS (FamInstEnv, FamInstEnv) 
getFamInstEnvs = wrapTcS $ FamInst.tcGetFamInstEnvs

getTopEnv :: TcS HscEnv 
getTopEnv = wrapTcS $ TcM.getTopEnv 

getGblEnv :: TcS TcGblEnv 
getGblEnv = wrapTcS $ TcM.getGblEnv 

-- Various smaller utilities [TODO, maybe will be absorbed in the instance matcher]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

checkWellStagedDFun :: PredType -> DFunId -> WantedLoc -> TcS () 
checkWellStagedDFun pred dfun_id loc 
  = wrapTcS $ TcM.setCtLoc loc $ 
    do { use_stage <- TcM.getStage
       ; TcM.checkWellStaged pp_thing bind_lvl (thLevel use_stage) }
  where
    pp_thing = ptext (sLit "instance for") <+> quotes (ppr pred)
    bind_lvl = TcM.topIdLvl dfun_id

pprEq :: TcType -> TcType -> SDoc
pprEq ty1 ty2 = pprType $ mkEqPred ty1 ty2

isTouchableMetaTyVar :: TcTyVar -> TcS Bool
isTouchableMetaTyVar tv 
  = do { untch <- getUntouchables
       ; return $ isTouchableMetaTyVar_InRange untch tv } 

isTouchableMetaTyVar_InRange :: TcsUntouchables -> TcTyVar -> Bool 
isTouchableMetaTyVar_InRange (untch,untch_tcs) tv 
  = ASSERT2 ( isTcTyVar tv, ppr tv )
    case tcTyVarDetails tv of 
      MetaTv TcsTv _ -> not (tv `elemVarSet` untch_tcs)
                        -- See Note [Touchable meta type variables] 
      MetaTv {}      -> inTouchableRange untch tv 
      _              -> False 


\end{code}


Note [Touchable meta type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Meta type variables allocated *by the constraint solver itself* are always
touchable.  Example: 
   instance C a b => D [a] where...
if we use this instance declaration we "make up" a fresh meta type
variable for 'b', which we must later guess.  (Perhaps C has a
functional dependency.)  But since we aren't in the constraint *generator*
we can't allocate a Unique in the touchable range for this implication
constraint.  Instead, we mark it as a "TcsTv", which makes it always-touchable.


\begin{code}
-- Flatten skolems
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

newFlattenSkolemTy :: TcType -> TcS TcType
newFlattenSkolemTy ty = mkTyVarTy <$> newFlattenSkolemTyVar ty

newFlattenSkolemTyVar :: TcType -> TcS TcTyVar
newFlattenSkolemTyVar ty
  = do { tv <- wrapTcS $ 
               do { uniq <- TcM.newUnique
                  ; let name = TcM.mkTcTyVarName uniq (fsLit "f")
                  ; return $ mkTcTyVar name (typeKind ty) (FlatSkol ty) } 
       ; traceTcS "New Flatten Skolem Born" $
         ppr tv <+> text "[:= " <+> ppr ty <+> text "]"
       ; return tv }

-- Instantiations 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

instDFunType :: DFunId -> [DFunInstType] -> TcS ([TcType], TcType)
instDFunType dfun_id mb_inst_tys 
  = wrapTcS $ go dfun_tvs mb_inst_tys (mkTopTvSubst [])
  where
    (dfun_tvs, dfun_phi) = tcSplitForAllTys (idType dfun_id)

    go :: [TyVar] -> [DFunInstType] -> TvSubst -> TcM ([TcType], TcType)
    go [] [] subst = return ([], substTy subst dfun_phi)
    go (tv:tvs) (Just ty : mb_tys) subst
      = do { (tys, phi) <- go tvs mb_tys (extendTvSubst subst tv ty)
           ; return (ty : tys, phi) }
    go (tv:tvs) (Nothing : mb_tys) subst
      = do { ty <- instFlexiTcSHelper (tyVarName tv) (substTy subst (tyVarKind tv))
                         -- Don't forget to instantiate the kind!
                         -- cf TcMType.tcInstTyVarX
           ; (tys, phi) <- go tvs mb_tys (extendTvSubst subst tv ty)
           ; return (ty : tys, phi) }
    go _ _ _ = pprPanic "instDFunTypes" (ppr dfun_id $$ ppr mb_inst_tys)

instFlexiTcS :: TyVar -> TcS TcType 
-- Like TcM.instMetaTyVar but the variable that is created is 
-- always touchable; we are supposed to guess its instantiation.
-- See Note [Touchable meta type variables] 
instFlexiTcS tv = wrapTcS (instFlexiTcSHelper (tyVarName tv) (tyVarKind tv) )

newFlexiTcSTy :: Kind -> TcS TcType  
newFlexiTcSTy knd 
  = wrapTcS $
    do { uniq <- TcM.newUnique 
       ; ref  <- TcM.newMutVar  Flexi 
       ; let name = TcM.mkTcTyVarName uniq (fsLit "uf")
       ; return $ mkTyVarTy (mkTcTyVar name knd (MetaTv TcsTv ref)) }

isFlexiTcsTv :: TyVar -> Bool
isFlexiTcsTv tv
  | not (isTcTyVar tv)                  = False
  | MetaTv TcsTv _ <- tcTyVarDetails tv = True
  | otherwise                           = False

instFlexiTcSHelper :: Name -> Kind -> TcM TcType
instFlexiTcSHelper tvname tvkind
  = do { uniq <- TcM.newUnique 
       ; ref  <- TcM.newMutVar  Flexi 
       ; let name = setNameUnique tvname uniq 
             kind = tvkind 
       ; return (mkTyVarTy (mkTcTyVar name kind (MetaTv TcsTv ref))) }


-- Creating and setting evidence variables and CtFlavors
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

data XEvTerm = 
  XEvTerm { ev_comp   :: [EvTerm] -> EvTerm
                         -- How to compose evidence 
          , ev_decomp :: EvTerm -> [EvTerm]
                         -- How to decompose evidence 
          }

data MaybeNew = Fresh CtEvidence | Cached EvTerm

isFresh :: MaybeNew -> Bool
isFresh (Fresh {}) = True
isFresh _ = False

getEvTerm :: MaybeNew -> EvTerm
getEvTerm (Fresh ctev) = ctEvTerm ctev
getEvTerm (Cached tm)  = tm

getEvTerms :: [MaybeNew] -> [EvTerm]
getEvTerms = map getEvTerm

freshGoals :: [MaybeNew] -> [CtEvidence]
freshGoals mns = [ ctev | Fresh ctev <- mns ]

setEvBind :: EvVar -> EvTerm -> TcS ()
setEvBind the_ev t
  = do { tc_evbinds <- getTcEvBinds
       ; wrapTcS $ TcM.addTcEvBind tc_evbinds the_ev t

       ; traceTcS "setEvBind" $ vcat [ text "ev =" <+> ppr the_ev
                                     , text "t  =" <+> ppr t ]

#ifndef DEBUG
       ; return () }
#else
       ; binds <- getTcEvBindsMap
       ; let cycle = reaches_tm binds t
       ; when cycle (fail_if_co_loop binds) }

  where fail_if_co_loop binds
          = do { traceTcS "Cycle in evidence binds" $ vcat [ text "evvar =" <+> ppr the_ev
                                                           , ppr (evBindMapBinds binds) ]
               ; when (isEqVar the_ev) (pprPanic "setEvBind" (text "BUG: Coercion loop!")) }

        reaches_tm :: EvBindMap -> EvTerm -> Bool
        -- Does any free variable of 'tm' reach 'the_ev'
        reaches_tm ebm tm = foldVarSet ((||) . reaches ebm) False (evVarsOfTerm tm)

        reaches :: EvBindMap -> Var -> Bool 
        -- Does this evvar reach the_ev? 
        reaches ebm ev 
          | ev == the_ev                                 = True
          | Just (EvBind _ evtrm) <- lookupEvBind ebm ev = reaches_tm ebm evtrm
          | otherwise                                    = False
#endif

newGivenEvVar :: GivenLoc -> TcPredType -> EvTerm -> TcS CtEvidence
-- Make a new variable of the given PredType, 
-- immediately bind it to the given term
-- and return its CtEvidence
newGivenEvVar gloc pred rhs
  = do { new_ev <- wrapTcS $ TcM.newEvVar pred
       ; setEvBind new_ev rhs
       ; return (Given { ctev_gloc = gloc, ctev_pred = pred, ctev_evtm = EvId new_ev }) }

newWantedEvVar :: WantedLoc -> TcPredType -> TcS MaybeNew
newWantedEvVar loc pty
  = do { is <- getTcSInerts
       ; case lookupInInerts is pty of
            Just ctev | not (isDerived ctev) 
                      -> do { traceTcS "newWantedEvVar/cache hit" $ ppr ctev
                            ; return (Cached (ctEvTerm ctev)) }
            _ -> do { new_ev <- wrapTcS $ TcM.newEvVar pty
                    ; traceTcS "newWantedEvVar/cache miss" $ ppr new_ev
                    ; let ctev = Wanted { ctev_wloc = loc
                                        , ctev_pred = pty
                                        , ctev_evar = new_ev }
                    ; return (Fresh ctev) } }

newDerived :: WantedLoc -> TcPredType -> TcS (Maybe CtEvidence)
-- Returns Nothing    if cached, 
--         Just pred  if not cached
newDerived loc pty
  = do { is <- getTcSInerts
       ; case lookupInInerts is pty of
            Just {} -> return Nothing
            _       -> return (Just Derived { ctev_wloc = loc
                                            , ctev_pred = pty }) }
    
newKindConstraint :: WantedLoc -> TcTyVar -> Kind -> TcS MaybeNew
-- Create new wanted CoVar that constrains the type to have the specified kind. 
newKindConstraint loc tv knd
  = do { ty_k <- wrapTcS (instFlexiTcSHelper (tyVarName tv) knd)
       ; newWantedEvVar loc (mkTcEqPred (mkTyVarTy tv) ty_k) }

instDFunConstraints :: WantedLoc -> TcThetaType -> TcS [MaybeNew]
instDFunConstraints wl = mapM (newWantedEvVar wl)
\end{code}
                

Note [xCFlavor]
~~~~~~~~~~~~~~~
A call might look like this:

    xCtFlavor ev subgoal-preds evidence-transformer

  ev is Given   => use ev_decomp to create new Givens for subgoal-preds, 
                   and return them

  ev is Wanted  => create new wanteds for subgoal-preds, 
                   use ev_comp to bind ev, 
                   return fresh wanteds (ie ones not cached in inert_cans or solved)

  ev is Derived => create new deriveds for subgoal-preds 
                      (unless cached in inert_cans or solved)

Note: The [CtEvidence] returned is a subset of the subgoal-preds passed in
      Ones that are already cached are not returned

Example
    ev : Tree a b ~ Tree c d
    xCtFlavor ev [a~c, b~d] (XEvTerm { ev_comp = \[c1 c2]. <Tree> c1 c2
                                     , ev_decomp = \c. [nth 1 c, nth 2 c] })
              (\fresh-goals.  stuff)

\begin{code}
xCtFlavor :: CtEvidence              -- Original flavor   
          -> [TcPredType]          -- New predicate types
          -> XEvTerm               -- Instructions about how to manipulate evidence
          -> TcS [CtEvidence]
xCtFlavor = xCtFlavor_cache True          

xCtFlavor_cache :: Bool            -- True = if wanted add to the solved bag!    
          -> CtEvidence            -- Original flavor   
          -> [TcPredType]          -- New predicate types
          -> XEvTerm               -- Instructions about how to manipulate evidence
          -> TcS [CtEvidence]

xCtFlavor_cache _ (Given { ctev_gloc = gl, ctev_evtm = tm }) ptys xev
  = ASSERT( equalLength ptys (ev_decomp xev tm) )
    zipWithM (newGivenEvVar gl) ptys (ev_decomp xev tm)
    -- For Givens we make new EvVars and bind them immediately. We don't worry
    -- about caching, but we don't expect complicated calculations among Givens.
    -- It is important to bind each given:
    --       class (a~b) => C a b where ....
    --       f :: C a b => ....
    -- Then in f's Givens we have g:(C a b) and the superclass sc(g,0):a~b.
    -- But that superclass selector can't (yet) appear in a coercion
    -- (see evTermCoercion), so the easy thing is to bind it to an Id
  
xCtFlavor_cache cache ctev@(Wanted { ctev_wloc = wl, ctev_evar = evar }) ptys xev
  = do { new_evars <- mapM (newWantedEvVar wl) ptys
       ; setEvBind evar (ev_comp xev (getEvTerms new_evars))

           -- Add the now-solved wanted constraint to the cache
       ; when cache $ addToSolved ctev

       ; return (freshGoals new_evars) }
    
xCtFlavor_cache _ (Derived { ctev_wloc = wl }) ptys _xev
  = do { ders <- mapM (newDerived wl) ptys
       ; return (catMaybes ders) }

-----------------------------
rewriteCtFlavor :: CtEvidence
                -> TcPredType   -- new predicate
                -> TcCoercion   -- new ~ old     
                -> TcS (Maybe CtEvidence)
{- 
     rewriteCtFlavor old_fl new_pred co
Main purpose: create a new identity (flavor) for new_pred;
              unless new_pred is cached already
* Returns a new_fl : new_pred, with same wanted/given/derived flag as old_fl
* If old_fl was wanted, create a binding for old_fl, in terms of new_fl
* If old_fl was given, AND not cached, create a binding for new_fl, in terms of old_fl
* Returns Nothing if new_fl is already cached


        Old evidence    New predicate is               Return new evidence
        flavour                                        of same flavor
        -------------------------------------------------------------------
        Wanted          Already solved or in inert     Nothing
        or Derived      Not                            Just new_evidence

        Given           Already in inert               Nothing
                        Not                            Just new_evidence

        Solved          NEVER HAPPENS
-}

rewriteCtFlavor = rewriteCtFlavor_cache True
-- Returns Just new_fl iff either (i)  'co' is reflexivity
--                             or (ii) 'co' is not reflexivity, and 'new_pred' not cached
-- In either case, there is nothing new to do with new_fl

rewriteCtFlavor_cache :: Bool 
                -> CtEvidence
                -> TcPredType   -- new predicate
                -> TcCoercion   -- new ~ old     
                -> TcS (Maybe CtEvidence)
-- If derived, don't even look at the coercion
-- NB: this allows us to sneak away with ``error'' thunks for 
-- coercions that come from derived ids (which don't exist!) 
rewriteCtFlavor_cache _cache (Derived { ctev_wloc = wl }) pty_new _co
  = newDerived wl pty_new
        
rewriteCtFlavor_cache _cache (Given { ctev_gloc = gl, ctev_evtm = old_tm }) pty_new co
  = return (Just (Given { ctev_gloc = gl, ctev_pred = pty_new, ctev_evtm = new_tm }))
  where
    new_tm = mkEvCast old_tm (mkTcSymCo co)  -- mkEvCase optimises ReflCo
  
rewriteCtFlavor_cache cache ctev@(Wanted { ctev_wloc = wl, ctev_evar = evar, ctev_pred = pty_old }) pty_new co
  | isTcReflCo co  -- If just reflexivity then you may re-use the same variable
  = return (Just (if pty_old `eqType` pty_new 
                  then ctev 
                  else ctev { ctev_pred = pty_new }))
       -- If the old and new types compare equal (eqType looks through synonyms)
       -- then retain the old type, so that error messages come out mentioning synonyms

  | otherwise
  = do { new_evar <- newWantedEvVar wl pty_new
       ; setEvBind evar (mkEvCast (getEvTerm new_evar) co)

           -- Add the now-solved wanted constraint to the cache
       ; when cache $ addToSolved ctev

       ; case new_evar of
            Fresh ctev -> return (Just ctev) 
            _          -> return Nothing }



-- Matching and looking up classes and family instances
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

data MatchInstResult mi
  = MatchInstNo         -- No matching instance 
  | MatchInstSingle mi  -- Single matching instance
  | MatchInstMany       -- Multiple matching instances


matchClass :: Class -> [Type] -> TcS (MatchInstResult (DFunId, [Maybe TcType])) 
-- Look up a class constraint in the instance environment
matchClass clas tys
  = do	{ let pred = mkClassPred clas tys 
        ; instEnvs <- getInstEnvs
--        ; traceTcS "matchClass" $ empty -- text "instEnvs=" <+> ppr instEnvs
        ; case lookupInstEnv instEnvs clas tys of {
            ([], unifs, _)               -- Nothing matches  
                -> do { traceTcS "matchClass not matching"
                                 (vcat [ text "dict" <+> ppr pred, 
                                         text "unifs" <+> ppr unifs,
                                         ppr instEnvs ]) 
                      ; return MatchInstNo  
                      } ;  
	    ([(ispec, inst_tys)], [], _) -- A single match 
		-> do	{ let dfun_id = is_dfun ispec
			; traceTcS "matchClass success"
				   (vcat [text "dict" <+> ppr pred, 
				          text "witness" <+> ppr dfun_id
                                           <+> ppr (idType dfun_id) ])
				  -- Record that this dfun is needed
                        ; return $ MatchInstSingle (dfun_id, inst_tys)
                        } ;
     	    (matches, unifs, _)          -- More than one matches 
		-> do	{ traceTcS "matchClass multiple matches, deferring choice"
			           (vcat [text "dict" <+> ppr pred,
				   	  text "matches" <+> ppr matches,
				   	  text "unifs" <+> ppr unifs])
                        ; return MatchInstMany 
		        }
	}
        }

matchFam :: TyCon -> [Type] -> TcS (Maybe (FamInst, [Type]))
matchFam tycon args = wrapTcS $ tcLookupFamInst tycon args
\end{code}

\begin{code}
-- Deferring forall equalities as implications
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

deferTcSForAllEq :: (WantedLoc,EvVar)  -- Original wanted equality flavor
                 -> ([TyVar],TcType)   -- ForAll tvs1 body1
                 -> ([TyVar],TcType)   -- ForAll tvs2 body2
                 -> TcS ()
-- Some of this functionality is repeated from TcUnify, 
-- consider having a single place where we create fresh implications. 
deferTcSForAllEq (loc,orig_ev) (tvs1,body1) (tvs2,body2)
 = do { (subst1, skol_tvs) <- wrapTcS $ TcM.tcInstSkolTyVars tvs1
      ; let tys  = mkTyVarTys skol_tvs
            phi1 = Type.substTy subst1 body1
            phi2 = Type.substTy (zipTopTvSubst tvs2 tys) body2
            skol_info = UnifyForAllSkol skol_tvs phi1
        ; mev <- newWantedEvVar loc (mkTcEqPred phi1 phi2)
        ; coe_inside <- case mev of
            Cached ev_tm -> return (evTermCoercion ev_tm)
            Fresh ctev   -> do { ev_binds_var <- wrapTcS $ TcM.newTcEvBinds
                               ; let ev_binds = TcEvBinds ev_binds_var
                                     new_ct = mkNonCanonical ctev
              			     new_co = evTermCoercion (ctEvTerm ctev)
                               ; lcl_env <- wrapTcS $ TcM.getLclTypeEnv
                               ; loc <- wrapTcS $ TcM.getCtLoc skol_info
                               ; let wc = WC { wc_flat  = singleCt new_ct 
                                             , wc_impl  = emptyBag
                                             , wc_insol = emptyCts }
                                     imp = Implic { ic_untch  = all_untouchables
                                                  , ic_env    = lcl_env
                                                  , ic_skols  = skol_tvs
                                                  , ic_given  = []
                                                  , ic_wanted = wc 
                                                  , ic_insol  = False
                                                  , ic_binds  = ev_binds_var
                                                  , ic_loc    = loc }
                               ; updTcSImplics (consBag imp) 
                               ; return (TcLetCo ev_binds new_co) }

        ; setEvBind orig_ev $
          EvCoercion (foldr mkTcForAllCo coe_inside skol_tvs)
        }
 where all_untouchables = TouchableRange u u
       u = idUnique orig_ev -- HACK: empty range

\end{code}



-- Rewriting with respect to the inert equalities 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{code}
getInertEqs :: TcS (TyVarEnv Ct, InScopeSet)
getInertEqs = do { inert <- getTcSInerts
                 ; let ics = inert_cans inert
                 ; return (inert_eqs ics, inert_eq_tvs ics) }

getCtCoercion :: EvBindMap -> Ct -> TcCoercion
-- Precondition: A CTyEqCan which is either Wanted or Given, never Derived or Solved!
getCtCoercion _bs ct 
  = ASSERT( not (isDerivedCt ct) )
    evTermCoercion (ctEvTerm (ctEvidence ct))
{-       ToDo: check with Dimitrios that we can dump this stuff
  = case lookupEvBind bs cc_id of
        -- Given and bound to a coercion term
      Just (EvBind _ (EvCoercion co)) -> co
                -- NB: The constraint could have been rewritten due to spontaneous 
                -- unifications but because we are optimizing away mkRefls the evidence
                -- variable may still have type (alpha ~ [beta]). The constraint may 
                -- however have a more accurate type (alpha ~ [Int]) (where beta ~ Int has
                -- been previously solved by spontaneous unification). So if we are going 
                -- to use the evidence variable for rewriting other constraints, we'd better 
                -- make sure it's of the right type!
                -- Always the ctPred type is more accurate, so we just pick that type

      _ -> mkTcCoVarCo (setVarType cc_id (ctPred ct))
      
  where 
    cc_id = ctId ct
-}
\end{code}