summaryrefslogtreecommitdiff
path: root/compiler/typecheck/TcSimplify.lhs
blob: ca29111b76e2411155cb7e410d6d4100d1d546c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
\begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

module TcSimplify( 
       simplifyInfer, quantifyPred,
       simplifyAmbiguityCheck,
       simplifyDefault, 
       simplifyRule, simplifyTop, simplifyInteractive,
       solveWantedsTcM
  ) where

#include "HsVersions.h"

import TcRnTypes
import TcRnMonad
import TcErrors
import TcMType as TcM
import TcType 
import TcSMonad as TcS
import TcInteract 
import Kind     ( defaultKind_maybe )
import Inst
import FunDeps  ( growThetaTyVars )
import Type     ( classifyPredType, PredTree(..), getClassPredTys_maybe )
import Class    ( Class )
import Var
import Unique
import VarSet
import VarEnv 
import TcEvidence
import Name
import Bag
import ListSetOps
import Util
import PrelInfo
import PrelNames
import Class		( classKey )
import BasicTypes       ( RuleName )
import Outputable
import FastString
import TrieMap () -- DV: for now
\end{code}


*********************************************************************************
*                                                                               * 
*                           External interface                                  *
*                                                                               *
*********************************************************************************

\begin{code}
simplifyTop :: WantedConstraints -> TcM (Bag EvBind)
-- Simplify top-level constraints
-- Usually these will be implications,
-- but when there is nothing to quantify we don't wrap
-- in a degenerate implication, so we do that here instead
simplifyTop wanteds
  = do { traceTc "simplifyTop {" $ text "wanted = " <+> ppr wanteds 
       ; ev_binds_var <- newTcEvBinds
       ; zonked_final_wc <- solveWantedsTcMWithEvBinds ev_binds_var wanteds simpl_top
       ; binds1 <- TcRnMonad.getTcEvBinds ev_binds_var
       ; traceTc "End simplifyTop }" empty

       ; traceTc "reportUnsolved {" empty
       ; binds2 <- reportUnsolved zonked_final_wc
       ; traceTc "reportUnsolved }" empty
         
       ; return (binds1 `unionBags` binds2) }

  where
    -- See Note [Top-level Defaulting Plan]
    simpl_top :: WantedConstraints -> TcS WantedConstraints
    simpl_top wanteds
      = do { wc_first_go <- nestTcS (solve_wanteds_and_drop wanteds)
                            -- This is where the main work happens
           ; try_tyvar_defaulting wc_first_go }

    try_tyvar_defaulting :: WantedConstraints -> TcS WantedConstraints
    try_tyvar_defaulting wc
      | isEmptyWC wc 
      = return wc
      | otherwise
      = do { free_tvs <- TcS.zonkTyVarsAndFV (tyVarsOfWC wc) 
           ; let meta_tvs = varSetElems (filterVarSet isMetaTyVar free_tvs)
                   -- zonkTyVarsAndFV: the wc_first_go is not yet zonked
                   -- filter isMetaTyVar: we might have runtime-skolems in GHCi, 
                   -- and we definitely don't want to try to assign to those!

           ; meta_tvs' <- mapM defaultTyVar meta_tvs   -- Has unification side effects
           ; if meta_tvs' == meta_tvs   -- No defaulting took place;
                                        -- (defaulting returns fresh vars)
             then try_class_defaulting wc
             else do { wc_residual <- nestTcS (solve_wanteds_and_drop wc)
                            -- See Note [Must simplify after defaulting]
                     ; try_class_defaulting wc_residual } }
    
    try_class_defaulting :: WantedConstraints -> TcS WantedConstraints
    try_class_defaulting wc
      | isEmptyWC wc || insolubleWC wc
      = return wc  -- Don't do type-class defaulting if there are insolubles
                   -- Doing so is not going to solve the insolubles
      | otherwise
      = do { something_happened <- applyDefaultingRules (approximateWC wc)
                                   -- See Note [Top-level Defaulting Plan]
           ; if something_happened 
             then do { wc_residual <- nestTcS (solve_wanteds_and_drop wc)
                     ; try_class_defaulting wc_residual }
             else return wc }
\end{code}

Note [Must simplify after defaulting]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We may have a deeply buried constraint
    (t:*) ~ (a:Open)
which we couldn't solve because of the kind incompatibility, and 'a' is free.
Then when we default 'a' we can solve the constraint.  And we want to do
that before starting in on type classes.  We MUST do it before reporting
errors, because it isn't an error!  Trac #7967 was due to this.

Note [Top-level Defaulting Plan]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We have considered two design choices for where/when to apply defaulting.   
   (i) Do it in SimplCheck mode only /whenever/ you try to solve some 
       flat constraints, maybe deep inside the context of implications.
       This used to be the case in GHC 7.4.1.
   (ii) Do it in a tight loop at simplifyTop, once all other constraint has 
        finished. This is the current story.

Option (i) had many disadvantages: 
   a) First it was deep inside the actual solver, 
   b) Second it was dependent on the context (Infer a type signature, 
      or Check a type signature, or Interactive) since we did not want 
      to always start defaulting when inferring (though there is an exception to  
      this see Note [Default while Inferring])
   c) It plainly did not work. Consider typecheck/should_compile/DfltProb2.hs:
          f :: Int -> Bool
          f x = const True (\y -> let w :: a -> a
                                      w a = const a (y+1)
                                  in w y)
      We will get an implication constraint (for beta the type of y):
               [untch=beta] forall a. 0 => Num beta
      which we really cannot default /while solving/ the implication, since beta is
      untouchable.

Instead our new defaulting story is to pull defaulting out of the solver loop and
go with option (i), implemented at SimplifyTop. Namely:
     - First have a go at solving the residual constraint of the whole program
     - Try to approximate it with a flat constraint
     - Figure out derived defaulting equations for that flat constraint
     - Go round the loop again if you did manage to get some equations

Now, that has to do with class defaulting. However there exists type variable /kind/
defaulting. Again this is done at the top-level and the plan is:
     - At the top-level, once you had a go at solving the constraint, do 
       figure out /all/ the touchable unification variables of the wanted constraints.
     - Apply defaulting to their kinds

More details in Note [DefaultTyVar].

\begin{code}

------------------
simplifyAmbiguityCheck :: Name -> WantedConstraints -> TcM (Bag EvBind)
simplifyAmbiguityCheck name wanteds
  = traceTc "simplifyAmbiguityCheck" (text "name =" <+> ppr name) >> 
    simplifyTop wanteds  -- NB: must be simplifyTop so that we
                         --     do ambiguity resolution.  
                         -- See Note [Impedence matching] in TcBinds.
 
------------------
simplifyInteractive :: WantedConstraints -> TcM (Bag EvBind)
simplifyInteractive wanteds 
  = traceTc "simplifyInteractive" empty >>
    simplifyTop wanteds 

------------------
simplifyDefault :: ThetaType	-- Wanted; has no type variables in it
                -> TcM ()	-- Succeeds iff the constraint is soluble
simplifyDefault theta
  = do { traceTc "simplifyInteractive" empty
       ; wanted <- newFlatWanteds DefaultOrigin theta
       ; (unsolved, _binds) <- solveWantedsTcM (mkFlatWC wanted)

       ; traceTc "reportUnsolved {" empty
       -- See Note [Deferring coercion errors to runtime]
       ; reportAllUnsolved unsolved 
         -- Postcondition of solveWantedsTcM is that returned
         -- constraints are zonked. So Precondition of reportUnsolved
         -- is true.
       ; traceTc "reportUnsolved }" empty

       ; return () }
\end{code}


*********************************************************************************
*                                                                                 * 
*                            Inference
*                                                                                 *
***********************************************************************************

\begin{code}
simplifyInfer :: Bool
              -> Bool                  -- Apply monomorphism restriction
              -> [(Name, TcTauType)]   -- Variables to be generalised,
                                       -- and their tau-types
              -> WantedConstraints
              -> TcM ([TcTyVar],    -- Quantify over these type variables
                      [EvVar],      -- ... and these constraints
		      Bool,	    -- The monomorphism restriction did something
		      		    --   so the results type is not as general as
				    --   it could be
                      TcEvBinds)    -- ... binding these evidence variables
simplifyInfer _top_lvl apply_mr name_taus wanteds
  | isEmptyWC wanteds
  = do { gbl_tvs <- tcGetGlobalTyVars
       ; qtkvs <- quantifyTyVars gbl_tvs (tyVarsOfTypes (map snd name_taus))
       ; traceTc "simplifyInfer: empty WC" (ppr name_taus $$ ppr qtkvs) 
       ; return (qtkvs, [], False, emptyTcEvBinds) }

  | otherwise
  = do { traceTc "simplifyInfer {"  $ vcat
             [ ptext (sLit "binds =") <+> ppr name_taus
             , ptext (sLit "closed =") <+> ppr _top_lvl
             , ptext (sLit "apply_mr =") <+> ppr apply_mr
             , ptext (sLit "(unzonked) wanted =") <+> ppr wanteds
             ]

              -- Historical note: Before step 2 we used to have a
              -- HORRIBLE HACK described in Note [Avoid unecessary
              -- constraint simplification] but, as described in Trac
              -- #4361, we have taken in out now.  That's why we start
              -- with step 2!

              -- Step 2) First try full-blown solving 

              -- NB: we must gather up all the bindings from doing
              -- this solving; hence (runTcSWithEvBinds ev_binds_var).
              -- And note that since there are nested implications,
              -- calling solveWanteds will side-effect their evidence
              -- bindings, so we can't just revert to the input
              -- constraint.

       ; ev_binds_var <- newTcEvBinds
       ; wanted_transformed_incl_derivs 
               <- solveWantedsTcMWithEvBinds ev_binds_var wanteds solve_wanteds
                               -- Post: wanted_transformed are zonked

              -- Step 4) Candidates for quantification are an approximation of wanted_transformed
              -- NB: Already the fixpoint of any unifications that may have happened                                
              -- NB: We do not do any defaulting when inferring a type, this can lead
              -- to less polymorphic types, see Note [Default while Inferring]
 
              -- Step 5) Minimize the quantification candidates                             
              -- Step 6) Final candidates for quantification                
              -- We discard bindings, insolubles etc, because all we are
              -- care aout it

       ; tc_lcl_env <- TcRnMonad.getLclEnv
       ; let untch = tcl_untch tc_lcl_env
             wanted_transformed = dropDerivedWC wanted_transformed_incl_derivs
       ; quant_pred_candidates   -- Fully zonked
           <- if insolubleWC wanted_transformed_incl_derivs
              then return []   -- See Note [Quantification with errors]
                               -- NB: must include derived errors
              else do { gbl_tvs <- tcGetGlobalTyVars
                      ; let quant_cand = approximateWC wanted_transformed
                            meta_tvs   = filter isMetaTyVar (varSetElems (tyVarsOfCts quant_cand)) 
                      ; ((flats, _insols), _extra_binds) <- runTcS $ 
                        do { mapM_ (promoteAndDefaultTyVar untch gbl_tvs) meta_tvs
                                 -- See Note [Promote _and_ default when inferring]
                           ; _implics <- solveInteract quant_cand
                           ; getInertUnsolved }
                      ; return (map ctPred $ filter isWantedCt (bagToList flats)) }
                   -- NB: Dimitrios is slightly worried that we will get
                   -- family equalities (F Int ~ alpha) in the quantification
                   -- candidates, as we have performed no further unflattening
                   -- at this point. Nothing bad, but inferred contexts might
                   -- look complicated.

       -- NB: quant_pred_candidates is already the fixpoint of any 
       --     unifications that may have happened
       ; gbl_tvs        <- tcGetGlobalTyVars
       ; zonked_tau_tvs <- TcM.zonkTyVarsAndFV (tyVarsOfTypes (map snd name_taus))
       ; let poly_qtvs = growThetaTyVars quant_pred_candidates zonked_tau_tvs
                         `minusVarSet` gbl_tvs
             pbound    = filter (quantifyPred poly_qtvs) quant_pred_candidates
             
	     -- Monomorphism restriction
             constrained_tvs = tyVarsOfTypes pbound `unionVarSet` gbl_tvs
	     mr_bites        = apply_mr && not (null pbound)

       ; (qtvs, bound) <- if mr_bites 
                          then do { qtvs <- quantifyTyVars constrained_tvs zonked_tau_tvs
                                  ; return (qtvs, []) }
                          else do { qtvs <- quantifyTyVars gbl_tvs poly_qtvs
                                  ; return (qtvs, pbound) }
             
       ; traceTc "simplifyWithApprox" $
         vcat [ ptext (sLit "quant_pred_candidates =") <+> ppr quant_pred_candidates
              , ptext (sLit "gbl_tvs=") <+> ppr gbl_tvs
              , ptext (sLit "zonked_tau_tvs=") <+> ppr zonked_tau_tvs
              , ptext (sLit "pbound =") <+> ppr pbound
              , ptext (sLit "bbound =") <+> ppr bound
              , ptext (sLit "poly_qtvs =") <+> ppr poly_qtvs
              , ptext (sLit "constrained_tvs =") <+> ppr constrained_tvs
              , ptext (sLit "mr_bites =") <+> ppr mr_bites
              , ptext (sLit "qtvs =") <+> ppr qtvs ]

       ; if null qtvs && null bound
         then do { traceTc "} simplifyInfer/no implication needed" empty                   
                 ; emitConstraints wanted_transformed
                    -- Includes insolubles (if -fdefer-type-errors)
                    -- as well as flats and implications
                 ; return ([], [], mr_bites, TcEvBinds ev_binds_var) }
         else do

      {     -- Step 7) Emit an implication
         let minimal_flat_preds = mkMinimalBySCs bound
             skol_info = InferSkol [ (name, mkSigmaTy [] minimal_flat_preds ty)
                                   | (name, ty) <- name_taus ]
                        -- Don't add the quantified variables here, because
                        -- they are also bound in ic_skols and we want them to be
                        -- tidied uniformly

       ; minimal_bound_ev_vars <- mapM TcM.newEvVar minimal_flat_preds
       ; let implic = Implic { ic_untch    = pushUntouchables untch
                             , ic_skols    = qtvs
                             , ic_fsks     = []  -- wanted_tansformed arose only from solveWanteds
                                                 -- hence no flatten-skolems (which come from givens)
                             , ic_given    = minimal_bound_ev_vars
                             , ic_wanted   = wanted_transformed 
                             , ic_insol    = False
                             , ic_binds    = ev_binds_var
                             , ic_info     = skol_info
                             , ic_env      = tc_lcl_env }
       ; emitImplication implic
         
       ; traceTc "} simplifyInfer/produced residual implication for quantification" $
             vcat [ ptext (sLit "implic =") <+> ppr implic
                       -- ic_skols, ic_given give rest of result
                  , ptext (sLit "qtvs =") <+> ppr qtvs
                  , ptext (sLit "spb =") <+> ppr quant_pred_candidates
                  , ptext (sLit "bound =") <+> ppr bound ]

       ; return ( qtvs, minimal_bound_ev_vars
                , mr_bites,  TcEvBinds ev_binds_var) } }

quantifyPred :: TyVarSet           -- Quantifying over these
	     -> PredType -> Bool   -- True <=> quantify over this wanted
quantifyPred qtvs pred
  | isIPPred pred = True  -- Note [Inheriting implicit parameters]
  | otherwise	  = tyVarsOfType pred `intersectsVarSet` qtvs
\end{code}

Note [Inheriting implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:

	f x = (x::Int) + ?y

where f is *not* a top-level binding.
From the RHS of f we'll get the constraint (?y::Int).
There are two types we might infer for f:

	f :: Int -> Int

(so we get ?y from the context of f's definition), or

	f :: (?y::Int) => Int -> Int

At first you might think the first was better, because then
?y behaves like a free variable of the definition, rather than
having to be passed at each call site.  But of course, the WHOLE
IDEA is that ?y should be passed at each call site (that's what
dynamic binding means) so we'd better infer the second.

BOTTOM LINE: when *inferring types* you must quantify over implicit
parameters, *even if* they don't mention the bound type variables.
Reason: because implicit parameters, uniquely, have local instance
declarations. See the predicate quantifyPred.

Note [Quantification with errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we find that the RHS of the definition has some absolutely-insoluble
constraints, we abandon all attempts to find a context to quantify
over, and instead make the function fully-polymorphic in whatever
type we have found.  For two reasons
  a) Minimise downstream errors
  b) Avoid spurious errors from this function

But NB that we must include *derived* errors in the check. Example:   
    (a::*) ~ Int#
We get an insoluble derived error *~#, and we don't want to discard
it before doing the isInsolubleWC test!  (Trac #8262)

Note [Default while Inferring]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Our current plan is that defaulting only happens at simplifyTop and
not simplifyInfer.  This may lead to some insoluble deferred constraints
Example:

instance D g => C g Int b 

constraint inferred = (forall b. 0 => C gamma alpha b) /\ Num alpha
type inferred       = gamma -> gamma 

Now, if we try to default (alpha := Int) we will be able to refine the implication to 
  (forall b. 0 => C gamma Int b) 
which can then be simplified further to 
  (forall b. 0 => D gamma)
Finally we /can/ approximate this implication with (D gamma) and infer the quantified
type:  forall g. D g => g -> g

Instead what will currently happen is that we will get a quantified type 
(forall g. g -> g) and an implication:
       forall g. 0 => (forall b. 0 => C g alpha b) /\ Num alpha

which, even if the simplifyTop defaults (alpha := Int) we will still be left with an 
unsolvable implication:
       forall g. 0 => (forall b. 0 => D g)

The concrete example would be: 
       h :: C g a s => g -> a -> ST s a
       f (x::gamma) = (\_ -> x) (runST (h x (undefined::alpha)) + 1)

But it is quite tedious to do defaulting and resolve the implication constraints and
we have not observed code breaking because of the lack of defaulting in inference so 
we don't do it for now.



Note [Minimize by Superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
When we quantify over a constraint, in simplifyInfer we need to
quantify over a constraint that is minimal in some sense: For
instance, if the final wanted constraint is (Eq alpha, Ord alpha),
we'd like to quantify over Ord alpha, because we can just get Eq alpha
from superclass selection from Ord alpha. This minimization is what
mkMinimalBySCs does. Then, simplifyInfer uses the minimal constraint
to check the original wanted.


Note [Avoid unecessary constraint simplification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    -------- NB NB NB (Jun 12) ------------- 
    This note not longer applies; see the notes with Trac #4361.
    But I'm leaving it in here so we remember the issue.)
    ----------------------------------------
When inferring the type of a let-binding, with simplifyInfer,
try to avoid unnecessarily simplifying class constraints.
Doing so aids sharing, but it also helps with delicate 
situations like

   instance C t => C [t] where ..

   f :: C [t] => ....
   f x = let g y = ...(constraint C [t])... 
         in ...
When inferring a type for 'g', we don't want to apply the
instance decl, because then we can't satisfy (C t).  So we
just notice that g isn't quantified over 't' and partition
the constraints before simplifying.

This only half-works, but then let-generalisation only half-works.


*********************************************************************************
*                                                                                 * 
*                             RULES                                               *
*                                                                                 *
***********************************************************************************

See note [Simplifying RULE consraints] in TcRule

Note [RULE quanfification over equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Decideing which equalities to quantify over is tricky:
 * We do not want to quantify over insoluble equalities (Int ~ Bool)
    (a) because we prefer to report a LHS type error
    (b) because if such things end up in 'givens' we get a bogus
        "inaccessible code" error

 * But we do want to quantify over things like (a ~ F b), where
   F is a type function.

The difficulty is that it's hard to tell what is insoluble!
So we see whether the simplificaiotn step yielded any type errors,
and if so refrain from quantifying over *any* equalites.

\begin{code}
simplifyRule :: RuleName 
             -> WantedConstraints	-- Constraints from LHS
             -> WantedConstraints	-- Constraints from RHS
             -> TcM ([EvVar], WantedConstraints)   -- LHS evidence varaibles
-- See Note [Simplifying RULE constraints] in TcRule
simplifyRule name lhs_wanted rhs_wanted
  = do {      	 -- We allow ourselves to unify environment 
		 -- variables: runTcS runs with NoUntouchables
         (resid_wanted, _) <- solveWantedsTcM (lhs_wanted `andWC` rhs_wanted)
                              -- Post: these are zonked and unflattened

       ; zonked_lhs_flats <- zonkCts (wc_flat lhs_wanted)
       ; let (q_cts, non_q_cts) = partitionBag quantify_me zonked_lhs_flats
             quantify_me  -- Note [RULE quantification over equalities]
               | insolubleWC resid_wanted = quantify_insol
               | otherwise                = quantify_normal

             quantify_insol ct = not (isEqPred (ctPred ct))

             quantify_normal ct
               | EqPred t1 t2 <- classifyPredType (ctPred ct)
               = not (t1 `eqType` t2)
               | otherwise
               = True
             
       ; traceTc "simplifyRule" $
         vcat [ ptext (sLit "LHS of rule") <+> doubleQuotes (ftext name)
              , text "zonked_lhs_flats" <+> ppr zonked_lhs_flats 
              , text "q_cts"      <+> ppr q_cts
              , text "non_q_cts"  <+> ppr non_q_cts ]

       ; return ( map (ctEvId . ctEvidence) (bagToList q_cts)
                , lhs_wanted { wc_flat = non_q_cts }) }
\end{code}


*********************************************************************************
*                                                                                 * 
*                                 Main Simplifier                                 *
*                                                                                 *
***********************************************************************************

Note [Deferring coercion errors to runtime]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
While developing, sometimes it is desirable to allow compilation to succeed even
if there are type errors in the code. Consider the following case:

  module Main where

  a :: Int
  a = 'a'

  main = print "b"

Even though `a` is ill-typed, it is not used in the end, so if all that we're
interested in is `main` it is handy to be able to ignore the problems in `a`.

Since we treat type equalities as evidence, this is relatively simple. Whenever
we run into a type mismatch in TcUnify, we normally just emit an error. But it
is always safe to defer the mismatch to the main constraint solver. If we do
that, `a` will get transformed into

  co :: Int ~ Char
  co = ...

  a :: Int
  a = 'a' `cast` co

The constraint solver would realize that `co` is an insoluble constraint, and
emit an error with `reportUnsolved`. But we can also replace the right-hand side
of `co` with `error "Deferred type error: Int ~ Char"`. This allows the program
to compile, and it will run fine unless we evaluate `a`. This is what
`deferErrorsToRuntime` does.

It does this by keeping track of which errors correspond to which coercion
in TcErrors (with ErrEnv). TcErrors.reportTidyWanteds does not print the errors
and does not fail if -fdefer-type-errors is on, so that we can continue
compilation. The errors are turned into warnings in `reportUnsolved`.

Note [Zonk after solving]
~~~~~~~~~~~~~~~~~~~~~~~~~
We zonk the result immediately after constraint solving, for two reasons:

a) because zonkWC generates evidence, and this is the moment when we
   have a suitable evidence variable to hand.

Note that *after* solving the constraints are typically small, so the
overhead is not great.

\begin{code}
solveWantedsTcMWithEvBinds :: EvBindsVar
                           -> WantedConstraints
                           -> (WantedConstraints -> TcS WantedConstraints)
                           -> TcM WantedConstraints
-- Returns a *zonked* result
-- We zonk when we finish primarily to un-flatten out any
-- flatten-skolems etc introduced by canonicalisation of
-- types involving type funuctions.  Happily the result 
-- is typically much smaller than the input, indeed it is 
-- often empty.
solveWantedsTcMWithEvBinds ev_binds_var wc tcs_action
  = do { traceTc "solveWantedsTcMWithEvBinds" $ text "wanted=" <+> ppr wc
       ; wc2 <- runTcSWithEvBinds ev_binds_var (tcs_action wc)
       ; zonkWC ev_binds_var wc2 }
         -- See Note [Zonk after solving]

solveWantedsTcM :: WantedConstraints -> TcM (WantedConstraints, Bag EvBind)
-- Zonk the input constraints, and simplify them
-- Return the evidence binds in the BagEvBinds result
-- Discards all Derived stuff in result
-- Postcondition: fully zonked and unflattened constraints
solveWantedsTcM wanted 
  = do { ev_binds_var <- newTcEvBinds
       ; wanteds' <- solveWantedsTcMWithEvBinds ev_binds_var wanted solve_wanteds_and_drop
       ; binds <- TcRnMonad.getTcEvBinds ev_binds_var
       ; return (wanteds', binds) }

solve_wanteds_and_drop :: WantedConstraints -> TcS (WantedConstraints)
-- Since solve_wanteds returns the residual WantedConstraints,
-- it should always be called within a runTcS or something similar,
solve_wanteds_and_drop wanted = do { wc <- solve_wanteds wanted 
                                   ; return (dropDerivedWC wc) }

solve_wanteds :: WantedConstraints -> TcS WantedConstraints 
-- so that the inert set doesn't mindlessly propagate.
-- NB: wc_flats may be wanted /or/ derived now
solve_wanteds wanted@(WC { wc_flat = flats, wc_impl = implics, wc_insol = insols }) 
  = do { traceTcS "solveWanteds {" (ppr wanted)

         -- Try the flat bit, including insolubles. Solving insolubles a 
         -- second time round is a bit of a waste; but the code is simple 
         -- and the program is wrong anyway, and we don't run the danger 
         -- of adding Derived insolubles twice; see 
         -- TcSMonad Note [Do not add duplicate derived insolubles] 
       ; traceTcS "solveFlats {" empty
       ; let all_flats = flats `unionBags` insols
       ; impls_from_flats <- solveInteract all_flats
       ; traceTcS "solveFlats end }" (ppr impls_from_flats)

       -- solve_wanteds iterates when it is able to float equalities 
       -- out of one or more of the implications. 
       ; unsolved_implics <- simpl_loop 1 (implics `unionBags` impls_from_flats)

       ; (unsolved_flats, insoluble_flats) <- getInertUnsolved

        -- We used to unflatten here but now we only do it once at top-level
        -- during zonking -- see Note [Unflattening while zonking] in TcMType
       ; let wc = WC { wc_flat  = unsolved_flats   
                     , wc_impl  = unsolved_implics 
                     , wc_insol = insoluble_flats }
                  
       ; bb <- getTcEvBindsMap
       ; tb <- getTcSTyBindsMap
       ; traceTcS "solveWanteds }" $
                 vcat [ text "unsolved_flats   =" <+> ppr unsolved_flats
                      , text "unsolved_implics =" <+> ppr unsolved_implics
                      , text "current evbinds  =" <+> ppr (evBindMapBinds bb)
                      , text "current tybinds  =" <+> vcat (map ppr (varEnvElts tb))
                      , text "final wc =" <+> ppr wc ]

       ; return wc }

simpl_loop :: Int
           -> Bag Implication
           -> TcS (Bag Implication)
simpl_loop n implics
  | n > 10 
  = traceTcS "solveWanteds: loop!" empty >> return implics
  | otherwise 
  = do { (floated_eqs, unsolved_implics) <- solveNestedImplications implics
       ; if isEmptyBag floated_eqs 
         then return unsolved_implics 
         else 
    do {   -- Put floated_eqs into the current inert set before looping
         impls_from_eqs <- solveInteract floated_eqs
       ; simpl_loop (n+1) (unsolved_implics `unionBags` impls_from_eqs)} }


solveNestedImplications :: Bag Implication
                        -> TcS (Cts, Bag Implication)
-- Precondition: the TcS inerts may contain unsolved flats which have 
-- to be converted to givens before we go inside a nested implication.
solveNestedImplications implics
  | isEmptyBag implics
  = return (emptyBag, emptyBag)
  | otherwise 
  = do { inerts <- getTcSInerts
       ; let thinner_inerts = prepareInertsForImplications inerts
                 -- See Note [Preparing inert set for implications]
  
       ; traceTcS "solveNestedImplications starting {" $ 
         vcat [ text "original inerts = " <+> ppr inerts
              , text "thinner_inerts  = " <+> ppr thinner_inerts ]
         
       ; (floated_eqs, unsolved_implics)
           <- flatMapBagPairM (solveImplication thinner_inerts) implics

       -- ... and we are back in the original TcS inerts 
       -- Notice that the original includes the _insoluble_flats so it was safe to ignore
       -- them in the beginning of this function.
       ; traceTcS "solveNestedImplications end }" $
                  vcat [ text "all floated_eqs ="  <+> ppr floated_eqs
                       , text "unsolved_implics =" <+> ppr unsolved_implics ]

       ; return (floated_eqs, unsolved_implics) }

solveImplication :: InertSet
                 -> Implication    -- Wanted
                 -> TcS (Cts,      -- All wanted or derived floated equalities: var = type
                         Bag Implication) -- Unsolved rest (always empty or singleton)
-- Precondition: The TcS monad contains an empty worklist and given-only inerts 
-- which after trying to solve this implication we must restore to their original value
solveImplication inerts
     imp@(Implic { ic_untch  = untch
                 , ic_binds  = ev_binds
                 , ic_skols  = skols 
                 , ic_fsks   = old_fsks
                 , ic_given  = givens
                 , ic_wanted = wanteds
                 , ic_info   = info
                 , ic_env    = env })
  = do { traceTcS "solveImplication {" (ppr imp) 

         -- Solve the nested constraints
         -- NB: 'inerts' has empty inert_fsks
       ; (new_fsks, residual_wanted) 
            <- nestImplicTcS ev_binds untch inerts $
               do { solveInteractGiven (mkGivenLoc info env) old_fsks givens 
                  ; residual_wanted <- solve_wanteds wanteds
                        -- solve_wanteds, *not* solve_wanteds_and_drop, because
                        -- we want to retain derived equalities so we can float
                        -- them out in floatEqualities
                  ; more_fsks <- getFlattenSkols
                  ; return (more_fsks ++ old_fsks, residual_wanted) }

       ; (floated_eqs, final_wanted)
             <- floatEqualities (skols ++ new_fsks) givens residual_wanted

       ; let res_implic | isEmptyWC final_wanted 
                        = emptyBag
                        | otherwise
                        = unitBag (imp { ic_fsks   = new_fsks
                                       , ic_wanted = dropDerivedWC final_wanted
                                       , ic_insol  = insolubleWC final_wanted })

       ; evbinds <- getTcEvBindsMap
       ; traceTcS "solveImplication end }" $ vcat
             [ text "floated_eqs =" <+> ppr floated_eqs
             , text "new_fsks =" <+> ppr new_fsks
             , text "res_implic =" <+> ppr res_implic
             , text "implication evbinds = " <+> ppr (evBindMapBinds evbinds) ]

       ; return (floated_eqs, res_implic) }
\end{code}


\begin{code}
floatEqualities :: [TcTyVar] -> [EvVar] -> WantedConstraints 
                -> TcS (Cts, WantedConstraints)
-- Post: The returned FlavoredEvVar's are only Wanted or Derived
-- and come from the input wanted ev vars or deriveds 
-- Also performs some unifications, adding to monadically-carried ty_binds
-- These will be used when processing floated_eqs later
floatEqualities skols can_given wanteds@(WC { wc_flat = flats })
  | hasEqualities can_given 
  = return (emptyBag, wanteds)   -- Note [Float Equalities out of Implications]
  | otherwise 
  = do { let (float_eqs, remaining_flats) = partitionBag is_floatable flats
       ; untch <- TcS.getUntouchables
       ; mapM_ (promoteTyVar untch) (varSetElems (tyVarsOfCts float_eqs))
             -- See Note [Promoting unification variables]
       ; ty_binds <- getTcSTyBindsMap
       ; traceTcS "floatEqualities" (vcat [ text "Flats =" <+> ppr flats
                                          , text "Floated eqs =" <+> ppr float_eqs
                                          , text "Ty binds =" <+> ppr ty_binds])
       ; return (float_eqs, wanteds { wc_flat = remaining_flats }) }
  where 
      -- See Note [Float equalities from under a skolem binding]
    skol_set = fixVarSet mk_next (mkVarSet skols)
    mk_next tvs = foldrBag grow_one tvs flats
    grow_one (CFunEqCan { cc_tyargs = xis, cc_rhs = rhs }) tvs
       | intersectsVarSet tvs (tyVarsOfTypes xis) 
       = tvs `unionVarSet` tyVarsOfType rhs
    grow_one _ tvs = tvs

    is_floatable :: Ct -> Bool
    is_floatable ct = isEqPred pred && skol_set `disjointVarSet` tyVarsOfType pred
       where
         pred = ctPred ct

promoteTyVar :: Untouchables -> TcTyVar  -> TcS ()
-- When we float a constraint out of an implication we must restore
-- invariant (MetaTvInv) in Note [Untouchable type variables] in TcType
-- See Note [Promoting unification variables]
promoteTyVar untch tv 
  | isFloatedTouchableMetaTyVar untch tv
  = do { cloned_tv <- TcS.cloneMetaTyVar tv
       ; let rhs_tv = setMetaTyVarUntouchables cloned_tv untch
       ; setWantedTyBind tv (mkTyVarTy rhs_tv) }
  | otherwise
  = return ()

promoteAndDefaultTyVar :: Untouchables -> TcTyVarSet -> TyVar -> TcS ()
-- See Note [Promote _and_ default when inferring]
promoteAndDefaultTyVar untch gbl_tvs tv
  = do { tv1 <- if tv `elemVarSet` gbl_tvs 
                then return tv
                else defaultTyVar tv
       ; promoteTyVar untch tv1 }

defaultTyVar :: TcTyVar -> TcS TcTyVar
-- Precondition: MetaTyVars only
-- See Note [DefaultTyVar]
defaultTyVar the_tv
  | Just default_k <- defaultKind_maybe (tyVarKind the_tv)
  = do { tv' <- TcS.cloneMetaTyVar the_tv
       ; let new_tv = setTyVarKind tv' default_k
       ; traceTcS "defaultTyVar" (ppr the_tv <+> ppr new_tv)
       ; setWantedTyBind the_tv (mkTyVarTy new_tv)
       ; return new_tv }
             -- Why not directly derived_pred = mkTcEqPred k default_k?
             -- See Note [DefaultTyVar]
             -- We keep the same Untouchables on tv'

  | otherwise = return the_tv	 -- The common case

approximateWC :: WantedConstraints -> Cts
-- Postcondition: Wanted or Derived Cts 
-- See Note [ApproximateWC]
approximateWC wc 
  = float_wc emptyVarSet wc
  where 
    float_wc :: TcTyVarSet -> WantedConstraints -> Cts
    float_wc trapping_tvs (WC { wc_flat = flats, wc_impl = implics }) 
      = filterBag is_floatable flats `unionBags` 
        do_bag (float_implic new_trapping_tvs) implics
      where
        new_trapping_tvs = fixVarSet grow trapping_tvs
        is_floatable ct = tyVarsOfCt ct `disjointVarSet` new_trapping_tvs

        grow tvs = foldrBag grow_one tvs flats
        grow_one ct tvs | ct_tvs `intersectsVarSet` tvs = tvs `unionVarSet` ct_tvs
                        | otherwise                     = tvs
                        where
                          ct_tvs = tyVarsOfCt ct

    float_implic :: TcTyVarSet -> Implication -> Cts
    float_implic trapping_tvs imp
      | hasEqualities (ic_given imp)  -- Don't float out of equalities
      = emptyCts                      -- cf floatEqualities
      | otherwise                     -- See Note [ApproximateWC]
      = float_wc new_trapping_tvs (ic_wanted imp)
      where
        new_trapping_tvs = trapping_tvs `extendVarSetList` ic_skols imp 
                                        `extendVarSetList` ic_fsks imp
            
    do_bag :: (a -> Bag c) -> Bag a -> Bag c
    do_bag f = foldrBag (unionBags.f) emptyBag
\end{code}

Note [ApproximateWC]
~~~~~~~~~~~~~~~~~~~~
approximateWC takes a constraint, typically arising from the RHS of a
let-binding whose type we are *inferring*, and extracts from it some
*flat* constraints that we might plausibly abstract over.  Of course
the top-level flat constraints are plausible, but we also float constraints
out from inside, if they are not captured by skolems.

The same function is used when doing type-class defaulting (see the call
to applyDefaultingRules) to extract constraints that that might be defaulted.

There are two caveats:

1.  We do *not* float anything out if the implication binds equality
    constraints, because that defeats the OutsideIn story.  Consider
       data T a where
         TInt :: T Int
         MkT :: T a

       f TInt = 3::Int

    We get the implication (a ~ Int => res ~ Int), where so far we've decided 
      f :: T a -> res
    We don't want to float (res~Int) out because then we'll infer  
      f :: T a -> Int
    which is only on of the possible types. (GHC 7.6 accidentally *did*
    float out of such implications, which meant it would happily infer
    non-principal types.)

2. We do not float out an inner constraint that shares a type variable
   (transitively) with one that is trapped by a skolem.  Eg
       forall a.  F a ~ beta, Integral beta
   We don't want to float out (Integral beta).  Doing so would be bad
   when defaulting, because then we'll default beta:=Integer, and that
   makes the error message much worse; we'd get 
       Can't solve  F a ~ Integer
   rather than
       Can't solve  Integral (F a)
   
   Moreover, floating out these "contaminated" constraints doesn't help
   when generalising either. If we generalise over (Integral b), we still
   can't solve the retained implication (forall a. F a ~ b).  Indeed,
   arguably that too would be a harder error to understand.

Note [DefaultTyVar]
~~~~~~~~~~~~~~~~~~~
defaultTyVar is used on any un-instantiated meta type variables to
default the kind of OpenKind and ArgKind etc to *.  This is important 
to ensure that instance declarations match.  For example consider

     instance Show (a->b)
     foo x = show (\_ -> True)

Then we'll get a constraint (Show (p ->q)) where p has kind ArgKind,
and that won't match the typeKind (*) in the instance decl.  See tests
tc217 and tc175.

We look only at touchable type variables. No further constraints
are going to affect these type variables, so it's time to do it by
hand.  However we aren't ready to default them fully to () or
whatever, because the type-class defaulting rules have yet to run.

An important point is that if the type variable tv has kind k and the
default is default_k we do not simply generate [D] (k ~ default_k) because:

   (1) k may be ArgKind and default_k may be * so we will fail

   (2) We need to rewrite all occurrences of the tv to be a type
       variable with the right kind and we choose to do this by rewriting 
       the type variable /itself/ by a new variable which does have the 
       right kind.

Note [Promote _and_ default when inferring]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we are inferring a type, we simplify the constraint, and then use
approximateWC to produce a list of candidate constraints.  Then we MUST

  a) Promote any meta-tyvars that have been floated out by 
     approximateWC, to restore invariant (MetaTvInv) described in 
     Note [Untouchable type variables] in TcType.

  b) Default the kind of any meta-tyyvars that are not mentioned in
     in the environment.

To see (b), suppose the constraint is (C ((a :: OpenKind) -> Int)), and we
have an instance (C ((x:*) -> Int)).  The instance doesn't match -- but it
should!  If we don't solve the constraint, we'll stupidly quantify over 
(C (a->Int)) and, worse, in doing so zonkQuantifiedTyVar will quantify over
(b:*) instead of (a:OpenKind), which can lead to disaster; see Trac #7332.
Trac #7641 is a simpler example.

Note [Float Equalities out of Implications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
For ordinary pattern matches (including existentials) we float 
equalities out of implications, for instance: 
     data T where 
       MkT :: Eq a => a -> T 
     f x y = case x of MkT _ -> (y::Int)
We get the implication constraint (x::T) (y::alpha): 
     forall a. [untouchable=alpha] Eq a => alpha ~ Int
We want to float out the equality into a scope where alpha is no
longer untouchable, to solve the implication!  

But we cannot float equalities out of implications whose givens may
yield or contain equalities:

      data T a where 
        T1 :: T Int
        T2 :: T Bool
        T3 :: T a 
        
      h :: T a -> a -> Int
      
      f x y = case x of 
                T1 -> y::Int
                T2 -> y::Bool
                T3 -> h x y

We generate constraint, for (x::T alpha) and (y :: beta): 
   [untouchables = beta] (alpha ~ Int => beta ~ Int)   -- From 1st branch
   [untouchables = beta] (alpha ~ Bool => beta ~ Bool) -- From 2nd branch
   (alpha ~ beta)                                      -- From 3rd branch 

If we float the equality (beta ~ Int) outside of the first implication and 
the equality (beta ~ Bool) out of the second we get an insoluble constraint.
But if we just leave them inside the implications we unify alpha := beta and
solve everything.

Principle: 
    We do not want to float equalities out which may need the given *evidence*
    to become soluble.

Consequence: classes with functional dependencies don't matter (since there is 
no evidence for a fundep equality), but equality superclasses do matter (since 
they carry evidence).

Note [Float equalities from under a skolem binding]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You might worry about skolem escape with all this floating.
For example, consider
    [2] forall a. (a ~ F beta[2] delta, 
                   Maybe beta[2] ~ gamma[1])

The (Maybe beta ~ gamma) doesn't mention 'a', so we float it, and
solve with gamma := beta. But what if later delta:=Int, and 
  F b Int = b.  
Then we'd get a ~ beta[2], and solve to get beta:=a, and now the
skolem has escaped!

But it's ok: when we float (Maybe beta[2] ~ gamma[1]), we promote beta[2]
to beta[1], and that means the (a ~ beta[1]) will be stuck, as it should be.

Previously we tried to "grow" the skol_set with the constraints, to get
all the tyvars that could *conceivably* unify with the skolems, but that
was far too conservative (Trac #7804). Example: this should be fine:
    f :: (forall a. a -> Proxy x -> Proxy (F x)) -> Int
    f = error "Urk" :: (forall a. a -> Proxy x -> Proxy (F x)) -> Int

BUT (sigh) we have to be careful.  Here are some edge cases:

a)    [2]forall a. (F a delta[1] ~ beta[2],   delta[1] ~ Maybe beta[2])
b)    [2]forall a. (F b ty ~ beta[2],         G beta[2] ~ gamma[2])
c)    [2]forall a. (F a ty ~ beta[2],         delta[1] ~ Maybe beta[2])

In (a) we *must* float out the second equality, 
       else we can't solve at all (Trac #7804).

In (b) we *must not* float out the second equality.  
       It will ultimately be solved (by flattening) in situ, but if we
       float it we'll promote beta,gamma, and render the first equality insoluble.

In (c) it would be OK to float the second equality but better not to.
       If we flatten we see (delta[1] ~ Maybe (F a ty)), which is a 
       skolem-escape problem.  If we float the secodn equality we'll 
       end up with (F a ty ~ beta'[1]), which is a less explicable error.

Hence we start with the skolems, grow them by the CFunEqCans, and
float ones that don't mention the grown variables.  Seems very ad hoc.

Note [Promoting unification variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we float an equality out of an implication we must "promote" free
unification variables of the equality, in order to maintain Invariant
(MetaTvInv) from Note [Untouchable type variables] in TcType.  for the
leftover implication.

This is absolutely necessary. Consider the following example. We start
with two implications and a class with a functional dependency.

    class C x y | x -> y
    instance C [a] [a]
          
    (I1)      [untch=beta]forall b. 0 => F Int ~ [beta]
    (I2)      [untch=beta]forall c. 0 => F Int ~ [[alpha]] /\ C beta [c]

We float (F Int ~ [beta]) out of I1, and we float (F Int ~ [[alpha]]) out of I2. 
They may react to yield that (beta := [alpha]) which can then be pushed inwards 
the leftover of I2 to get (C [alpha] [a]) which, using the FunDep, will mean that
(alpha := a). In the end we will have the skolem 'b' escaping in the untouchable
beta! Concrete example is in indexed_types/should_fail/ExtraTcsUntch.hs:

    class C x y | x -> y where 
     op :: x -> y -> ()

    instance C [a] [a]

    type family F a :: *

    h :: F Int -> ()
    h = undefined

    data TEx where 
      TEx :: a -> TEx 


    f (x::beta) = 
        let g1 :: forall b. b -> ()
            g1 _ = h [x]
            g2 z = case z of TEx y -> (h [[undefined]], op x [y])
        in (g1 '3', g2 undefined)



Note [Solving Family Equations] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
After we are done with simplification we may be left with constraints of the form:
     [Wanted] F xis ~ beta 
If 'beta' is a touchable unification variable not already bound in the TyBinds 
then we'd like to create a binding for it, effectively "defaulting" it to be 'F xis'.

When is it ok to do so? 
    1) 'beta' must not already be defaulted to something. Example: 

           [Wanted] F Int  ~ beta   <~ Will default [beta := F Int]
           [Wanted] F Char ~ beta   <~ Already defaulted, can't default again. We 
                                       have to report this as unsolved.

    2) However, we must still do an occurs check when defaulting (F xis ~ beta), to 
       set [beta := F xis] only if beta is not among the free variables of xis.

    3) Notice that 'beta' can't be bound in ty binds already because we rewrite RHS 
       of type family equations. See Inert Set invariants in TcInteract.

This solving is now happening during zonking, see Note [Unflattening while zonking]
in TcMType.


*********************************************************************************
*                                                                               * 
*                          Defaulting and disamgiguation                        *
*                                                                               *
*********************************************************************************

\begin{code}
applyDefaultingRules :: Cts -> TcS Bool
  -- True <=> I did some defaulting, reflected in ty_binds
                 
-- Return some extra derived equalities, which express the
-- type-class default choice. 
applyDefaultingRules wanteds
  | isEmptyBag wanteds 
  = return False
  | otherwise
  = do { traceTcS "applyDefaultingRules { " $ 
                  text "wanteds =" <+> ppr wanteds
                  
       ; info@(default_tys, _) <- getDefaultInfo
       ; let groups = findDefaultableGroups info wanteds
       ; traceTcS "findDefaultableGroups" $ vcat [ text "groups=" <+> ppr groups
                                                 , text "info=" <+> ppr info ]
       ; something_happeneds <- mapM (disambigGroup default_tys) groups

       ; traceTcS "applyDefaultingRules }" (ppr something_happeneds)

       ; return (or something_happeneds) }
\end{code}



\begin{code}
findDefaultableGroups 
    :: ( [Type]
       , (Bool,Bool) )  -- (Overloaded strings, extended default rules)
    -> Cts	        -- Unsolved (wanted or derived)
    -> [[(Ct,Class,TcTyVar)]]
findDefaultableGroups (default_tys, (ovl_strings, extended_defaults)) wanteds
  | null default_tys             = []
  | otherwise = filter is_defaultable_group (equivClasses cmp_tv unaries)
  where 
    unaries     :: [(Ct, Class, TcTyVar)]  -- (C tv) constraints
    non_unaries :: [Ct]             -- and *other* constraints
    
    (unaries, non_unaries) = partitionWith find_unary (bagToList wanteds)
        -- Finds unary type-class constraints
    find_unary cc 
        | Just (cls,[ty]) <- getClassPredTys_maybe (ctPred cc)
        , Just tv <- tcGetTyVar_maybe ty
        , isMetaTyVar tv  -- We might have runtime-skolems in GHCi, and 
                          -- we definitely don't want to try to assign to those!
        = Left (cc, cls, tv)
    find_unary cc = Right cc  -- Non unary or non dictionary 

    bad_tvs :: TcTyVarSet  -- TyVars mentioned by non-unaries 
    bad_tvs = foldr (unionVarSet . tyVarsOfCt) emptyVarSet non_unaries 

    cmp_tv (_,_,tv1) (_,_,tv2) = tv1 `compare` tv2

    is_defaultable_group ds@((_,_,tv):_)
        = let b1 = isTyConableTyVar tv	-- Note [Avoiding spurious errors]
              b2 = not (tv `elemVarSet` bad_tvs)
              b4 = defaultable_classes [cls | (_,cls,_) <- ds]
          in (b1 && b2 && b4)
    is_defaultable_group [] = panic "defaultable_group"

    defaultable_classes clss 
        | extended_defaults = any isInteractiveClass clss
        | otherwise         = all is_std_class clss && (any is_num_class clss)

    -- In interactive mode, or with -XExtendedDefaultRules,
    -- we default Show a to Show () to avoid graututious errors on "show []"
    isInteractiveClass cls 
        = is_num_class cls || (classKey cls `elem` [showClassKey, eqClassKey, ordClassKey])

    is_num_class cls = isNumericClass cls || (ovl_strings && (cls `hasKey` isStringClassKey))
    -- is_num_class adds IsString to the standard numeric classes, 
    -- when -foverloaded-strings is enabled

    is_std_class cls = isStandardClass cls || (ovl_strings && (cls `hasKey` isStringClassKey))
    -- Similarly is_std_class

------------------------------
disambigGroup :: [Type]                  -- The default types 
              -> [(Ct, Class, TcTyVar)]  -- All classes of the form (C a)
	      	 	          	 --  sharing same type variable
              -> TcS Bool   -- True <=> something happened, reflected in ty_binds

disambigGroup []  _grp
  = return False
disambigGroup (default_ty:default_tys) group
  = do { traceTcS "disambigGroup {" (ppr group $$ ppr default_ty)
       ; success <- tryTcS $ -- Why tryTcS? If this attempt fails, we want to 
                             -- discard all side effects from the attempt
                    do { setWantedTyBind the_tv default_ty
                       ; implics_from_defaulting <- solveInteract wanteds
                       ; MASSERT(isEmptyBag implics_from_defaulting)
                           -- I am not certain if any implications can be generated
                           -- but I am letting this fail aggressively if this ever happens.
                                     
                       ; checkAllSolved }

       ; if success then
             -- Success: record the type variable binding, and return
             do { setWantedTyBind the_tv default_ty
                ; wrapWarnTcS $ warnDefaulting wanteds default_ty
                ; traceTcS "disambigGroup succeeded }" (ppr default_ty)
                ; return True }
         else
             -- Failure: try with the next type
             do { traceTcS "disambigGroup failed, will try other default types }"
                           (ppr default_ty)
                ; disambigGroup default_tys group } }
  where
    ((_,_,the_tv):_) = group
    wanteds          = listToBag (map fstOf3 group)
\end{code}

Note [Avoiding spurious errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When doing the unification for defaulting, we check for skolem
type variables, and simply don't default them.  For example:
   f = (*)	-- Monomorphic
   g :: Num a => a -> a
   g x = f x x
Here, we get a complaint when checking the type signature for g,
that g isn't polymorphic enough; but then we get another one when
dealing with the (Num a) context arising from f's definition;
we try to unify a with Int (to default it), but find that it's
already been unified with the rigid variable from g's type sig