summaryrefslogtreecommitdiff
path: root/compiler/typecheck/TcTyClsDecls.hs
blob: ba1626ca3d23bb2ff0c760fd1af32de18377d7b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
{-
(c) The University of Glasgow 2006
(c) The AQUA Project, Glasgow University, 1996-1998


TcTyClsDecls: Typecheck type and class declarations
-}

{-# LANGUAGE CPP, TupleSections, MultiWayIf #-}
{-# LANGUAGE TypeFamilies #-}

module TcTyClsDecls (
        tcTyAndClassDecls, tcAddImplicits,

        -- Functions used by TcInstDcls to check
        -- data/type family instance declarations
        kcDataDefn, tcConDecls, dataDeclChecks, checkValidTyCon,
        tcFamTyPats, tcTyFamInstEqn,
        tcAddTyFamInstCtxt, tcMkDataFamInstCtxt, tcAddDataFamInstCtxt,
        wrongKindOfFamily, dataConCtxt
    ) where

#include "HsVersions.h"

import GhcPrelude

import HsSyn
import HscTypes
import BuildTyCl
import TcRnMonad
import TcEnv
import TcValidity
import TcHsSyn
import TcTyDecls
import TcClassDcl
import {-# SOURCE #-} TcInstDcls( tcInstDecls1 )
import TcDeriv (DerivInfo)
import TcEvidence  ( tcCoercionKind, isEmptyTcEvBinds )
import TcUnify     ( checkConstraints )
import TcHsType
import TcMType
import TysWiredIn ( unitTy )
import TcType
import RnEnv( lookupConstructorFields )
import FamInst
import FamInstEnv
import Coercion
import Type
import TyCoRep   -- for checkValidRoles
import Kind
import Class
import CoAxiom
import TyCon
import DataCon
import Id
import Var
import VarEnv
import VarSet
import Module
import Name
import NameSet
import NameEnv
import Outputable
import Maybes
import Unify
import Util
import Pair
import SrcLoc
import ListSetOps
import DynFlags
import Unique
import BasicTypes
import qualified GHC.LanguageExtensions as LangExt

import Control.Monad
import Data.List
import Data.List.NonEmpty ( NonEmpty(..) )

{-
************************************************************************
*                                                                      *
\subsection{Type checking for type and class declarations}
*                                                                      *
************************************************************************

Note [Grouping of type and class declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tcTyAndClassDecls is called on a list of `TyClGroup`s. Each group is a strongly
connected component of mutually dependent types and classes. We kind check and
type check each group separately to enhance kind polymorphism. Take the
following example:

  type Id a = a
  data X = X (Id Int)

If we were to kind check the two declarations together, we would give Id the
kind * -> *, since we apply it to an Int in the definition of X. But we can do
better than that, since Id really is kind polymorphic, and should get kind
forall (k::*). k -> k. Since it does not depend on anything else, it can be
kind-checked by itself, hence getting the most general kind. We then kind check
X, which works fine because we then know the polymorphic kind of Id, and simply
instantiate k to *.

Note [Check role annotations in a second pass]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Role inference potentially depends on the types of all of the datacons declared
in a mutually recursive group. The validity of a role annotation, in turn,
depends on the result of role inference. Because the types of datacons might
be ill-formed (see #7175 and Note [Checking GADT return types]) we must check
*all* the tycons in a group for validity before checking *any* of the roles.
Thus, we take two passes over the resulting tycons, first checking for general
validity and then checking for valid role annotations.
-}

tcTyAndClassDecls :: [TyClGroup GhcRn]      -- Mutually-recursive groups in
                                            -- dependency order
                  -> TcM ( TcGblEnv         -- Input env extended by types and
                                            -- classes
                                            -- and their implicit Ids,DataCons
                         , [InstInfo GhcRn] -- Source-code instance decls info
                         , [DerivInfo]      -- data family deriving info
                         )
-- Fails if there are any errors
tcTyAndClassDecls tyclds_s
  -- The code recovers internally, but if anything gave rise to
  -- an error we'd better stop now, to avoid a cascade
  -- Type check each group in dependency order folding the global env
  = checkNoErrs $ fold_env [] [] tyclds_s
  where
    fold_env :: [InstInfo GhcRn]
             -> [DerivInfo]
             -> [TyClGroup GhcRn]
             -> TcM (TcGblEnv, [InstInfo GhcRn], [DerivInfo])
    fold_env inst_info deriv_info []
      = do { gbl_env <- getGblEnv
           ; return (gbl_env, inst_info, deriv_info) }
    fold_env inst_info deriv_info (tyclds:tyclds_s)
      = do { (tcg_env, inst_info', deriv_info') <- tcTyClGroup tyclds
           ; setGblEnv tcg_env $
               -- remaining groups are typechecked in the extended global env.
             fold_env (inst_info' ++ inst_info)
                      (deriv_info' ++ deriv_info)
                      tyclds_s }

tcTyClGroup :: TyClGroup GhcRn
            -> TcM (TcGblEnv, [InstInfo GhcRn], [DerivInfo])
-- Typecheck one strongly-connected component of type, class, and instance decls
-- See Note [TyClGroups and dependency analysis] in HsDecls
tcTyClGroup (TyClGroup { group_tyclds = tyclds
                       , group_roles  = roles
                       , group_instds = instds })
  = do { let role_annots = mkRoleAnnotEnv roles

           -- Step 1: Typecheck the type/class declarations
       ; traceTc "---- tcTyClGroup ---- {" empty
       ; traceTc "Decls for" (ppr (map (tcdName . unLoc) tyclds))
       ; tyclss <- tcTyClDecls tyclds role_annots

           -- Step 1.5: Make sure we don't have any type synonym cycles
       ; traceTc "Starting synonym cycle check" (ppr tyclss)
       ; this_uid <- fmap thisPackage getDynFlags
       ; checkSynCycles this_uid tyclss tyclds
       ; traceTc "Done synonym cycle check" (ppr tyclss)

           -- Step 2: Perform the validity check on those types/classes
           -- We can do this now because we are done with the recursive knot
           -- Do it before Step 3 (adding implicit things) because the latter
           -- expects well-formed TyCons
       ; traceTc "Starting validity check" (ppr tyclss)
       ; tyclss <- mapM checkValidTyCl tyclss
       ; traceTc "Done validity check" (ppr tyclss)
       ; mapM_ (recoverM (return ()) . checkValidRoleAnnots role_annots) tyclss
           -- See Note [Check role annotations in a second pass]

       ; traceTc "---- end tcTyClGroup ---- }" empty

           -- Step 3: Add the implicit things;
           -- we want them in the environment because
           -- they may be mentioned in interface files
       ; tcExtendTyConEnv tyclss $
    do { gbl_env <- tcAddImplicits tyclss
       ; setGblEnv gbl_env $
    do {
            -- Step 4: check instance declarations
       ; (gbl_env, inst_info, datafam_deriv_info) <- tcInstDecls1 instds

       ; return (gbl_env, inst_info, datafam_deriv_info) } } }

tcTyClDecls :: [LTyClDecl GhcRn] -> RoleAnnotEnv -> TcM [TyCon]
tcTyClDecls tyclds role_annots
  = do {    -- Step 1: kind-check this group and returns the final
            -- (possibly-polymorphic) kind of each TyCon and Class
            -- See Note [Kind checking for type and class decls]
         tc_tycons <- kcTyClGroup tyclds
       ; traceTc "tcTyAndCl generalized kinds" (vcat (map ppr_tc_tycon tc_tycons))

            -- Step 2: type-check all groups together, returning
            -- the final TyCons and Classes
            --
            -- NB: We have to be careful here to NOT eagerly unfold
            -- type synonyms, as we have not tested for type synonym
            -- loops yet and could fall into a black hole.
       ; fixM $ \ ~rec_tyclss -> do
           { tcg_env <- getGblEnv
           ; let roles = inferRoles (tcg_src tcg_env) role_annots rec_tyclss

                 -- Populate environment with knot-tied ATyCon for TyCons
                 -- NB: if the decls mention any ill-staged data cons
                 -- (see Note [Recursion and promoting data constructors])
                 -- we will have failed already in kcTyClGroup, so no worries here
           ; tcExtendRecEnv (zipRecTyClss tc_tycons rec_tyclss) $

                 -- Also extend the local type envt with bindings giving
                 -- the (polymorphic) kind of each knot-tied TyCon or Class
                 -- See Note [Type checking recursive type and class declarations]
             tcExtendKindEnv (foldl extendEnvWithTcTyCon emptyNameEnv tc_tycons) $

                 -- Kind and type check declarations for this group
               mapM (tcTyClDecl roles) tyclds
           } }
  where
    ppr_tc_tycon tc = parens (sep [ ppr (tyConName tc) <> comma
                                  , ppr (tyConBinders tc) <> comma
                                  , ppr (tyConResKind tc) ])

zipRecTyClss :: [TcTyCon]
             -> [TyCon]           -- Knot-tied
             -> [(Name,TyThing)]
-- Build a name-TyThing mapping for the TyCons bound by decls
-- being careful not to look at the knot-tied [TyThing]
-- The TyThings in the result list must have a visible ATyCon,
-- because typechecking types (in, say, tcTyClDecl) looks at
-- this outer constructor
zipRecTyClss tc_tycons rec_tycons
  = [ (name, ATyCon (get name)) | tc_tycon <- tc_tycons, let name = getName tc_tycon ]
  where
    rec_tc_env :: NameEnv TyCon
    rec_tc_env = foldr add_tc emptyNameEnv rec_tycons

    add_tc :: TyCon -> NameEnv TyCon -> NameEnv TyCon
    add_tc tc env = foldr add_one_tc env (tc : tyConATs tc)

    add_one_tc :: TyCon -> NameEnv TyCon -> NameEnv TyCon
    add_one_tc tc env = extendNameEnv env (tyConName tc) tc

    get name = case lookupNameEnv rec_tc_env name of
                 Just tc -> tc
                 other   -> pprPanic "zipRecTyClss" (ppr name <+> ppr other)

{-
************************************************************************
*                                                                      *
                Kind checking
*                                                                      *
************************************************************************

Note [Kind checking for type and class decls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Kind checking is done thus:

   1. Make up a kind variable for each parameter of the declarations,
      and extend the kind environment (which is in the TcLclEnv)

   2. Kind check the declarations

We need to kind check all types in the mutually recursive group
before we know the kind of the type variables.  For example:

  class C a where
     op :: D b => a -> b -> b

  class D c where
     bop :: (Monad c) => ...

Here, the kind of the locally-polymorphic type variable "b"
depends on *all the uses of class D*.  For example, the use of
Monad c in bop's type signature means that D must have kind Type->Type.

Note: we don't treat type synonyms specially (we used to, in the past);
in particular, even if we have a type synonym cycle, we still kind check
it normally, and test for cycles later (checkSynCycles).  The reason
we can get away with this is because we have more systematic TYPE r
inference, which means that we can do unification between kinds that
aren't lifted (this historically was not true.)

The downside of not directly reading off the kinds off the RHS of
type synonyms in topological order is that we don't transparently
support making synonyms of types with higher-rank kinds.  But
you can always specify a CUSK directly to make this work out.
See tc269 for an example.

Open type families
~~~~~~~~~~~~~~~~~~
This treatment of type synonyms only applies to Haskell 98-style synonyms.
General type functions can be recursive, and hence, appear in `alg_decls'.

The kind of an open type family is solely determinded by its kind signature;
hence, only kind signatures participate in the construction of the initial
kind environment (as constructed by `getInitialKind'). In fact, we ignore
instances of families altogether in the following. However, we need to include
the kinds of *associated* families into the construction of the initial kind
environment. (This is handled by `allDecls').


See also Note [Kind checking recursive type and class declarations]

Note [How TcTyCons work]
o~~~~~~~~~~~~~~~~~~~~~~~~
TcTyCons are used for two distinct purposes

1.  When recovering from a type error in a type declaration,
    we want to put the erroneous TyCon in the environment in a
    way that won't lead to more errors.  We use a TcTyCon for this;
    see makeRecoveryTyCon.

2.  When checking a type/class declaration (in module TcTyClsDecls), we come
    upon knowledge of the eventual tycon in bits and pieces.

      S1) First, we use getInitialKinds to look over the user-provided
          kind signature of a tycon (including, for example, the number
          of parameters written to the tycon) to get an initial shape of
          the tycon's kind.  We record that shape in a TcTyCon.

      S2) Then, using these initial kinds, we kind-check the body of the
          tycon (class methods, data constructors, etc.), filling in the
          metavariables in the tycon's initial kind.

      S3) We then generalize to get the tycon's final, fixed
          kind. Finally, once this has happened for all tycons in a
          mutually recursive group, we can desugar the lot.

    For convenience, we store partially-known tycons in TcTyCons, which
    might store meta-variables. These TcTyCons are stored in the local
    environment in TcTyClsDecls, until the real full TyCons can be created
    during desugaring. A desugared program should never have a TcTyCon.

    A challenging piece in all of this is that we end up taking three separate
    passes over every declaration:
      - one in getInitialKind (this pass look only at the head, not the body)
      - one in kcTyClDecls (to kind-check the body)
      - a final one in tcTyClDecls (to desugar)
    In the latter two passes, we need to connect the user-written type
    variables in an LHsQTyVars with the variables in the tycon's
    inferred kind. Because the tycon might not have a CUSK, this
    matching up is, in general, quite hard to do.  (Look through the
    git history between Dec 2015 and Apr 2016 for
    TcHsType.splitTelescopeTvs!) Instead of trying, we just store the
    list of type variables to bring into scope, in the
    tyConScopedTyVars field of the TcTyCon.  These tyvars are brought
    into scope in kcTyClTyVars and tcTyClTyVars, both in TcHsType.

    In a TcTyCon, everything is zonked after the kind-checking pass (S2).
-}


-- Note [Missed opportunity to retain higher-rank kinds]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- In 'kcTyClGroup', there is a missed opportunity to make kind
-- inference work in a few more cases.  The idea is analogous
-- to Note [Single function non-recursive binding special-case]:
--
--      * If we have an SCC with a single decl, which is non-recursive,
--        instead of creating a unification variable representing the
--        kind of the decl and unifying it with the rhs, we can just
--        read the type directly of the rhs.
--
--      * Furthermore, we can update our SCC analysis to ignore
--        dependencies on declarations which have CUSKs: we don't
--        have to kind-check these all at once, since we can use
--        the CUSK to initialize the kind environment.
--
-- Unfortunately this requires reworking a bit of the code in
-- 'kcLTyClDecl' so I've decided to punt unless someone shouts about it.
--
kcTyClGroup :: [LTyClDecl GhcRn] -> TcM [TcTyCon]

-- Kind check this group, kind generalize, and return the resulting local env
-- This binds the TyCons and Classes of the group, but not the DataCons
-- See Note [Kind checking for type and class decls]
-- Third return value is Nothing if the tycon be unsaturated; otherwise,
-- the arity
kcTyClGroup decls
  = do  { mod <- getModule
        ; traceTc "---- kcTyClGroup ---- {" (text "module" <+> ppr mod $$ vcat (map ppr decls))

          -- Kind checking;
          --    1. Bind kind variables for decls
          --    2. Kind-check decls
          --    3. Generalise the inferred kinds
          -- See Note [Kind checking for type and class decls]

        ; lcl_env <- solveEqualities $
                     do { -- Step 1: Bind kind variables for all decls
                          initial_kinds <- getInitialKinds decls
                        ; traceTc "kcTyClGroup: initial kinds" $
                          ppr initial_kinds

                        -- Step 2: Set extended envt, kind-check the decls
                        ; tcExtendKindEnv initial_kinds $
                          do { mapM_ kcLTyClDecl decls
                             ; getLclEnv } }

        -- Step 3: generalisation
        -- Kind checking done for this group
        -- Now we have to kind generalize the flexis
        ; res <- concatMapM (generaliseTCD (tcl_env lcl_env)) decls

        ; traceTc "---- kcTyClGroup end ---- }" (vcat (map pp_res res))
        ; return res }

  where
    generalise :: TcTypeEnv -> Name -> TcM TcTyCon
    -- For polymorphic things this is a no-op
    generalise kind_env name
      = do { let tc = case lookupNameEnv kind_env name of
                        Just (ATcTyCon tc) -> tc
                        _ -> pprPanic "kcTyClGroup" (ppr name $$ ppr kind_env)
                 tc_binders  = tyConBinders tc
                 tc_res_kind = tyConResKind tc
                 tc_tyvars   = tyConTyVars tc
                 scoped_tvs  = tcTyConScopedTyVars tc

           ; kvs <- kindGeneralize (mkTyConKind tc_binders tc_res_kind)

           ; let all_binders = mkNamedTyConBinders Inferred kvs ++ tc_binders

           ; (env, all_binders') <- zonkTyVarBindersX emptyZonkEnv all_binders
           ; tc_res_kind'        <- zonkTcTypeToType env tc_res_kind
           ; scoped_tvs'         <- zonkSigTyVarPairs scoped_tvs

                      -- Make sure tc_kind' has the final, zonked kind variables
           ; traceTc "Generalise kind" $
             vcat [ ppr name, ppr tc_binders, ppr (mkTyConKind tc_binders tc_res_kind)
                  , ppr kvs, ppr all_binders, ppr tc_res_kind
                  , ppr all_binders', ppr tc_res_kind'
                  , ppr tc_tyvars, ppr (tcTyConScopedTyVars tc)]

           ; return (mkTcTyCon name all_binders' tc_res_kind'
                               scoped_tvs'
                               (tyConFlavour tc)) }

    generaliseTCD :: TcTypeEnv
                  -> LTyClDecl GhcRn -> TcM [TcTyCon]
    generaliseTCD kind_env (L _ decl)
      | ClassDecl { tcdLName = (L _ name), tcdATs = ats } <- decl
      = do { first <- generalise kind_env name
           ; rest <- mapM ((generaliseFamDecl kind_env) . unLoc) ats
           ; return (first : rest) }

      | FamDecl { tcdFam = fam } <- decl
      = do { res <- generaliseFamDecl kind_env fam
           ; return [res] }

      | otherwise
      = do { res <- generalise kind_env (tcdName decl)
           ; return [res] }

    generaliseFamDecl :: TcTypeEnv
                      -> FamilyDecl GhcRn -> TcM TcTyCon
    generaliseFamDecl kind_env (FamilyDecl { fdLName = L _ name })
      = generalise kind_env name

    pp_res tc = ppr (tyConName tc) <+> dcolon <+> ppr (tyConKind tc)

--------------
mkTcTyConEnv :: TcTyCon -> TcTypeEnv
mkTcTyConEnv tc = unitNameEnv (getName tc) (ATcTyCon tc)

extendEnvWithTcTyCon :: TcTypeEnv -> TcTyCon -> TcTypeEnv
-- Makes a binding to put in the local envt, binding
-- a name to a TcTyCon
extendEnvWithTcTyCon env tc
  = extendNameEnv env (getName tc) (ATcTyCon tc)

--------------
mkPromotionErrorEnv :: [LTyClDecl GhcRn] -> TcTypeEnv
-- Maps each tycon/datacon to a suitable promotion error
--    tc :-> APromotionErr TyConPE
--    dc :-> APromotionErr RecDataConPE
--    See Note [Recursion and promoting data constructors]

mkPromotionErrorEnv decls
  = foldr (plusNameEnv . mk_prom_err_env . unLoc)
          emptyNameEnv decls

mk_prom_err_env :: TyClDecl GhcRn -> TcTypeEnv
mk_prom_err_env (ClassDecl { tcdLName = L _ nm, tcdATs = ats })
  = unitNameEnv nm (APromotionErr ClassPE)
    `plusNameEnv`
    mkNameEnv [ (name, APromotionErr TyConPE)
              | L _ (FamilyDecl { fdLName = L _ name }) <- ats ]

mk_prom_err_env (DataDecl { tcdLName = L _ name
                          , tcdDataDefn = HsDataDefn { dd_cons = cons } })
  = unitNameEnv name (APromotionErr TyConPE)
    `plusNameEnv`
    mkNameEnv [ (con, APromotionErr RecDataConPE)
              | L _ con' <- cons, L _ con <- getConNames con' ]

mk_prom_err_env decl
  = unitNameEnv (tcdName decl) (APromotionErr TyConPE)
    -- Works for family declarations too

--------------
getInitialKinds :: [LTyClDecl GhcRn] -> TcM (NameEnv TcTyThing)
-- Maps each tycon to its initial kind,
-- and each datacon to a suitable promotion error
--    tc :-> ATcTyCon (tc:initial_kind)
--    dc :-> APromotionErr RecDataConPE
--    See Note [Recursion and promoting data constructors]

getInitialKinds decls
  = tcExtendKindEnv promotion_err_env $
    do { tc_kinds <- mapM (addLocM getInitialKind) decls
       ; return (foldl plusNameEnv promotion_err_env tc_kinds) }
  where
    promotion_err_env = mkPromotionErrorEnv decls

getInitialKind :: TyClDecl GhcRn
               -> TcM (NameEnv TcTyThing)
-- Allocate a fresh kind variable for each TyCon and Class
-- For each tycon, return a NameEnv with
--      name :-> ATcTyCon (TcCyCon with kind k))
-- where k is the kind of tc, derived from the LHS
--       of the definition (and probably including
--       kind unification variables)
--      Example: data T a b = ...
--      return (T, kv1 -> kv2 -> kv3)
--
-- This pass deals with (ie incorporates into the kind it produces)
--   * The kind signatures on type-variable binders
--   * The result kinds signature on a TyClDecl
--
-- No family instances are passed to getInitialKinds

getInitialKind decl@(ClassDecl { tcdLName = L _ name, tcdTyVars = ktvs, tcdATs = ats })
  = do { let cusk = hsDeclHasCusk decl
       ; (tycon, inner_prs) <-
           kcLHsQTyVars name ClassFlavour cusk True ktvs $
           do { inner_prs <- getFamDeclInitialKinds (Just cusk) ats
              ; return (constraintKind, inner_prs) }
       ; return (extendEnvWithTcTyCon inner_prs tycon) }

getInitialKind decl@(DataDecl { tcdLName = L _ name
                              , tcdTyVars = ktvs
                              , tcdDataDefn = HsDataDefn { dd_kindSig = m_sig
                                                         , dd_ND = new_or_data } })
  = do  { (tycon, _) <-
           kcLHsQTyVars name flav (hsDeclHasCusk decl) True ktvs $
           do { res_k <- case m_sig of
                           Just ksig -> tcLHsKindSig ksig
                           Nothing   -> return liftedTypeKind
              ; return (res_k, ()) }
        ; return (mkTcTyConEnv tycon) }
  where
    flav = case new_or_data of
             NewType  -> NewtypeFlavour
             DataType -> DataTypeFlavour

getInitialKind (FamDecl { tcdFam = decl })
  = getFamDeclInitialKind Nothing decl

getInitialKind decl@(SynDecl { tcdLName = L _ name
                             , tcdTyVars = ktvs
                             , tcdRhs = rhs })
  = do  { (tycon, _) <- kcLHsQTyVars name TypeSynonymFlavour
                            (hsDeclHasCusk decl)
                            True ktvs $
            do  { res_k <- case kind_annotation rhs of
                            Nothing -> newMetaKindVar
                            Just ksig -> tcLHsKindSig ksig
                ; return (res_k, ()) }
        ; return (mkTcTyConEnv tycon) }
  where
    -- Keep this synchronized with 'hsDeclHasCusk'.
    kind_annotation (L _ ty) = case ty of
        HsParTy _ lty     -> kind_annotation lty
        HsKindSig _ _ k   -> Just k
        _                 -> Nothing

---------------------------------
getFamDeclInitialKinds :: Maybe Bool  -- if assoc., CUSKness of assoc. class
                       -> [LFamilyDecl GhcRn]
                       -> TcM TcTypeEnv
getFamDeclInitialKinds mb_cusk decls
  = do { tc_kinds <- mapM (addLocM (getFamDeclInitialKind mb_cusk)) decls
       ; return (foldr plusNameEnv emptyNameEnv tc_kinds) }

getFamDeclInitialKind :: Maybe Bool  -- if assoc., CUSKness of assoc. class
                      -> FamilyDecl GhcRn
                      -> TcM TcTypeEnv
getFamDeclInitialKind mb_cusk decl@(FamilyDecl { fdLName     = L _ name
                                               , fdTyVars    = ktvs
                                               , fdResultSig = L _ resultSig
                                               , fdInfo      = info })
  = do { (tycon, _) <-
           kcLHsQTyVars name flav cusk True ktvs $
           do { res_k <- case resultSig of
                      KindSig ki                          -> tcLHsKindSig ki
                      TyVarSig (L _ (KindedTyVar _ _ ki)) -> tcLHsKindSig ki
                      _ -- open type families have * return kind by default
                        | tcFlavourIsOpen flav     -> return liftedTypeKind
                        -- closed type families have their return kind inferred
                        -- by default
                        | otherwise                -> newMetaKindVar
              ; return (res_k, ()) }
       ; return (mkTcTyConEnv tycon) }
  where
    cusk  = famDeclHasCusk mb_cusk decl
    flav  = case info of
      DataFamily         -> DataFamilyFlavour
      OpenTypeFamily     -> OpenTypeFamilyFlavour
      ClosedTypeFamily _ -> ClosedTypeFamilyFlavour

------------------------------------------------------------------------
kcLTyClDecl :: LTyClDecl GhcRn -> TcM ()
  -- See Note [Kind checking for type and class decls]
kcLTyClDecl (L loc decl)
  = setSrcSpan loc $
    tcAddDeclCtxt decl $
    do { traceTc "kcTyClDecl {" (ppr (tyClDeclLName decl))
       ; kcTyClDecl decl
       ; traceTc "kcTyClDecl done }" (ppr (tyClDeclLName decl)) }

kcTyClDecl :: TyClDecl GhcRn -> TcM ()
-- This function is used solely for its side effect on kind variables
-- NB kind signatures on the type variables and
--    result kind signature have already been dealt with
--    by getInitialKind, so we can ignore them here.

kcTyClDecl (DataDecl { tcdLName = L _ name, tcdDataDefn = defn })
  | HsDataDefn { dd_cons = cons, dd_kindSig = Just _ } <- defn
  = mapM_ (wrapLocM kcConDecl) cons
    -- hs_tvs and dd_kindSig already dealt with in getInitialKind
    -- If dd_kindSig is Just, this must be a GADT-style decl,
    --        (see invariants of DataDefn declaration)
    -- so (a) we don't need to bring the hs_tvs into scope, because the
    --        ConDecls bind all their own variables
    --    (b) dd_ctxt is not allowed for GADT-style decls, so we can ignore it

  | HsDataDefn { dd_ctxt = ctxt, dd_cons = cons } <- defn
  = kcTyClTyVars name $
    do  { _ <- tcHsContext ctxt
        ; mapM_ (wrapLocM kcConDecl) cons }

kcTyClDecl (SynDecl { tcdLName = L _ name, tcdRhs = lrhs })
  = kcTyClTyVars name $
    do  { syn_tc <- kcLookupTcTyCon name
        -- NB: check against the result kind that we allocated
        -- in getInitialKinds.
        ; discardResult $ tcCheckLHsType lrhs (tyConResKind syn_tc) }

kcTyClDecl (ClassDecl { tcdLName = L _ name
                      , tcdCtxt = ctxt, tcdSigs = sigs })
  = kcTyClTyVars name $
    do  { _ <- tcHsContext ctxt
        ; mapM_ (wrapLocM kc_sig)     sigs }
  where
    kc_sig (ClassOpSig _ _ nms op_ty) = kcHsSigType nms op_ty
    kc_sig _                          = return ()

kcTyClDecl (FamDecl (FamilyDecl { fdLName  = L _ fam_tc_name
                                , fdInfo   = fd_info }))
-- closed type families look at their equations, but other families don't
-- do anything here
  = case fd_info of
      ClosedTypeFamily (Just eqns) ->
        do { fam_tc <- kcLookupTcTyCon fam_tc_name
           ; mapM_ (kcTyFamInstEqn fam_tc) eqns }
      _ -> return ()

-------------------
kcConDecl :: ConDecl GhcRn -> TcM ()
kcConDecl (ConDeclH98 { con_name = name, con_ex_tvs = ex_tvs
                      , con_mb_cxt = ex_ctxt, con_args = args })
  = addErrCtxt (dataConCtxtName [name]) $
    do { _ <- tcExplicitTKBndrs ex_tvs $ \ _ ->
              do { _ <- tcHsMbContext ex_ctxt
                 ; mapM_ (tcHsOpenType . getBangType) (hsConDeclArgTys args)
                 ; return (panic "kcConDecl", emptyVarSet) }
       ; return () }

kcConDecl (ConDeclGADT { con_names = names
                       , con_qvars = qtvs, con_mb_cxt = cxt
                       , con_args = args, con_res_ty = res_ty })
  | HsQTvs { hsq_implicit = implicit_tkv_nms
           , hsq_explicit = explicit_tkv_nms } <- qtvs
  = -- Even though the data constructor's type is closed, we
    -- must still kind-check the type, because that may influence
    -- the inferred kind of the /type/ constructor.  Example:
    --    data T f a where
    --      MkT :: f a -> T f a
    -- If we don't look at MkT we won't get the correct kind
    -- for the type constructor T
    addErrCtxt (dataConCtxtName names) $
    do { _ <- tcImplicitTKBndrs implicit_tkv_nms $
              tcExplicitTKBndrs explicit_tkv_nms $ \ _ ->
              do { _ <- tcHsMbContext cxt
                 ; mapM_ (tcHsOpenType . getBangType) (hsConDeclArgTys args)
                 ; _ <- tcHsOpenType res_ty
                 ; return (panic "kcConDecl", emptyVarSet) }
         ; return () }

{-
Note [Recursion and promoting data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We don't want to allow promotion in a strongly connected component
when kind checking.

Consider:
  data T f = K (f (K Any))

When kind checking the `data T' declaration the local env contains the
mappings:
  T -> ATcTyCon <some initial kind>
  K -> APromotionErr

APromotionErr is only used for DataCons, and only used during type checking
in tcTyClGroup.


************************************************************************
*                                                                      *
\subsection{Type checking}
*                                                                      *
************************************************************************

Note [Type checking recursive type and class declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
At this point we have completed *kind-checking* of a mutually
recursive group of type/class decls (done in kcTyClGroup). However,
we discarded the kind-checked types (eg RHSs of data type decls);
note that kcTyClDecl returns ().  There are two reasons:

  * It's convenient, because we don't have to rebuild a
    kinded HsDecl (a fairly elaborate type)

  * It's necessary, because after kind-generalisation, the
    TyCons/Classes may now be kind-polymorphic, and hence need
    to be given kind arguments.

Example:
       data T f a = MkT (f a) (T f a)
During kind-checking, we give T the kind T :: k1 -> k2 -> *
and figure out constraints on k1, k2 etc. Then we generalise
to get   T :: forall k. (k->*) -> k -> *
So now the (T f a) in the RHS must be elaborated to (T k f a).

However, during tcTyClDecl of T (above) we will be in a recursive
"knot". So we aren't allowed to look at the TyCon T itself; we are only
allowed to put it (lazily) in the returned structures.  But when
kind-checking the RHS of T's decl, we *do* need to know T's kind (so
that we can correctly elaboarate (T k f a).  How can we get T's kind
without looking at T?  Delicate answer: during tcTyClDecl, we extend

  *Global* env with T -> ATyCon (the (not yet built) final TyCon for T)
  *Local*  env with T -> ATcTyCon (TcTyCon with the polymorphic kind of T)

Then:

  * During TcHsType.kcTyVar we look in the *local* env, to get the
    known kind for T.

  * But in TcHsType.ds_type (and ds_var_app in particular) we look in
    the *global* env to get the TyCon. But we must be careful not to
    force the TyCon or we'll get a loop.

This fancy footwork (with two bindings for T) is only necessary for the
TyCons or Classes of this recursive group.  Earlier, finished groups,
live in the global env only.

See also Note [Kind checking recursive type and class declarations]

Note [Kind checking recursive type and class declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Before we can type-check the decls, we must kind check them. This
is done by establishing an "initial kind", which is a rather uninformed
guess at a tycon's kind (by counting arguments, mainly) and then
using this initial kind for recursive occurrences.

The initial kind is stored in exactly the same way during kind-checking
as it is during type-checking (Note [Type checking recursive type and class
declarations]): in the *local* environment, with ATcTyCon. But we still
must store *something* in the *global* environment. Even though we
discard the result of kind-checking, we sometimes need to produce error
messages. These error messages will want to refer to the tycons being
checked, except that they don't exist yet, and it would be Terribly
Annoying to get the error messages to refer back to HsSyn. So we
create a TcTyCon and put it in the global env. This tycon can
print out its name and knows its kind,
but any other action taken on it will panic. Note
that TcTyCons are *not* knot-tied, unlike the rather valid but
knot-tied ones that occur during type-checking.

Note [Declarations for wired-in things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For wired-in things we simply ignore the declaration
and take the wired-in information.  That avoids complications.
e.g. the need to make the data constructor worker name for
     a constraint tuple match the wired-in one
-}

tcTyClDecl :: RolesInfo -> LTyClDecl GhcRn -> TcM TyCon
tcTyClDecl roles_info (L loc decl)
  | Just thing <- wiredInNameTyThing_maybe (tcdName decl)
  = case thing of -- See Note [Declarations for wired-in things]
      ATyCon tc -> return tc
      _ -> pprPanic "tcTyClDecl" (ppr thing)

  | otherwise
  = setSrcSpan loc $ tcAddDeclCtxt decl $
    do { traceTc "---- tcTyClDecl ---- {" (ppr decl)
       ; tc <- tcTyClDecl1 Nothing roles_info decl
       ; traceTc "---- tcTyClDecl end ---- }" (ppr tc)
       ; return tc }

  -- "type family" declarations
tcTyClDecl1 :: Maybe Class -> RolesInfo -> TyClDecl GhcRn -> TcM TyCon
tcTyClDecl1 parent _roles_info (FamDecl { tcdFam = fd })
  = tcFamDecl1 parent fd

  -- "type" synonym declaration
tcTyClDecl1 _parent roles_info
            (SynDecl { tcdLName = L _ tc_name, tcdRhs = rhs })
  = ASSERT( isNothing _parent )
    tcTyClTyVars tc_name $ \ binders res_kind ->
    tcTySynRhs roles_info tc_name binders res_kind rhs

  -- "data/newtype" declaration
tcTyClDecl1 _parent roles_info
            (DataDecl { tcdLName = L _ tc_name, tcdDataDefn = defn })
  = ASSERT( isNothing _parent )
    tcTyClTyVars tc_name $ \ tycon_binders res_kind ->
    tcDataDefn roles_info tc_name tycon_binders res_kind defn

tcTyClDecl1 _parent roles_info
            (ClassDecl { tcdLName = L _ class_name
            , tcdCtxt = ctxt, tcdMeths = meths
            , tcdFDs = fundeps, tcdSigs = sigs
            , tcdATs = ats, tcdATDefs = at_defs })
  = ASSERT( isNothing _parent )
    do { clas <- fixM $ \ clas ->
            -- We need the knot because 'clas' is passed into tcClassATs
            tcTyClTyVars class_name $ \ binders res_kind ->
            do { MASSERT( isConstraintKind res_kind )
               ; traceTc "tcClassDecl 1" (ppr class_name $$ ppr binders)
               ; let tycon_name = class_name        -- We use the same name
                     roles = roles_info tycon_name  -- for TyCon and Class

               ; ctxt' <- solveEqualities $ tcHsContext ctxt
               ; ctxt' <- zonkTcTypeToTypes emptyZonkEnv ctxt'
                       -- Squeeze out any kind unification variables
               ; fds'  <- mapM (addLocM tc_fundep) fundeps
               ; sig_stuff <- tcClassSigs class_name sigs meths
               ; at_stuff <- tcClassATs class_name clas ats at_defs
               ; mindef <- tcClassMinimalDef class_name sigs sig_stuff
               -- TODO: Allow us to distinguish between abstract class,
               -- and concrete class with no methods (maybe by
               -- specifying a trailing where or not
               ; is_boot <- tcIsHsBootOrSig
               ; let body | is_boot, null ctxt', null at_stuff, null sig_stuff
                          = Nothing
                          | otherwise
                          = Just (ctxt', at_stuff, sig_stuff, mindef)
               ; clas <- buildClass class_name binders roles fds' body
               ; traceTc "tcClassDecl" (ppr fundeps $$ ppr binders $$
                                        ppr fds')
               ; return clas }

         ; return (classTyCon clas) }
  where
    tc_fundep (tvs1, tvs2) = do { tvs1' <- mapM (tcLookupTyVar . unLoc) tvs1 ;
                                ; tvs2' <- mapM (tcLookupTyVar . unLoc) tvs2 ;
                                ; return (tvs1', tvs2') }

tcFamDecl1 :: Maybe Class -> FamilyDecl GhcRn -> TcM TyCon
tcFamDecl1 parent (FamilyDecl { fdInfo = fam_info, fdLName = tc_lname@(L _ tc_name)
                              , fdResultSig = L _ sig
                              , fdInjectivityAnn = inj })
  | DataFamily <- fam_info
  = tcTyClTyVars tc_name $ \ binders res_kind -> do
  { traceTc "data family:" (ppr tc_name)
  ; checkFamFlag tc_name

  -- Check the kind signature, if any.
  -- Data families might have a variable return kind.
  -- See See Note [Arity of data families] in FamInstEnv.
  ; (extra_binders, final_res_kind) <- tcDataKindSig binders res_kind
  ; checkTc (tcIsStarKind final_res_kind
             || isJust (tcGetCastedTyVar_maybe final_res_kind))
            (badKindSig False res_kind)

  ; tc_rep_name <- newTyConRepName tc_name
  ; let tycon = mkFamilyTyCon tc_name (binders `chkAppend` extra_binders)
                              final_res_kind
                              (resultVariableName sig)
                              (DataFamilyTyCon tc_rep_name)
                              parent NotInjective
  ; return tycon }

  | OpenTypeFamily <- fam_info
  = tcTyClTyVars tc_name $ \ binders res_kind -> do
  { traceTc "open type family:" (ppr tc_name)
  ; checkFamFlag tc_name
  ; inj' <- tcInjectivity binders inj
  ; let tycon = mkFamilyTyCon tc_name binders res_kind
                               (resultVariableName sig) OpenSynFamilyTyCon
                               parent inj'
  ; return tycon }

  | ClosedTypeFamily mb_eqns <- fam_info
  = -- Closed type families are a little tricky, because they contain the definition
    -- of both the type family and the equations for a CoAxiom.
    do { traceTc "Closed type family:" (ppr tc_name)
         -- the variables in the header scope only over the injectivity
         -- declaration but this is not involved here
       ; (inj', binders, res_kind)
            <- tcTyClTyVars tc_name
               $ \ binders res_kind ->
               do { inj' <- tcInjectivity binders inj
                  ; return (inj', binders, res_kind) }

       ; checkFamFlag tc_name -- make sure we have -XTypeFamilies

         -- If Nothing, this is an abstract family in a hs-boot file;
         -- but eqns might be empty in the Just case as well
       ; case mb_eqns of
           Nothing   ->
               return $ mkFamilyTyCon tc_name binders res_kind
                                      (resultVariableName sig)
                                      AbstractClosedSynFamilyTyCon parent
                                      inj'
           Just eqns -> do {

         -- Process the equations, creating CoAxBranches
       ; let tc_fam_tc = mkTcTyCon tc_name binders res_kind
                                   [] ClosedTypeFamilyFlavour

       ; branches <- mapM (tcTyFamInstEqn tc_fam_tc Nothing) eqns
         -- Do not attempt to drop equations dominated by earlier
         -- ones here; in the case of mutual recursion with a data
         -- type, we get a knot-tying failure.  Instead we check
         -- for this afterwards, in TcValidity.checkValidCoAxiom
         -- Example: tc265

         -- Create a CoAxiom, with the correct src location. It is Vitally
         -- Important that we do not pass the branches into
         -- newFamInstAxiomName. They have types that have been zonked inside
         -- the knot and we will die if we look at them. This is OK here
         -- because there will only be one axiom, so we don't need to
         -- differentiate names.
         -- See [Zonking inside the knot] in TcHsType
       ; co_ax_name <- newFamInstAxiomName tc_lname []

       ; let mb_co_ax
              | null eqns = Nothing   -- mkBranchedCoAxiom fails on empty list
              | otherwise = Just (mkBranchedCoAxiom co_ax_name fam_tc branches)

             fam_tc = mkFamilyTyCon tc_name binders res_kind (resultVariableName sig)
                      (ClosedSynFamilyTyCon mb_co_ax) parent inj'

         -- We check for instance validity later, when doing validity
         -- checking for the tycon. Exception: checking equations
         -- overlap done by dropDominatedAxioms
       ; return fam_tc } }

  | otherwise = panic "tcFamInst1"  -- Silence pattern-exhaustiveness checker


-- | Maybe return a list of Bools that say whether a type family was declared
-- injective in the corresponding type arguments. Length of the list is equal to
-- the number of arguments (including implicit kind/coercion arguments).
-- True on position
-- N means that a function is injective in its Nth argument. False means it is
-- not.
tcInjectivity :: [TyConBinder] -> Maybe (LInjectivityAnn GhcRn)
              -> TcM Injectivity
tcInjectivity _ Nothing
  = return NotInjective

  -- User provided an injectivity annotation, so for each tyvar argument we
  -- check whether a type family was declared injective in that argument. We
  -- return a list of Bools, where True means that corresponding type variable
  -- was mentioned in lInjNames (type family is injective in that argument) and
  -- False means that it was not mentioned in lInjNames (type family is not
  -- injective in that type variable). We also extend injectivity information to
  -- kind variables, so if a user declares:
  --
  --   type family F (a :: k1) (b :: k2) = (r :: k3) | r -> a
  --
  -- then we mark both `a` and `k1` as injective.
  -- NB: the return kind is considered to be *input* argument to a type family.
  -- Since injectivity allows to infer input arguments from the result in theory
  -- we should always mark the result kind variable (`k3` in this example) as
  -- injective.  The reason is that result type has always an assigned kind and
  -- therefore we can always infer the result kind if we know the result type.
  -- But this does not seem to be useful in any way so we don't do it.  (Another
  -- reason is that the implementation would not be straightforward.)
tcInjectivity tcbs (Just (L loc (InjectivityAnn _ lInjNames)))
  = setSrcSpan loc $
    do { let tvs = binderVars tcbs
       ; dflags <- getDynFlags
       ; checkTc (xopt LangExt.TypeFamilyDependencies dflags)
                 (text "Illegal injectivity annotation" $$
                  text "Use TypeFamilyDependencies to allow this")
       ; inj_tvs <- mapM (tcLookupTyVar . unLoc) lInjNames
       ; inj_tvs <- mapM zonkTcTyVarToTyVar inj_tvs -- zonk the kinds
       ; let inj_ktvs = filterVarSet isTyVar $  -- no injective coercion vars
                        closeOverKinds (mkVarSet inj_tvs)
       ; let inj_bools = map (`elemVarSet` inj_ktvs) tvs
       ; traceTc "tcInjectivity" (vcat [ ppr tvs, ppr lInjNames, ppr inj_tvs
                                       , ppr inj_ktvs, ppr inj_bools ])
       ; return $ Injective inj_bools }

tcTySynRhs :: RolesInfo
           -> Name
           -> [TyConBinder] -> Kind
           -> LHsType GhcRn -> TcM TyCon
tcTySynRhs roles_info tc_name binders res_kind hs_ty
  = do { env <- getLclEnv
       ; traceTc "tc-syn" (ppr tc_name $$ ppr (tcl_env env))
       ; rhs_ty <- solveEqualities $ tcCheckLHsType hs_ty res_kind
       ; rhs_ty <- zonkTcTypeToType emptyZonkEnv rhs_ty
       ; let roles = roles_info tc_name
             tycon = buildSynTyCon tc_name binders res_kind roles rhs_ty
       ; return tycon }

tcDataDefn :: RolesInfo -> Name
           -> [TyConBinder] -> Kind
           -> HsDataDefn GhcRn -> TcM TyCon
  -- NB: not used for newtype/data instances (whether associated or not)
tcDataDefn roles_info
           tc_name tycon_binders res_kind
         (HsDataDefn { dd_ND = new_or_data, dd_cType = cType
                     , dd_ctxt = ctxt, dd_kindSig = mb_ksig
                     , dd_cons = cons })
 =  do { tcg_env         <- getGblEnv
       ; let hsc_src = tcg_src tcg_env
       ; (extra_bndrs, final_res_kind) <- tcDataKindSig tycon_binders res_kind
       ; unless (mk_permissive_kind hsc_src cons) $
         checkTc (tcIsStarKind final_res_kind) (badKindSig True res_kind)

       ; let final_bndrs  = tycon_binders `chkAppend` extra_bndrs
             roles        = roles_info tc_name

       ; stupid_tc_theta <- solveEqualities $ tcHsContext ctxt
       ; stupid_theta    <- zonkTcTypeToTypes emptyZonkEnv
                                              stupid_tc_theta
       ; kind_signatures <- xoptM LangExt.KindSignatures

             -- Check that we don't use kind signatures without Glasgow extensions
       ; when (isJust mb_ksig) $
         checkTc (kind_signatures) (badSigTyDecl tc_name)

       ; gadt_syntax <- dataDeclChecks tc_name new_or_data stupid_theta cons

       ; tycon <- fixM $ \ tycon -> do
             { let res_ty = mkTyConApp tycon (mkTyVarTys (binderVars final_bndrs))
             ; data_cons <- tcConDecls tycon (final_bndrs, res_ty) cons
             ; tc_rhs    <- mk_tc_rhs hsc_src tycon data_cons
             ; tc_rep_nm <- newTyConRepName tc_name
             ; return (mkAlgTyCon tc_name
                                  final_bndrs
                                  final_res_kind
                                  roles
                                  (fmap unLoc cType)
                                  stupid_theta tc_rhs
                                  (VanillaAlgTyCon tc_rep_nm)
                                  gadt_syntax) }
       ; traceTc "tcDataDefn" (ppr tc_name $$ ppr tycon_binders $$ ppr extra_bndrs)
       ; return tycon }
  where
    -- Abstract data types in hsig files can have arbitrary kinds,
    -- because they may be implemented by type synonyms
    -- (which themselves can have arbitrary kinds, not just *)
    mk_permissive_kind HsigFile [] = True
    mk_permissive_kind _ _ = False

    -- In hs-boot, a 'data' declaration with no constructors
    -- indicates a nominally distinct abstract data type.
    mk_tc_rhs HsBootFile _ []
      = return AbstractTyCon

    mk_tc_rhs HsigFile _ [] -- ditto
      = return AbstractTyCon

    mk_tc_rhs _ tycon data_cons
      = case new_or_data of
          DataType -> return (mkDataTyConRhs data_cons)
          NewType  -> ASSERT( not (null data_cons) )
                      mkNewTyConRhs tc_name tycon (head data_cons)

{-
************************************************************************
*                                                                      *
               Typechecking associated types (in class decls)
               (including the associated-type defaults)
*                                                                      *
************************************************************************

Note [Associated type defaults]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The following is an example of associated type defaults:
             class C a where
               data D a

               type F a b :: *
               type F a b = [a]        -- Default

Note that we can get default definitions only for type families, not data
families.
-}

tcClassATs :: Name                   -- The class name (not knot-tied)
           -> Class                  -- The class parent of this associated type
           -> [LFamilyDecl GhcRn]    -- Associated types.
           -> [LTyFamDefltEqn GhcRn] -- Associated type defaults.
           -> TcM [ClassATItem]
tcClassATs class_name cls ats at_defs
  = do {  -- Complain about associated type defaults for non associated-types
         sequence_ [ failWithTc (badATErr class_name n)
                   | n <- map at_def_tycon at_defs
                   , not (n `elemNameSet` at_names) ]
       ; mapM tc_at ats }
  where
    at_def_tycon :: LTyFamDefltEqn GhcRn -> Name
    at_def_tycon (L _ eqn) = unLoc (feqn_tycon eqn)

    at_fam_name :: LFamilyDecl GhcRn -> Name
    at_fam_name (L _ decl) = unLoc (fdLName decl)

    at_names = mkNameSet (map at_fam_name ats)

    at_defs_map :: NameEnv [LTyFamDefltEqn GhcRn]
    -- Maps an AT in 'ats' to a list of all its default defs in 'at_defs'
    at_defs_map = foldr (\at_def nenv -> extendNameEnv_C (++) nenv
                                          (at_def_tycon at_def) [at_def])
                        emptyNameEnv at_defs

    tc_at at = do { fam_tc <- addLocM (tcFamDecl1 (Just cls)) at
                  ; let at_defs = lookupNameEnv at_defs_map (at_fam_name at)
                                  `orElse` []
                  ; atd <- tcDefaultAssocDecl fam_tc at_defs
                  ; return (ATI fam_tc atd) }

-------------------------
tcDefaultAssocDecl :: TyCon                    -- ^ Family TyCon (not knot-tied)
                   -> [LTyFamDefltEqn GhcRn]        -- ^ Defaults
                   -> TcM (Maybe (Type, SrcSpan))   -- ^ Type checked RHS
tcDefaultAssocDecl _ []
  = return Nothing  -- No default declaration

tcDefaultAssocDecl _ (d1:_:_)
  = failWithTc (text "More than one default declaration for"
                <+> ppr (feqn_tycon (unLoc d1)))

tcDefaultAssocDecl fam_tc [L loc (FamEqn { feqn_tycon = L _ tc_name
                                         , feqn_pats = hs_tvs
                                         , feqn_rhs = rhs })]
  | HsQTvs { hsq_implicit = imp_vars, hsq_explicit = exp_vars } <- hs_tvs
  = -- See Note [Type-checking default assoc decls]
    setSrcSpan loc $
    tcAddFamInstCtxt (text "default type instance") tc_name $
    do { traceTc "tcDefaultAssocDecl" (ppr tc_name)
       ; let fam_tc_name = tyConName fam_tc
             fam_arity = length (tyConVisibleTyVars fam_tc)

       -- Kind of family check
       ; ASSERT( fam_tc_name == tc_name )
         checkTc (isTypeFamilyTyCon fam_tc) (wrongKindOfFamily fam_tc)

       -- Arity check
       ; checkTc (exp_vars `lengthIs` fam_arity)
                 (wrongNumberOfParmsErr fam_arity)

       -- Typecheck RHS
       ; let all_vars = imp_vars ++ map hsLTyVarName exp_vars
             pats     = map hsLTyVarBndrToType exp_vars

          -- NB: Use tcFamTyPats, not tcTyClTyVars. The latter expects to get
          -- the LHsQTyVars used for declaring a tycon, but the names here
          -- are different.

          -- You might think we should pass in some ClsInstInfo, as we're looking
          -- at an associated type. But this would be wrong, because an associated
          -- type default LHS can mention *different* type variables than the
          -- enclosing class. So it's treated more as a freestanding beast.
       ; (pats', rhs_ty)
           <- tcFamTyPats fam_tc Nothing all_vars pats
              (kcTyFamEqnRhs Nothing rhs) $
              \tvs pats rhs_kind ->
              do { rhs_ty <- solveEqualities $
                             tcCheckLHsType rhs rhs_kind

                     -- Zonk the patterns etc into the Type world
                 ; (ze, _) <- zonkTyBndrsX emptyZonkEnv tvs
                 ; pats'   <- zonkTcTypeToTypes ze pats
                 ; rhs_ty'  <- zonkTcTypeToType ze rhs_ty
                 ; return (pats', rhs_ty') }

         -- See Note [Type-checking default assoc decls]
       ; case tcMatchTys pats' (mkTyVarTys (tyConTyVars fam_tc)) of
           Just subst -> return (Just (substTyUnchecked subst rhs_ty, loc) )
           Nothing    -> failWithTc (defaultAssocKindErr fam_tc)
           -- We check for well-formedness and validity later,
           -- in checkValidClass
     }

{- Note [Type-checking default assoc decls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this default declaration for an associated type

   class C a where
      type F (a :: k) b :: *
      type F x y = Proxy x -> y

Note that the class variable 'a' doesn't scope over the default assoc
decl (rather oddly I think), and (less oddly) neither does the second
argument 'b' of the associated type 'F', or the kind variable 'k'.
Instead, the default decl is treated more like a top-level type
instance.

However we store the default rhs (Proxy x -> y) in F's TyCon, using
F's own type variables, so we need to convert it to (Proxy a -> b).
We do this by calling tcMatchTys to match them up.  This also ensures
that x's kind matches a's and similarly for y and b.  The error
message isn't great, mind you.  (Trac #11361 was caused by not doing a
proper tcMatchTys here.)  -}

-------------------------
kcTyFamInstEqn :: TcTyCon -> LTyFamInstEqn GhcRn -> TcM ()
kcTyFamInstEqn tc_fam_tc
    (L loc (HsIB { hsib_vars = tv_names
                 , hsib_body = FamEqn { feqn_tycon  = L _ eqn_tc_name
                                      , feqn_pats   = pats
                                      , feqn_rhs    = hs_ty }}))
  = setSrcSpan loc $
    do { traceTc "kcTyFamInstEqn" (vcat
           [ text "tc_name =" <+> ppr eqn_tc_name
           , text "fam_tc =" <+> ppr tc_fam_tc <+> dcolon <+> ppr (tyConKind tc_fam_tc)
           , text "hsib_vars =" <+> ppr tv_names
           , text "feqn_pats =" <+> ppr pats ])
       ; checkTc (fam_name == eqn_tc_name)
                 (wrongTyFamName fam_name eqn_tc_name)
       ; discardResult $
         tc_fam_ty_pats tc_fam_tc Nothing -- not an associated type
                        tv_names pats (kcTyFamEqnRhs Nothing hs_ty) }
  where
    fam_name = tyConName tc_fam_tc

-- Infer the kind of the type on the RHS of a type family eqn. Then use
-- this kind to check the kind of the LHS of the equation. This is useful
-- as the callback to tc_fam_ty_pats and the kind-checker to
-- tcFamTyPats.
kcTyFamEqnRhs :: Maybe ClsInstInfo
              -> LHsType GhcRn        -- ^ Eqn RHS
              -> TcKind               -- ^ Inferred kind of left-hand side
              -> TcM ([TcType], TcKind)  -- ^ New pats, inst'ed kind of left-hand side
kcTyFamEqnRhs mb_clsinfo rhs_hs_ty lhs_ki
  = do { -- It's still possible the lhs_ki has some foralls. Instantiate these away.
         (new_pats, insted_lhs_ki)
           <- instantiateTyUntilN mb_kind_env 0 lhs_ki

       ; traceTc "kcTyFamEqnRhs" (vcat
           [ text "rhs_hs_ty =" <+> ppr rhs_hs_ty
           , text "lhs_ki =" <+> ppr lhs_ki
           , text "insted_lhs_ki =" <+> ppr insted_lhs_ki
           , text "new_pats =" <+> ppr new_pats
           ])

       ; _ <- tcCheckLHsType rhs_hs_ty insted_lhs_ki

       ; return (new_pats, insted_lhs_ki) }
  where
    mb_kind_env = thdOf3 <$> mb_clsinfo

tcTyFamInstEqn :: TcTyCon -> Maybe ClsInstInfo -> LTyFamInstEqn GhcRn
               -> TcM CoAxBranch
-- Needs to be here, not in TcInstDcls, because closed families
-- (typechecked here) have TyFamInstEqns
tcTyFamInstEqn fam_tc mb_clsinfo
    (L loc (HsIB { hsib_vars = tv_names
                 , hsib_body = FamEqn { feqn_tycon  = L _ eqn_tc_name
                                      , feqn_pats   = pats
                                      , feqn_rhs    = hs_ty }}))
  = ASSERT( getName fam_tc == eqn_tc_name )
    setSrcSpan loc $
    tcFamTyPats fam_tc mb_clsinfo tv_names pats
                (kcTyFamEqnRhs mb_clsinfo hs_ty) $
                    \tvs pats res_kind ->
    do { rhs_ty <- solveEqualities $ tcCheckLHsType hs_ty res_kind

       ; (ze, tvs') <- zonkTyBndrsX emptyZonkEnv tvs
       ; pats'      <- zonkTcTypeToTypes ze pats
       ; rhs_ty'    <- zonkTcTypeToType ze rhs_ty
       ; traceTc "tcTyFamInstEqn" (ppr fam_tc <+> pprTyVars tvs')
          -- don't print out the pats here, as they might be zonked inside the knot
       ; return (mkCoAxBranch tvs' [] pats' rhs_ty'
                              (map (const Nominal) tvs')
                              loc) }

kcDataDefn :: Maybe (VarEnv Kind) -- ^ Possibly, instantiations for vars
                                  -- (associated types only)
           -> DataFamInstDecl GhcRn
           -> TcKind              -- ^ the kind of the tycon applied to pats
           -> TcM ([TcType], TcKind)
             -- ^ the kind signature might force instantiation
             -- of the tycon; this returns any extra args and the inst'ed kind
             -- See Note [Instantiating a family tycon]
-- Used for 'data instance' only
-- Ordinary 'data' is handled by kcTyClDec
kcDataDefn mb_kind_env
           (DataFamInstDecl { dfid_eqn = HsIB { hsib_body =
              FamEqn { feqn_tycon  = fam_name
                     , feqn_pats   = pats
                     , feqn_fixity = fixity
                     , feqn_rhs    = HsDataDefn { dd_ctxt = ctxt
                                                , dd_cons = cons
                                                , dd_kindSig = mb_kind } }}})
           res_k
  = do  { _ <- tcHsContext ctxt
        ; checkNoErrs $ mapM_ (wrapLocM kcConDecl) cons
          -- See Note [Failing early in kcDataDefn]
        ; exp_res_kind <- case mb_kind of
            Nothing -> return liftedTypeKind
            Just k  -> tcLHsKindSig k

          -- The expected type might have a forall at the type. Normally, we
          -- can't skolemise in kinds because we don't have type-level lambda.
          -- But here, we're at the top-level of an instance declaration, so
          -- we actually have a place to put the regeneralised variables.
          -- Thus: skolemise away. cf. Inst.deeplySkolemise and TcUnify.tcSkolemise
          -- Examples in indexed-types/should_compile/T12369
        ; let (tvs_to_skolemise, inner_res_kind) = tcSplitForAllTys exp_res_kind

        ; (skol_subst, tvs') <- tcInstSkolTyVars tvs_to_skolemise
            -- we don't need to do anything substantive with the tvs' because the
            -- quantifyTyVars in tcFamTyPats will catch them.

        ; let inner_res_kind' = substTyAddInScope skol_subst inner_res_kind
              tv_prs          = zip (map tyVarName tvs_to_skolemise) tvs'
              skol_info       = SigSkol InstDeclCtxt exp_res_kind tv_prs

        ; (ev_binds, (_, new_args, co))
            <- solveEqualities $
               checkConstraints skol_info tvs' [] $
               checkExpectedKindX mb_kind_env pp_fam_app
                                  bogus_ty res_k inner_res_kind'

        ; let Pair lhs_ki rhs_ki = tcCoercionKind co

        ; when debugIsOn $
          do { (_, ev_binds) <- zonkTcEvBinds emptyZonkEnv ev_binds
             ; MASSERT( isEmptyTcEvBinds ev_binds )
             ; lhs_ki <- zonkTcType lhs_ki
             ; rhs_ki <- zonkTcType rhs_ki
             ; MASSERT( lhs_ki `tcEqType` rhs_ki ) }

        ; return (new_args, lhs_ki) }
  where
    bogus_ty   = pprPanic "kcDataDefn" (ppr fam_name <+> ppr pats)
    pp_fam_app = pprFamInstLHS fam_name pats fixity (unLoc ctxt) mb_kind

{-
Kind check type patterns and kind annotate the embedded type variables.
     type instance F [a] = rhs

 * Here we check that a type instance matches its kind signature, but we do
   not check whether there is a pattern for each type index; the latter
   check is only required for type synonym instances.

Note [tc_fam_ty_pats vs tcFamTyPats]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tc_fam_ty_pats does the type checking of the patterns, but it doesn't
zonk or generate any desugaring. It is used when kind-checking closed
type families.

tcFamTyPats type checks the patterns, zonks, and then calls thing_inside
to generate a desugaring. It is used during type-checking (not kind-checking).

Note [Type-checking type patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When typechecking the patterns of a family instance declaration, we can't
rely on using the family TyCon itself, because this is sometimes called
from within a type-checking knot. (Specifically for closed type families.)
The TcTyCon gives just enough information to do the job.

See also Note [tc_fam_ty_pats vs tcFamTyPats]

Note [Instantiating a family tycon]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's possible that kind-checking the result of a family tycon applied to
its patterns will instantiate the tycon further. For example, we might
have

  type family F :: k where
    F = Int
    F = Maybe

After checking (F :: forall k. k) (with no visible patterns), we still need
to instantiate the k. With data family instances, this problem can be even
more intricate, due to Note [Arity of data families] in FamInstEnv. See
indexed-types/should_compile/T12369 for an example.

So, the kind-checker must return both the new args (that is, Type
(Type -> Type) for the equations above) and the instantiated kind.

Because we don't need this information in the kind-checking phase of
checking closed type families, we don't require these extra pieces of
information in tc_fam_ty_pats. See also Note [tc_fam_ty_pats vs tcFamTyPats].

Note [Failing early in kcDataDefn]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to use checkNoErrs when calling kcConDecl. This is because kcConDecl
calls tcConDecl, which checks that the return type of a GADT-like constructor
is actually an instance of the type head. Without the checkNoErrs, potentially
two bad things could happen:

 1) Duplicate error messages, because tcConDecl will be called again during
    *type* checking (as opposed to kind checking)
 2) If we just keep blindly forging forward after both kind checking and type
    checking, we can get a panic in rejigConRes. See Trac #8368.
-}

-----------------
tc_fam_ty_pats :: TcTyCon    -- The family TcTyCon
                             -- See Note [Type-checking type patterns]
               -> Maybe ClsInstInfo
               -> [Name]              -- Bound kind/type variable names
               -> HsTyPats GhcRn      -- Type patterns
               -> (TcKind -> TcM r)   -- Kind checker for RHS
               -> TcM ( [TcTyVar]     -- Returns the type-checked patterns,
                      , [TcType]      -- the type variables that scope over
                      , r )           -- them, and the thing inside
-- Check the type patterns of a type or data family instance
--     type instance F <pat1> <pat2> = <type>
-- The 'tyvars' are the free type variables of pats
--
-- NB: The family instance declaration may be an associated one,
-- nested inside an instance decl, thus
--        instance C [a] where
--          type F [a] = ...
-- In that case, the type variable 'a' will *already be in scope*
-- (and, if C is poly-kinded, so will its kind parameter).

tc_fam_ty_pats tc_fam_tc mb_clsinfo tv_names arg_pats
               kind_checker
  = do { -- First, check the arity.
         -- If we wait until validity checking, we'll get kind
         -- errors below when an arity error will be much easier to
         -- understand.
         let should_check_arity
               | DataFamilyFlavour <- flav = False
                  -- why not check data families? See [Arity of data families] in FamInstEnv
               | otherwise                 = True

       ; when should_check_arity $
         checkTc (arg_pats `lengthIs` vis_arity) $
         wrongNumberOfParmsErr vis_arity
                      -- report only explicit arguments

         -- Kind-check and quantify
         -- See Note [Quantifying over family patterns]
       ; (arg_tvs, (args, stuff)) <- tcImplicitTKBndrs tv_names $
         do { let loc          = nameSrcSpan name
                  lhs_fun = L loc (HsTyVar noExt NotPromoted (L loc name))
                  fun_ty       = mkTyConApp tc_fam_tc []
                  fun_kind     = tyConKind tc_fam_tc
                  mb_kind_env  = thdOf3 <$> mb_clsinfo

            ; (_, args, res_kind_out)
                <- tcInferApps typeLevelMode mb_kind_env
                               lhs_fun fun_ty fun_kind arg_pats

            ; stuff <- kind_checker res_kind_out

            ; return ((args, stuff), emptyVarSet) }

       ; return (arg_tvs, args, stuff) }
  where
    name      = tyConName tc_fam_tc
    vis_arity = length (tyConVisibleTyVars tc_fam_tc)
    flav      = tyConFlavour tc_fam_tc

-- See Note [tc_fam_ty_pats vs tcFamTyPats]
tcFamTyPats :: TcTyCon
            -> Maybe ClsInstInfo
            -> [Name]          -- Implicitly bound kind/type variable names
            -> HsTyPats GhcRn  -- Type patterns
            -> (TcKind -> TcM ([TcType], TcKind))
                -- kind-checker for RHS
                -- See Note [Instantiating a family tycon]
            -> (   [TcTyVar]         -- Kind and type variables
                -> [TcType]          -- Kind and type arguments
                -> TcKind
                -> TcM a)            -- NB: You can use solveEqualities here.
            -> TcM a
tcFamTyPats tc_fam_tc mb_clsinfo
            tv_names arg_pats kind_checker thing_inside
  = do { (fam_used_tvs, typats, (more_typats, res_kind))
            <- solveEqualities $  -- See Note [Constraints in patterns]
               tc_fam_ty_pats tc_fam_tc mb_clsinfo
                              tv_names arg_pats kind_checker

          {- TODO (RAE): This should be cleverer. Consider this:

                 type family F a

                 data G a where
                   MkG :: F a ~ Bool => G a

                 type family Foo (x :: G a) :: F a
                 type instance Foo MkG = False

             This should probably be accepted. Yet the solveEqualities
             will fail, unable to solve (F a ~ Bool)
             We want to quantify over that proof.
             But see Note [Constraints in patterns]
             below, which is missing this piece. -}


            -- Find free variables (after zonking) and turn
            -- them into skolems, so that we don't subsequently
            -- replace a meta kind var with (Any *)
            -- Very like kindGeneralize
       ; let all_pats = typats `chkAppend` more_typats
       ; vars  <- zonkTcTypesAndSplitDepVars all_pats
       ; qtkvs <- quantifyTyVars emptyVarSet vars

       ; MASSERT( isEmptyVarSet $ coVarsOfTypes typats )
           -- This should be the case, because otherwise the solveEqualities
           -- above would fail. TODO (RAE): Update once the solveEqualities
           -- bit is cleverer.

       ; traceTc "tcFamTyPats" (ppr (getName tc_fam_tc)
                                $$ ppr all_pats $$ ppr qtkvs)
           -- Don't print out too much, as we might be in the knot

           -- See Note [Free-floating kind vars] in TcHsType
       ; let tc_flav = tyConFlavour tc_fam_tc
             all_mentioned_tvs = mkVarSet qtkvs
                                   -- qtkvs has all the tyvars bound by LHS
                                   -- type patterns
             unmentioned_tvs   = filterOut (`elemVarSet` all_mentioned_tvs)
                                           fam_used_tvs
                                   -- If there are tyvars left over, we can
                                   -- assume they're free-floating, since they
                                   -- aren't bound by a type pattern
       ; checkNoErrs $ reportFloatingKvs (getName tc_fam_tc) tc_flav
                                         qtkvs unmentioned_tvs

       ; tcExtendTyVarEnv qtkvs $
            -- Extend envt with TcTyVars not TyVars, because the
            -- kind checking etc done by thing_inside does not expect
            -- to encounter TyVars; it expects TcTyVars
         thing_inside qtkvs all_pats res_kind }

{-
Note [Constraints in patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NB: This isn't the whole story. See comment in tcFamTyPats.

At first glance, it seems there is a complicated story to tell in tcFamTyPats
around constraint solving. After all, type family patterns can now do
GADT pattern-matching, which is jolly complicated. But, there's a key fact
which makes this all simple: everything is at top level! There cannot
be untouchable type variables. There can't be weird interaction between
case branches. There can't be global skolems.

This means that the semantics of type-level GADT matching is a little
different than term level. If we have

  data G a where
    MkGBool :: G Bool

And then

  type family F (a :: G k) :: k
  type instance F MkGBool = True

we get

  axF : F Bool (MkGBool <Bool>) ~ True

Simple! No casting on the RHS, because we can affect the kind parameter
to F.

If we ever introduce local type families, this all gets a lot more
complicated, and will end up looking awfully like term-level GADT
pattern-matching.


** The new story **

Here is really what we want:

The matcher really can't deal with covars in arbitrary spots in coercions.
But it can deal with covars that are arguments to GADT data constructors.
So we somehow want to allow covars only in precisely those spots, then use
them as givens when checking the RHS. TODO (RAE): Implement plan.


Note [Quantifying over family patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to quantify over two different lots of kind variables:

First, the ones that come from the kinds of the tyvar args of
tcTyVarBndrsKindGen, as usual
  data family Dist a

  -- Proxy :: forall k. k -> *
  data instance Dist (Proxy a) = DP
  -- Generates  data DistProxy = DP
  --            ax8 k (a::k) :: Dist * (Proxy k a) ~ DistProxy k a
  -- The 'k' comes from the tcTyVarBndrsKindGen (a::k)

Second, the ones that come from the kind argument of the type family
which we pick up using the (tyCoVarsOfTypes typats) in the result of
the thing_inside of tcHsTyvarBndrsGen.
  -- Any :: forall k. k
  data instance Dist Any = DA
  -- Generates  data DistAny k = DA
  --            ax7 k :: Dist k (Any k) ~ DistAny k
  -- The 'k' comes from kindGeneralizeKinds (Any k)

Note [Quantified kind variables of a family pattern]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider   type family KindFam (p :: k1) (q :: k1)
           data T :: Maybe k1 -> k2 -> *
           type instance KindFam (a :: Maybe k) b = T a b -> Int
The HsBSig for the family patterns will be ([k], [a])

Then in the family instance we want to
  * Bring into scope [ "k" -> k:*, "a" -> a:k ]
  * Kind-check the RHS
  * Quantify the type instance over k and k', as well as a,b, thus
       type instance [k, k', a:Maybe k, b:k']
                     KindFam (Maybe k) k' a b = T k k' a b -> Int

Notice that in the third step we quantify over all the visibly-mentioned
type variables (a,b), but also over the implicitly mentioned kind variables
(k, k').  In this case one is bound explicitly but often there will be
none. The role of the kind signature (a :: Maybe k) is to add a constraint
that 'a' must have that kind, and to bring 'k' into scope.



************************************************************************
*                                                                      *
               Data types
*                                                                      *
************************************************************************
-}

dataDeclChecks :: Name -> NewOrData -> ThetaType -> [LConDecl GhcRn] -> TcM Bool
dataDeclChecks tc_name new_or_data stupid_theta cons
  = do {   -- Check that we don't use GADT syntax in H98 world
         gadtSyntax_ok <- xoptM LangExt.GADTSyntax
       ; let gadt_syntax = consUseGadtSyntax cons
       ; checkTc (gadtSyntax_ok || not gadt_syntax) (badGadtDecl tc_name)

           -- Check that the stupid theta is empty for a GADT-style declaration
       ; checkTc (null stupid_theta || not gadt_syntax) (badStupidTheta tc_name)

         -- Check that a newtype has exactly one constructor
         -- Do this before checking for empty data decls, so that
         -- we don't suggest -XEmptyDataDecls for newtypes
       ; checkTc (new_or_data == DataType || isSingleton cons)
                (newtypeConError tc_name (length cons))

                -- Check that there's at least one condecl,
         -- or else we're reading an hs-boot file, or -XEmptyDataDecls
       ; empty_data_decls <- xoptM LangExt.EmptyDataDecls
       ; is_boot <- tcIsHsBootOrSig  -- Are we compiling an hs-boot file?
       ; checkTc (not (null cons) || empty_data_decls || is_boot)
                 (emptyConDeclsErr tc_name)
       ; return gadt_syntax }


-----------------------------------
consUseGadtSyntax :: [LConDecl a] -> Bool
consUseGadtSyntax (L _ (ConDeclGADT { }) : _) = True
consUseGadtSyntax _                           = False
                 -- All constructors have same shape

-----------------------------------
tcConDecls :: TyCon -> ([TyConBinder], Type)
           -> [LConDecl GhcRn] -> TcM [DataCon]
  -- Why both the tycon tyvars and binders? Because the tyvars
  -- have all the names and the binders have the visibilities.
tcConDecls rep_tycon (tmpl_bndrs, res_tmpl)
  = concatMapM $ addLocM $
    tcConDecl rep_tycon (mkTyConTagMap rep_tycon) tmpl_bndrs res_tmpl
    -- It's important that we pay for tag allocation here, once per TyCon,
    -- See Note [Constructor tag allocation], fixes #14657

tcConDecl :: TyCon             -- Representation tycon. Knot-tied!
          -> NameEnv ConTag
          -> [TyConBinder] -> Type
                 -- Return type template (with its template tyvars)
                 --    (tvs, T tys), where T is the family TyCon
          -> ConDecl GhcRn
          -> TcM [DataCon]

tcConDecl rep_tycon tag_map tmpl_bndrs res_tmpl
          (ConDeclH98 { con_name = name
                      , con_ex_tvs = explicit_tkv_nms
                      , con_mb_cxt = hs_ctxt
                      , con_args = hs_args })
  = addErrCtxt (dataConCtxtName [name]) $
    do { -- Get hold of the existential type variables
         -- e.g. data T a = forall (b::k) f. MkT a (f b)
         -- Here tmpl_bndrs = {a}
         --      hs_qvars = HsQTvs { hsq_implicit = {k}
         --                        , hsq_explicit = {f,b} }

       ; traceTc "tcConDecl 1" (vcat [ ppr name, ppr explicit_tkv_nms ])

       ; ((exp_tvs, ctxt, arg_tys, field_lbls, stricts), _bound_vars)
           <- solveEqualities $
              tcExplicitTKBndrs explicit_tkv_nms $ \ exp_tvs ->
              do { ctxt <- tcHsMbContext hs_ctxt
                 ; btys <- tcConArgs hs_args
                 ; field_lbls <- lookupConstructorFields (unLoc name)
                 ; let (arg_tys, stricts) = unzip btys
                       bound_vars  = emptyVarSet  -- Not used
                 ; return ((exp_tvs, ctxt, arg_tys, field_lbls, stricts), bound_vars)
                 }

         -- exp_tvs have explicit, user-written binding sites
         -- the kvs below are those kind variables entirely unmentioned by the user
         --   and discovered only by generalization

             -- Kind generalisation
       ; vars <- zonkTcTypeAndSplitDepVars (mkSpecForAllTys exp_tvs $
                                            mkFunTys ctxt $
                                            mkFunTys arg_tys $
                                            unitTy)
                 -- That type is a lie, of course. (It shouldn't end in ()!)
                 -- And we could construct a proper result type from the info
                 -- at hand. But the result would mention only the tmpl_tvs,
                 -- and so it just creates more work to do it right. Really,
                 -- we're doing this to get the right behavior around removing
                 -- any vars bound in exp_binders.

       ; kvs <- quantifyTyVars (mkVarSet (binderVars tmpl_bndrs)) vars

             -- Zonk to Types
       ; (ze, qkvs)      <- zonkTyBndrsX emptyZonkEnv kvs
       ; (ze, user_qtvs) <- zonkTyBndrsX ze exp_tvs
       ; arg_tys         <- zonkTcTypeToTypes ze arg_tys
       ; ctxt            <- zonkTcTypeToTypes ze ctxt

       ; fam_envs <- tcGetFamInstEnvs

       -- Can't print univ_tvs, arg_tys etc, because we are inside the knot here
       ; traceTc "tcConDecl 2" (ppr name $$ ppr field_lbls)
       ; let
           univ_tvbs = tyConTyVarBinders tmpl_bndrs
           univ_tvs  = binderVars univ_tvbs
           ex_tvbs   = mkTyVarBinders Inferred qkvs ++
                       mkTyVarBinders Specified user_qtvs
           ex_tvs    = qkvs ++ user_qtvs
           -- For H98 datatypes, the user-written tyvar binders are precisely
           -- the universals followed by the existentials.
           -- See Note [DataCon user type variable binders] in DataCon.
           user_tvbs = univ_tvbs ++ ex_tvbs
           buildOneDataCon (L _ name) = do
             { is_infix <- tcConIsInfixH98 name hs_args
             ; rep_nm   <- newTyConRepName name

             ; buildDataCon fam_envs name is_infix rep_nm
                            stricts Nothing field_lbls
                            univ_tvs ex_tvs user_tvbs
                            [{- no eq_preds -}] ctxt arg_tys
                            res_tmpl rep_tycon tag_map
                  -- NB:  we put data_tc, the type constructor gotten from the
                  --      constructor type signature into the data constructor;
                  --      that way checkValidDataCon can complain if it's wrong.
             }
       ; traceTc "tcConDecl 2" (ppr name)
       ; mapM buildOneDataCon [name]
       }

tcConDecl rep_tycon tag_map tmpl_bndrs res_tmpl
          (ConDeclGADT { con_names = names
                       , con_qvars = qtvs
                       , con_mb_cxt = cxt, con_args = hs_args
                       , con_res_ty = res_ty })
  | HsQTvs { hsq_implicit = implicit_tkv_nms
           , hsq_explicit = explicit_tkv_nms } <- qtvs
  = addErrCtxt (dataConCtxtName names) $
    do { traceTc "tcConDecl 1" (ppr names)
       ; let (L _ name : _) = names

       ; (imp_tvs, (exp_tvs, ctxt, arg_tys, res_ty, field_lbls, stricts))
           <- solveEqualities $
              tcImplicitTKBndrs implicit_tkv_nms $
              tcExplicitTKBndrs explicit_tkv_nms $ \ exp_tvs ->
              do { ctxt <- tcHsMbContext cxt
                 ; btys <- tcConArgs hs_args
                 ; res_ty' <- tcHsLiftedType res_ty
                 ; field_lbls <- lookupConstructorFields name
                 ; let (arg_tys, stricts) = unzip btys
                       bound_vars = allBoundVariabless ctxt `unionVarSet`
                                    allBoundVariabless arg_tys

                 ; return ((exp_tvs, ctxt, arg_tys, res_ty', field_lbls, stricts), bound_vars)
                 }
       ; let user_tvs = imp_tvs ++ exp_tvs

       ; vars <- zonkTcTypeAndSplitDepVars (mkSpecForAllTys user_tvs $
                                            mkFunTys ctxt $
                                            mkFunTys arg_tys $
                                            res_ty)
       ; tkvs <- quantifyTyVars emptyVarSet vars

             -- Zonk to Types
       ; (ze, tkvs)     <- zonkTyBndrsX emptyZonkEnv tkvs
       ; (ze, user_tvs) <- zonkTyBndrsX ze user_tvs
       ; arg_tys <- zonkTcTypeToTypes ze arg_tys
       ; ctxt    <- zonkTcTypeToTypes ze ctxt
       ; res_ty  <- zonkTcTypeToType ze res_ty

       ; let (univ_tvs, ex_tvs, tkvs', user_tvs', eq_preds, arg_subst)
               = rejigConRes tmpl_bndrs res_tmpl tkvs user_tvs res_ty
             -- NB: this is a /lazy/ binding, so we pass six thunks to
             --     buildDataCon without yet forcing the guards in rejigConRes
             -- See Note [Checking GADT return types]

             -- Compute the user-written tyvar binders. These have the same
             -- tyvars as univ_tvs/ex_tvs, but perhaps in a different order.
             -- See Note [DataCon user type variable binders] in DataCon.
             tkv_bndrs      = mkTyVarBinders Inferred  tkvs'
             user_tv_bndrs  = mkTyVarBinders Specified user_tvs'
             all_user_bndrs = tkv_bndrs ++ user_tv_bndrs

             ctxt'      = substTys arg_subst ctxt
             arg_tys'   = substTys arg_subst arg_tys
             res_ty'    = substTy  arg_subst res_ty


       ; fam_envs <- tcGetFamInstEnvs

       -- Can't print univ_tvs, arg_tys etc, because we are inside the knot here
       ; traceTc "tcConDecl 2" (ppr names $$ ppr field_lbls)
       ; let
           buildOneDataCon (L _ name) = do
             { is_infix <- tcConIsInfixGADT name hs_args
             ; rep_nm   <- newTyConRepName name

             ; buildDataCon fam_envs name is_infix
                            rep_nm
                            stricts Nothing field_lbls
                            univ_tvs ex_tvs all_user_bndrs eq_preds
                            ctxt' arg_tys' res_ty' rep_tycon tag_map
                  -- NB:  we put data_tc, the type constructor gotten from the
                  --      constructor type signature into the data constructor;
                  --      that way checkValidDataCon can complain if it's wrong.
             }
       ; traceTc "tcConDecl 2" (ppr names)
       ; mapM buildOneDataCon names
       }

tcConIsInfixH98 :: Name
             -> HsConDetails (LHsType GhcRn) (Located [LConDeclField GhcRn])
             -> TcM Bool
tcConIsInfixH98 _   details
  = case details of
           InfixCon {}  -> return True
           _            -> return False

tcConIsInfixGADT :: Name
             -> HsConDetails (LHsType GhcRn) (Located [LConDeclField GhcRn])
             -> TcM Bool
tcConIsInfixGADT con details
  = case details of
           InfixCon {}  -> return True
           RecCon {}    -> return False
           PrefixCon arg_tys           -- See Note [Infix GADT constructors]
               | isSymOcc (getOccName con)
               , [_ty1,_ty2] <- arg_tys
                  -> do { fix_env <- getFixityEnv
                        ; return (con `elemNameEnv` fix_env) }
               | otherwise -> return False

tcConArgs :: HsConDeclDetails GhcRn
          -> TcM [(TcType, HsSrcBang)]
tcConArgs (PrefixCon btys)
  = mapM tcConArg btys
tcConArgs (InfixCon bty1 bty2)
  = do { bty1' <- tcConArg bty1
       ; bty2' <- tcConArg bty2
       ; return [bty1', bty2'] }
tcConArgs (RecCon fields)
  = mapM tcConArg btys
  where
    -- We need a one-to-one mapping from field_names to btys
    combined = map (\(L _ f) -> (cd_fld_names f,cd_fld_type f)) (unLoc fields)
    explode (ns,ty) = zip ns (repeat ty)
    exploded = concatMap explode combined
    (_,btys) = unzip exploded


tcConArg :: LHsType GhcRn -> TcM (TcType, HsSrcBang)
tcConArg bty
  = do  { traceTc "tcConArg 1" (ppr bty)
        ; arg_ty <- tcHsOpenType (getBangType bty)
             -- Newtypes can't have unboxed types, but we check
             -- that in checkValidDataCon; this tcConArg stuff
             -- doesn't happen for GADT-style declarations
        ; traceTc "tcConArg 2" (ppr bty)
        ; return (arg_ty, getBangStrictness bty) }

{-
Note [Infix GADT constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We do not currently have syntax to declare an infix constructor in GADT syntax,
but it makes a (small) difference to the Show instance.  So as a slightly
ad-hoc solution, we regard a GADT data constructor as infix if
  a) it is an operator symbol
  b) it has two arguments
  c) there is a fixity declaration for it
For example:
   infix 6 (:--:)
   data T a where
     (:--:) :: t1 -> t2 -> T Int


Note [Checking GADT return types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is a delicacy around checking the return types of a datacon. The
central problem is dealing with a declaration like

  data T a where
    MkT :: T a -> Q a

Note that the return type of MkT is totally bogus. When creating the T
tycon, we also need to create the MkT datacon, which must have a "rejigged"
return type. That is, the MkT datacon's type must be transformed to have
a uniform return type with explicit coercions for GADT-like type parameters.
This rejigging is what rejigConRes does. The problem is, though, that checking
that the return type is appropriate is much easier when done over *Type*,
not *HsType*, and doing a call to tcMatchTy will loop because T isn't fully
defined yet.

So, we want to make rejigConRes lazy and then check the validity of
the return type in checkValidDataCon.  To do this we /always/ return a
6-tuple from rejigConRes (so that we can compute the return type from it, which
checkValidDataCon needs), but the first three fields may be bogus if
the return type isn't valid (the last equation for rejigConRes).

This is better than an earlier solution which reduced the number of
errors reported in one pass.  See Trac #7175, and #10836.
-}

-- Example
--   data instance T (b,c) where
--      TI :: forall e. e -> T (e,e)
--
-- The representation tycon looks like this:
--   data :R7T b c where
--      TI :: forall b1 c1. (b1 ~ c1) => b1 -> :R7T b1 c1
-- In this case orig_res_ty = T (e,e)

rejigConRes :: [TyConBinder] -> Type    -- Template for result type; e.g.
                                  -- data instance T [a] b c ...
                                  --      gives template ([a,b,c], T [a] b c)
                                  -- Type must be of kind *!
            -> [TyVar]            -- The constructor's user-written, inferred
                                  -- type variables
            -> [TyVar]            -- The constructor's user-written, specified
                                  -- type variables
            -> Type               -- res_ty type must be of kind *
            -> ([TyVar],          -- Universal
                [TyVar],          -- Existential (distinct OccNames from univs)
                [TyVar],          -- The constructor's rejigged, user-written,
                                  -- inferred type variables
                [TyVar],          -- The constructor's rejigged, user-written,
                                  -- specified type variables
                [EqSpec],      -- Equality predicates
                TCvSubst)      -- Substitution to apply to argument types
        -- We don't check that the TyCon given in the ResTy is
        -- the same as the parent tycon, because checkValidDataCon will do it

rejigConRes tmpl_bndrs res_tmpl dc_inferred_tvs dc_specified_tvs res_ty
        -- E.g.  data T [a] b c where
        --         MkT :: forall x y z. T [(x,y)] z z
        -- The {a,b,c} are the tmpl_tvs, and the {x,y,z} are the dc_tvs
        --     (NB: unlike the H98 case, the dc_tvs are not all existential)
        -- Then we generate
        --      Univ tyvars     Eq-spec
        --          a              a~(x,y)
        --          b              b~z
        --          z
        -- Existentials are the leftover type vars: [x,y]
        -- The user-written type variables are what is listed in the forall:
        --   [x, y, z] (all specified). We must rejig these as well.
        --   See Note [DataCon user type variable binders] in DataCon.
        -- So we return ( [a,b,z], [x,y]
        --              , [], [x,y,z]
        --              , [a~(x,y),b~z], <arg-subst> )
  | Just subst <- ASSERT( isLiftedTypeKind (typeKind res_ty) )
                  ASSERT( isLiftedTypeKind (typeKind res_tmpl) )
                  tcMatchTy res_tmpl res_ty
  = let (univ_tvs, raw_eqs, kind_subst) = mkGADTVars tmpl_tvs dc_tvs subst
        raw_ex_tvs = dc_tvs `minusList` univ_tvs
        (arg_subst, substed_ex_tvs)
          = mapAccumL substTyVarBndr kind_subst raw_ex_tvs

        -- After rejigging the existential tyvars, the resulting substitution
        -- gives us exactly what we need to rejig the user-written tyvars,
        -- since the dcUserTyVarBinders invariant guarantees that the
        -- substitution has *all* the tyvars in its domain.
        -- See Note [DataCon user type variable binders] in DataCon.
        subst_user_tvs = map (getTyVar "rejigConRes" . substTyVar arg_subst)
        substed_inferred_tvs  = subst_user_tvs dc_inferred_tvs
        substed_specified_tvs = subst_user_tvs dc_specified_tvs

        substed_eqs = map (substEqSpec arg_subst) raw_eqs
    in
    (univ_tvs, substed_ex_tvs, substed_inferred_tvs, substed_specified_tvs,
     substed_eqs, arg_subst)

  | otherwise
        -- If the return type of the data constructor doesn't match the parent
        -- type constructor, or the arity is wrong, the tcMatchTy will fail
        --    e.g   data T a b where
        --            T1 :: Maybe a   -- Wrong tycon
        --            T2 :: T [a]     -- Wrong arity
        -- We are detect that later, in checkValidDataCon, but meanwhile
        -- we must do *something*, not just crash.  So we do something simple
        -- albeit bogus, relying on checkValidDataCon to check the
        --  bad-result-type error before seeing that the other fields look odd
        -- See Note [Checking GADT return types]
  = (tmpl_tvs, dc_tvs `minusList` tmpl_tvs, dc_inferred_tvs, dc_specified_tvs,
     [], emptyTCvSubst)
  where
    dc_tvs   = dc_inferred_tvs ++ dc_specified_tvs
    tmpl_tvs = binderVars tmpl_bndrs

{- Note [mkGADTVars]
~~~~~~~~~~~~~~~~~~~~
Running example:

data T (k1 :: *) (k2 :: *) (a :: k2) (b :: k2) where
  MkT :: forall (x1 : *) (y :: x1) (z :: *).
         T x1 * (Proxy (y :: x1), z) z

We need the rejigged type to be

  MkT :: forall (x1 :: *) (k2 :: *) (a :: k2) (b :: k2).
         forall (y :: x1) (z :: *).
         (k2 ~ *, a ~ (Proxy x1 y, z), b ~ z)
      => T x1 k2 a b

You might naively expect that z should become a universal tyvar,
not an existential. (After all, x1 becomes a universal tyvar.)
But z has kind * while b has kind k2, so the return type
   T x1 k2 a z
is ill-kinded.  Another way to say it is this: the universal
tyvars must have exactly the same kinds as the tyConTyVars.

So we need an existential tyvar and a heterogeneous equality
constraint. (The b ~ z is a bit redundant with the k2 ~ * that
comes before in that b ~ z implies k2 ~ *. I'm sure we could do
some analysis that could eliminate k2 ~ *. But we don't do this
yet.)

The data con signature has already been fully kind-checked.
The return type

  T x1 * (Proxy (y :: x1), z) z
becomes
  qtkvs    = [x1 :: *, y :: x1, z :: *]
  res_tmpl = T x1 * (Proxy x1 y, z) z

We start off by matching (T k1 k2 a b) with (T x1 * (Proxy x1 y, z) z). We
know this match will succeed because of the validity check (actually done
later, but laziness saves us -- see Note [Checking GADT return types]).
Thus, we get

  subst := { k1 |-> x1, k2 |-> *, a |-> (Proxy x1 y, z), b |-> z }

Now, we need to figure out what the GADT equalities should be. In this case,
we *don't* want (k1 ~ x1) to be a GADT equality: it should just be a
renaming. The others should be GADT equalities. We also need to make
sure that the universally-quantified variables of the datacon match up
with the tyvars of the tycon, as required for Core context well-formedness.
(This last bit is why we have to rejig at all!)

`choose` walks down the tycon tyvars, figuring out what to do with each one.
It carries two substitutions:
  - t_sub's domain is *template* or *tycon* tyvars, mapping them to variables
    mentioned in the datacon signature.
  - r_sub's domain is *result* tyvars, names written by the programmer in
    the datacon signature. The final rejigged type will use these names, but
    the subst is still needed because sometimes the printed name of these variables
    is different. (See choose_tv_name, below.)

Before explaining the details of `choose`, let's just look at its operation
on our example:

  choose [] [] {} {} [k1, k2, a, b]
  -->          -- first branch of `case` statement
  choose
    univs:    [x1 :: *]
    eq_spec:  []
    t_sub:    {k1 |-> x1}
    r_sub:    {x1 |-> x1}
    t_tvs:    [k2, a, b]
  -->          -- second branch of `case` statement
  choose
    univs:    [k2 :: *, x1 :: *]
    eq_spec:  [k2 ~ *]
    t_sub:    {k1 |-> x1, k2 |-> k2}
    r_sub:    {x1 |-> x1}
    t_tvs:    [a, b]
  -->          -- second branch of `case` statement
  choose
    univs:    [a :: k2, k2 :: *, x1 :: *]
    eq_spec:  [ a ~ (Proxy x1 y, z)
              , k2 ~ * ]
    t_sub:    {k1 |-> x1, k2 |-> k2, a |-> a}
    r_sub:    {x1 |-> x1}
    t_tvs:    [b]
  -->          -- second branch of `case` statement
  choose
    univs:    [b :: k2, a :: k2, k2 :: *, x1 :: *]
    eq_spec:  [ b ~ z
              , a ~ (Proxy x1 y, z)
              , k2 ~ * ]
    t_sub:    {k1 |-> x1, k2 |-> k2, a |-> a, b |-> z}
    r_sub:    {x1 |-> x1}
    t_tvs:    []
  -->          -- end of recursion
  ( [x1 :: *, k2 :: *, a :: k2, b :: k2]
  , [k2 ~ *, a ~ (Proxy x1 y, z), b ~ z]
  , {x1 |-> x1} )

`choose` looks up each tycon tyvar in the matching (it *must* be matched!).

* If it finds a bare result tyvar (the first branch of the `case`
  statement), it checks to make sure that the result tyvar isn't yet
  in the list of univ_tvs.  If it is in that list, then we have a
  repeated variable in the return type, and we in fact need a GADT
  equality.

* It then checks to make sure that the kind of the result tyvar
  matches the kind of the template tyvar. This check is what forces
  `z` to be existential, as it should be, explained above.

* Assuming no repeated variables or kind-changing, we wish to use the
  variable name given in the datacon signature (that is, `x1` not
  `k1`), not the tycon signature (which may have been made up by
  GHC). So, we add a mapping from the tycon tyvar to the result tyvar
  to t_sub.

* If we discover that a mapping in `subst` gives us a non-tyvar (the
  second branch of the `case` statement), then we have a GADT equality
  to create.  We create a fresh equality, but we don't extend any
  substitutions. The template variable substitution is meant for use
  in universal tyvar kinds, and these shouldn't be affected by any
  GADT equalities.

This whole algorithm is quite delicate, indeed. I (Richard E.) see two ways
of simplifying it:

1) The first branch of the `case` statement is really an optimization, used
in order to get fewer GADT equalities. It might be possible to make a GADT
equality for *every* univ. tyvar, even if the equality is trivial, and then
either deal with the bigger type or somehow reduce it later.

2) This algorithm strives to use the names for type variables as specified
by the user in the datacon signature. If we always used the tycon tyvar
names, for example, this would be simplified. This change would almost
certainly degrade error messages a bit, though.
-}

-- ^ From information about a source datacon definition, extract out
-- what the universal variables and the GADT equalities should be.
-- See Note [mkGADTVars].
mkGADTVars :: [TyVar]    -- ^ The tycon vars
           -> [TyVar]    -- ^ The datacon vars
           -> TCvSubst   -- ^ The matching between the template result type
                         -- and the actual result type
           -> ( [TyVar]
              , [EqSpec]
              , TCvSubst ) -- ^ The univ. variables, the GADT equalities,
                           -- and a subst to apply to the GADT equalities
                           -- and existentials.
mkGADTVars tmpl_tvs dc_tvs subst
  = choose [] [] empty_subst empty_subst tmpl_tvs
  where
    in_scope = mkInScopeSet (mkVarSet tmpl_tvs `unionVarSet` mkVarSet dc_tvs)
               `unionInScope` getTCvInScope subst
    empty_subst = mkEmptyTCvSubst in_scope

    choose :: [TyVar]           -- accumulator of univ tvs, reversed
           -> [EqSpec]          -- accumulator of GADT equalities, reversed
           -> TCvSubst          -- template substitution
           -> TCvSubst          -- res. substitution
           -> [TyVar]           -- template tvs (the univ tvs passed in)
           -> ( [TyVar]         -- the univ_tvs
              , [EqSpec]        -- GADT equalities
              , TCvSubst )       -- a substitution to fix kinds in ex_tvs

    choose univs eqs _t_sub r_sub []
      = (reverse univs, reverse eqs, r_sub)
    choose univs eqs t_sub r_sub (t_tv:t_tvs)
      | Just r_ty <- lookupTyVar subst t_tv
      = case getTyVar_maybe r_ty of
          Just r_tv
            |  not (r_tv `elem` univs)
            ,  tyVarKind r_tv `eqType` (substTy t_sub (tyVarKind t_tv))
            -> -- simple, well-kinded variable substitution.
               choose (r_tv:univs) eqs
                      (extendTvSubst t_sub t_tv r_ty')
                      (extendTvSubst r_sub r_tv r_ty')
                      t_tvs
            where
              r_tv1  = setTyVarName r_tv (choose_tv_name r_tv t_tv)
              r_ty'  = mkTyVarTy r_tv1

               -- Not a simple substitution: make an equality predicate
          _ -> choose (t_tv':univs) (mkEqSpec t_tv' r_ty : eqs)
                      (extendTvSubst t_sub t_tv (mkTyVarTy t_tv'))
                         -- We've updated the kind of t_tv,
                         -- so add it to t_sub (Trac #14162)
                      r_sub t_tvs
            where
              t_tv' = updateTyVarKind (substTy t_sub) t_tv

      | otherwise
      = pprPanic "mkGADTVars" (ppr tmpl_tvs $$ ppr subst)

      -- choose an appropriate name for a univ tyvar.
      -- This *must* preserve the Unique of the result tv, so that we
      -- can detect repeated variables. It prefers user-specified names
      -- over system names. A result variable with a system name can
      -- happen with GHC-generated implicit kind variables.
    choose_tv_name :: TyVar -> TyVar -> Name
    choose_tv_name r_tv t_tv
      | isSystemName r_tv_name
      = setNameUnique t_tv_name (getUnique r_tv_name)

      | otherwise
      = r_tv_name

      where
        r_tv_name = getName r_tv
        t_tv_name = getName t_tv

{-
Note [Substitution in template variables kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

data G (a :: Maybe k) where
  MkG :: G Nothing

With explicit kind variables

data G k (a :: Maybe k) where
  MkG :: G k1 (Nothing k1)

Note how k1 is distinct from k. So, when we match the template
`G k a` against `G k1 (Nothing k1)`, we get a subst
[ k |-> k1, a |-> Nothing k1 ]. Even though this subst has two
mappings, we surely don't want to add (k, k1) to the list of
GADT equalities -- that would be overly complex and would create
more untouchable variables than we need. So, when figuring out
which tyvars are GADT-like and which aren't (the fundamental
job of `choose`), we want to treat `k` as *not* GADT-like.
Instead, we wish to substitute in `a`'s kind, to get (a :: Maybe k1)
instead of (a :: Maybe k). This is the reason for dealing
with a substitution in here.

However, we do not *always* want to substitute. Consider

data H (a :: k) where
  MkH :: H Int

With explicit kind variables:

data H k (a :: k) where
  MkH :: H * Int

Here, we have a kind-indexed GADT. The subst in question is
[ k |-> *, a |-> Int ]. Now, we *don't* want to substitute in `a`'s
kind, because that would give a constructor with the type

MkH :: forall (k :: *) (a :: *). (k ~ *) -> (a ~ Int) -> H k a

The problem here is that a's kind is wrong -- it needs to be k, not *!
So, if the matching for a variable is anything but another bare variable,
we drop the mapping from the substitution before proceeding. This
was not an issue before kind-indexed GADTs because this case could
never happen.

************************************************************************
*                                                                      *
                Validity checking
*                                                                      *
************************************************************************

Validity checking is done once the mutually-recursive knot has been
tied, so we can look at things freely.
-}

checkValidTyCl :: TyCon -> TcM TyCon
checkValidTyCl tc
  = setSrcSpan (getSrcSpan tc) $
    addTyConCtxt tc $
    recoverM recovery_code
             (do { traceTc "Starting validity for tycon" (ppr tc)
                 ; checkValidTyCon tc
                 ; traceTc "Done validity for tycon" (ppr tc)
                 ; return tc })
  where
    recovery_code -- See Note [Recover from validity error]
      = do { traceTc "Aborted validity for tycon" (ppr tc)
           ; return fake_tc }
    fake_tc | isFamilyTyCon tc || isTypeSynonymTyCon tc
            = makeRecoveryTyCon tc
            | otherwise
            = tc

{- Note [Recover from validity error]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We recover from a validity error in a type or class, which allows us
to report multiple validity errors. In the failure case we return a
TyCon of the right kind, but with no interesting behaviour
(makeRecoveryTyCon). Why?  Suppose we have
   type T a = Fun
where Fun is a type family of arity 1.  The RHS is invalid, but we
want to go on checking validity of subsequent type declarations.
So we replace T with an abstract TyCon which will do no harm.
See indexed-types/should_fail/BadSock and Trac #10896

Painfully, though, we *don't* want to do this for classes.
Consider tcfail041:
   class (?x::Int) => C a where ...
   instance C Int
The class is invalid because of the superclass constraint.  But
we still want it to look like a /class/, else the instance bleats
that the instance is mal-formed because it hasn't got a class in
the head.
-}

-------------------------
-- For data types declared with record syntax, we require
-- that each constructor that has a field 'f'
--      (a) has the same result type
--      (b) has the same type for 'f'
-- module alpha conversion of the quantified type variables
-- of the constructor.
--
-- Note that we allow existentials to match because the
-- fields can never meet. E.g
--      data T where
--        T1 { f1 :: b, f2 :: a, f3 ::Int } :: T
--        T2 { f1 :: c, f2 :: c, f3 ::Int } :: T
-- Here we do not complain about f1,f2 because they are existential

checkValidTyCon :: TyCon -> TcM ()
checkValidTyCon tc
  | isPrimTyCon tc   -- Happens when Haddock'ing GHC.Prim
  = return ()

  | otherwise
  = do { traceTc "checkValidTyCon" (ppr tc $$ ppr (tyConClass_maybe tc))
       ; checkValidTyConTyVars tc
       ; if | Just cl <- tyConClass_maybe tc
              -> checkValidClass cl

            | Just syn_rhs <- synTyConRhs_maybe tc
              -> do { checkValidType syn_ctxt syn_rhs
                    ; checkTySynRhs syn_ctxt syn_rhs }

            | Just fam_flav <- famTyConFlav_maybe tc
              -> case fam_flav of
               { ClosedSynFamilyTyCon (Just ax)
                   -> tcAddClosedTypeFamilyDeclCtxt tc $
                      checkValidCoAxiom ax
               ; ClosedSynFamilyTyCon Nothing   -> return ()
               ; AbstractClosedSynFamilyTyCon ->
                 do { hsBoot <- tcIsHsBootOrSig
                    ; checkTc hsBoot $
                      text "You may define an abstract closed type family" $$
                      text "only in a .hs-boot file" }
               ; DataFamilyTyCon {}           -> return ()
               ; OpenSynFamilyTyCon           -> return ()
               ; BuiltInSynFamTyCon _         -> return () }

             | otherwise -> do
               { -- Check the context on the data decl
                 traceTc "cvtc1" (ppr tc)
               ; checkValidTheta (DataTyCtxt name) (tyConStupidTheta tc)

               ; traceTc "cvtc2" (ppr tc)

               ; dflags          <- getDynFlags
               ; existential_ok  <- xoptM LangExt.ExistentialQuantification
               ; gadt_ok         <- xoptM LangExt.GADTs
               ; let ex_ok = existential_ok || gadt_ok
                     -- Data cons can have existential context
               ; mapM_ (checkValidDataCon dflags ex_ok tc) data_cons
               ; mapM_ (checkPartialRecordField data_cons) (tyConFieldLabels tc)

                -- Check that fields with the same name share a type
               ; mapM_ check_fields groups }}
  where
    syn_ctxt  = TySynCtxt name
    name      = tyConName tc
    data_cons = tyConDataCons tc

    groups = equivClasses cmp_fld (concatMap get_fields data_cons)
    cmp_fld (f1,_) (f2,_) = flLabel f1 `compare` flLabel f2
    get_fields con = dataConFieldLabels con `zip` repeat con
        -- dataConFieldLabels may return the empty list, which is fine

    -- See Note [GADT record selectors] in TcTyDecls
    -- We must check (a) that the named field has the same
    --                   type in each constructor
    --               (b) that those constructors have the same result type
    --
    -- However, the constructors may have differently named type variable
    -- and (worse) we don't know how the correspond to each other.  E.g.
    --     C1 :: forall a b. { f :: a, g :: b } -> T a b
    --     C2 :: forall d c. { f :: c, g :: c } -> T c d
    --
    -- So what we do is to ust Unify.tcMatchTys to compare the first candidate's
    -- result type against other candidates' types BOTH WAYS ROUND.
    -- If they magically agrees, take the substitution and
    -- apply them to the latter ones, and see if they match perfectly.
    check_fields ((label, con1) :| other_fields)
        -- These fields all have the same name, but are from
        -- different constructors in the data type
        = recoverM (return ()) $ mapM_ checkOne other_fields
                -- Check that all the fields in the group have the same type
                -- NB: this check assumes that all the constructors of a given
                -- data type use the same type variables
        where
        (_, _, _, res1) = dataConSig con1
        fty1 = dataConFieldType con1 lbl
        lbl = flLabel label

        checkOne (_, con2)    -- Do it both ways to ensure they are structurally identical
            = do { checkFieldCompat lbl con1 con2 res1 res2 fty1 fty2
                 ; checkFieldCompat lbl con2 con1 res2 res1 fty2 fty1 }
            where
                (_, _, _, res2) = dataConSig con2
                fty2 = dataConFieldType con2 lbl

checkPartialRecordField :: [DataCon] -> FieldLabel -> TcM ()
-- Checks the partial record field selector, and warns.
-- See Note [Checking partial record field]
checkPartialRecordField all_cons fld
  = setSrcSpan loc $
      warnIfFlag Opt_WarnPartialFields
        (not is_exhaustive && not (startsWithUnderscore occ_name))
        (sep [text "Use of partial record field selector" <> colon,
              nest 2 $ quotes (ppr occ_name)])
  where
    sel_name = flSelector fld
    loc    = getSrcSpan sel_name
    occ_name = getOccName sel_name

    (cons_with_field, cons_without_field) = partition has_field all_cons
    has_field con = fld `elem` (dataConFieldLabels con)
    is_exhaustive = all (dataConCannotMatch inst_tys) cons_without_field

    con1 = ASSERT( not (null cons_with_field) ) head cons_with_field
    (univ_tvs, _, eq_spec, _, _, _) = dataConFullSig con1
    eq_subst = mkTvSubstPrs (map eqSpecPair eq_spec)
    inst_tys = substTyVars eq_subst univ_tvs

checkFieldCompat :: FieldLabelString -> DataCon -> DataCon
                 -> Type -> Type -> Type -> Type -> TcM ()
checkFieldCompat fld con1 con2 res1 res2 fty1 fty2
  = do  { checkTc (isJust mb_subst1) (resultTypeMisMatch fld con1 con2)
        ; checkTc (isJust mb_subst2) (fieldTypeMisMatch fld con1 con2) }
  where
    mb_subst1 = tcMatchTy res1 res2
    mb_subst2 = tcMatchTyX (expectJust "checkFieldCompat" mb_subst1) fty1 fty2

-------------------------------
-- | Check for ill-scoped telescopes in a tycon.
-- For example:
--
-- > data SameKind :: k -> k -> *   -- this is OK
-- > data Bad a (c :: Proxy b) (d :: Proxy a) (x :: SameKind b d)
--
-- The problem is that @b@ should be bound (implicitly) at the beginning,
-- but its kind mentions @a@, which is not yet in scope. Kind generalization
-- makes a mess of this, and ends up including @a@ twice in the final
-- tyvars. So this function checks for duplicates and, if there are any,
-- produces the appropriate error message.
checkValidTyConTyVars :: TyCon -> TcM ()
checkValidTyConTyVars tc
  = do { -- strip off the duplicates and look for ill-scoped things
         -- but keep the *last* occurrence of each variable, as it's
         -- most likely the one the user wrote
         let stripped_tvs | duplicate_vars
                          = reverse $ nub $ reverse tvs
                          | otherwise
                          = tvs
             vis_tvs      = tyConVisibleTyVars tc
             extra | not (vis_tvs `equalLength` stripped_tvs)
                   = text "NB: Implicitly declared kind variables are put first."
                   | otherwise
                   = empty
       ; traceTc "checkValidTyConTyVars" (ppr tc <+> ppr tvs)
       ; checkValidTelescope (pprTyVars vis_tvs) stripped_tvs extra
         `and_if_that_doesn't_error`
           -- This triggers on test case dependent/should_fail/InferDependency
           -- It reports errors around Note [Dependent LHsQTyVars] in TcHsType
         when duplicate_vars (
          addErr (vcat [ text "Invalid declaration for" <+>
                         quotes (ppr tc) <> semi <+> text "you must explicitly"
                       , text "declare which variables are dependent on which others."
                       , hang (text "Inferred variable kinds:")
                         2 (vcat (map pp_tv stripped_tvs)) ])) }
  where
    tvs = tyConTyVars tc
    duplicate_vars = tvs `lengthExceeds` sizeVarSet (mkVarSet tvs)

    pp_tv tv = ppr tv <+> dcolon <+> ppr (tyVarKind tv)

     -- only run try_second if the first reports no errors
    and_if_that_doesn't_error :: TcM () -> TcM () -> TcM ()
    try_first `and_if_that_doesn't_error` try_second
      = recoverM (return ()) $
        do { checkNoErrs try_first
           ; try_second }

-------------------------------
checkValidDataCon :: DynFlags -> Bool -> TyCon -> DataCon -> TcM ()
checkValidDataCon dflags existential_ok tc con
  = setSrcSpan (getSrcSpan con)  $
    addErrCtxt (dataConCtxt con) $
    do  { -- Check that the return type of the data constructor
          -- matches the type constructor; eg reject this:
          --   data T a where { MkT :: Bogus a }
          -- It's important to do this first:
          --  see Note [Checking GADT return types]
          --  and c.f. Note [Check role annotations in a second pass]
          let tc_tvs      = tyConTyVars tc
              res_ty_tmpl = mkFamilyTyConApp tc (mkTyVarTys tc_tvs)
              orig_res_ty = dataConOrigResTy con
        ; traceTc "checkValidDataCon" (vcat
              [ ppr con, ppr tc, ppr tc_tvs
              , ppr res_ty_tmpl <+> dcolon <+> ppr (typeKind res_ty_tmpl)
              , ppr orig_res_ty <+> dcolon <+> ppr (typeKind orig_res_ty)])


        ; checkTc (isJust (tcMatchTy res_ty_tmpl
                                     orig_res_ty))
                  (badDataConTyCon con res_ty_tmpl orig_res_ty)
            -- Note that checkTc aborts if it finds an error. This is
            -- critical to avoid panicking when we call dataConUserType
            -- on an un-rejiggable datacon!

        ; traceTc "checkValidDataCon 2" (ppr (dataConUserType con))

          -- Check that the result type is a *monotype*
          --  e.g. reject this:   MkT :: T (forall a. a->a)
          -- Reason: it's really the argument of an equality constraint
        ; checkValidMonoType orig_res_ty

          -- Check all argument types for validity
        ; checkValidType ctxt (dataConUserType con)
        ; mapM_ (checkForLevPoly empty)
                (dataConOrigArgTys con)

          -- Extra checks for newtype data constructors
        ; when (isNewTyCon tc) (checkNewDataCon con)

          -- Check that existentials are allowed if they are used
        ; checkTc (existential_ok || isVanillaDataCon con)
                  (badExistential con)

        ; typeintype <- xoptM LangExt.TypeInType
        ; let (_, _, eq_specs, _, _, _) = dataConFullSig con
                -- dataConEqSpec retrieves both the real GADT equalities
                -- plus any user-written GADT-like equalities. But we don't
                -- want anything user-written. If we don't exclude user-written
                -- ones, test case polykinds/T13391a fails.

              invisible_gadt_eq_specs = filter is_invisible_eq_spec eq_specs
              univ_tvs = dataConUnivTyVars con
              tc_bndrs = tyConBinders tc

              vis_map :: VarEnv ArgFlag
              vis_map = zipVarEnv univ_tvs (map tyConBinderArgFlag tc_bndrs)

                -- See Note [Wrong visibility for GADTs] for why we have to build the map
                -- above instead of just looking at the datacon tyvar binder
              is_invisible_eq_spec eq_spec
                = isInvisibleArgFlag arg_flag
                where
                  eq_tv    = eqSpecTyVar eq_spec
                  arg_flag = expectJust "checkValidDataCon" $
                             lookupVarEnv vis_map eq_tv

        ; checkTc (typeintype || null invisible_gadt_eq_specs)
                  (badGADT con invisible_gadt_eq_specs)

          -- Check that UNPACK pragmas and bangs work out
          -- E.g.  reject   data T = MkT {-# UNPACK #-} Int     -- No "!"
          --                data T = MkT {-# UNPACK #-} !a      -- Can't unpack
        ; zipWith3M_ check_bang (dataConSrcBangs con) (dataConImplBangs con) [1..]

        ; traceTc "Done validity of data con" $
          vcat [ ppr con
               , text "Datacon user type:" <+> ppr (dataConUserType con)
               , text "Datacon rep type:" <+> ppr (dataConRepType con)
               , text "Rep typcon binders:" <+> ppr (tyConBinders (dataConTyCon con))
               , case tyConFamInst_maybe (dataConTyCon con) of
                   Nothing -> text "not family"
                   Just (f, _) -> ppr (tyConBinders f) ]
    }
  where
    ctxt = ConArgCtxt (dataConName con)

    check_bang :: HsSrcBang -> HsImplBang -> Int -> TcM ()
    check_bang (HsSrcBang _ _ SrcLazy) _ n
      | not (xopt LangExt.StrictData dflags)
      = addErrTc
          (bad_bang n (text "Lazy annotation (~) without StrictData"))
    check_bang (HsSrcBang _ want_unpack strict_mark) rep_bang n
      | isSrcUnpacked want_unpack, not is_strict
      = addWarnTc NoReason (bad_bang n (text "UNPACK pragma lacks '!'"))
      | isSrcUnpacked want_unpack
      , case rep_bang of { HsUnpack {} -> False; _ -> True }
      -- If not optimising, we don't unpack (rep_bang is never
      -- HsUnpack), so don't complain!  This happens, e.g., in Haddock.
      -- See dataConSrcToImplBang.
      , not (gopt Opt_OmitInterfacePragmas dflags)
      -- When typechecking an indefinite package in Backpack, we
      -- may attempt to UNPACK an abstract type.  The test here will
      -- conclude that this is unusable, but it might become usable
      -- when we actually fill in the abstract type.  As such, don't
      -- warn in this case (it gives users the wrong idea about whether
      -- or not UNPACK on abstract types is supported; it is!)
      , unitIdIsDefinite (thisPackage dflags)
      = addWarnTc NoReason (bad_bang n (text "Ignoring unusable UNPACK pragma"))
      where
        is_strict = case strict_mark of
                      NoSrcStrict -> xopt LangExt.StrictData dflags
                      bang        -> isSrcStrict bang

    check_bang _ _ _
      = return ()

    bad_bang n herald
      = hang herald 2 (text "on the" <+> speakNth n
                       <+> text "argument of" <+> quotes (ppr con))
-------------------------------
checkNewDataCon :: DataCon -> TcM ()
-- Further checks for the data constructor of a newtype
checkNewDataCon con
  = do  { checkTc (isSingleton arg_tys) (newtypeFieldErr con (length arg_tys))
              -- One argument

        ; checkTc (not (isUnliftedType arg_ty1)) $
          text "A newtype cannot have an unlifted argument type"

        ; check_con (null eq_spec) $
          text "A newtype constructor must have a return type of form T a1 ... an"
                -- Return type is (T a b c)

        ; check_con (null theta) $
          text "A newtype constructor cannot have a context in its type"

        ; check_con (null ex_tvs) $
          text "A newtype constructor cannot have existential type variables"
                -- No existentials

        ; checkTc (all ok_bang (dataConSrcBangs con))
                  (newtypeStrictError con)
                -- No strictness annotations
    }
  where
    (_univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _res_ty)
      = dataConFullSig con
    check_con what msg
       = checkTc what (msg $$ ppr con <+> dcolon <+> ppr (dataConUserType con))

    (arg_ty1 : _) = arg_tys

    ok_bang (HsSrcBang _ _ SrcStrict) = False
    ok_bang (HsSrcBang _ _ SrcLazy)   = False
    ok_bang _                         = True

-------------------------------
checkValidClass :: Class -> TcM ()
checkValidClass cls
  = do  { constrained_class_methods <- xoptM LangExt.ConstrainedClassMethods
        ; multi_param_type_classes  <- xoptM LangExt.MultiParamTypeClasses
        ; nullary_type_classes      <- xoptM LangExt.NullaryTypeClasses
        ; fundep_classes            <- xoptM LangExt.FunctionalDependencies
        ; undecidable_super_classes <- xoptM LangExt.UndecidableSuperClasses

        -- Check that the class is unary, unless multiparameter type classes
        -- are enabled; also recognize deprecated nullary type classes
        -- extension (subsumed by multiparameter type classes, Trac #8993)
        ; checkTc (multi_param_type_classes || cls_arity == 1 ||
                    (nullary_type_classes && cls_arity == 0))
                  (classArityErr cls_arity cls)
        ; checkTc (fundep_classes || null fundeps) (classFunDepsErr cls)

        -- Check the super-classes
        ; checkValidTheta (ClassSCCtxt (className cls)) theta

          -- Now check for cyclic superclasses
          -- If there are superclass cycles, checkClassCycleErrs bails.
        ; unless undecidable_super_classes $
          case checkClassCycles cls of
             Just err -> setSrcSpan (getSrcSpan cls) $
                         addErrTc err
             Nothing  -> return ()

        -- Check the class operations.
        -- But only if there have been no earlier errors
        -- See Note [Abort when superclass cycle is detected]
        ; whenNoErrs $
          mapM_ (check_op constrained_class_methods) op_stuff

        -- Check the associated type defaults are well-formed and instantiated
        ; mapM_ check_at at_stuff  }
  where
    (tyvars, fundeps, theta, _, at_stuff, op_stuff) = classExtraBigSig cls
    cls_arity = length (tyConVisibleTyVars (classTyCon cls))
       -- Ignore invisible variables
    cls_tv_set = mkVarSet tyvars
    mini_env   = zipVarEnv tyvars (mkTyVarTys tyvars)
    mb_cls     = Just (cls, tyvars, mini_env)

    check_op constrained_class_methods (sel_id, dm)
      = setSrcSpan (getSrcSpan sel_id) $
        addErrCtxt (classOpCtxt sel_id op_ty) $ do
        { traceTc "class op type" (ppr op_ty)
        ; checkValidType ctxt op_ty
                -- This implements the ambiguity check, among other things
                -- Example: tc223
                --   class Error e => Game b mv e | b -> mv e where
                --      newBoard :: MonadState b m => m ()
                -- Here, MonadState has a fundep m->b, so newBoard is fine

           -- a method cannot be levity polymorphic, as we have to store the
           -- method in a dictionary
           -- example of what this prevents:
           --   class BoundedX (a :: TYPE r) where minBound :: a
           -- See Note [Levity polymorphism checking] in DsMonad
        ; checkForLevPoly empty tau1

        ; unless constrained_class_methods $
          mapM_ check_constraint (tail (cls_pred:op_theta))

        ; check_dm ctxt sel_id cls_pred tau2 dm
        }
        where
          ctxt    = FunSigCtxt op_name True -- Report redundant class constraints
          op_name = idName sel_id
          op_ty   = idType sel_id
          (_,cls_pred,tau1) = tcSplitMethodTy op_ty
          -- See Note [Splitting nested sigma types in class type signatures]
          (_,op_theta,tau2) = tcSplitNestedSigmaTys tau1

          check_constraint :: TcPredType -> TcM ()
          check_constraint pred -- See Note [Class method constraints]
            = when (not (isEmptyVarSet pred_tvs) &&
                    pred_tvs `subVarSet` cls_tv_set)
                   (addErrTc (badMethPred sel_id pred))
            where
              pred_tvs = tyCoVarsOfType pred

    check_at (ATI fam_tc m_dflt_rhs)
      = do { checkTc (cls_arity == 0 || any (`elemVarSet` cls_tv_set) fam_tvs)
                     (noClassTyVarErr cls fam_tc)
                        -- Check that the associated type mentions at least
                        -- one of the class type variables
                        -- The check is disabled for nullary type classes,
                        -- since there is no possible ambiguity (Trac #10020)

             -- Check that any default declarations for associated types are valid
           ; whenIsJust m_dflt_rhs $ \ (rhs, loc) ->
             checkValidTyFamEqn mb_cls fam_tc
                                fam_tvs [] (mkTyVarTys fam_tvs) rhs pp_lhs loc }
        where
          fam_tvs = tyConTyVars fam_tc
          pp_lhs  = ppr (mkTyConApp fam_tc (mkTyVarTys fam_tvs))

    check_dm :: UserTypeCtxt -> Id -> PredType -> Type -> DefMethInfo -> TcM ()
    -- Check validity of the /top-level/ generic-default type
    -- E.g for   class C a where
    --             default op :: forall b. (a~b) => blah
    -- we do not want to do an ambiguity check on a type with
    -- a free TyVar 'a' (Trac #11608).  See TcType
    -- Note [TyVars and TcTyVars during type checking] in TcType
    -- Hence the mkDefaultMethodType to close the type.
    check_dm ctxt sel_id vanilla_cls_pred vanilla_tau
             (Just (dm_name, dm_spec@(GenericDM dm_ty)))
      = setSrcSpan (getSrcSpan dm_name) $ do
            -- We have carefully set the SrcSpan on the generic
            -- default-method Name to be that of the generic
            -- default type signature

          -- First, we check that that the method's default type signature
          -- aligns with the non-default type signature.
          -- See Note [Default method type signatures must align]
          let cls_pred = mkClassPred cls $ mkTyVarTys $ classTyVars cls
              -- Note that the second field of this tuple contains the context
              -- of the default type signature, making it apparent that we
              -- ignore method contexts completely when validity-checking
              -- default type signatures. See the end of
              -- Note [Default method type signatures must align]
              -- to learn why this is OK.
              --
              -- See also
              -- Note [Splitting nested sigma types in class type signatures]
              -- for an explanation of why we don't use tcSplitSigmaTy here.
              (_, _, dm_tau) = tcSplitNestedSigmaTys dm_ty

              -- Given this class definition:
              --
              --  class C a b where
              --    op         :: forall p q. (Ord a, D p q)
              --               => a -> b -> p -> (a, b)
              --    default op :: forall r s. E r
              --               => a -> b -> s -> (a, b)
              --
              -- We want to match up two types of the form:
              --
              --   Vanilla type sig: C aa bb => aa -> bb -> p -> (aa, bb)
              --   Default type sig: C a  b  => a  -> b  -> s -> (a,  b)
              --
              -- Notice that the two type signatures can be quantified over
              -- different class type variables! Therefore, it's important that
              -- we include the class predicate parts to match up a with aa and
              -- b with bb.
              vanilla_phi_ty = mkPhiTy [vanilla_cls_pred] vanilla_tau
              dm_phi_ty      = mkPhiTy [cls_pred] dm_tau

          traceTc "check_dm" $ vcat
              [ text "vanilla_phi_ty" <+> ppr vanilla_phi_ty
              , text "dm_phi_ty"      <+> ppr dm_phi_ty ]

          -- Actually checking that the types align is done with a call to
          -- tcMatchTys. We need to get a match in both directions to rule
          -- out degenerate cases like these:
          --
          --  class Foo a where
          --    foo1         :: a -> b
          --    default foo1 :: a -> Int
          --
          --    foo2         :: a -> Int
          --    default foo2 :: a -> b
          unless (isJust $ tcMatchTys [dm_phi_ty, vanilla_phi_ty]
                                      [vanilla_phi_ty, dm_phi_ty]) $ addErrTc $
               hang (text "The default type signature for"
                     <+> ppr sel_id <> colon)
                 2 (ppr dm_ty)
            $$ (text "does not match its corresponding"
                <+> text "non-default type signature")

          -- Now do an ambiguity check on the default type signature.
          checkValidType ctxt (mkDefaultMethodType cls sel_id dm_spec)
    check_dm _ _ _ _ _ = return ()

checkFamFlag :: Name -> TcM ()
-- Check that we don't use families without -XTypeFamilies
-- The parser won't even parse them, but I suppose a GHC API
-- client might have a go!
checkFamFlag tc_name
  = do { idx_tys <- xoptM LangExt.TypeFamilies
       ; checkTc idx_tys err_msg }
  where
    err_msg = hang (text "Illegal family declaration for" <+> quotes (ppr tc_name))
                 2 (text "Enable TypeFamilies to allow indexed type families")

{- Note [Class method constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Haskell 2010 is supposed to reject
  class C a where
    op :: Eq a => a -> a
where the method type constrains only the class variable(s).  (The extension
-XConstrainedClassMethods switches off this check.)  But regardless
we should not reject
  class C a where
    op :: (?x::Int) => a -> a
as pointed out in Trac #11793. So the test here rejects the program if
  * -XConstrainedClassMethods is off
  * the tyvars of the constraint are non-empty
  * all the tyvars are class tyvars, none are locally quantified

Note [Abort when superclass cycle is detected]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must avoid doing the ambiguity check for the methods (in
checkValidClass.check_op) when there are already errors accumulated.
This is because one of the errors may be a superclass cycle, and
superclass cycles cause canonicalization to loop. Here is a
representative example:

  class D a => C a where
    meth :: D a => ()
  class C a => D a

This fixes Trac #9415, #9739

Note [Default method type signatures must align]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GHC enforces the invariant that a class method's default type signature
must "align" with that of the method's non-default type signature, as per
GHC Trac #12918. For instance, if you have:

  class Foo a where
    bar :: forall b. Context => a -> b

Then a default type signature for bar must be alpha equivalent to
(forall b. a -> b). That is, the types must be the same modulo differences in
contexts. So the following would be acceptable default type signatures:

    default bar :: forall b. Context1 => a -> b
    default bar :: forall x. Context2 => a -> x

But the following are NOT acceptable default type signatures:

    default bar :: forall b. b -> a
    default bar :: forall x. x
    default bar :: a -> Int

Note that a is bound by the class declaration for Foo itself, so it is
not allowed to differ in the default type signature.

The default type signature (default bar :: a -> Int) deserves special mention,
since (a -> Int) is a straightforward instantiation of (forall b. a -> b). To
write this, you need to declare the default type signature like so:

    default bar :: forall b. (b ~ Int). a -> b

As noted in #12918, there are several reasons to do this:

1. It would make no sense to have a type that was flat-out incompatible with
   the non-default type signature. For instance, if you had:

     class Foo a where
       bar :: a -> Int
       default bar :: a -> Bool

   Then that would always fail in an instance declaration. So this check
   nips such cases in the bud before they have the chance to produce
   confusing error messages.

2. Internally, GHC uses TypeApplications to instantiate the default method in
   an instance. See Note [Default methods in instances] in TcInstDcls.
   Thus, GHC needs to know exactly what the universally quantified type
   variables are, and when instantiated that way, the default method's type
   must match the expected type.

3. Aesthetically, by only allowing the default type signature to differ in its
   context, we are making it more explicit the ways in which the default type
   signature is less polymorphic than the non-default type signature.

You might be wondering: why are the contexts allowed to be different, but not
the rest of the type signature? That's because default implementations often
rely on assumptions that the more general, non-default type signatures do not.
For instance, in the Enum class declaration:

    class Enum a where
      enum :: [a]
      default enum :: (Generic a, GEnum (Rep a)) => [a]
      enum = map to genum

    class GEnum f where
      genum :: [f a]

The default implementation for enum only works for types that are instances of
Generic, and for which their generic Rep type is an instance of GEnum. But
clearly enum doesn't _have_ to use this implementation, so naturally, the
context for enum is allowed to be different to accomodate this. As a result,
when we validity-check default type signatures, we ignore contexts completely.

Note that when checking whether two type signatures match, we must take care to
split as many foralls as it takes to retrieve the tau types we which to check.
See Note [Splitting nested sigma types in class type signatures].

Note [Splitting nested sigma types in class type signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this type synonym and class definition:

  type Traversal s t a b = forall f. Applicative f => (a -> f b) -> s -> f t

  class Each s t a b where
    each         ::                                      Traversal s t a b
    default each :: (Traversable g, s ~ g a, t ~ g b) => Traversal s t a b

It might seem obvious that the tau types in both type signatures for `each`
are the same, but actually getting GHC to conclude this is surprisingly tricky.
That is because in general, the form of a class method's non-default type
signature is:

  forall a. C a => forall d. D d => E a b

And the general form of a default type signature is:

  forall f. F f => E a f -- The variable `a` comes from the class

So it you want to get the tau types in each type signature, you might find it
reasonable to call tcSplitSigmaTy twice on the non-default type signature, and
call it once on the default type signature. For most classes and methods, this
will work, but Each is a bit of an exceptional case. The way `each` is written,
it doesn't quantify any additional type variables besides those of the Each
class itself, so the non-default type signature for `each` is actually this:

  forall s t a b. Each s t a b => Traversal s t a b

Notice that there _appears_ to only be one forall. But there's actually another
forall lurking in the Traversal type synonym, so if you call tcSplitSigmaTy
twice, you'll also go under the forall in Traversal! That is, you'll end up
with:

  (a -> f b) -> s -> f t

A problem arises because you only call tcSplitSigmaTy once on the default type
signature for `each`, which gives you

  Traversal s t a b

Or, equivalently:

  forall f. Applicative f => (a -> f b) -> s -> f t

This is _not_ the same thing as (a -> f b) -> s -> f t! So now tcMatchTy will
say that the tau types for `each` are not equal.

A solution to this problem is to use tcSplitNestedSigmaTys instead of
tcSplitSigmaTy. tcSplitNestedSigmaTys will always split any foralls that it
sees until it can't go any further, so if you called it on the default type
signature for `each`, it would return (a -> f b) -> s -> f t like we desired.

Note [Checking partial record field]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This check checks the partial record field selector, and warns (Trac #7169).

For example:

  data T a = A { m1 :: a, m2 :: a } | B { m1 :: a }

The function 'm2' is partial record field, and will fail when it is applied to
'B'. The warning identifies such partial fields. The check is performed at the
declaration of T, not at the call-sites of m2.

The warning can be suppressed by prefixing the field-name with an underscore.
For example:

  data T a = A { m1 :: a, _m2 :: a } | B { m1 :: a }


************************************************************************
*                                                                      *
                Checking role validity
*                                                                      *
************************************************************************
-}

checkValidRoleAnnots :: RoleAnnotEnv -> TyCon -> TcM ()
checkValidRoleAnnots role_annots tc
  | isTypeSynonymTyCon tc = check_no_roles
  | isFamilyTyCon tc      = check_no_roles
  | isAlgTyCon tc         = check_roles
  | otherwise             = return ()
  where
    -- Role annotations are given only on *explicit* variables,
    -- but a tycon stores roles for all variables.
    -- So, we drop the implicit roles (which are all Nominal, anyway).
    name                   = tyConName tc
    tyvars                 = tyConTyVars tc
    roles                  = tyConRoles tc
    (vis_roles, vis_vars)  = unzip $ snd $
                             partitionInvisibles tc (mkTyVarTy . snd) $
                             zip roles tyvars
    role_annot_decl_maybe  = lookupRoleAnnot role_annots name

    check_roles
      = whenIsJust role_annot_decl_maybe $
          \decl@(L loc (RoleAnnotDecl _ the_role_annots)) ->
          addRoleAnnotCtxt name $
          setSrcSpan loc $ do
          { role_annots_ok <- xoptM LangExt.RoleAnnotations
          ; checkTc role_annots_ok $ needXRoleAnnotations tc
          ; checkTc (vis_vars `equalLength` the_role_annots)
                    (wrongNumberOfRoles vis_vars decl)
          ; _ <- zipWith3M checkRoleAnnot vis_vars the_role_annots vis_roles
          -- Representational or phantom roles for class parameters
          -- quickly lead to incoherence. So, we require
          -- IncoherentInstances to have them. See #8773, #14292
          ; incoherent_roles_ok <- xoptM LangExt.IncoherentInstances
          ; checkTc (  incoherent_roles_ok
                    || (not $ isClassTyCon tc)
                    || (all (== Nominal) vis_roles))
                    incoherentRoles

          ; lint <- goptM Opt_DoCoreLinting
          ; when lint $ checkValidRoles tc }

    check_no_roles
      = whenIsJust role_annot_decl_maybe illegalRoleAnnotDecl

checkRoleAnnot :: TyVar -> Located (Maybe Role) -> Role -> TcM ()
checkRoleAnnot _  (L _ Nothing)   _  = return ()
checkRoleAnnot tv (L _ (Just r1)) r2
  = when (r1 /= r2) $
    addErrTc $ badRoleAnnot (tyVarName tv) r1 r2

-- This is a double-check on the role inference algorithm. It is only run when
-- -dcore-lint is enabled. See Note [Role inference] in TcTyDecls
checkValidRoles :: TyCon -> TcM ()
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism] in CoreLint
checkValidRoles tc
  | isAlgTyCon tc
    -- tyConDataCons returns an empty list for data families
  = mapM_ check_dc_roles (tyConDataCons tc)
  | Just rhs <- synTyConRhs_maybe tc
  = check_ty_roles (zipVarEnv (tyConTyVars tc) (tyConRoles tc)) Representational rhs
  | otherwise
  = return ()
  where
    check_dc_roles datacon
      = do { traceTc "check_dc_roles" (ppr datacon <+> ppr (tyConRoles tc))
           ; mapM_ (check_ty_roles role_env Representational) $
                    eqSpecPreds eq_spec ++ theta ++ arg_tys }
                    -- See Note [Role-checking data constructor arguments] in TcTyDecls
      where
        (univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _res_ty)
          = dataConFullSig datacon
        univ_roles = zipVarEnv univ_tvs (tyConRoles tc)
              -- zipVarEnv uses zipEqual, but we don't want that for ex_tvs
        ex_roles   = mkVarEnv (map (, Nominal) ex_tvs)
        role_env   = univ_roles `plusVarEnv` ex_roles

    check_ty_roles env role ty
      | Just ty' <- coreView ty -- #14101
      = check_ty_roles env role ty'

    check_ty_roles env role (TyVarTy tv)
      = case lookupVarEnv env tv of
          Just role' -> unless (role' `ltRole` role || role' == role) $
                        report_error $ text "type variable" <+> quotes (ppr tv) <+>
                                       text "cannot have role" <+> ppr role <+>
                                       text "because it was assigned role" <+> ppr role'
          Nothing    -> report_error $ text "type variable" <+> quotes (ppr tv) <+>
                                       text "missing in environment"

    check_ty_roles env Representational (TyConApp tc tys)
      = let roles' = tyConRoles tc in
        zipWithM_ (maybe_check_ty_roles env) roles' tys

    check_ty_roles env Nominal (TyConApp _ tys)
      = mapM_ (check_ty_roles env Nominal) tys

    check_ty_roles _   Phantom ty@(TyConApp {})
      = pprPanic "check_ty_roles" (ppr ty)

    check_ty_roles env role (AppTy ty1 ty2)
      =  check_ty_roles env role    ty1
      >> check_ty_roles env Nominal ty2

    check_ty_roles env role (FunTy ty1 ty2)
      =  check_ty_roles env role ty1
      >> check_ty_roles env role ty2

    check_ty_roles env role (ForAllTy (TvBndr tv _) ty)
      =  check_ty_roles env Nominal (tyVarKind tv)
      >> check_ty_roles (extendVarEnv env tv Nominal) role ty

    check_ty_roles _   _    (LitTy {}) = return ()

    check_ty_roles env role (CastTy t _)
      = check_ty_roles env role t

    check_ty_roles _   role (CoercionTy co)
      = unless (role == Phantom) $
        report_error $ text "coercion" <+> ppr co <+> text "has bad role" <+> ppr role

    maybe_check_ty_roles env role ty
      = when (role == Nominal || role == Representational) $
        check_ty_roles env role ty

    report_error doc
      = addErrTc $ vcat [text "Internal error in role inference:",
                         doc,
                         text "Please report this as a GHC bug: http://www.haskell.org/ghc/reportabug"]

{-
************************************************************************
*                                                                      *
                Error messages
*                                                                      *
************************************************************************
-}

tcAddTyFamInstCtxt :: TyFamInstDecl GhcRn -> TcM a -> TcM a
tcAddTyFamInstCtxt decl
  = tcAddFamInstCtxt (text "type instance") (tyFamInstDeclName decl)

tcMkDataFamInstCtxt :: DataFamInstDecl GhcRn -> SDoc
tcMkDataFamInstCtxt decl@(DataFamInstDecl { dfid_eqn =
                            HsIB { hsib_body = eqn }})
  = tcMkFamInstCtxt (pprDataFamInstFlavour decl <+> text "instance")
                    (unLoc (feqn_tycon eqn))

tcAddDataFamInstCtxt :: DataFamInstDecl GhcRn -> TcM a -> TcM a
tcAddDataFamInstCtxt decl
  = addErrCtxt (tcMkDataFamInstCtxt decl)

tcMkFamInstCtxt :: SDoc -> Name -> SDoc
tcMkFamInstCtxt flavour tycon
  = hsep [ text "In the" <+> flavour <+> text "declaration for"
         , quotes (ppr tycon) ]

tcAddFamInstCtxt :: SDoc -> Name -> TcM a -> TcM a
tcAddFamInstCtxt flavour tycon thing_inside
  = addErrCtxt (tcMkFamInstCtxt flavour tycon) thing_inside

tcAddClosedTypeFamilyDeclCtxt :: TyCon -> TcM a -> TcM a
tcAddClosedTypeFamilyDeclCtxt tc
  = addErrCtxt ctxt
  where
    ctxt = text "In the equations for closed type family" <+>
           quotes (ppr tc)

resultTypeMisMatch :: FieldLabelString -> DataCon -> DataCon -> SDoc
resultTypeMisMatch field_name con1 con2
  = vcat [sep [text "Constructors" <+> ppr con1 <+> text "and" <+> ppr con2,
                text "have a common field" <+> quotes (ppr field_name) <> comma],
          nest 2 $ text "but have different result types"]

fieldTypeMisMatch :: FieldLabelString -> DataCon -> DataCon -> SDoc
fieldTypeMisMatch field_name con1 con2
  = sep [text "Constructors" <+> ppr con1 <+> text "and" <+> ppr con2,
         text "give different types for field", quotes (ppr field_name)]

dataConCtxtName :: [Located Name] -> SDoc
dataConCtxtName [con]
   = text "In the definition of data constructor" <+> quotes (ppr con)
dataConCtxtName con
   = text "In the definition of data constructors" <+> interpp'SP con

dataConCtxt :: Outputable a => a -> SDoc
dataConCtxt con = text "In the definition of data constructor" <+> quotes (ppr con)

classOpCtxt :: Var -> Type -> SDoc
classOpCtxt sel_id tau = sep [text "When checking the class method:",
                              nest 2 (pprPrefixOcc sel_id <+> dcolon <+> ppr tau)]

classArityErr :: Int -> Class -> SDoc
classArityErr n cls
    | n == 0 = mkErr "No" "no-parameter"
    | otherwise = mkErr "Too many" "multi-parameter"
  where
    mkErr howMany allowWhat =
        vcat [text (howMany ++ " parameters for class") <+> quotes (ppr cls),
              parens (text ("Enable MultiParamTypeClasses to allow "
                                    ++ allowWhat ++ " classes"))]

classFunDepsErr :: Class -> SDoc
classFunDepsErr cls
  = vcat [text "Fundeps in class" <+> quotes (ppr cls),
          parens (text "Enable FunctionalDependencies to allow fundeps")]

badMethPred :: Id -> TcPredType -> SDoc
badMethPred sel_id pred
  = vcat [ hang (text "Constraint" <+> quotes (ppr pred)
                 <+> text "in the type of" <+> quotes (ppr sel_id))
              2 (text "constrains only the class type variables")
         , text "Enable ConstrainedClassMethods to allow it" ]

noClassTyVarErr :: Class -> TyCon -> SDoc
noClassTyVarErr clas fam_tc
  = sep [ text "The associated type" <+> quotes (ppr fam_tc)
        , text "mentions none of the type or kind variables of the class" <+>
                quotes (ppr clas <+> hsep (map ppr (classTyVars clas)))]

badDataConTyCon :: DataCon -> Type -> Type -> SDoc
badDataConTyCon data_con res_ty_tmpl actual_res_ty
  | tcIsForAllTy actual_res_ty
  = nested_foralls_contexts_suggestion
  | isJust (tcSplitPredFunTy_maybe actual_res_ty)
  = nested_foralls_contexts_suggestion
  | otherwise
  = hang (text "Data constructor" <+> quotes (ppr data_con) <+>
                text "returns type" <+> quotes (ppr actual_res_ty))
       2 (text "instead of an instance of its parent type" <+> quotes (ppr res_ty_tmpl))
  where
    -- This suggestion is useful for suggesting how to correct code like what
    -- was reported in Trac #12087:
    --
    --   data F a where
    --     MkF :: Ord a => Eq a => a -> F a
    --
    -- Although nested foralls or contexts are allowed in function type
    -- signatures, it is much more difficult to engineer GADT constructor type
    -- signatures to allow something similar, so we error in the latter case.
    -- Nevertheless, we can at least suggest how a user might reshuffle their
    -- exotic GADT constructor type signature so that GHC will accept.
    nested_foralls_contexts_suggestion =
      text "GADT constructor type signature cannot contain nested"
      <+> quotes forAllLit <> text "s or contexts"
      $+$ hang (text "Suggestion: instead use this type signature:")
             2 (ppr (dataConName data_con) <+> dcolon <+> ppr suggested_ty)

    -- To construct a type that GHC would accept (suggested_ty), we:
    --
    -- 1) Find the existentially quantified type variables and the class
    --    predicates from the datacon. (NB: We don't need the universally
    --    quantified type variables, since rejigConRes won't substitute them in
    --    the result type if it fails, as in this scenario.)
    -- 2) Split apart the return type (which is headed by a forall or a
    --    context) using tcSplitNestedSigmaTys, collecting the type variables
    --    and class predicates we find, as well as the rho type lurking
    --    underneath the nested foralls and contexts.
    -- 3) Smash together the type variables and class predicates from 1) and
    --    2), and prepend them to the rho type from 2).
    actual_ex_tvs = dataConExTyVars data_con
    actual_theta  = dataConTheta data_con
    (actual_res_tvs, actual_res_theta, actual_res_rho)
      = tcSplitNestedSigmaTys actual_res_ty
    suggested_ty = mkSpecForAllTys (actual_ex_tvs ++ actual_res_tvs) $
                   mkFunTys (actual_theta ++ actual_res_theta)
                   actual_res_rho

badGadtDecl :: Name -> SDoc
badGadtDecl tc_name
  = vcat [ text "Illegal generalised algebraic data declaration for" <+> quotes (ppr tc_name)
         , nest 2 (parens $ text "Enable the GADTs extension to allow this") ]

badExistential :: DataCon -> SDoc
badExistential con
  = hang (text "Data constructor" <+> quotes (ppr con) <+>
                text "has existential type variables, a context, or a specialised result type")
       2 (vcat [ ppr con <+> dcolon <+> ppr (dataConUserType con)
               , parens $ text "Enable ExistentialQuantification or GADTs to allow this" ])

badGADT :: DataCon -> [EqSpec] -> SDoc
badGADT con eq_specs
  = hang (text "Data constructor" <+> quotes (ppr con) <+>
               text "constrains the choice of kind parameter" <> plural eq_specs <> colon)
       2 (vcat (map ppr_eq_spec eq_specs)) $$
    text "Use TypeInType to allow this"
  where
    ppr_eq_spec eq_spec = ppr (eqSpecTyVar eq_spec) <+> char '~' <+> ppr (eqSpecType eq_spec)

badStupidTheta :: Name -> SDoc
badStupidTheta tc_name
  = text "A data type declared in GADT style cannot have a context:" <+> quotes (ppr tc_name)

newtypeConError :: Name -> Int -> SDoc
newtypeConError tycon n
  = sep [text "A newtype must have exactly one constructor,",
         nest 2 $ text "but" <+> quotes (ppr tycon) <+> text "has" <+> speakN n ]

newtypeStrictError :: DataCon -> SDoc
newtypeStrictError con
  = sep [text "A newtype constructor cannot have a strictness annotation,",
         nest 2 $ text "but" <+> quotes (ppr con) <+> text "does"]

newtypeFieldErr :: DataCon -> Int -> SDoc
newtypeFieldErr con_name n_flds
  = sep [text "The constructor of a newtype must have exactly one field",
         nest 2 $ text "but" <+> quotes (ppr con_name) <+> text "has" <+> speakN n_flds]

badSigTyDecl :: Name -> SDoc
badSigTyDecl tc_name
  = vcat [ text "Illegal kind signature" <+>
           quotes (ppr tc_name)
         , nest 2 (parens $ text "Use KindSignatures to allow kind signatures") ]

emptyConDeclsErr :: Name -> SDoc
emptyConDeclsErr tycon
  = sep [quotes (ppr tycon) <+> text "has no constructors",
         nest 2 $ text "(EmptyDataDecls permits this)"]

wrongKindOfFamily :: TyCon -> SDoc
wrongKindOfFamily family
  = text "Wrong category of family instance; declaration was for a"
    <+> kindOfFamily
  where
    kindOfFamily | isTypeFamilyTyCon family = text "type family"
                 | isDataFamilyTyCon family = text "data family"
                 | otherwise = pprPanic "wrongKindOfFamily" (ppr family)

wrongNumberOfParmsErr :: Arity -> SDoc
wrongNumberOfParmsErr max_args
  = text "Number of parameters must match family declaration; expected"
    <+> ppr max_args

defaultAssocKindErr :: TyCon -> SDoc
defaultAssocKindErr fam_tc
  = text "Kind mis-match on LHS of default declaration for"
    <+> quotes (ppr fam_tc)

wrongTyFamName :: Name -> Name -> SDoc
wrongTyFamName fam_tc_name eqn_tc_name
  = hang (text "Mismatched type name in type family instance.")
       2 (vcat [ text "Expected:" <+> ppr fam_tc_name
               , text "  Actual:" <+> ppr eqn_tc_name ])

badRoleAnnot :: Name -> Role -> Role -> SDoc
badRoleAnnot var annot inferred
  = hang (text "Role mismatch on variable" <+> ppr var <> colon)
       2 (sep [ text "Annotation says", ppr annot
              , text "but role", ppr inferred
              , text "is required" ])

wrongNumberOfRoles :: [a] -> LRoleAnnotDecl GhcRn -> SDoc
wrongNumberOfRoles tyvars d@(L _ (RoleAnnotDecl _ annots))
  = hang (text "Wrong number of roles listed in role annotation;" $$
          text "Expected" <+> (ppr $ length tyvars) <> comma <+>
          text "got" <+> (ppr $ length annots) <> colon)
       2 (ppr d)

illegalRoleAnnotDecl :: LRoleAnnotDecl GhcRn -> TcM ()
illegalRoleAnnotDecl (L loc (RoleAnnotDecl tycon _))
  = setErrCtxt [] $
    setSrcSpan loc $
    addErrTc (text "Illegal role annotation for" <+> ppr tycon <> char ';' $$
              text "they are allowed only for datatypes and classes.")

needXRoleAnnotations :: TyCon -> SDoc
needXRoleAnnotations tc
  = text "Illegal role annotation for" <+> ppr tc <> char ';' $$
    text "did you intend to use RoleAnnotations?"

incoherentRoles :: SDoc
incoherentRoles = (text "Roles other than" <+> quotes (text "nominal") <+>
                   text "for class parameters can lead to incoherence.") $$
                  (text "Use IncoherentInstances to allow this; bad role found")

addTyConCtxt :: TyCon -> TcM a -> TcM a
addTyConCtxt tc
  = addErrCtxt ctxt
  where
    name = getName tc
    flav = ppr (tyConFlavour tc)
    ctxt = hsep [ text "In the", flav
                , text "declaration for", quotes (ppr name) ]

addRoleAnnotCtxt :: Name -> TcM a -> TcM a
addRoleAnnotCtxt name
  = addErrCtxt $
    text "while checking a role annotation for" <+> quotes (ppr name)