summaryrefslogtreecommitdiff
path: root/compiler/typecheck/TcType.hs
blob: b2c9b3291fed08cfb3f12038c6df0465525316a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

\section[TcType]{Types used in the typechecker}

This module provides the Type interface for front-end parts of the
compiler.  These parts

        * treat "source types" as opaque:
                newtypes, and predicates are meaningful.
        * look through usage types

The "tc" prefix is for "TypeChecker", because the type checker
is the principal client.
-}

{-# LANGUAGE CPP, ScopedTypeVariables, MultiWayIf, FlexibleContexts #-}

module TcType (
  --------------------------------
  -- Types
  TcType, TcSigmaType, TcRhoType, TcTauType, TcPredType, TcThetaType,
  TcTyVar, TcTyVarSet, TcDTyVarSet, TcTyCoVarSet, TcDTyCoVarSet,
  TcKind, TcCoVar, TcTyCoVar, TcTyVarBinder, TcTyCon,
  KnotTied,

  ExpType(..), InferResult(..), ExpSigmaType, ExpRhoType, mkCheckExpType,

  SyntaxOpType(..), synKnownType, mkSynFunTys,

  -- TcLevel
  TcLevel(..), topTcLevel, pushTcLevel, isTopTcLevel,
  strictlyDeeperThan, sameDepthAs,
  tcTypeLevel, tcTyVarLevel, maxTcLevel,
  promoteSkolem, promoteSkolemX, promoteSkolemsX,
  --------------------------------
  -- MetaDetails
  UserTypeCtxt(..), pprUserTypeCtxt, isSigMaybe,
  TcTyVarDetails(..), pprTcTyVarDetails, vanillaSkolemTv, superSkolemTv,
  MetaDetails(Flexi, Indirect), MetaInfo(..),
  isImmutableTyVar, isSkolemTyVar, isMetaTyVar,  isMetaTyVarTy, isTyVarTy,
  tcIsTcTyVar, isTyVarTyVar, isOverlappableTyVar,  isTyConableTyVar,
  isFskTyVar, isFmvTyVar, isFlattenTyVar,
  isAmbiguousTyVar, metaTyVarRef, metaTyVarInfo,
  isFlexi, isIndirect, isRuntimeUnkSkol,
  metaTyVarTcLevel, setMetaTyVarTcLevel, metaTyVarTcLevel_maybe,
  isTouchableMetaTyVar,
  isFloatedTouchableMetaTyVar,
  findDupTyVarTvs, mkTyVarNamePairs,

  --------------------------------
  -- Builders
  mkPhiTy, mkInfSigmaTy, mkSpecSigmaTy, mkSigmaTy,
  mkNakedAppTy, mkNakedAppTys, mkNakedCastTy, nakedSubstTy,

  --------------------------------
  -- Splitters
  -- These are important because they do not look through newtypes
  getTyVar,
  tcSplitForAllTy_maybe,
  tcSplitForAllTys, tcSplitPiTys, tcSplitPiTy_maybe, tcSplitForAllVarBndrs,
  tcSplitPhiTy, tcSplitPredFunTy_maybe,
  tcSplitFunTy_maybe, tcSplitFunTys, tcFunArgTy, tcFunResultTy, tcFunResultTyN,
  tcSplitFunTysN,
  tcSplitTyConApp, tcSplitTyConApp_maybe,
  tcRepSplitTyConApp, tcRepSplitTyConApp_maybe, tcRepSplitTyConApp_maybe',
  tcTyConAppTyCon, tcTyConAppTyCon_maybe, tcTyConAppArgs,
  tcSplitAppTy_maybe, tcSplitAppTy, tcSplitAppTys, tcRepSplitAppTy_maybe,
  tcRepGetNumAppTys,
  tcGetCastedTyVar_maybe, tcGetTyVar_maybe, tcGetTyVar, nextRole,
  tcSplitSigmaTy, tcSplitNestedSigmaTys, tcDeepSplitSigmaTy_maybe,

  ---------------------------------
  -- Predicates.
  -- Again, newtypes are opaque
  eqType, eqTypes, nonDetCmpType, nonDetCmpTypes, eqTypeX,
  pickyEqType, tcEqType, tcEqKind, tcEqTypeNoKindCheck, tcEqTypeVis,
  isSigmaTy, isRhoTy, isRhoExpTy, isOverloadedTy,
  isFloatingTy, isDoubleTy, isFloatTy, isIntTy, isWordTy, isStringTy,
  isIntegerTy, isBoolTy, isUnitTy, isCharTy, isCallStackTy, isCallStackPred,
  hasIPPred, isTauTy, isTauTyCon, tcIsTyVarTy, tcIsForAllTy,
  isPredTy, isTyVarClassPred, isTyVarHead, isInsolubleOccursCheck,
  checkValidClsArgs, hasTyVarHead,
  isRigidTy,

  ---------------------------------
  -- Misc type manipulators

  deNoteType,
  orphNamesOfType, orphNamesOfCo,
  orphNamesOfTypes, orphNamesOfCoCon,
  getDFunTyKey, evVarPred,

  ---------------------------------
  -- Predicate types
  mkMinimalBySCs, transSuperClasses,
  pickQuantifiablePreds, pickCapturedPreds,
  immSuperClasses, boxEqPred,
  isImprovementPred,

  -- * Finding type instances
  tcTyFamInsts, tcTyFamInstsAndVis, tcTyConAppTyFamInstsAndVis, isTyFamFree,

  -- * Finding "exact" (non-dead) type variables
  exactTyCoVarsOfType, exactTyCoVarsOfTypes,
  anyRewritableTyVar,

  ---------------------------------
  -- Foreign import and export
  isFFIArgumentTy,     -- :: DynFlags -> Safety -> Type -> Bool
  isFFIImportResultTy, -- :: DynFlags -> Type -> Bool
  isFFIExportResultTy, -- :: Type -> Bool
  isFFIExternalTy,     -- :: Type -> Bool
  isFFIDynTy,          -- :: Type -> Type -> Bool
  isFFIPrimArgumentTy, -- :: DynFlags -> Type -> Bool
  isFFIPrimResultTy,   -- :: DynFlags -> Type -> Bool
  isFFILabelTy,        -- :: Type -> Bool
  isFFITy,             -- :: Type -> Bool
  isFunPtrTy,          -- :: Type -> Bool
  tcSplitIOType_maybe, -- :: Type -> Maybe Type

  --------------------------------
  -- Rexported from Kind
  Kind, typeKind, tcTypeKind,
  liftedTypeKind,
  constraintKind,
  isLiftedTypeKind, isUnliftedTypeKind, classifiesTypeWithValues,

  --------------------------------
  -- Rexported from Type
  Type, PredType, ThetaType, TyCoBinder, ArgFlag(..),

  mkForAllTy, mkForAllTys, mkTyCoInvForAllTys, mkSpecForAllTys, mkTyCoInvForAllTy,
  mkInvForAllTy, mkInvForAllTys,
  mkFunTy, mkFunTys,
  mkTyConApp, mkAppTy, mkAppTys,
  mkTyConTy, mkTyVarTy, mkTyVarTys,
  mkTyCoVarTy, mkTyCoVarTys,

  isClassPred, isEqPred, isNomEqPred, isIPPred,
  mkClassPred,
  isDictLikeTy,
  tcSplitDFunTy, tcSplitDFunHead, tcSplitMethodTy,
  isRuntimeRepVar, isKindLevPoly,
  isVisibleBinder, isInvisibleBinder,

  -- Type substitutions
  TCvSubst(..),         -- Representation visible to a few friends
  TvSubstEnv, emptyTCvSubst, mkEmptyTCvSubst,
  zipTvSubst,
  mkTvSubstPrs, notElemTCvSubst, unionTCvSubst,
  getTvSubstEnv, setTvSubstEnv, getTCvInScope, extendTCvInScope,
  extendTCvInScopeList, extendTCvInScopeSet, extendTvSubstAndInScope,
  Type.lookupTyVar, Type.extendTCvSubst, Type.substTyVarBndr,
  Type.extendTvSubst,
  isInScope, mkTCvSubst, mkTvSubst, zipTyEnv, zipCoEnv,
  Type.substTy, substTys, substTyWith, substTyWithCoVars,
  substTyAddInScope,
  substTyUnchecked, substTysUnchecked, substThetaUnchecked,
  substTyWithUnchecked,
  substCoUnchecked, substCoWithUnchecked,
  substTheta,

  isUnliftedType,       -- Source types are always lifted
  isUnboxedTupleType,   -- Ditto
  isPrimitiveType,

  tcView, coreView,

  tyCoVarsOfType, tyCoVarsOfTypes, closeOverKinds,
  tyCoFVsOfType, tyCoFVsOfTypes,
  tyCoVarsOfTypeDSet, tyCoVarsOfTypesDSet, closeOverKindsDSet,
  tyCoVarsOfTypeList, tyCoVarsOfTypesList,
  noFreeVarsOfType,

  --------------------------------
  pprKind, pprParendKind, pprSigmaType,
  pprType, pprParendType, pprTypeApp, pprTyThingCategory, tyThingCategory,
  pprTheta, pprParendTheta, pprThetaArrowTy, pprClassPred,
  pprTCvBndr, pprTCvBndrs,

  TypeSize, sizeType, sizeTypes, scopedSort,

  ---------------------------------
  -- argument visibility
  tcTyConVisibilities, isNextTyConArgVisible, isNextArgVisible

  ) where

#include "HsVersions.h"

-- friends:
import GhcPrelude

import Kind
import TyCoRep
import Class
import Var
import ForeignCall
import VarSet
import Coercion
import Type
import RepType
import TyCon

-- others:
import DynFlags
import CoreFVs
import Name -- hiding (varName)
            -- We use this to make dictionaries for type literals.
            -- Perhaps there's a better way to do this?
import NameSet
import VarEnv
import PrelNames
import TysWiredIn( coercibleClass, eqClass, heqClass, unitTyCon, unitTyConKey
                 , listTyCon, constraintKind )
import BasicTypes
import Util
import Maybes
import ListSetOps ( getNth, findDupsEq )
import Outputable
import FastString
import ErrUtils( Validity(..), MsgDoc, isValid )
import qualified GHC.LanguageExtensions as LangExt

import Data.List  ( mapAccumL )
import Data.Functor.Identity( Identity(..) )
import Data.IORef
import Data.List.NonEmpty( NonEmpty(..) )

{-
************************************************************************
*                                                                      *
              Types
*                                                                      *
************************************************************************

The type checker divides the generic Type world into the
following more structured beasts:

sigma ::= forall tyvars. phi
        -- A sigma type is a qualified type
        --
        -- Note that even if 'tyvars' is empty, theta
        -- may not be: e.g.   (?x::Int) => Int

        -- Note that 'sigma' is in prenex form:
        -- all the foralls are at the front.
        -- A 'phi' type has no foralls to the right of
        -- an arrow

phi :: theta => rho

rho ::= sigma -> rho
     |  tau

-- A 'tau' type has no quantification anywhere
-- Note that the args of a type constructor must be taus
tau ::= tyvar
     |  tycon tau_1 .. tau_n
     |  tau_1 tau_2
     |  tau_1 -> tau_2

-- In all cases, a (saturated) type synonym application is legal,
-- provided it expands to the required form.

Note [TcTyVars and TyVars in the typechecker]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The typechecker uses a lot of type variables with special properties,
notably being a unification variable with a mutable reference.  These
use the 'TcTyVar' variant of Var.Var.

Note, though, that a /bound/ type variable can (and probably should)
be a TyVar.  E.g
    forall a. a -> a
Here 'a' is really just a deBruijn-number; it certainly does not have
a signficant TcLevel (as every TcTyVar does).  So a forall-bound type
variable should be TyVars; and hence a TyVar can appear free in a TcType.

The type checker and constraint solver can also encounter /free/ type
variables that use the 'TyVar' variant of Var.Var, for a couple of
reasons:

  - When typechecking a class decl, say
       class C (a :: k) where
          foo :: T a -> Int
    We have first kind-check the header; fix k and (a:k) to be
    TyVars, bring 'k' and 'a' into scope, and kind check the
    signature for 'foo'.  In doing so we call solveEqualities to
    solve any kind equalities in foo's signature.  So the solver
    may see free occurrences of 'k'.

    See calls to tcExtendTyVarEnv for other places that ordinary
    TyVars are bought into scope, and hence may show up in the types
    and kinds generated by TcHsType.

  - The pattern-match overlap checker calls the constraint solver,
    long afer TcTyVars have been zonked away

It's convenient to simply treat these TyVars as skolem constants,
which of course they are.  We give them a level number of "outermost",
so they behave as global constants.  Specifically:

* Var.tcTyVarDetails succeeds on a TyVar, returning
  vanillaSkolemTv, as well as on a TcTyVar.

* tcIsTcTyVar returns True for both TyVar and TcTyVar variants
  of Var.Var.  The "tc" prefix means "a type variable that can be
  encountered by the typechecker".

This is a bit of a change from an earlier era when we remoselessly
insisted on real TcTyVars in the type checker.  But that seems
unnecessary (for skolems, TyVars are fine) and it's now very hard
to guarantee, with the advent of kind equalities.

Note [Coercion variables in free variable lists]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several places in the GHC codebase where functions like
tyCoVarsOfType, tyCoVarsOfCt, et al. are used to compute the free type
variables of a type. The "Co" part of these functions' names shouldn't be
dismissed, as it is entirely possible that they will include coercion variables
in addition to type variables! As a result, there are some places in TcType
where we must take care to check that a variable is a _type_ variable (using
isTyVar) before calling tcTyVarDetails--a partial function that is not defined
for coercion variables--on the variable. Failing to do so led to
GHC Trac #12785.
-}

-- See Note [TcTyVars and TyVars in the typechecker]
type TcCoVar = CoVar    -- Used only during type inference
type TcType = Type      -- A TcType can have mutable type variables
type TcTyCoVar = Var    -- Either a TcTyVar or a CoVar
        -- Invariant on ForAllTy in TcTypes:
        --      forall a. T
        -- a cannot occur inside a MutTyVar in T; that is,
        -- T is "flattened" before quantifying over a

type TcTyVarBinder   = TyVarBinder
type TcTyCon         = TyCon   -- these can be the TcTyCon constructor

-- These types do not have boxy type variables in them
type TcPredType     = PredType
type TcThetaType    = ThetaType
type TcSigmaType    = TcType
type TcRhoType      = TcType  -- Note [TcRhoType]
type TcTauType      = TcType
type TcKind         = Kind
type TcTyVarSet     = TyVarSet
type TcTyCoVarSet   = TyCoVarSet
type TcDTyVarSet    = DTyVarSet
type TcDTyCoVarSet  = DTyCoVarSet

{- *********************************************************************
*                                                                      *
          ExpType: an "expected type" in the type checker
*                                                                      *
********************************************************************* -}

-- | An expected type to check against during type-checking.
-- See Note [ExpType] in TcMType, where you'll also find manipulators.
data ExpType = Check TcType
             | Infer !InferResult

data InferResult
  = IR { ir_uniq :: Unique  -- For debugging only
       , ir_lvl  :: TcLevel -- See Note [TcLevel of ExpType] in TcMType
       , ir_inst :: Bool    -- True <=> deeply instantiate before returning
                            --           i.e. return a RhoType
                            -- False <=> do not instantiate before returning
                            --           i.e. return a SigmaType
       , ir_ref  :: IORef (Maybe TcType) }
         -- The type that fills in this hole should be a Type,
         -- that is, its kind should be (TYPE rr) for some rr

type ExpSigmaType = ExpType
type ExpRhoType   = ExpType

instance Outputable ExpType where
  ppr (Check ty) = text "Check" <> braces (ppr ty)
  ppr (Infer ir) = ppr ir

instance Outputable InferResult where
  ppr (IR { ir_uniq = u, ir_lvl = lvl
          , ir_inst = inst })
    = text "Infer" <> braces (ppr u <> comma <> ppr lvl <+> ppr inst)

-- | Make an 'ExpType' suitable for checking.
mkCheckExpType :: TcType -> ExpType
mkCheckExpType = Check


{- *********************************************************************
*                                                                      *
          SyntaxOpType
*                                                                      *
********************************************************************* -}

-- | What to expect for an argument to a rebindable-syntax operator.
-- Quite like 'Type', but allows for holes to be filled in by tcSyntaxOp.
-- The callback called from tcSyntaxOp gets a list of types; the meaning
-- of these types is determined by a left-to-right depth-first traversal
-- of the 'SyntaxOpType' tree. So if you pass in
--
-- > SynAny `SynFun` (SynList `SynFun` SynType Int) `SynFun` SynAny
--
-- you'll get three types back: one for the first 'SynAny', the /element/
-- type of the list, and one for the last 'SynAny'. You don't get anything
-- for the 'SynType', because you've said positively that it should be an
-- Int, and so it shall be.
--
-- This is defined here to avoid defining it in TcExpr.hs-boot.
data SyntaxOpType
  = SynAny     -- ^ Any type
  | SynRho     -- ^ A rho type, deeply skolemised or instantiated as appropriate
  | SynList    -- ^ A list type. You get back the element type of the list
  | SynFun SyntaxOpType SyntaxOpType
               -- ^ A function.
  | SynType ExpType   -- ^ A known type.
infixr 0 `SynFun`

-- | Like 'SynType' but accepts a regular TcType
synKnownType :: TcType -> SyntaxOpType
synKnownType = SynType . mkCheckExpType

-- | Like 'mkFunTys' but for 'SyntaxOpType'
mkSynFunTys :: [SyntaxOpType] -> ExpType -> SyntaxOpType
mkSynFunTys arg_tys res_ty = foldr SynFun (SynType res_ty) arg_tys


{-
Note [TcRhoType]
~~~~~~~~~~~~~~~~
A TcRhoType has no foralls or contexts at the top, or to the right of an arrow
  YES    (forall a. a->a) -> Int
  NO     forall a. a ->  Int
  NO     Eq a => a -> a
  NO     Int -> forall a. a -> Int


************************************************************************
*                                                                      *
        TyVarDetails, MetaDetails, MetaInfo
*                                                                      *
************************************************************************

TyVarDetails gives extra info about type variables, used during type
checking.  It's attached to mutable type variables only.
It's knot-tied back to Var.hs.  There is no reason in principle
why Var.hs shouldn't actually have the definition, but it "belongs" here.

Note [Signature skolems]
~~~~~~~~~~~~~~~~~~~~~~~~
A TyVarTv is a specialised variant of TauTv, with the following invarints:

    * A TyVarTv can be unified only with a TyVar,
      not with any other type

    * Its MetaDetails, if filled in, will always be another TyVarTv
      or a SkolemTv

TyVarTvs are only distinguished to improve error messages.
Consider this

  data T (a:k1) = MkT (S a)
  data S (b:k2) = MkS (T b)

When doing kind inference on {S,T} we don't want *skolems* for k1,k2,
because they end up unifying; we want those TyVarTvs again.


Note [TyVars and TcTyVars during type checking]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Var type has constructors TyVar and TcTyVar.  They are used
as follows:

* TcTyVar: used /only/ during type checking.  Should never appear
  afterwards.  May contain a mutable field, in the MetaTv case.

* TyVar: is never seen by the constraint solver, except locally
  inside a type like (forall a. [a] ->[a]), where 'a' is a TyVar.
  We instantiate these with TcTyVars before exposing the type
  to the constraint solver.

I have swithered about the latter invariant, excluding TyVars from the
constraint solver.  It's not strictly essential, and indeed
(historically but still there) Var.tcTyVarDetails returns
vanillaSkolemTv for a TyVar.

But ultimately I want to seeparate Type from TcType, and in that case
we would need to enforce the separation.
-}

-- A TyVarDetails is inside a TyVar
-- See Note [TyVars and TcTyVars]
data TcTyVarDetails
  = SkolemTv      -- A skolem
       TcLevel    -- Level of the implication that binds it
                  -- See TcUnify Note [Deeper level on the left] for
                  --     how this level number is used
       Bool       -- True <=> this skolem type variable can be overlapped
                  --          when looking up instances
                  -- See Note [Binding when looking up instances] in InstEnv

  | RuntimeUnk    -- Stands for an as-yet-unknown type in the GHCi
                  -- interactive context

  | MetaTv { mtv_info  :: MetaInfo
           , mtv_ref   :: IORef MetaDetails
           , mtv_tclvl :: TcLevel }  -- See Note [TcLevel and untouchable type variables]

vanillaSkolemTv, superSkolemTv :: TcTyVarDetails
-- See Note [Binding when looking up instances] in InstEnv
vanillaSkolemTv = SkolemTv topTcLevel False  -- Might be instantiated
superSkolemTv   = SkolemTv topTcLevel True   -- Treat this as a completely distinct type
                  -- The choice of level number here is a bit dodgy, but
                  -- topTcLevel works in the places that vanillaSkolemTv is used

-----------------------------
data MetaDetails
  = Flexi  -- Flexi type variables unify to become Indirects
  | Indirect TcType

data MetaInfo
   = TauTv         -- This MetaTv is an ordinary unification variable
                   -- A TauTv is always filled in with a tau-type, which
                   -- never contains any ForAlls.

   | TyVarTv       -- A variant of TauTv, except that it should not be
                   --   unified with a type, only with a type variable
                   -- See Note [Signature skolems]

   | FlatMetaTv    -- A flatten meta-tyvar
                   -- It is a meta-tyvar, but it is always untouchable, with level 0
                   -- See Note [The flattening story] in TcFlatten

   | FlatSkolTv    -- A flatten skolem tyvar
                   -- Just like FlatMetaTv, but is comletely "owned" by
                   --   its Given CFunEqCan.
                   -- It is filled in /only/ by unflattenGivens
                   -- See Note [The flattening story] in TcFlatten

instance Outputable MetaDetails where
  ppr Flexi         = text "Flexi"
  ppr (Indirect ty) = text "Indirect" <+> ppr ty

pprTcTyVarDetails :: TcTyVarDetails -> SDoc
-- For debugging
pprTcTyVarDetails (RuntimeUnk {})      = text "rt"
pprTcTyVarDetails (SkolemTv lvl True)  = text "ssk" <> colon <> ppr lvl
pprTcTyVarDetails (SkolemTv lvl False) = text "sk"  <> colon <> ppr lvl
pprTcTyVarDetails (MetaTv { mtv_info = info, mtv_tclvl = tclvl })
  = pp_info <> colon <> ppr tclvl
  where
    pp_info = case info of
                TauTv      -> text "tau"
                TyVarTv    -> text "tyv"
                FlatMetaTv -> text "fmv"
                FlatSkolTv -> text "fsk"


{- *********************************************************************
*                                                                      *
          UserTypeCtxt
*                                                                      *
********************************************************************* -}

-------------------------------------
-- UserTypeCtxt describes the origin of the polymorphic type
-- in the places where we need an expression to have that type

data UserTypeCtxt
  = FunSigCtxt      -- Function type signature, when checking the type
                    -- Also used for types in SPECIALISE pragmas
       Name              -- Name of the function
       Bool              -- True <=> report redundant constraints
                            -- This is usually True, but False for
                            --   * Record selectors (not important here)
                            --   * Class and instance methods.  Here
                            --     the code may legitimately be more
                            --     polymorphic than the signature
                            --     generated from the class
                            --     declaration

  | InfSigCtxt Name     -- Inferred type for function
  | ExprSigCtxt         -- Expression type signature
  | KindSigCtxt         -- Kind signature
  | TypeAppCtxt         -- Visible type application
  | ConArgCtxt Name     -- Data constructor argument
  | TySynCtxt Name      -- RHS of a type synonym decl
  | PatSynCtxt Name     -- Type sig for a pattern synonym
  | PatSigCtxt          -- Type sig in pattern
                        --   eg  f (x::t) = ...
                        --   or  (x::t, y) = e
  | RuleSigCtxt Name    -- LHS of a RULE forall
                        --    RULE "foo" forall (x :: a -> a). f (Just x) = ...
  | ResSigCtxt          -- Result type sig
                        --      f x :: t = ....
  | ForSigCtxt Name     -- Foreign import or export signature
  | DefaultDeclCtxt     -- Types in a default declaration
  | InstDeclCtxt Bool   -- An instance declaration
                        --    True:  stand-alone deriving
                        --    False: vanilla instance declaration
  | SpecInstCtxt        -- SPECIALISE instance pragma
  | ThBrackCtxt         -- Template Haskell type brackets [t| ... |]
  | GenSigCtxt          -- Higher-rank or impredicative situations
                        -- e.g. (f e) where f has a higher-rank type
                        -- We might want to elaborate this
  | GhciCtxt Bool       -- GHCi command :kind <type>
                        -- The Bool indicates if we are checking the outermost
                        -- type application.
                        -- See Note [Unsaturated type synonyms in GHCi] in
                        -- TcValidity.

  | ClassSCCtxt Name    -- Superclasses of a class
  | SigmaCtxt           -- Theta part of a normal for-all type
                        --      f :: <S> => a -> a
  | DataTyCtxt Name     -- The "stupid theta" part of a data decl
                        --      data <S> => T a = MkT a
  | DerivClauseCtxt     -- A 'deriving' clause
  | TyVarBndrKindCtxt Name  -- The kind of a type variable being bound
  | DataKindCtxt Name   -- The kind of a data/newtype (instance)
  | TySynKindCtxt Name  -- The kind of the RHS of a type synonym
  | TyFamResKindCtxt Name   -- The result kind of a type family

{-
-- Notes re TySynCtxt
-- We allow type synonyms that aren't types; e.g.  type List = []
--
-- If the RHS mentions tyvars that aren't in scope, we'll
-- quantify over them:
--      e.g.    type T = a->a
-- will become  type T = forall a. a->a
--
-- With gla-exts that's right, but for H98 we should complain.
-}


pprUserTypeCtxt :: UserTypeCtxt -> SDoc
pprUserTypeCtxt (FunSigCtxt n _)  = text "the type signature for" <+> quotes (ppr n)
pprUserTypeCtxt (InfSigCtxt n)    = text "the inferred type for" <+> quotes (ppr n)
pprUserTypeCtxt (RuleSigCtxt n)   = text "a RULE for" <+> quotes (ppr n)
pprUserTypeCtxt ExprSigCtxt       = text "an expression type signature"
pprUserTypeCtxt KindSigCtxt       = text "a kind signature"
pprUserTypeCtxt TypeAppCtxt       = text "a type argument"
pprUserTypeCtxt (ConArgCtxt c)    = text "the type of the constructor" <+> quotes (ppr c)
pprUserTypeCtxt (TySynCtxt c)     = text "the RHS of the type synonym" <+> quotes (ppr c)
pprUserTypeCtxt ThBrackCtxt       = text "a Template Haskell quotation [t|...|]"
pprUserTypeCtxt PatSigCtxt        = text "a pattern type signature"
pprUserTypeCtxt ResSigCtxt        = text "a result type signature"
pprUserTypeCtxt (ForSigCtxt n)    = text "the foreign declaration for" <+> quotes (ppr n)
pprUserTypeCtxt DefaultDeclCtxt   = text "a type in a `default' declaration"
pprUserTypeCtxt (InstDeclCtxt False) = text "an instance declaration"
pprUserTypeCtxt (InstDeclCtxt True)  = text "a stand-alone deriving instance declaration"
pprUserTypeCtxt SpecInstCtxt      = text "a SPECIALISE instance pragma"
pprUserTypeCtxt GenSigCtxt        = text "a type expected by the context"
pprUserTypeCtxt (GhciCtxt {})     = text "a type in a GHCi command"
pprUserTypeCtxt (ClassSCCtxt c)   = text "the super-classes of class" <+> quotes (ppr c)
pprUserTypeCtxt SigmaCtxt         = text "the context of a polymorphic type"
pprUserTypeCtxt (DataTyCtxt tc)   = text "the context of the data type declaration for" <+> quotes (ppr tc)
pprUserTypeCtxt (PatSynCtxt n)    = text "the signature for pattern synonym" <+> quotes (ppr n)
pprUserTypeCtxt (DerivClauseCtxt) = text "a `deriving' clause"
pprUserTypeCtxt (TyVarBndrKindCtxt n) = text "the kind annotation on the type variable" <+> quotes (ppr n)
pprUserTypeCtxt (DataKindCtxt n)  = text "the kind annotation on the declaration for" <+> quotes (ppr n)
pprUserTypeCtxt (TySynKindCtxt n) = text "the kind annotation on the declaration for" <+> quotes (ppr n)
pprUserTypeCtxt (TyFamResKindCtxt n) = text "the result kind for" <+> quotes (ppr n)

isSigMaybe :: UserTypeCtxt -> Maybe Name
isSigMaybe (FunSigCtxt n _) = Just n
isSigMaybe (ConArgCtxt n)   = Just n
isSigMaybe (ForSigCtxt n)   = Just n
isSigMaybe (PatSynCtxt n)   = Just n
isSigMaybe _                = Nothing


{- *********************************************************************
*                                                                      *
                Untoucable type variables
*                                                                      *
********************************************************************* -}

newtype TcLevel = TcLevel Int deriving( Eq, Ord )
  -- See Note [TcLevel and untouchable type variables] for what this Int is
  -- See also Note [TcLevel assignment]

{-
Note [TcLevel and untouchable type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Each unification variable (MetaTv)
  and each Implication
  has a level number (of type TcLevel)

* INVARIANTS.  In a tree of Implications,

    (ImplicInv) The level number (ic_tclvl) of an Implication is
                STRICTLY GREATER THAN that of its parent

    (SkolInv)   The level number of the skolems (ic_skols) of an
                Implication is equal to the level of the implication
                itself (ic_tclvl)

    (GivenInv)  The level number of a unification variable appearing
                in the 'ic_given' of an implication I should be
                STRICTLY LESS THAN the ic_tclvl of I

    (WantedInv) The level number of a unification variable appearing
                in the 'ic_wanted' of an implication I should be
                LESS THAN OR EQUAL TO the ic_tclvl of I
                See Note [WantedInv]

* A unification variable is *touchable* if its level number
  is EQUAL TO that of its immediate parent implication,
  and it is a TauTv or TyVarTv (but /not/ FlatMetaTv or FlatSkolTv)

Note [WantedInv]
~~~~~~~~~~~~~~~~
Why is WantedInv important?  Consider this implication, where
the constraint (C alpha[3]) disobeys WantedInv:

   forall[2] a. blah => (C alpha[3])
                        (forall[3] b. alpha[3] ~ b)

We can unify alpha:=b in the inner implication, because 'alpha' is
touchable; but then 'b' has excaped its scope into the outer implication.

Note [Skolem escape prevention]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We only unify touchable unification variables.  Because of
(WantedInv), there can be no occurrences of the variable further out,
so the unification can't cause the skolems to escape. Example:
     data T = forall a. MkT a (a->Int)
     f x (MkT v f) = length [v,x]
We decide (x::alpha), and generate an implication like
      [1]forall a. (a ~ alpha[0])
But we must not unify alpha:=a, because the skolem would escape.

For the cases where we DO want to unify, we rely on floating the
equality.   Example (with same T)
     g x (MkT v f) = x && True
We decide (x::alpha), and generate an implication like
      [1]forall a. (Bool ~ alpha[0])
We do NOT unify directly, bur rather float out (if the constraint
does not mention 'a') to get
      (Bool ~ alpha[0]) /\ [1]forall a.()
and NOW we can unify alpha.

The same idea of only unifying touchables solves another problem.
Suppose we had
   (F Int ~ uf[0])  /\  [1](forall a. C a => F Int ~ beta[1])
In this example, beta is touchable inside the implication. The
first solveSimpleWanteds step leaves 'uf' un-unified. Then we move inside
the implication where a new constraint
       uf  ~  beta
emerges. If we (wrongly) spontaneously solved it to get uf := beta,
the whole implication disappears but when we pop out again we are left with
(F Int ~ uf) which will be unified by our final zonking stage and
uf will get unified *once more* to (F Int).

Note [TcLevel assignment]
~~~~~~~~~~~~~~~~~~~~~~~~~
We arrange the TcLevels like this

   0   Top level
   1   First-level implication constraints
   2   Second-level implication constraints
   ...etc...
-}

maxTcLevel :: TcLevel -> TcLevel -> TcLevel
maxTcLevel (TcLevel a) (TcLevel b) = TcLevel (a `max` b)

topTcLevel :: TcLevel
-- See Note [TcLevel assignment]
topTcLevel = TcLevel 0   -- 0 = outermost level

isTopTcLevel :: TcLevel -> Bool
isTopTcLevel (TcLevel 0) = True
isTopTcLevel _           = False

pushTcLevel :: TcLevel -> TcLevel
-- See Note [TcLevel assignment]
pushTcLevel (TcLevel us) = TcLevel (us + 1)

strictlyDeeperThan :: TcLevel -> TcLevel -> Bool
strictlyDeeperThan (TcLevel tv_tclvl) (TcLevel ctxt_tclvl)
  = tv_tclvl > ctxt_tclvl

sameDepthAs :: TcLevel -> TcLevel -> Bool
sameDepthAs (TcLevel ctxt_tclvl) (TcLevel tv_tclvl)
  = ctxt_tclvl == tv_tclvl   -- NB: invariant ctxt_tclvl >= tv_tclvl
                             --     So <= would be equivalent

checkTcLevelInvariant :: TcLevel -> TcLevel -> Bool
-- Checks (WantedInv) from Note [TcLevel and untouchable type variables]
checkTcLevelInvariant (TcLevel ctxt_tclvl) (TcLevel tv_tclvl)
  = ctxt_tclvl >= tv_tclvl

tcTyVarLevel :: TcTyVar -> TcLevel
tcTyVarLevel tv
  = ASSERT2( tcIsTcTyVar tv, ppr tv )
    case tcTyVarDetails tv of
          MetaTv { mtv_tclvl = tv_lvl } -> tv_lvl
          SkolemTv tv_lvl _             -> tv_lvl
          RuntimeUnk                    -> topTcLevel


tcTypeLevel :: TcType -> TcLevel
-- Max level of any free var of the type
tcTypeLevel ty
  = foldDVarSet add topTcLevel (tyCoVarsOfTypeDSet ty)
  where
    add v lvl
      | isTcTyVar v = lvl `maxTcLevel` tcTyVarLevel v
      | otherwise = lvl

instance Outputable TcLevel where
  ppr (TcLevel us) = ppr us

promoteSkolem :: TcLevel -> TcTyVar -> TcTyVar
promoteSkolem tclvl skol
  | tclvl < tcTyVarLevel skol
  = ASSERT( isTcTyVar skol && isSkolemTyVar skol )
    setTcTyVarDetails skol (SkolemTv tclvl (isOverlappableTyVar skol))

  | otherwise
  = skol

-- | Change the TcLevel in a skolem, extending a substitution
promoteSkolemX :: TcLevel -> TCvSubst -> TcTyVar -> (TCvSubst, TcTyVar)
promoteSkolemX tclvl subst skol
  = ASSERT( isTcTyVar skol && isSkolemTyVar skol )
    (new_subst, new_skol)
  where
    new_skol
      | tclvl < tcTyVarLevel skol
      = setTcTyVarDetails (updateTyVarKind (substTy subst) skol)
                          (SkolemTv tclvl (isOverlappableTyVar skol))
      | otherwise
      = updateTyVarKind (substTy subst) skol
    new_subst = extendTvSubstWithClone subst skol new_skol

promoteSkolemsX :: TcLevel -> TCvSubst -> [TcTyVar] -> (TCvSubst, [TcTyVar])
promoteSkolemsX tclvl = mapAccumL (promoteSkolemX tclvl)

{- *********************************************************************
*                                                                      *
    Finding type family instances
*                                                                      *
************************************************************************
-}

-- | Finds outermost type-family applications occurring in a type,
-- after expanding synonyms.  In the list (F, tys) that is returned
-- we guarantee that tys matches F's arity.  For example, given
--    type family F a :: * -> *    (arity 1)
-- calling tcTyFamInsts on (Maybe (F Int Bool) will return
--     (F, [Int]), not (F, [Int,Bool])
--
-- This is important for its use in deciding termination of type
-- instances (see Trac #11581).  E.g.
--    type instance G [Int] = ...(F Int <big type>)...
-- we don't need to take <big type> into account when asking if
-- the calls on the RHS are smaller than the LHS
tcTyFamInsts :: Type -> [(TyCon, [Type])]
tcTyFamInsts = map (\(_,b,c) -> (b,c)) . tcTyFamInstsAndVis

-- | Like 'tcTyFamInsts', except that the output records whether the
-- type family and its arguments occur as an /invisible/ argument in
-- some type application. This information is useful because it helps GHC know
-- when to turn on @-fprint-explicit-kinds@ during error reporting so that
-- users can actually see the type family being mentioned.
--
-- As an example, consider:
--
-- @
-- class C a
-- data T (a :: k)
-- type family F a :: k
-- instance C (T @(F Int) (F Bool))
-- @
--
-- There are two occurrences of the type family `F` in that `C` instance, so
-- @'tcTyFamInstsAndVis' (C (T \@(F Int) (F Bool)))@ will return:
--
-- @
-- [ ('True',  F, [Int])
-- , ('False', F, [Bool]) ]
-- @
--
-- @F Int@ is paired with 'True' since it appears as an /invisible/ argument
-- to @C@, whereas @F Bool@ is paired with 'False' since it appears an a
-- /visible/ argument to @C@.
--
-- See also @Note [Kind arguments in error messages]@ in "TcErrors".
tcTyFamInstsAndVis :: Type -> [(Bool, TyCon, [Type])]
tcTyFamInstsAndVis = tcTyFamInstsAndVisX False

tcTyFamInstsAndVisX
  :: Bool -- ^ Is this an invisible argument to some type application?
  -> Type -> [(Bool, TyCon, [Type])]
tcTyFamInstsAndVisX = go
  where
    go is_invis_arg ty
      | Just exp_ty <- tcView ty       = go is_invis_arg exp_ty
    go _ (TyVarTy _)                   = []
    go is_invis_arg (TyConApp tc tys)
      | isTypeFamilyTyCon tc
      = [(is_invis_arg, tc, take (tyConArity tc) tys)]
      | otherwise
      = tcTyConAppTyFamInstsAndVisX is_invis_arg tc tys
    go _            (LitTy {})         = []
    go is_invis_arg (ForAllTy bndr ty) = go is_invis_arg (binderType bndr)
                                         ++ go is_invis_arg ty
    go is_invis_arg (FunTy ty1 ty2)    = go is_invis_arg ty1
                                         ++ go is_invis_arg ty2
    go is_invis_arg ty@(AppTy _ _)     =
      let (ty_head, ty_args) = splitAppTys ty
          ty_arg_flags       = appTyArgFlags ty_head ty_args
      in go is_invis_arg ty_head
         ++ concat (zipWith (\flag -> go (isInvisibleArgFlag flag))
                            ty_arg_flags ty_args)
    go is_invis_arg (CastTy ty _)      = go is_invis_arg ty
    go _            (CoercionTy _)     = [] -- don't count tyfams in coercions,
                                            -- as they never get normalized,
                                            -- anyway

-- | In an application of a 'TyCon' to some arguments, find the outermost
-- occurrences of type family applications within the arguments. This function
-- will not consider the 'TyCon' itself when checking for type family
-- applications.
--
-- See 'tcTyFamInstsAndVis' for more details on how this works (as this
-- function is called inside of 'tcTyFamInstsAndVis').
tcTyConAppTyFamInstsAndVis :: TyCon -> [Type] -> [(Bool, TyCon, [Type])]
tcTyConAppTyFamInstsAndVis = tcTyConAppTyFamInstsAndVisX False

tcTyConAppTyFamInstsAndVisX
  :: Bool -- ^ Is this an invisible argument to some type application?
  -> TyCon -> [Type] -> [(Bool, TyCon, [Type])]
tcTyConAppTyFamInstsAndVisX is_invis_arg tc tys =
  let (invis_tys, vis_tys) = partitionInvisibleTypes tc tys
  in concat $ map (tcTyFamInstsAndVisX True)         invis_tys
           ++ map (tcTyFamInstsAndVisX is_invis_arg) vis_tys

isTyFamFree :: Type -> Bool
-- ^ Check that a type does not contain any type family applications.
isTyFamFree = null . tcTyFamInsts

{-
************************************************************************
*                                                                      *
          The "exact" free variables of a type
*                                                                      *
************************************************************************

Note [Silly type synonym]
~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  type T a = Int
What are the free tyvars of (T x)?  Empty, of course!

exactTyCoVarsOfType is used by the type checker to figure out exactly
which type variables are mentioned in a type.  It only matters
occasionally -- see the calls to exactTyCoVarsOfType.

Historical note: years and years ago this function was used during
generalisation -- see Trac #1813.  But that code has long since died.
-}

exactTyCoVarsOfType :: Type -> TyCoVarSet
-- Find the free type variables (of any kind)
-- but *expand* type synonyms.  See Note [Silly type synonym] above.
exactTyCoVarsOfType ty
  = go ty
  where
    go ty | Just ty' <- tcView ty = go ty'  -- This is the key line
    go (TyVarTy tv)         = goVar tv
    go (TyConApp _ tys)     = exactTyCoVarsOfTypes tys
    go (LitTy {})           = emptyVarSet
    go (AppTy fun arg)      = go fun `unionVarSet` go arg
    go (FunTy arg res)      = go arg `unionVarSet` go res
    go (ForAllTy bndr ty)   = delBinderVar (go ty) bndr `unionVarSet` go (binderType bndr)
    go (CastTy ty co)       = go ty `unionVarSet` goCo co
    go (CoercionTy co)      = goCo co

    goMCo MRefl    = emptyVarSet
    goMCo (MCo co) = goCo co

    goCo (Refl ty)            = go ty
    goCo (GRefl _ ty mco)     = go ty `unionVarSet` goMCo mco
    goCo (TyConAppCo _ _ args)= goCos args
    goCo (AppCo co arg)     = goCo co `unionVarSet` goCo arg
    goCo (ForAllCo tv k_co co)
      = goCo co `delVarSet` tv `unionVarSet` goCo k_co
    goCo (FunCo _ co1 co2)   = goCo co1 `unionVarSet` goCo co2
    goCo (CoVarCo v)         = goVar v
    goCo (HoleCo h)          = goVar (coHoleCoVar h)
    goCo (AxiomInstCo _ _ args) = goCos args
    goCo (UnivCo p _ t1 t2)  = goProv p `unionVarSet` go t1 `unionVarSet` go t2
    goCo (SymCo co)          = goCo co
    goCo (TransCo co1 co2)   = goCo co1 `unionVarSet` goCo co2
    goCo (NthCo _ _ co)      = goCo co
    goCo (LRCo _ co)         = goCo co
    goCo (InstCo co arg)     = goCo co `unionVarSet` goCo arg
    goCo (KindCo co)         = goCo co
    goCo (SubCo co)          = goCo co
    goCo (AxiomRuleCo _ c)   = goCos c

    goCos cos = foldr (unionVarSet . goCo) emptyVarSet cos

    goProv UnsafeCoerceProv     = emptyVarSet
    goProv (PhantomProv kco)    = goCo kco
    goProv (ProofIrrelProv kco) = goCo kco
    goProv (PluginProv _)       = emptyVarSet

    goVar v = unitVarSet v `unionVarSet` go (varType v)

exactTyCoVarsOfTypes :: [Type] -> TyVarSet
exactTyCoVarsOfTypes tys = mapUnionVarSet exactTyCoVarsOfType tys

anyRewritableTyVar :: Bool    -- Ignore casts and coercions
                   -> EqRel   -- Ambient role
                   -> (EqRel -> TcTyVar -> Bool)
                   -> TcType -> Bool
-- (anyRewritableTyVar ignore_cos pred ty) returns True
--    if the 'pred' returns True of any free TyVar in 'ty'
-- Do not look inside casts and coercions if 'ignore_cos' is True
-- See Note [anyRewritableTyVar must be role-aware]
anyRewritableTyVar ignore_cos role pred ty
  = go role emptyVarSet ty
  where
    go_tv rl bvs tv | tv `elemVarSet` bvs = False
                    | otherwise           = pred rl tv

    go rl bvs (TyVarTy tv)      = go_tv rl bvs tv
    go _ _     (LitTy {})       = False
    go rl bvs (TyConApp tc tys) = go_tc rl bvs tc tys
    go rl bvs (AppTy fun arg)   = go rl bvs fun || go NomEq bvs arg
    go rl bvs (FunTy arg res)   = go rl bvs arg || go rl bvs res
    go rl bvs (ForAllTy tv ty)  = go rl (bvs `extendVarSet` binderVar tv) ty
    go rl bvs (CastTy ty co)    = go rl bvs ty || go_co rl bvs co
    go rl bvs (CoercionTy co)   = go_co rl bvs co  -- ToDo: check

    go_tc NomEq  bvs _  tys = any (go NomEq bvs) tys
    go_tc ReprEq bvs tc tys = any (go_arg bvs)
                              (tyConRolesRepresentational tc `zip` tys)

    go_arg bvs (Nominal,          ty) = go NomEq  bvs ty
    go_arg bvs (Representational, ty) = go ReprEq bvs ty
    go_arg _   (Phantom,          _)  = False  -- We never rewrite with phantoms

    go_co rl bvs co
      | ignore_cos = False
      | otherwise  = anyVarSet (go_tv rl bvs) (tyCoVarsOfCo co)
      -- We don't have an equivalent of anyRewritableTyVar for coercions
      -- (at least not yet) so take the free vars and test them

{- Note [anyRewritableTyVar must be role-aware]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
anyRewritableTyVar is used during kick-out from the inert set,
to decide if, given a new equality (a ~ ty), we should kick out
a constraint C.  Rather than gather free variables and see if 'a'
is among them, we instead pass in a predicate; this is just efficiency.

Moreover, consider
  work item:   [G] a ~R f b
  inert item:  [G] b ~R f a
We use anyRewritableTyVar to decide whether to kick out the inert item,
on the grounds that the work item might rewrite it. Well, 'a' is certainly
free in [G] b ~R f a.  But because the role of a type variable ('f' in
this case) is nominal, the work item can't actually rewrite the inert item.
Moreover, if we were to kick out the inert item the exact same situation
would re-occur and we end up with an infinite loop in which each kicks
out the other (Trac #14363).
-}

{-
************************************************************************
*                                                                      *
                Predicates
*                                                                      *
************************************************************************
-}

tcIsTcTyVar :: TcTyVar -> Bool
-- See Note [TcTyVars and TyVars in the typechecker]
tcIsTcTyVar tv = isTyVar tv

isTouchableMetaTyVar :: TcLevel -> TcTyVar -> Bool
isTouchableMetaTyVar ctxt_tclvl tv
  | isTyVar tv -- See Note [Coercion variables in free variable lists]
  , MetaTv { mtv_tclvl = tv_tclvl, mtv_info = info } <- tcTyVarDetails tv
  , not (isFlattenInfo info)
  = ASSERT2( checkTcLevelInvariant ctxt_tclvl tv_tclvl,
             ppr tv $$ ppr tv_tclvl $$ ppr ctxt_tclvl )
    tv_tclvl `sameDepthAs` ctxt_tclvl

  | otherwise = False

isFloatedTouchableMetaTyVar :: TcLevel -> TcTyVar -> Bool
isFloatedTouchableMetaTyVar ctxt_tclvl tv
  | isTyVar tv -- See Note [Coercion variables in free variable lists]
  , MetaTv { mtv_tclvl = tv_tclvl, mtv_info = info } <- tcTyVarDetails tv
  , not (isFlattenInfo info)
  = tv_tclvl `strictlyDeeperThan` ctxt_tclvl

  | otherwise = False

isImmutableTyVar :: TyVar -> Bool
isImmutableTyVar tv = isSkolemTyVar tv

isTyConableTyVar, isSkolemTyVar, isOverlappableTyVar,
  isMetaTyVar, isAmbiguousTyVar,
  isFmvTyVar, isFskTyVar, isFlattenTyVar :: TcTyVar -> Bool

isTyConableTyVar tv
        -- True of a meta-type variable that can be filled in
        -- with a type constructor application; in particular,
        -- not a TyVarTv
  | isTyVar tv -- See Note [Coercion variables in free variable lists]
  = case tcTyVarDetails tv of
        MetaTv { mtv_info = TyVarTv } -> False
        _                             -> True
  | otherwise = True

isFmvTyVar tv
  = ASSERT2( tcIsTcTyVar tv, ppr tv )
    case tcTyVarDetails tv of
        MetaTv { mtv_info = FlatMetaTv } -> True
        _                                -> False

isFskTyVar tv
  = ASSERT2( tcIsTcTyVar tv, ppr tv )
    case tcTyVarDetails tv of
        MetaTv { mtv_info = FlatSkolTv } -> True
        _                                -> False

-- | True of both given and wanted flatten-skolems (fmv and fsk)
isFlattenTyVar tv
  = ASSERT2( tcIsTcTyVar tv, ppr tv )
    case tcTyVarDetails tv of
        MetaTv { mtv_info = info } -> isFlattenInfo info
        _                          -> False

isSkolemTyVar tv
  = ASSERT2( tcIsTcTyVar tv, ppr tv )
    case tcTyVarDetails tv of
        MetaTv {} -> False
        _other    -> True

isOverlappableTyVar tv
  | isTyVar tv -- See Note [Coercion variables in free variable lists]
  = case tcTyVarDetails tv of
        SkolemTv _ overlappable -> overlappable
        _                       -> False
  | otherwise = False

isMetaTyVar tv
  | isTyVar tv -- See Note [Coercion variables in free variable lists]
  = case tcTyVarDetails tv of
        MetaTv {} -> True
        _         -> False
  | otherwise = False

-- isAmbiguousTyVar is used only when reporting type errors
-- It picks out variables that are unbound, namely meta
-- type variables and the RuntimUnk variables created by
-- RtClosureInspect.zonkRTTIType.  These are "ambiguous" in
-- the sense that they stand for an as-yet-unknown type
isAmbiguousTyVar tv
  | isTyVar tv -- See Note [Coercion variables in free variable lists]
  = case tcTyVarDetails tv of
        MetaTv {}     -> True
        RuntimeUnk {} -> True
        _             -> False
  | otherwise = False

isMetaTyVarTy :: TcType -> Bool
isMetaTyVarTy (TyVarTy tv) = isMetaTyVar tv
isMetaTyVarTy _            = False

metaTyVarInfo :: TcTyVar -> MetaInfo
metaTyVarInfo tv
  = case tcTyVarDetails tv of
      MetaTv { mtv_info = info } -> info
      _ -> pprPanic "metaTyVarInfo" (ppr tv)

isFlattenInfo :: MetaInfo -> Bool
isFlattenInfo FlatMetaTv = True
isFlattenInfo FlatSkolTv = True
isFlattenInfo _          = False

metaTyVarTcLevel :: TcTyVar -> TcLevel
metaTyVarTcLevel tv
  = case tcTyVarDetails tv of
      MetaTv { mtv_tclvl = tclvl } -> tclvl
      _ -> pprPanic "metaTyVarTcLevel" (ppr tv)

metaTyVarTcLevel_maybe :: TcTyVar -> Maybe TcLevel
metaTyVarTcLevel_maybe tv
  = case tcTyVarDetails tv of
      MetaTv { mtv_tclvl = tclvl } -> Just tclvl
      _                            -> Nothing

metaTyVarRef :: TyVar -> IORef MetaDetails
metaTyVarRef tv
  = case tcTyVarDetails tv of
        MetaTv { mtv_ref = ref } -> ref
        _ -> pprPanic "metaTyVarRef" (ppr tv)

setMetaTyVarTcLevel :: TcTyVar -> TcLevel -> TcTyVar
setMetaTyVarTcLevel tv tclvl
  = case tcTyVarDetails tv of
      details@(MetaTv {}) -> setTcTyVarDetails tv (details { mtv_tclvl = tclvl })
      _ -> pprPanic "metaTyVarTcLevel" (ppr tv)

isTyVarTyVar :: Var -> Bool
isTyVarTyVar tv
  = case tcTyVarDetails tv of
        MetaTv { mtv_info = TyVarTv } -> True
        _                             -> False

isFlexi, isIndirect :: MetaDetails -> Bool
isFlexi Flexi = True
isFlexi _     = False

isIndirect (Indirect _) = True
isIndirect _            = False

isRuntimeUnkSkol :: TyVar -> Bool
-- Called only in TcErrors; see Note [Runtime skolems] there
isRuntimeUnkSkol x
  | RuntimeUnk <- tcTyVarDetails x = True
  | otherwise                      = False

mkTyVarNamePairs :: [TyVar] -> [(Name,TyVar)]
-- Just pair each TyVar with its own name
mkTyVarNamePairs tvs = [(tyVarName tv, tv) | tv <- tvs]

findDupTyVarTvs :: [(Name,TcTyVar)] -> [(Name,Name)]
-- If we have [...(x1,tv)...(x2,tv)...]
-- return (x1,x2) in the result list
findDupTyVarTvs prs
  = concatMap mk_result_prs $
    findDupsEq eq_snd prs
  where
    eq_snd (_,tv1) (_,tv2) = tv1 == tv2
    mk_result_prs ((n1,_) :| xs) = map (\(n2,_) -> (n1,n2)) xs

{-
************************************************************************
*                                                                      *
\subsection{Tau, sigma and rho}
*                                                                      *
************************************************************************
-}

mkSigmaTy :: [TyCoVarBinder] -> [PredType] -> Type -> Type
mkSigmaTy bndrs theta tau = mkForAllTys bndrs (mkPhiTy theta tau)

-- | Make a sigma ty where all type variables are 'Inferred'. That is,
-- they cannot be used with visible type application.
mkInfSigmaTy :: [TyCoVar] -> [PredType] -> Type -> Type
mkInfSigmaTy tyvars theta ty = mkSigmaTy (mkTyCoVarBinders Inferred tyvars) theta ty

-- | Make a sigma ty where all type variables are "specified". That is,
-- they can be used with visible type application
mkSpecSigmaTy :: [TyVar] -> [PredType] -> Type -> Type
mkSpecSigmaTy tyvars preds ty = mkSigmaTy (mkTyCoVarBinders Specified tyvars) preds ty

mkPhiTy :: [PredType] -> Type -> Type
mkPhiTy = mkFunTys

---------------
getDFunTyKey :: Type -> OccName -- Get some string from a type, to be used to
                                -- construct a dictionary function name
getDFunTyKey ty | Just ty' <- coreView ty = getDFunTyKey ty'
getDFunTyKey (TyVarTy tv)            = getOccName tv
getDFunTyKey (TyConApp tc _)         = getOccName tc
getDFunTyKey (LitTy x)               = getDFunTyLitKey x
getDFunTyKey (AppTy fun _)           = getDFunTyKey fun
getDFunTyKey (FunTy _ _)             = getOccName funTyCon
getDFunTyKey (ForAllTy _ t)          = getDFunTyKey t
getDFunTyKey (CastTy ty _)           = getDFunTyKey ty
getDFunTyKey t@(CoercionTy _)        = pprPanic "getDFunTyKey" (ppr t)

getDFunTyLitKey :: TyLit -> OccName
getDFunTyLitKey (NumTyLit n) = mkOccName Name.varName (show n)
getDFunTyLitKey (StrTyLit n) = mkOccName Name.varName (show n)  -- hm

{- *********************************************************************
*                                                                      *
           Maintaining the well-kinded type invariant
*                                                                      *
********************************************************************* -}

{- Note [The well-kinded type invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also Note [The tcType invariant] in TcHsType.

During type inference, we maintain this invariant

   (INV-TK): it is legal to call 'tcTypeKind' on any Type ty,
             /without/ zonking ty

For example, suppose
    kappa is a unification variable
    We have already unified kappa := Type
      yielding    co :: Refl (Type -> Type)
    a :: kappa
then consider the type
    (a Int)
If we call tcTypeKind on that, we'll crash, because the (un-zonked)
kind of 'a' is just kappa, not an arrow kind.  If we zonk first
we'd be fine, but that is too tiresome, so instead we maintain
(INV-TK).  So we do not form (a Int); instead we form
    (a |> co) Int
and tcTypeKind has no problem with that.

Bottom line: we want to keep that 'co' /even though it is Refl/.

Immediate consequence: during type inference we cannot use the "smart
contructors" for types, particularly
   mkAppTy, mkCastTy
because they all eliminate Refl casts.  Solution: during type
inference use the mkNakedX type formers, which do no Refl-elimination.
E.g. mkNakedCastTy uses an actual CastTy, without optimising for
Refl.  (NB: mkNakedCastTy is only called in two places: in tcInferApps
and in checkExpectedResultKind.)

Where does this show up in practice: apparently mainly in
TcHsType.tcInferApps.  Suppose we are kind-checking the type (a Int),
where (a :: kappa).  Then in tcInferApps we'll run out of binders on
a's kind, so we'll call matchExpectedFunKind, and unify
   kappa := kappa1 -> kappa2,  with evidence co :: kappa ~ (kappa1 ~ kappa2)
That evidence is actually Refl, but we must not discard the cast to
form the result type
   ((a::kappa) (Int::*))
because that does not satisfy the invariant, and crashes TypeKind.  This
caused Trac #14174 and #14520.

Notes:

* The Refls will be removed later, when we zonk the type.

* This /also/ applies to substitution.  We must use nakedSubstTy,
  not substTy, because the latter uses smart constructors that do
  Refl-elimination.

-}

---------------
mkNakedAppTys :: Type -> [Type] -> Type
-- See Note [The well-kinded type invariant]
mkNakedAppTys ty1                []   = ty1
mkNakedAppTys (TyConApp tc tys1) tys2 = mkTyConApp tc (tys1 ++ tys2)
mkNakedAppTys ty1                tys2 = foldl' AppTy ty1 tys2

mkNakedAppTy :: Type -> Type -> Type
-- See Note [The well-kinded type invariant]
mkNakedAppTy ty1 ty2 = mkNakedAppTys ty1 [ty2]

mkNakedCastTy :: Type -> Coercion -> Type
-- Do /not/ attempt to get rid of the cast altogether,
-- even if it is Refl: see Note [The well-kinded type invariant]
-- Even doing (t |> co1) |> co2  --->  t |> (co1;co2)
-- does not seem worth the bother
--
-- NB: zonking will get rid of these casts, because it uses mkCastTy
--
-- In fact the calls to mkNakedCastTy ar pretty few and far between.
mkNakedCastTy ty co = CastTy ty co

nakedSubstTy :: HasCallStack => TCvSubst -> TcType  -> TcType
nakedSubstTy subst ty
  | isEmptyTCvSubst subst = ty
  | otherwise             = runIdentity                   $
                            checkValidSubst subst [ty] [] $
                            mapType nakedSubstMapper subst ty
  -- Interesting idea: use StrictIdentity to avoid space leaks

nakedSubstMapper :: TyCoMapper TCvSubst Identity
nakedSubstMapper
  = TyCoMapper { tcm_smart      = False
               , tcm_tyvar      = \subst tv -> return (substTyVar subst tv)
               , tcm_covar      = \subst cv -> return (substCoVar subst cv)
               , tcm_hole       = \_ hole   -> return (HoleCo hole)
               , tcm_tycobinder = \subst tv _ -> return (substVarBndr subst tv)
               , tcm_tycon    = return }

{-
************************************************************************
*                                                                      *
\subsection{Expanding and splitting}
*                                                                      *
************************************************************************

These tcSplit functions are like their non-Tc analogues, but
        *) they do not look through newtypes

However, they are non-monadic and do not follow through mutable type
variables.  It's up to you to make sure this doesn't matter.
-}

-- | Splits a forall type into a list of 'TyBinder's and the inner type.
-- Always succeeds, even if it returns an empty list.
tcSplitPiTys :: Type -> ([TyBinder], Type)
tcSplitPiTys ty = ASSERT( all isTyBinder (fst sty) ) sty
  where sty = splitPiTys ty

-- | Splits a type into a TyBinder and a body, if possible. Panics otherwise
tcSplitPiTy_maybe :: Type -> Maybe (TyBinder, Type)
tcSplitPiTy_maybe ty = ASSERT( isMaybeTyBinder sty ) sty
  where sty = splitPiTy_maybe ty
        isMaybeTyBinder (Just (t,_)) = isTyBinder t
        isMaybeTyBinder _ = True

tcSplitForAllTy_maybe :: Type -> Maybe (TyVarBinder, Type)
tcSplitForAllTy_maybe ty | Just ty' <- tcView ty = tcSplitForAllTy_maybe ty'
tcSplitForAllTy_maybe (ForAllTy tv ty) = ASSERT( isTyVarBinder tv ) Just (tv, ty)
tcSplitForAllTy_maybe _                = Nothing

-- | Like 'tcSplitPiTys', but splits off only named binders, returning
-- just the tycovars.
tcSplitForAllTys :: Type -> ([TyVar], Type)
tcSplitForAllTys ty = ASSERT( all isTyVar (fst sty) ) sty
  where sty = splitForAllTys ty

-- | Like 'tcSplitForAllTys', but splits off only named binders.
tcSplitForAllVarBndrs :: Type -> ([TyVarBinder], Type)
tcSplitForAllVarBndrs ty = ASSERT( all isTyVarBinder (fst sty)) sty
  where sty = splitForAllVarBndrs ty

-- | Is this a ForAllTy with a named binder?
tcIsForAllTy :: Type -> Bool
tcIsForAllTy ty | Just ty' <- tcView ty = tcIsForAllTy ty'
tcIsForAllTy (ForAllTy {}) = True
tcIsForAllTy _             = False

tcSplitPredFunTy_maybe :: Type -> Maybe (PredType, Type)
-- Split off the first predicate argument from a type
tcSplitPredFunTy_maybe ty
  | Just ty' <- tcView ty = tcSplitPredFunTy_maybe ty'
tcSplitPredFunTy_maybe (FunTy arg res)
  | isPredTy arg = Just (arg, res)
tcSplitPredFunTy_maybe _
  = Nothing

tcSplitPhiTy :: Type -> (ThetaType, Type)
tcSplitPhiTy ty
  = split ty []
  where
    split ty ts
      = case tcSplitPredFunTy_maybe ty of
          Just (pred, ty) -> split ty (pred:ts)
          Nothing         -> (reverse ts, ty)

-- | Split a sigma type into its parts.
tcSplitSigmaTy :: Type -> ([TyVar], ThetaType, Type)
tcSplitSigmaTy ty = case tcSplitForAllTys ty of
                        (tvs, rho) -> case tcSplitPhiTy rho of
                                        (theta, tau) -> (tvs, theta, tau)

-- | Split a sigma type into its parts, going underneath as many @ForAllTy@s
-- as possible. For example, given this type synonym:
--
-- @
-- type Traversal s t a b = forall f. Applicative f => (a -> f b) -> s -> f t
-- @
--
-- if you called @tcSplitSigmaTy@ on this type:
--
-- @
-- forall s t a b. Each s t a b => Traversal s t a b
-- @
--
-- then it would return @([s,t,a,b], [Each s t a b], Traversal s t a b)@. But
-- if you instead called @tcSplitNestedSigmaTys@ on the type, it would return
-- @([s,t,a,b,f], [Each s t a b, Applicative f], (a -> f b) -> s -> f t)@.
tcSplitNestedSigmaTys :: Type -> ([TyVar], ThetaType, Type)
-- NB: This is basically a pure version of deeplyInstantiate (from Inst) that
-- doesn't compute an HsWrapper.
tcSplitNestedSigmaTys ty
    -- If there's a forall, split it apart and try splitting the rho type
    -- underneath it.
  | Just (arg_tys, tvs1, theta1, rho1) <- tcDeepSplitSigmaTy_maybe ty
  = let (tvs2, theta2, rho2) = tcSplitNestedSigmaTys rho1
    in (tvs1 ++ tvs2, theta1 ++ theta2, mkFunTys arg_tys rho2)
    -- If there's no forall, we're done.
  | otherwise = ([], [], ty)

-----------------------
tcDeepSplitSigmaTy_maybe
  :: TcSigmaType -> Maybe ([TcType], [TyVar], ThetaType, TcSigmaType)
-- Looks for a *non-trivial* quantified type, under zero or more function arrows
-- By "non-trivial" we mean either tyvars or constraints are non-empty

tcDeepSplitSigmaTy_maybe ty
  | Just (arg_ty, res_ty)           <- tcSplitFunTy_maybe ty
  , Just (arg_tys, tvs, theta, rho) <- tcDeepSplitSigmaTy_maybe res_ty
  = Just (arg_ty:arg_tys, tvs, theta, rho)

  | (tvs, theta, rho) <- tcSplitSigmaTy ty
  , not (null tvs && null theta)
  = Just ([], tvs, theta, rho)

  | otherwise = Nothing

-----------------------
tcTyConAppTyCon :: Type -> TyCon
tcTyConAppTyCon ty
  = case tcTyConAppTyCon_maybe ty of
      Just tc -> tc
      Nothing -> pprPanic "tcTyConAppTyCon" (pprType ty)

-- | Like 'tcRepSplitTyConApp_maybe', but only returns the 'TyCon'.
tcTyConAppTyCon_maybe :: Type -> Maybe TyCon
tcTyConAppTyCon_maybe ty
  | Just ty' <- tcView ty = tcTyConAppTyCon_maybe ty'
tcTyConAppTyCon_maybe (TyConApp tc _)
  = Just tc
tcTyConAppTyCon_maybe (FunTy _ _)
  = Just funTyCon
tcTyConAppTyCon_maybe _
  = Nothing

tcTyConAppArgs :: Type -> [Type]
tcTyConAppArgs ty = case tcSplitTyConApp_maybe ty of
                        Just (_, args) -> args
                        Nothing        -> pprPanic "tcTyConAppArgs" (pprType ty)

tcSplitTyConApp :: Type -> (TyCon, [Type])
tcSplitTyConApp ty = case tcSplitTyConApp_maybe ty of
                        Just stuff -> stuff
                        Nothing    -> pprPanic "tcSplitTyConApp" (pprType ty)

-- | Like 'tcRepSplitTyConApp_maybe', but returns 'Nothing' if,
--
-- 1. the type is structurally not a type constructor application, or
--
-- 2. the type is a function type (e.g. application of 'funTyCon'), but we
--    currently don't even enough information to fully determine its RuntimeRep
--    variables. For instance, @FunTy (a :: k) Int@.
--
-- By contrast 'tcRepSplitTyConApp_maybe' panics in the second case.
--
-- The behavior here is needed during canonicalization; see Note [FunTy and
-- decomposing tycon applications] in TcCanonical for details.
tcRepSplitTyConApp_maybe' :: HasCallStack => Type -> Maybe (TyCon, [Type])
tcRepSplitTyConApp_maybe' (TyConApp tc tys)          = Just (tc, tys)
tcRepSplitTyConApp_maybe' (FunTy arg res)
  | Just arg_rep <- getRuntimeRep_maybe arg
  , Just res_rep <- getRuntimeRep_maybe res
  = Just (funTyCon, [arg_rep, res_rep, arg, res])
tcRepSplitTyConApp_maybe' _                          = Nothing


-----------------------
tcSplitFunTys :: Type -> ([Type], Type)
tcSplitFunTys ty = case tcSplitFunTy_maybe ty of
                        Nothing        -> ([], ty)
                        Just (arg,res) -> (arg:args, res')
                                       where
                                          (args,res') = tcSplitFunTys res

tcSplitFunTy_maybe :: Type -> Maybe (Type, Type)
tcSplitFunTy_maybe ty | Just ty' <- tcView ty         = tcSplitFunTy_maybe ty'
tcSplitFunTy_maybe (FunTy arg res) | not (isPredTy arg) = Just (arg, res)
tcSplitFunTy_maybe _                                    = Nothing
        -- Note the tcTypeKind guard
        -- Consider     (?x::Int) => Bool
        -- We don't want to treat this as a function type!
        -- A concrete example is test tc230:
        --      f :: () -> (?p :: ()) => () -> ()
        --
        --      g = f () ()

tcSplitFunTysN :: Arity                      -- n: Number of desired args
               -> TcRhoType
               -> Either Arity               -- Number of missing arrows
                        ([TcSigmaType],      -- Arg types (always N types)
                         TcSigmaType)        -- The rest of the type
-- ^ Split off exactly the specified number argument types
-- Returns
--  (Left m) if there are 'm' missing arrows in the type
--  (Right (tys,res)) if the type looks like t1 -> ... -> tn -> res
tcSplitFunTysN n ty
 | n == 0
 = Right ([], ty)
 | Just (arg,res) <- tcSplitFunTy_maybe ty
 = case tcSplitFunTysN (n-1) res of
     Left m            -> Left m
     Right (args,body) -> Right (arg:args, body)
 | otherwise
 = Left n

tcSplitFunTy :: Type -> (Type, Type)
tcSplitFunTy  ty = expectJust "tcSplitFunTy" (tcSplitFunTy_maybe ty)

tcFunArgTy :: Type -> Type
tcFunArgTy    ty = fst (tcSplitFunTy ty)

tcFunResultTy :: Type -> Type
tcFunResultTy ty = snd (tcSplitFunTy ty)

-- | Strips off n *visible* arguments and returns the resulting type
tcFunResultTyN :: HasDebugCallStack => Arity -> Type -> Type
tcFunResultTyN n ty
  | Right (_, res_ty) <- tcSplitFunTysN n ty
  = res_ty
  | otherwise
  = pprPanic "tcFunResultTyN" (ppr n <+> ppr ty)

-----------------------
tcSplitAppTy_maybe :: Type -> Maybe (Type, Type)
tcSplitAppTy_maybe ty | Just ty' <- tcView ty = tcSplitAppTy_maybe ty'
tcSplitAppTy_maybe ty = tcRepSplitAppTy_maybe ty

tcSplitAppTy :: Type -> (Type, Type)
tcSplitAppTy ty = case tcSplitAppTy_maybe ty of
                    Just stuff -> stuff
                    Nothing    -> pprPanic "tcSplitAppTy" (pprType ty)

tcSplitAppTys :: Type -> (Type, [Type])
tcSplitAppTys ty
  = go ty []
  where
    go ty args = case tcSplitAppTy_maybe ty of
                   Just (ty', arg) -> go ty' (arg:args)
                   Nothing         -> (ty,args)

-- | Returns the number of arguments in the given type, without
-- looking through synonyms. This is used only for error reporting.
-- We don't look through synonyms because of #11313.
tcRepGetNumAppTys :: Type -> Arity
tcRepGetNumAppTys = length . snd . repSplitAppTys

-----------------------
-- | If the type is a tyvar, possibly under a cast, returns it, along
-- with the coercion. Thus, the co is :: kind tv ~N kind type
tcGetCastedTyVar_maybe :: Type -> Maybe (TyVar, CoercionN)
tcGetCastedTyVar_maybe ty | Just ty' <- tcView ty = tcGetCastedTyVar_maybe ty'
tcGetCastedTyVar_maybe (CastTy (TyVarTy tv) co) = Just (tv, co)
tcGetCastedTyVar_maybe (TyVarTy tv)             = Just (tv, mkNomReflCo (tyVarKind tv))
tcGetCastedTyVar_maybe _                        = Nothing

tcGetTyVar_maybe :: Type -> Maybe TyVar
tcGetTyVar_maybe ty | Just ty' <- tcView ty = tcGetTyVar_maybe ty'
tcGetTyVar_maybe (TyVarTy tv)   = Just tv
tcGetTyVar_maybe _              = Nothing

tcGetTyVar :: String -> Type -> TyVar
tcGetTyVar msg ty
  = case tcGetTyVar_maybe ty of
     Just tv -> tv
     Nothing -> pprPanic msg (ppr ty)

tcIsTyVarTy :: Type -> Bool
tcIsTyVarTy ty | Just ty' <- tcView ty = tcIsTyVarTy ty'
tcIsTyVarTy (CastTy ty _) = tcIsTyVarTy ty  -- look through casts, as
                                            -- this is only used for
                                            -- e.g., FlexibleContexts
tcIsTyVarTy (TyVarTy _)   = True
tcIsTyVarTy _             = False

-----------------------
tcSplitDFunTy :: Type -> ([TyVar], [Type], Class, [Type])
-- Split the type of a dictionary function
-- We don't use tcSplitSigmaTy,  because a DFun may (with NDP)
-- have non-Pred arguments, such as
--     df :: forall m. (forall b. Eq b => Eq (m b)) -> C m
--
-- Also NB splitFunTys, not tcSplitFunTys;
-- the latter specifically stops at PredTy arguments,
-- and we don't want to do that here
tcSplitDFunTy ty
  = case tcSplitForAllTys ty   of { (tvs, rho)    ->
    case splitFunTys rho       of { (theta, tau)  ->
    case tcSplitDFunHead tau   of { (clas, tys)   ->
    (tvs, theta, clas, tys) }}}

tcSplitDFunHead :: Type -> (Class, [Type])
tcSplitDFunHead = getClassPredTys

tcSplitMethodTy :: Type -> ([TyVar], PredType, Type)
-- A class method (selector) always has a type like
--   forall as. C as => blah
-- So if the class looks like
--   class C a where
--     op :: forall b. (Eq a, Ix b) => a -> b
-- the class method type looks like
--  op :: forall a. C a => forall b. (Eq a, Ix b) => a -> b
--
-- tcSplitMethodTy just peels off the outer forall and
-- that first predicate
tcSplitMethodTy ty
  | (sel_tyvars,sel_rho) <- tcSplitForAllTys ty
  , Just (first_pred, local_meth_ty) <- tcSplitPredFunTy_maybe sel_rho
  = (sel_tyvars, first_pred, local_meth_ty)
  | otherwise
  = pprPanic "tcSplitMethodTy" (ppr ty)


{- *********************************************************************
*                                                                      *
            Type equalities
*                                                                      *
********************************************************************* -}

tcEqKind :: HasDebugCallStack => TcKind -> TcKind -> Bool
tcEqKind = tcEqType

tcEqType :: HasDebugCallStack => TcType -> TcType -> Bool
-- tcEqType is a proper implements the same Note [Non-trivial definitional
-- equality] (in TyCoRep) as `eqType`, but Type.eqType believes (* ==
-- Constraint), and that is NOT what we want in the type checker!
tcEqType ty1 ty2
  = isNothing (tc_eq_type tcView ki1 ki2) &&
    isNothing (tc_eq_type tcView ty1 ty2)
  where
    ki1 = tcTypeKind ty1
    ki2 = tcTypeKind ty2

-- | Just like 'tcEqType', but will return True for types of different kinds
-- as long as their non-coercion structure is identical.
tcEqTypeNoKindCheck :: TcType -> TcType -> Bool
tcEqTypeNoKindCheck ty1 ty2
  = isNothing $ tc_eq_type tcView ty1 ty2

-- | Like 'tcEqType', but returns information about whether the difference
-- is visible in the case of a mismatch.
-- @Nothing@    : the types are equal
-- @Just True@  : the types differ, and the point of difference is visible
-- @Just False@ : the types differ, and the point of difference is invisible
tcEqTypeVis :: TcType -> TcType -> Maybe Bool
tcEqTypeVis ty1 ty2
  = tc_eq_type tcView ty1 ty2 <!> invis (tc_eq_type tcView ki1 ki2)
  where
    ki1 = tcTypeKind ty1
    ki2 = tcTypeKind ty2

      -- convert Just True to Just False
    invis :: Maybe Bool -> Maybe Bool
    invis = fmap (const False)

(<!>) :: Maybe Bool -> Maybe Bool -> Maybe Bool
Nothing        <!> x         = x
Just True      <!> _         = Just True
Just _vis      <!> Just True = Just True
Just vis       <!> _         = Just vis
infixr 3 <!>

-- | Real worker for 'tcEqType'. No kind check!
tc_eq_type :: (TcType -> Maybe TcType)  -- ^ @tcView@, if you want unwrapping
           -> Type -> Type -> Maybe Bool
tc_eq_type view_fun orig_ty1 orig_ty2 = go True orig_env orig_ty1 orig_ty2
  where
    go :: Bool -> RnEnv2 -> Type -> Type -> Maybe Bool
    go vis env t1 t2 | Just t1' <- view_fun t1 = go vis env t1' t2
    go vis env t1 t2 | Just t2' <- view_fun t2 = go vis env t1 t2'

    go vis env (TyVarTy tv1)       (TyVarTy tv2)
      = check vis $ rnOccL env tv1 == rnOccR env tv2

    go vis _   (LitTy lit1)        (LitTy lit2)
      = check vis $ lit1 == lit2

    go vis env (ForAllTy (Bndr tv1 vis1) ty1)
               (ForAllTy (Bndr tv2 vis2) ty2)
      = go (isVisibleArgFlag vis1) env (varType tv1) (varType tv2)
          <!> go vis (rnBndr2 env tv1 tv2) ty1 ty2
          <!> check vis (vis1 == vis2)
    -- Make sure we handle all FunTy cases since falling through to the
    -- AppTy case means that tcRepSplitAppTy_maybe may see an unzonked
    -- kind variable, which causes things to blow up.
    go vis env (FunTy arg1 res1) (FunTy arg2 res2)
      = go vis env arg1 arg2 <!> go vis env res1 res2
    go vis env ty (FunTy arg res)
      = eqFunTy vis env arg res ty
    go vis env (FunTy arg res) ty
      = eqFunTy vis env arg res ty

      -- See Note [Equality on AppTys] in Type
    go vis env (AppTy s1 t1)        ty2
      | Just (s2, t2) <- tcRepSplitAppTy_maybe ty2
      = go vis env s1 s2 <!> go vis env t1 t2
    go vis env ty1                  (AppTy s2 t2)
      | Just (s1, t1) <- tcRepSplitAppTy_maybe ty1
      = go vis env s1 s2 <!> go vis env t1 t2
    go vis env (TyConApp tc1 ts1)   (TyConApp tc2 ts2)
      = check vis (tc1 == tc2) <!> gos (tc_vis vis tc1) env ts1 ts2
    go vis env (CastTy t1 _)        t2              = go vis env t1 t2
    go vis env t1                   (CastTy t2 _)   = go vis env t1 t2
    go _   _   (CoercionTy {})      (CoercionTy {}) = Nothing
    go vis _   _                    _               = Just vis

    gos _      _   []       []       = Nothing
    gos (v:vs) env (t1:ts1) (t2:ts2) = go v env t1 t2 <!> gos vs env ts1 ts2
    gos (v:_)  _   _        _        = Just v
    gos _      _   _        _        = panic "tc_eq_type"

    tc_vis :: Bool -> TyCon -> [Bool]
    tc_vis True tc = viss ++ repeat True
       -- the repeat True is necessary because tycons can legitimately
       -- be oversaturated
      where
        bndrs = tyConBinders tc
        viss  = map isVisibleTyConBinder bndrs
    tc_vis False _ = repeat False  -- if we're not in a visible context, our args
                                   -- aren't either

    check :: Bool -> Bool -> Maybe Bool
    check _   True  = Nothing
    check vis False = Just vis

    orig_env = mkRnEnv2 $ mkInScopeSet $ tyCoVarsOfTypes [orig_ty1, orig_ty2]

    -- @eqFunTy arg res ty@ is True when @ty@ equals @FunTy arg res@. This is
    -- sometimes hard to know directly because @ty@ might have some casts
    -- obscuring the FunTy. And 'splitAppTy' is difficult because we can't
    -- always extract a RuntimeRep (see Note [xyz]) if the kind of the arg or
    -- res is unzonked/unflattened. Thus this function, which handles this
    -- corner case.
    eqFunTy :: Bool -> RnEnv2 -> Type -> Type -> Type -> Maybe Bool
    eqFunTy vis env arg res (FunTy arg' res')
      = go vis env arg arg' <!> go vis env res res'
    eqFunTy vis env arg res ty@(AppTy{})
      | Just (tc, [_, _, arg', res']) <- get_args ty []
      , tc == funTyCon
      = go vis env arg arg' <!> go vis env res res'
      where
        get_args :: Type -> [Type] -> Maybe (TyCon, [Type])
        get_args (AppTy f x)       args = get_args f (x:args)
        get_args (CastTy t _)      args = get_args t args
        get_args (TyConApp tc tys) args = Just (tc, tys ++ args)
        get_args _                 _    = Nothing
    eqFunTy vis _ _ _ _
      = Just vis

-- | Like 'pickyEqTypeVis', but returns a Bool for convenience
pickyEqType :: TcType -> TcType -> Bool
-- Check when two types _look_ the same, _including_ synonyms.
-- So (pickyEqType String [Char]) returns False
-- This ignores kinds and coercions, because this is used only for printing.
pickyEqType ty1 ty2
  = isNothing $
    tc_eq_type (const Nothing) ty1 ty2

{- *********************************************************************
*                                                                      *
                       Predicate types
*                                                                      *
************************************************************************

Deconstructors and tests on predicate types

Note [Kind polymorphic type classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    class C f where...   -- C :: forall k. k -> Constraint
    g :: forall (f::*). C f => f -> f

Here the (C f) in the signature is really (C * f), and we
don't want to complain that the * isn't a type variable!
-}

isTyVarClassPred :: PredType -> Bool
isTyVarClassPred ty = case getClassPredTys_maybe ty of
    Just (_, tys) -> all isTyVarTy tys
    _             -> False

-------------------------
checkValidClsArgs :: Bool -> Class -> [KindOrType] -> Bool
-- If the Bool is True (flexible contexts), return True (i.e. ok)
-- Otherwise, check that the type (not kind) args are all headed by a tyvar
--   E.g. (Eq a) accepted, (Eq (f a)) accepted, but (Eq Int) rejected
-- This function is here rather than in TcValidity because it is
-- called from TcSimplify, which itself is imported by TcValidity
checkValidClsArgs flexible_contexts cls kts
  | flexible_contexts = True
  | otherwise         = all hasTyVarHead tys
  where
    tys = filterOutInvisibleTypes (classTyCon cls) kts

hasTyVarHead :: Type -> Bool
-- Returns true of (a t1 .. tn), where 'a' is a type variable
hasTyVarHead ty                 -- Haskell 98 allows predicates of form
  | tcIsTyVarTy ty = True       --      C (a ty1 .. tyn)
  | otherwise                   -- where a is a type variable
  = case tcSplitAppTy_maybe ty of
       Just (ty, _) -> hasTyVarHead ty
       Nothing      -> False

evVarPred :: EvVar -> PredType
evVarPred var
  = ASSERT2( isEvVarType var_ty, ppr var <+> dcolon <+> ppr var_ty )
    var_ty
 where
    var_ty = varType var

------------------
-- | When inferring types, should we quantify over a given predicate?
-- Generally true of classes; generally false of equality constraints.
-- Equality constraints that mention quantified type variables and
-- implicit variables complicate the story. See Notes
-- [Inheriting implicit parameters] and [Quantifying over equality constraints]
pickQuantifiablePreds
  :: TyVarSet           -- Quantifying over these
  -> TcThetaType        -- Proposed constraints to quantify
  -> TcThetaType        -- A subset that we can actually quantify
-- This function decides whether a particular constraint should be
-- quantified over, given the type variables that are being quantified
pickQuantifiablePreds qtvs theta
  = let flex_ctxt = True in  -- Quantify over non-tyvar constraints, even without
                             -- -XFlexibleContexts: see Trac #10608, #10351
         -- flex_ctxt <- xoptM Opt_FlexibleContexts
    mapMaybe (pick_me flex_ctxt) theta
  where
    pick_me flex_ctxt pred
      = case classifyPredType pred of

          ClassPred cls tys
            | Just {} <- isCallStackPred cls tys
              -- NEVER infer a CallStack constraint.  Otherwise we let
              -- the constraints bubble up to be solved from the outer
              -- context, or be defaulted when we reach the top-level.
              -- See Note [Overview of implicit CallStacks]
            -> Nothing

            | isIPClass cls
            -> Just pred -- See note [Inheriting implicit parameters]

            | pick_cls_pred flex_ctxt cls tys
            -> Just pred

          EqPred eq_rel ty1 ty2
            | quantify_equality eq_rel ty1 ty2
            , Just (cls, tys) <- boxEqPred eq_rel ty1 ty2
              -- boxEqPred: See Note [Lift equality constaints when quantifying]
            , pick_cls_pred flex_ctxt cls tys
            -> Just (mkClassPred cls tys)

          IrredPred ty
            | tyCoVarsOfType ty `intersectsVarSet` qtvs
            -> Just pred

          _ -> Nothing


    pick_cls_pred flex_ctxt cls tys
      = tyCoVarsOfTypes tys `intersectsVarSet` qtvs
        && (checkValidClsArgs flex_ctxt cls tys)
           -- Only quantify over predicates that checkValidType
           -- will pass!  See Trac #10351.

    -- See Note [Quantifying over equality constraints]
    quantify_equality NomEq  ty1 ty2 = quant_fun ty1 || quant_fun ty2
    quantify_equality ReprEq _   _   = True

    quant_fun ty
      = case tcSplitTyConApp_maybe ty of
          Just (tc, tys) | isTypeFamilyTyCon tc
                         -> tyCoVarsOfTypes tys `intersectsVarSet` qtvs
          _ -> False

boxEqPred :: EqRel -> Type -> Type -> Maybe (Class, [Type])
-- Given (t1 ~# t2) or (t1 ~R# t2) return the boxed version
--       (t1 ~ t2)  or (t1 `Coercible` t2)
boxEqPred eq_rel ty1 ty2
  = case eq_rel of
      NomEq  | homo_kind -> Just (eqClass,        [k1,     ty1, ty2])
             | otherwise -> Just (heqClass,       [k1, k2, ty1, ty2])
      ReprEq | homo_kind -> Just (coercibleClass, [k1,     ty1, ty2])
             | otherwise -> Nothing -- Sigh: we do not have hererogeneous Coercible
                                    --       so we can't abstract over it
                                    -- Nothing fundamental: we could add it
 where
   k1 = tcTypeKind ty1
   k2 = tcTypeKind ty2
   homo_kind = k1 `tcEqType` k2

pickCapturedPreds
  :: TyVarSet           -- Quantifying over these
  -> TcThetaType        -- Proposed constraints to quantify
  -> TcThetaType        -- A subset that we can actually quantify
-- A simpler version of pickQuantifiablePreds, used to winnow down
-- the inferred constraints of a group of bindings, into those for
-- one particular identifier
pickCapturedPreds qtvs theta
  = filter captured theta
  where
    captured pred = isIPPred pred || (tyCoVarsOfType pred `intersectsVarSet` qtvs)


-- Superclasses

type PredWithSCs a = (PredType, [PredType], a)

mkMinimalBySCs :: forall a. (a -> PredType) -> [a] -> [a]
-- Remove predicates that
--
--   - are the same as another predicate
--
--   - can be deduced from another by superclasses,
--
--   - are a reflexive equality (e.g  * ~ *)
--     (see Note [Remove redundant provided dicts] in TcPatSyn)
--
-- The result is a subset of the input.
-- The 'a' is just paired up with the PredType;
--   typically it might be a dictionary Id
mkMinimalBySCs get_pred xs = go preds_with_scs []
 where
   preds_with_scs :: [PredWithSCs a]
   preds_with_scs = [ (pred, pred : transSuperClasses pred, x)
                    | x <- xs
                    , let pred = get_pred x ]

   go :: [PredWithSCs a]   -- Work list
      -> [PredWithSCs a]   -- Accumulating result
      -> [a]
   go [] min_preds
     = reverse (map thdOf3 min_preds)
       -- The 'reverse' isn't strictly necessary, but it
       -- means that the results are returned in the same
       -- order as the input, which is generally saner
   go (work_item@(p,_,_) : work_list) min_preds
     | EqPred _ t1 t2 <- classifyPredType p
     , t1 `tcEqType` t2   -- See TcPatSyn
                          -- Note [Remove redundant provided dicts]
     = go work_list min_preds
     | p `in_cloud` work_list || p `in_cloud` min_preds
     = go work_list min_preds
     | otherwise
     = go work_list (work_item : min_preds)

   in_cloud :: PredType -> [PredWithSCs a] -> Bool
   in_cloud p ps = or [ p `tcEqType` p' | (_, scs, _) <- ps, p' <- scs ]

transSuperClasses :: PredType -> [PredType]
-- (transSuperClasses p) returns (p's superclasses) not including p
-- Stop if you encounter the same class again
-- See Note [Expanding superclasses]
transSuperClasses p
  = go emptyNameSet p
  where
    go :: NameSet -> PredType -> [PredType]
    go rec_clss p
       | ClassPred cls tys <- classifyPredType p
       , let cls_nm = className cls
       , not (cls_nm `elemNameSet` rec_clss)
       , let rec_clss' | isCTupleClass cls = rec_clss
                       | otherwise         = rec_clss `extendNameSet` cls_nm
       = [ p' | sc <- immSuperClasses cls tys
              , p'  <- sc : go rec_clss' sc ]
       | otherwise
       = []

immSuperClasses :: Class -> [Type] -> [PredType]
immSuperClasses cls tys
  = substTheta (zipTvSubst tyvars tys) sc_theta
  where
    (tyvars,sc_theta,_,_) = classBigSig cls

isImprovementPred :: PredType -> Bool
-- Either it's an equality, or has some functional dependency
isImprovementPred ty
  = case classifyPredType ty of
      EqPred NomEq t1 t2 -> not (t1 `tcEqType` t2)
      EqPred ReprEq _ _  -> False
      ClassPred cls _    -> classHasFds cls
      IrredPred {}       -> True -- Might have equalities after reduction?
      ForAllPred {}      -> False

-- | Is the equality
--        a ~r ...a....
-- definitely insoluble or not?
--      a ~r Maybe a      -- Definitely insoluble
--      a ~N ...(F a)...  -- Not definitely insoluble
--                        -- Perhaps (F a) reduces to Int
--      a ~R ...(N a)...  -- Not definitely insoluble
--                        -- Perhaps newtype N a = MkN Int
-- See Note [Occurs check error] in
-- TcCanonical for the motivation for this function.
isInsolubleOccursCheck :: EqRel -> TcTyVar -> TcType -> Bool
isInsolubleOccursCheck eq_rel tv ty
  = go ty
  where
    go ty | Just ty' <- tcView ty = go ty'
    go (TyVarTy tv') = tv == tv' || go (tyVarKind tv')
    go (LitTy {})    = False
    go (AppTy t1 t2) = case eq_rel of  -- See Note [AppTy and ReprEq]
                         NomEq  -> go t1 || go t2
                         ReprEq -> go t1
    go (FunTy t1 t2) = go t1 || go t2
    go (ForAllTy (Bndr tv' _) inner_ty)
      | tv' == tv = False
      | otherwise = go (varType tv') || go inner_ty
    go (CastTy ty _)  = go ty   -- ToDo: what about the coercion
    go (CoercionTy _) = False   -- ToDo: what about the coercion
    go (TyConApp tc tys)
      | isGenerativeTyCon tc role = any go tys
      | otherwise                 = any go (drop (tyConArity tc) tys)
         -- (a ~ F b a), where F has arity 1,
         -- has an insoluble occurs check

    role = eqRelRole eq_rel

{- Note [Expanding superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we expand superclasses, we use the following algorithm:

expand( so_far, pred ) returns the transitive superclasses of pred,
                               not including pred itself
 1. If pred is not a class constraint, return empty set
       Otherwise pred = C ts
 2. If C is in so_far, return empty set (breaks loops)
 3. Find the immediate superclasses constraints of (C ts)
 4. For each such sc_pred, return (sc_pred : expand( so_far+C, D ss )

Notice that

 * With normal Haskell-98 classes, the loop-detector will never bite,
   so we'll get all the superclasses.

 * Since there is only a finite number of distinct classes, expansion
   must terminate.

 * The loop breaking is a bit conservative. Notably, a tuple class
   could contain many times without threatening termination:
      (Eq a, (Ord a, Ix a))
   And this is try of any class that we can statically guarantee
   as non-recursive (in some sense).  For now, we just make a special
   case for tuples.  Something better would be cool.

See also TcTyDecls.checkClassCycles.

Note [Lift equality constaints when quantifying]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can't quantify over a constraint (t1 ~# t2) because that isn't a
predicate type; see Note [Types for coercions, predicates, and evidence]
in Type.hs.

So we have to 'lift' it to (t1 ~ t2).  Similarly (~R#) must be lifted
to Coercible.

This tiresome lifting is the reason that pick_me (in
pickQuantifiablePreds) returns a Maybe rather than a Bool.

Note [Quantifying over equality constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Should we quantify over an equality constraint (s ~ t)?  In general, we don't.
Doing so may simply postpone a type error from the function definition site to
its call site.  (At worst, imagine (Int ~ Bool)).

However, consider this
         forall a. (F [a] ~ Int) => blah
Should we quantify over the (F [a] ~ Int)?  Perhaps yes, because at the call
site we will know 'a', and perhaps we have instance  F [Bool] = Int.
So we *do* quantify over a type-family equality where the arguments mention
the quantified variables.

Note [Inheriting implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:

        f x = (x::Int) + ?y

where f is *not* a top-level binding.
From the RHS of f we'll get the constraint (?y::Int).
There are two types we might infer for f:

        f :: Int -> Int

(so we get ?y from the context of f's definition), or

        f :: (?y::Int) => Int -> Int

At first you might think the first was better, because then
?y behaves like a free variable of the definition, rather than
having to be passed at each call site.  But of course, the WHOLE
IDEA is that ?y should be passed at each call site (that's what
dynamic binding means) so we'd better infer the second.

BOTTOM LINE: when *inferring types* you must quantify over implicit
parameters, *even if* they don't mention the bound type variables.
Reason: because implicit parameters, uniquely, have local instance
declarations. See pickQuantifiablePreds.

Note [Quantifying over equality constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Should we quantify over an equality constraint (s ~ t)?  In general, we don't.
Doing so may simply postpone a type error from the function definition site to
its call site.  (At worst, imagine (Int ~ Bool)).

However, consider this
         forall a. (F [a] ~ Int) => blah
Should we quantify over the (F [a] ~ Int).  Perhaps yes, because at the call
site we will know 'a', and perhaps we have instance  F [Bool] = Int.
So we *do* quantify over a type-family equality where the arguments mention
the quantified variables.

************************************************************************
*                                                                      *
      Classifying types
*                                                                      *
************************************************************************
-}

isSigmaTy :: TcType -> Bool
-- isSigmaTy returns true of any qualified type.  It doesn't
-- *necessarily* have any foralls.  E.g
--        f :: (?x::Int) => Int -> Int
isSigmaTy ty | Just ty' <- tcView ty = isSigmaTy ty'
isSigmaTy (ForAllTy {}) = True
isSigmaTy (FunTy a _)   = isPredTy a
isSigmaTy _             = False

isRhoTy :: TcType -> Bool   -- True of TcRhoTypes; see Note [TcRhoType]
isRhoTy ty | Just ty' <- tcView ty = isRhoTy ty'
isRhoTy (ForAllTy {}) = False
isRhoTy (FunTy a r)   = not (isPredTy a) && isRhoTy r
isRhoTy _             = True

-- | Like 'isRhoTy', but also says 'True' for 'Infer' types
isRhoExpTy :: ExpType -> Bool
isRhoExpTy (Check ty) = isRhoTy ty
isRhoExpTy (Infer {}) = True

isOverloadedTy :: Type -> Bool
-- Yes for a type of a function that might require evidence-passing
-- Used only by bindLocalMethods
isOverloadedTy ty | Just ty' <- tcView ty = isOverloadedTy ty'
isOverloadedTy (ForAllTy _  ty) = isOverloadedTy ty
isOverloadedTy (FunTy a _)      = isPredTy a
isOverloadedTy _                = False

isFloatTy, isDoubleTy, isIntegerTy, isIntTy, isWordTy, isBoolTy,
    isUnitTy, isCharTy, isAnyTy :: Type -> Bool
isFloatTy      = is_tc floatTyConKey
isDoubleTy     = is_tc doubleTyConKey
isIntegerTy    = is_tc integerTyConKey
isIntTy        = is_tc intTyConKey
isWordTy       = is_tc wordTyConKey
isBoolTy       = is_tc boolTyConKey
isUnitTy       = is_tc unitTyConKey
isCharTy       = is_tc charTyConKey
isAnyTy        = is_tc anyTyConKey

-- | Does a type represent a floating-point number?
isFloatingTy :: Type -> Bool
isFloatingTy ty = isFloatTy ty || isDoubleTy ty

-- | Is a type 'String'?
isStringTy :: Type -> Bool
isStringTy ty
  = case tcSplitTyConApp_maybe ty of
      Just (tc, [arg_ty]) -> tc == listTyCon && isCharTy arg_ty
      _                   -> False

-- | Is a type a 'CallStack'?
isCallStackTy :: Type -> Bool
isCallStackTy ty
  | Just tc <- tyConAppTyCon_maybe ty
  = tc `hasKey` callStackTyConKey
  | otherwise
  = False

-- | Is a 'PredType' a 'CallStack' implicit parameter?
--
-- If so, return the name of the parameter.
isCallStackPred :: Class -> [Type] -> Maybe FastString
isCallStackPred cls tys
  | [ty1, ty2] <- tys
  , isIPClass cls
  , isCallStackTy ty2
  = isStrLitTy ty1
  | otherwise
  = Nothing

hasIPPred :: PredType -> Bool
hasIPPred pred
  = case classifyPredType pred of
      ClassPred cls tys
        | isIPClass     cls -> True
        | isCTupleClass cls -> any hasIPPred tys
      _other -> False

is_tc :: Unique -> Type -> Bool
-- Newtypes are opaque to this
is_tc uniq ty = case tcSplitTyConApp_maybe ty of
                        Just (tc, _) -> uniq == getUnique tc
                        Nothing      -> False

-- | Does the given tyvar appear at the head of a chain of applications
--     (a t1 ... tn)
isTyVarHead :: TcTyVar -> TcType -> Bool
isTyVarHead tv (TyVarTy tv')   = tv == tv'
isTyVarHead tv (AppTy fun _)   = isTyVarHead tv fun
isTyVarHead tv (CastTy ty _)   = isTyVarHead tv ty
isTyVarHead _ (TyConApp {})    = False
isTyVarHead _  (LitTy {})      = False
isTyVarHead _  (ForAllTy {})   = False
isTyVarHead _  (FunTy {})      = False
isTyVarHead _  (CoercionTy {}) = False


{- Note [AppTy and ReprEq]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider   a ~R# b a
           a ~R# a b

The former is /not/ a definite error; we might instantiate 'b' with Id
   newtype Id a = MkId a
but the latter /is/ a definite error.

On the other hand, with nominal equality, both are definite errors
-}

isRigidTy :: TcType -> Bool
isRigidTy ty
  | Just (tc,_) <- tcSplitTyConApp_maybe ty = isGenerativeTyCon tc Nominal
  | Just {} <- tcSplitAppTy_maybe ty        = True
  | isForAllTy ty                           = True
  | otherwise                               = False


{-
************************************************************************
*                                                                      *
\subsection{Misc}
*                                                                      *
************************************************************************

Note [Visible type application]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GHC implements a generalisation of the algorithm described in the
"Visible Type Application" paper (available from
http://www.cis.upenn.edu/~sweirich/publications.html). A key part
of that algorithm is to distinguish user-specified variables from inferred
variables. For example, the following should typecheck:

  f :: forall a b. a -> b -> b
  f = const id

  g = const id

  x = f @Int @Bool 5 False
  y = g 5 @Bool False

The idea is that we wish to allow visible type application when we are
instantiating a specified, fixed variable. In practice, specified, fixed
variables are either written in a type signature (or
annotation), OR are imported from another module. (We could do better here,
for example by doing SCC analysis on parts of a module and considering any
type from outside one's SCC to be fully specified, but this is very confusing to
users. The simple rule above is much more straightforward and predictable.)

So, both of f's quantified variables are specified and may be instantiated.
But g has no type signature, so only id's variable is specified (because id
is imported). We write the type of g as forall {a}. a -> forall b. b -> b.
Note that the a is in braces, meaning it cannot be instantiated with
visible type application.

Tracking specified vs. inferred variables is done conveniently by a field
in TyBinder.

-}

deNoteType :: Type -> Type
-- Remove all *outermost* type synonyms and other notes
deNoteType ty | Just ty' <- coreView ty = deNoteType ty'
deNoteType ty = ty

{-
Find the free tycons and classes of a type.  This is used in the front
end of the compiler.
-}

{-
************************************************************************
*                                                                      *
\subsection[TysWiredIn-ext-type]{External types}
*                                                                      *
************************************************************************

The compiler's foreign function interface supports the passing of a
restricted set of types as arguments and results (the restricting factor
being the )
-}

tcSplitIOType_maybe :: Type -> Maybe (TyCon, Type)
-- (tcSplitIOType_maybe t) returns Just (IO,t',co)
--              if co : t ~ IO t'
--              returns Nothing otherwise
tcSplitIOType_maybe ty
  = case tcSplitTyConApp_maybe ty of
        Just (io_tycon, [io_res_ty])
         | io_tycon `hasKey` ioTyConKey ->
            Just (io_tycon, io_res_ty)
        _ ->
            Nothing

isFFITy :: Type -> Bool
-- True for any TyCon that can possibly be an arg or result of an FFI call
isFFITy ty = isValid (checkRepTyCon legalFFITyCon ty)

isFFIArgumentTy :: DynFlags -> Safety -> Type -> Validity
-- Checks for valid argument type for a 'foreign import'
isFFIArgumentTy dflags safety ty
   = checkRepTyCon (legalOutgoingTyCon dflags safety) ty

isFFIExternalTy :: Type -> Validity
-- Types that are allowed as arguments of a 'foreign export'
isFFIExternalTy ty = checkRepTyCon legalFEArgTyCon ty

isFFIImportResultTy :: DynFlags -> Type -> Validity
isFFIImportResultTy dflags ty
  = checkRepTyCon (legalFIResultTyCon dflags) ty

isFFIExportResultTy :: Type -> Validity
isFFIExportResultTy ty = checkRepTyCon legalFEResultTyCon ty

isFFIDynTy :: Type -> Type -> Validity
-- The type in a foreign import dynamic must be Ptr, FunPtr, or a newtype of
-- either, and the wrapped function type must be equal to the given type.
-- We assume that all types have been run through normaliseFfiType, so we don't
-- need to worry about expanding newtypes here.
isFFIDynTy expected ty
    -- Note [Foreign import dynamic]
    -- In the example below, expected would be 'CInt -> IO ()', while ty would
    -- be 'FunPtr (CDouble -> IO ())'.
    | Just (tc, [ty']) <- splitTyConApp_maybe ty
    , tyConUnique tc `elem` [ptrTyConKey, funPtrTyConKey]
    , eqType ty' expected
    = IsValid
    | otherwise
    = NotValid (vcat [ text "Expected: Ptr/FunPtr" <+> pprParendType expected <> comma
                     , text "  Actual:" <+> ppr ty ])

isFFILabelTy :: Type -> Validity
-- The type of a foreign label must be Ptr, FunPtr, or a newtype of either.
isFFILabelTy ty = checkRepTyCon ok ty
  where
    ok tc | tc `hasKey` funPtrTyConKey || tc `hasKey` ptrTyConKey
          = IsValid
          | otherwise
          = NotValid (text "A foreign-imported address (via &foo) must have type (Ptr a) or (FunPtr a)")

isFFIPrimArgumentTy :: DynFlags -> Type -> Validity
-- Checks for valid argument type for a 'foreign import prim'
-- Currently they must all be simple unlifted types, or the well-known type
-- Any, which can be used to pass the address to a Haskell object on the heap to
-- the foreign function.
isFFIPrimArgumentTy dflags ty
  | isAnyTy ty = IsValid
  | otherwise  = checkRepTyCon (legalFIPrimArgTyCon dflags) ty

isFFIPrimResultTy :: DynFlags -> Type -> Validity
-- Checks for valid result type for a 'foreign import prim' Currently
-- it must be an unlifted type, including unboxed tuples, unboxed
-- sums, or the well-known type Any.
isFFIPrimResultTy dflags ty
  | isAnyTy ty = IsValid
  | otherwise = checkRepTyCon (legalFIPrimResultTyCon dflags) ty

isFunPtrTy :: Type -> Bool
isFunPtrTy ty
  | Just (tc, [_]) <- splitTyConApp_maybe ty
  = tc `hasKey` funPtrTyConKey
  | otherwise
  = False

-- normaliseFfiType gets run before checkRepTyCon, so we don't
-- need to worry about looking through newtypes or type functions
-- here; that's already been taken care of.
checkRepTyCon :: (TyCon -> Validity) -> Type -> Validity
checkRepTyCon check_tc ty
  = case splitTyConApp_maybe ty of
      Just (tc, tys)
        | isNewTyCon tc -> NotValid (hang msg 2 (mk_nt_reason tc tys $$ nt_fix))
        | otherwise     -> case check_tc tc of
                             IsValid        -> IsValid
                             NotValid extra -> NotValid (msg $$ extra)
      Nothing -> NotValid (quotes (ppr ty) <+> text "is not a data type")
  where
    msg = quotes (ppr ty) <+> text "cannot be marshalled in a foreign call"
    mk_nt_reason tc tys
      | null tys  = text "because its data constructor is not in scope"
      | otherwise = text "because the data constructor for"
                    <+> quotes (ppr tc) <+> text "is not in scope"
    nt_fix = text "Possible fix: import the data constructor to bring it into scope"

{-
Note [Foreign import dynamic]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A dynamic stub must be of the form 'FunPtr ft -> ft' where ft is any foreign
type.  Similarly, a wrapper stub must be of the form 'ft -> IO (FunPtr ft)'.

We use isFFIDynTy to check whether a signature is well-formed. For example,
given a (illegal) declaration like:

foreign import ccall "dynamic"
  foo :: FunPtr (CDouble -> IO ()) -> CInt -> IO ()

isFFIDynTy will compare the 'FunPtr' type 'CDouble -> IO ()' with the curried
result type 'CInt -> IO ()', and return False, as they are not equal.


----------------------------------------------
These chaps do the work; they are not exported
----------------------------------------------
-}

legalFEArgTyCon :: TyCon -> Validity
legalFEArgTyCon tc
  -- It's illegal to make foreign exports that take unboxed
  -- arguments.  The RTS API currently can't invoke such things.  --SDM 7/2000
  = boxedMarshalableTyCon tc

legalFIResultTyCon :: DynFlags -> TyCon -> Validity
legalFIResultTyCon dflags tc
  | tc == unitTyCon         = IsValid
  | otherwise               = marshalableTyCon dflags tc

legalFEResultTyCon :: TyCon -> Validity
legalFEResultTyCon tc
  | tc == unitTyCon         = IsValid
  | otherwise               = boxedMarshalableTyCon tc

legalOutgoingTyCon :: DynFlags -> Safety -> TyCon -> Validity
-- Checks validity of types going from Haskell -> external world
legalOutgoingTyCon dflags _ tc
  = marshalableTyCon dflags tc

legalFFITyCon :: TyCon -> Validity
-- True for any TyCon that can possibly be an arg or result of an FFI call
legalFFITyCon tc
  | isUnliftedTyCon tc = IsValid
  | tc == unitTyCon    = IsValid
  | otherwise          = boxedMarshalableTyCon tc

marshalableTyCon :: DynFlags -> TyCon -> Validity
marshalableTyCon dflags tc
  | isUnliftedTyCon tc
  , not (isUnboxedTupleTyCon tc || isUnboxedSumTyCon tc)
  , not (null (tyConPrimRep tc)) -- Note [Marshalling void]
  = validIfUnliftedFFITypes dflags
  | otherwise
  = boxedMarshalableTyCon tc

boxedMarshalableTyCon :: TyCon -> Validity
boxedMarshalableTyCon tc
   | getUnique tc `elem` [ intTyConKey, int8TyConKey, int16TyConKey
                         , int32TyConKey, int64TyConKey
                         , wordTyConKey, word8TyConKey, word16TyConKey
                         , word32TyConKey, word64TyConKey
                         , floatTyConKey, doubleTyConKey
                         , ptrTyConKey, funPtrTyConKey
                         , charTyConKey
                         , stablePtrTyConKey
                         , boolTyConKey
                         ]
  = IsValid

  | otherwise = NotValid empty

legalFIPrimArgTyCon :: DynFlags -> TyCon -> Validity
-- Check args of 'foreign import prim', only allow simple unlifted types.
-- Strictly speaking it is unnecessary to ban unboxed tuples and sums here since
-- currently they're of the wrong kind to use in function args anyway.
legalFIPrimArgTyCon dflags tc
  | isUnliftedTyCon tc
  , not (isUnboxedTupleTyCon tc || isUnboxedSumTyCon tc)
  = validIfUnliftedFFITypes dflags
  | otherwise
  = NotValid unlifted_only

legalFIPrimResultTyCon :: DynFlags -> TyCon -> Validity
-- Check result type of 'foreign import prim'. Allow simple unlifted
-- types and also unboxed tuple and sum result types.
legalFIPrimResultTyCon dflags tc
  | isUnliftedTyCon tc
  , isUnboxedTupleTyCon tc || isUnboxedSumTyCon tc
     || not (null (tyConPrimRep tc))   -- Note [Marshalling void]
  = validIfUnliftedFFITypes dflags

  | otherwise
  = NotValid unlifted_only

unlifted_only :: MsgDoc
unlifted_only = text "foreign import prim only accepts simple unlifted types"

validIfUnliftedFFITypes :: DynFlags -> Validity
validIfUnliftedFFITypes dflags
  | xopt LangExt.UnliftedFFITypes dflags =  IsValid
  | otherwise = NotValid (text "To marshal unlifted types, use UnliftedFFITypes")

{-
Note [Marshalling void]
~~~~~~~~~~~~~~~~~~~~~~~
We don't treat State# (whose PrimRep is VoidRep) as marshalable.
In turn that means you can't write
        foreign import foo :: Int -> State# RealWorld

Reason: the back end falls over with panic "primRepHint:VoidRep";
        and there is no compelling reason to permit it
-}

{-
************************************************************************
*                                                                      *
        The "Paterson size" of a type
*                                                                      *
************************************************************************
-}

{-
Note [Paterson conditions on PredTypes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We are considering whether *class* constraints terminate
(see Note [Paterson conditions]). Precisely, the Paterson conditions
would have us check that "the constraint has fewer constructors and variables
(taken together and counting repetitions) than the head.".

However, we can be a bit more refined by looking at which kind of constraint
this actually is. There are two main tricks:

 1. It seems like it should be OK not to count the tuple type constructor
    for a PredType like (Show a, Eq a) :: Constraint, since we don't
    count the "implicit" tuple in the ThetaType itself.

    In fact, the Paterson test just checks *each component* of the top level
    ThetaType against the size bound, one at a time. By analogy, it should be
    OK to return the size of the *largest* tuple component as the size of the
    whole tuple.

 2. Once we get into an implicit parameter or equality we
    can't get back to a class constraint, so it's safe
    to say "size 0".  See Trac #4200.

NB: we don't want to detect PredTypes in sizeType (and then call
sizePred on them), or we might get an infinite loop if that PredType
is irreducible. See Trac #5581.
-}

type TypeSize = IntWithInf

sizeType :: Type -> TypeSize
-- Size of a type: the number of variables and constructors
-- Ignore kinds altogether
sizeType = go
  where
    go ty | Just exp_ty <- tcView ty = go exp_ty
    go (TyVarTy {})              = 1
    go (TyConApp tc tys)
      | isTypeFamilyTyCon tc     = infinity  -- Type-family applications can
                                             -- expand to any arbitrary size
      | otherwise                = sizeTypes (filterOutInvisibleTypes tc tys) + 1
                                   -- Why filter out invisible args?  I suppose any
                                   -- size ordering is sound, but why is this better?
                                   -- I came across this when investigating #14010.
    go (LitTy {})                = 1
    go (FunTy arg res)           = go arg + go res + 1
    go (AppTy fun arg)           = go fun + go arg
    go (ForAllTy (Bndr tv vis) ty)
        | isVisibleArgFlag vis   = go (tyVarKind tv) + go ty + 1
        | otherwise              = go ty + 1
    go (CastTy ty _)             = go ty
    go (CoercionTy {})           = 0

sizeTypes :: [Type] -> TypeSize
sizeTypes tys = sum (map sizeType tys)

-----------------------------------------------------------------------------------
-----------------------------------------------------------------------------------
-----------------------
-- | For every arg a tycon can take, the returned list says True if the argument
-- is taken visibly, and False otherwise. Ends with an infinite tail of Trues to
-- allow for oversaturation.
tcTyConVisibilities :: TyCon -> [Bool]
tcTyConVisibilities tc = tc_binder_viss ++ tc_return_kind_viss ++ repeat True
  where
    tc_binder_viss      = map isVisibleTyConBinder (tyConBinders tc)
    tc_return_kind_viss = map isVisibleBinder (fst $ tcSplitPiTys (tyConResKind tc))

-- | If the tycon is applied to the types, is the next argument visible?
isNextTyConArgVisible :: TyCon -> [Type] -> Bool
isNextTyConArgVisible tc tys
  = tcTyConVisibilities tc `getNth` length tys

-- | Should this type be applied to a visible argument?
isNextArgVisible :: TcType -> Bool
isNextArgVisible ty
  | Just (bndr, _) <- tcSplitPiTy_maybe ty = isVisibleBinder bndr
  | otherwise                              = True
    -- this second case might happen if, say, we have an unzonked TauTv.
    -- But TauTvs can't range over types that take invisible arguments