summaryrefslogtreecommitdiff
path: root/compiler/types/TyCon.hs
blob: 5258839ad5cce77667520246f26266a981afbb05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


The @TyCon@ datatype
-}

{-# LANGUAGE CPP, DeriveDataTypeable #-}

module TyCon(
        -- * Main TyCon data types
        TyCon, FieldLabel,

        AlgTyConRhs(..), visibleDataCons,
        AlgTyConParent(..), isNoParent,
        FamTyConFlav(..), Role(..), Promoted(..),

        -- ** Constructing TyCons
        mkAlgTyCon,
        mkClassTyCon,
        mkFunTyCon,
        mkPrimTyCon,
        mkKindTyCon,
        mkLiftedPrimTyCon,
        mkTupleTyCon,
        mkSynonymTyCon,
        mkFamilyTyCon,
        mkPromotedDataCon,
        mkPromotedTyCon,

        -- ** Predicates on TyCons
        isAlgTyCon,
        isClassTyCon, isFamInstTyCon,
        isFunTyCon,
        isPrimTyCon,
        isTupleTyCon, isUnboxedTupleTyCon, isBoxedTupleTyCon,
        isTypeSynonymTyCon,
        isDecomposableTyCon,
        isPromotedDataCon, isPromotedTyCon,
        isPromotedDataCon_maybe, isPromotedTyCon_maybe,
        promotableTyCon_maybe, isPromotableTyCon, promoteTyCon,

        isDataTyCon, isProductTyCon, isDataProductTyCon_maybe,
        isEnumerationTyCon,
        isNewTyCon, isAbstractTyCon,
        isFamilyTyCon, isOpenFamilyTyCon,
        isTypeFamilyTyCon, isDataFamilyTyCon,
        isOpenTypeFamilyTyCon, isClosedSynFamilyTyCon_maybe,
        isBuiltInSynFamTyCon_maybe,
        isUnLiftedTyCon,
        isGadtSyntaxTyCon, isDistinctTyCon, isDistinctAlgRhs,
        isTyConAssoc, tyConAssoc_maybe,
        isRecursiveTyCon,
        isImplicitTyCon,

        -- ** Extracting information out of TyCons
        tyConName,
        tyConKind,
        tyConUnique,
        tyConTyVars,
        tyConCType, tyConCType_maybe,
        tyConDataCons, tyConDataCons_maybe,
        tyConSingleDataCon_maybe, tyConSingleAlgDataCon_maybe,
        tyConFamilySize,
        tyConStupidTheta,
        tyConArity,
        tyConRoles,
        tyConTuple_maybe, tyConClass_maybe,
        tyConFamInst_maybe, tyConFamInstSig_maybe, tyConFamilyCoercion_maybe,
        synTyConDefn_maybe, synTyConRhs_maybe, famTyConFlav_maybe,
        algTyConRhs,
        newTyConRhs, newTyConEtadArity, newTyConEtadRhs,
        unwrapNewTyCon_maybe, unwrapNewTyConEtad_maybe,
        tupleTyConBoxity, tupleTyConSort, tupleTyConArity,

        -- ** Manipulating TyCons
        expandSynTyCon_maybe,
        makeTyConAbstract,
        newTyConCo, newTyConCo_maybe,
        pprPromotionQuote,

        -- * Runtime type representation
        TyConRepName, tyConRepName_maybe,

        -- * Primitive representations of Types
        PrimRep(..), PrimElemRep(..),
        tyConPrimRep, isVoidRep, isGcPtrRep,
        primRepSizeW, primElemRepSizeB,
        primRepIsFloat,

        -- * Recursion breaking
        RecTcChecker, initRecTc, checkRecTc

) where

#include "HsVersions.h"

import {-# SOURCE #-} TypeRep ( Kind, Type, PredType )
import {-# SOURCE #-} DataCon ( DataCon, isVanillaDataCon )

import Var
import Class
import BasicTypes
import DynFlags
import ForeignCall
import Name
import NameSet
import CoAxiom
import PrelNames
import Maybes
import Outputable
import Constants
import Util
import qualified Data.Data as Data
import Data.Typeable (Typeable)

{-
-----------------------------------------------
        Notes about type families
-----------------------------------------------

Note [Type synonym families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Type synonym families, also known as "type functions", map directly
  onto the type functions in FC:

        type family F a :: *
        type instance F Int = Bool
        ..etc...

* Reply "yes" to isTypeFamilyTyCon, and isFamilyTyCon

* From the user's point of view (F Int) and Bool are simply
  equivalent types.

* A Haskell 98 type synonym is a degenerate form of a type synonym
  family.

* Type functions can't appear in the LHS of a type function:
        type instance F (F Int) = ...   -- BAD!

* Translation of type family decl:
        type family F a :: *
  translates to
    a FamilyTyCon 'F', whose FamTyConFlav is OpenSynFamilyTyCon

        type family G a :: * where
          G Int = Bool
          G Bool = Char
          G a = ()
  translates to
    a FamilyTyCon 'G', whose FamTyConFlav is ClosedSynFamilyTyCon, with the
    appropriate CoAxiom representing the equations

* In the future we might want to support
    * injective type families (allow decomposition)
  but we don't at the moment [2013]

Note [Data type families]
~~~~~~~~~~~~~~~~~~~~~~~~~
See also Note [Wrappers for data instance tycons] in MkId.hs

* Data type families are declared thus
        data family T a :: *
        data instance T Int = T1 | T2 Bool

  Here T is the "family TyCon".

* Reply "yes" to isDataFamilyTyCon, and isFamilyTyCon

* The user does not see any "equivalent types" as he did with type
  synonym families.  He just sees constructors with types
        T1 :: T Int
        T2 :: Bool -> T Int

* Here's the FC version of the above declarations:

        data T a
        data R:TInt = T1 | T2 Bool
        axiom ax_ti : T Int ~ R:TInt

  The R:TInt is the "representation TyCons".
  It has an AlgTyConParent of
        DataFamInstTyCon T [Int] ax_ti

* The axiom ax_ti may be eta-reduced; see
  Note [Eta reduction for data family axioms] in TcInstDcls

* The data contructor T2 has a wrapper (which is what the
  source-level "T2" invokes):

        $WT2 :: Bool -> T Int
        $WT2 b = T2 b `cast` sym ax_ti

* A data instance can declare a fully-fledged GADT:

        data instance T (a,b) where
          X1 :: T (Int,Bool)
          X2 :: a -> b -> T (a,b)

  Here's the FC version of the above declaration:

        data R:TPair a where
          X1 :: R:TPair Int Bool
          X2 :: a -> b -> R:TPair a b
        axiom ax_pr :: T (a,b) ~ R:TPair a b

        $WX1 :: forall a b. a -> b -> T (a,b)
        $WX1 a b (x::a) (y::b) = X2 a b x y `cast` sym (ax_pr a b)

  The R:TPair are the "representation TyCons".
  We have a bit of work to do, to unpick the result types of the
  data instance declaration for T (a,b), to get the result type in the
  representation; e.g.  T (a,b) --> R:TPair a b

  The representation TyCon R:TList, has an AlgTyConParent of

        DataFamInstTyCon T [(a,b)] ax_pr

* Notice that T is NOT translated to a FC type function; it just
  becomes a "data type" with no constructors, which can be coerced inot
  into R:TInt, R:TPair by the axioms.  These axioms
  axioms come into play when (and *only* when) you
        - use a data constructor
        - do pattern matching
  Rather like newtype, in fact

  As a result

  - T behaves just like a data type so far as decomposition is concerned

  - (T Int) is not implicitly converted to R:TInt during type inference.
    Indeed the latter type is unknown to the programmer.

  - There *is* an instance for (T Int) in the type-family instance
    environment, but it is only used for overlap checking

  - It's fine to have T in the LHS of a type function:
    type instance F (T a) = [a]

  It was this last point that confused me!  The big thing is that you
  should not think of a data family T as a *type function* at all, not
  even an injective one!  We can't allow even injective type functions
  on the LHS of a type function:
        type family injective G a :: *
        type instance F (G Int) = Bool
  is no good, even if G is injective, because consider
        type instance G Int = Bool
        type instance F Bool = Char

  So a data type family is not an injective type function. It's just a
  data type with some axioms that connect it to other data types.

Note [Associated families and their parent class]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*Associated* families are just like *non-associated* families, except
that they have a famTcParent field of (Just cls), which identifies the
parent class.

However there is an important sharing relationship between
  * the tyConTyVars of the parent Class
  * the tyConTyvars of the associated TyCon

   class C a b where
     data T p a
     type F a q b

Here the 'a' and 'b' are shared with the 'Class'; that is, they have
the same Unique.

This is important. In an instance declaration we expect
  * all the shared variables to be instantiated the same way
  * the non-shared variables of the associated type should not
    be instantiated at all

  instance C [x] (Tree y) where
     data T p [x] = T1 x | T2 p
     type F [x] q (Tree y) = (x,y,q)

Note [TyCon Role signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Every tycon has a role signature, assigning a role to each of the tyConTyVars
(or of equal length to the tyConArity, if there are no tyConTyVars). An
example demonstrates these best: say we have a tycon T, with parameters a at
nominal, b at representational, and c at phantom. Then, to prove
representational equality between T a1 b1 c1 and T a2 b2 c2, we need to have
nominal equality between a1 and a2, representational equality between b1 and
b2, and nothing in particular (i.e., phantom equality) between c1 and c2. This
might happen, say, with the following declaration:

  data T a b c where
    MkT :: b -> T Int b c

Data and class tycons have their roles inferred (see inferRoles in TcTyDecls),
as do vanilla synonym tycons. Family tycons have all parameters at role N,
though it is conceivable that we could relax this restriction. (->)'s and
tuples' parameters are at role R. Each primitive tycon declares its roles;
it's worth noting that (~#)'s parameters are at role N. Promoted data
constructors' type arguments are at role R. All kind arguments are at role
N.

************************************************************************
*                                                                      *
\subsection{The data type}
*                                                                      *
************************************************************************
-}

-- | TyCons represent type constructors. Type constructors are introduced by
-- things such as:
--
-- 1) Data declarations: @data Foo = ...@ creates the @Foo@ type constructor of
--    kind @*@
--
-- 2) Type synonyms: @type Foo = ...@ creates the @Foo@ type constructor
--
-- 3) Newtypes: @newtype Foo a = MkFoo ...@ creates the @Foo@ type constructor
--    of kind @* -> *@
--
-- 4) Class declarations: @class Foo where@ creates the @Foo@ type constructor
--    of kind @*@
--
-- This data type also encodes a number of primitive, built in type constructors
-- such as those for function and tuple types.

-- If you edit this type, you may need to update the GHC formalism
-- See Note [GHC Formalism] in coreSyn/CoreLint.hs
data TyCon
  = -- | The function type constructor, @(->)@
    FunTyCon {
        tyConUnique :: Unique,   -- ^ A Unique of this TyCon. Invariant:
                                 -- identical to Unique of Name stored in
                                 -- tyConName field.

        tyConName   :: Name,     -- ^ Name of the constructor

        tyConKind   :: Kind,     -- ^ Kind of this TyCon (full kind, not just
                                 -- the return kind)

        tyConArity  :: Arity,     -- ^ Number of arguments this TyCon must
                                 -- receive to be considered saturated
                                 -- (including implicit kind variables)

        tcRepName :: TyConRepName
    }

  -- | Algebraic data types, from
  --     - data declararations
  --     - newtype declarations
  --     - data instance declarations
  --     - type instance declarations
  --     - the TyCon generated by a class declaration
  -- All these constructors are lifted and boxed.
  -- Data/newtype/type /families/ are handled by FamilyTyCon.
  | AlgTyCon {
        tyConUnique  :: Unique,  -- ^ A Unique of this TyCon. Invariant:
                                 -- identical to Unique of Name stored in
                                 -- tyConName field.

        tyConName    :: Name,    -- ^ Name of the constructor

        tyConKind    :: Kind,    -- ^ Kind of this TyCon (full kind, not just
                                 -- the return kind)

        tyConArity   :: Arity,   -- ^ Number of arguments this TyCon must
                                 -- receive to be considered saturated
                                 -- (including implicit kind variables)

        tyConTyVars  :: [TyVar], -- ^ The kind and type variables used in the
                                 -- type constructor.
                                 -- Invariant: length tyvars = arity
                                 -- Precisely, this list scopes over:
                                 --
                                 -- 1. The 'algTcStupidTheta'
                                 -- 2. The cached types in algTyConRhs.NewTyCon
                                 -- 3. The family instance types if present
                                 --
                                 -- Note that it does /not/ scope over the data
                                 -- constructors.

        tcRoles      :: [Role],  -- ^ The role for each type variable
                                 -- This list has the same length as tyConTyVars
                                 -- See also Note [TyCon Role signatures]

        tyConCType   :: Maybe CType,-- ^ The C type that should be used
                                    -- for this type when using the FFI
                                    -- and CAPI

        algTcGadtSyntax  :: Bool,   -- ^ Was the data type declared with GADT
                                    -- syntax?  If so, that doesn't mean it's a
                                    -- true GADT; only that the "where" form
                                    -- was used.  This field is used only to
                                    -- guide pretty-printing

        algTcStupidTheta :: [PredType], -- ^ The \"stupid theta\" for the data
                                        -- type (always empty for GADTs).  A
                                        -- \"stupid theta\" is the context to
                                        -- the left of an algebraic type
                                        -- declaration, e.g. @Eq a@ in the
                                        -- declaration @data Eq a => T a ...@.

        algTcRec    :: RecFlag,     -- ^ Tells us whether the data type is part
                                    -- of a mutually-recursive group or not

        algTcRhs    :: AlgTyConRhs, -- ^ Contains information about the
                                    -- data constructors of the algebraic type

        algTcParent :: AlgTyConParent, -- ^ Gives the class or family declaration
                                       -- 'TyCon' for derived 'TyCon's representing
                                       -- class or family instances, respectively.

        tcPromoted  :: Promoted TyCon  -- ^ Promoted TyCon, if any
    }

  -- | Represents the infinite family of tuple type constructors,
  --   @()@, @(a,b)@, @(# a, b #)@ etc.
  | TupleTyCon {
        tyConUnique    :: Unique,   -- ^ A Unique of this TyCon. Invariant:
                                    -- identical to Unique of Name stored in
                                    -- tyConName field.

        tyConName      :: Name,     -- ^ Name of the constructor

        tyConKind      :: Kind,     -- ^ Kind of this TyCon (full kind, not just
                                    -- the return kind)

        tyConArity     :: Arity,    -- ^ Number of arguments this TyCon must
                                    -- receive to be considered saturated
                                    -- (including implicit kind variables)

        tyConTupleSort :: TupleSort,-- ^ Is this a boxed, unboxed or constraint
                                    -- tuple?

        tyConTyVars    :: [TyVar],  -- ^ List of type and kind variables in this
                                    -- TyCon. Includes implicit kind variables.
                                    -- Invariant:
                                    -- length tyConTyVars = tyConArity

        dataCon        :: DataCon,  -- ^ Corresponding tuple data constructor

        tupRepName     :: Maybe TyConRepName,  -- ^ Nothing for unboxed tuples
        tcPromoted     :: Promoted TyCon       -- ^ Unboxed tuples aren't promoted
    }

  -- | Represents type synonyms
  | SynonymTyCon {
        tyConUnique  :: Unique,  -- ^ A Unique of this TyCon. Invariant:
                                 -- identical to Unique of Name stored in
                                 -- tyConName field.

        tyConName    :: Name,    -- ^ Name of the constructor

        tyConKind    :: Kind,    -- ^ Kind of this TyCon (full kind, not just
                                 -- the return kind)

        tyConArity   :: Arity,   -- ^ Number of arguments this TyCon must
                                 -- receive to be considered saturated
                                 -- (including implicit kind variables)

        tyConTyVars  :: [TyVar], -- ^ List of type and kind variables in this
                                 -- TyCon. Includes implicit kind variables.
                                 -- Invariant: length tyConTyVars = tyConArity

        tcRoles      :: [Role],  -- ^ The role for each type variable
                                 -- This list has the same length as tyConTyVars
                                 -- See also Note [TyCon Role signatures]

        synTcRhs     :: Type     -- ^ Contains information about the expansion
                                 -- of the synonym
    }

  -- | Represents families (both type and data)
  -- Argument roles are all Nominal
  | FamilyTyCon {
        tyConUnique  :: Unique,  -- ^ A Unique of this TyCon. Invariant:
                                 -- identical to Unique of Name stored in
                                 -- tyConName field.

        tyConName    :: Name,    -- ^ Name of the constructor

        tyConKind    :: Kind,    -- ^ Kind of this TyCon (full kind, not just
                                 -- the return kind)

        tyConArity   :: Arity,   -- ^ Number of arguments this TyCon must
                                 -- receive to be considered saturated
                                 -- (including implicit kind variables)

        tyConTyVars  :: [TyVar], -- ^ The kind and type variables used in the
                                 -- type constructor.
                                 -- Invariant: length tyvars = arity
                                 -- Precisely, this list scopes over:
                                 --
                                 -- 1. The 'algTcStupidTheta'
                                 -- 2. The cached types in 'algTyConRhs.NewTyCon'
                                 -- 3. The family instance types if present
                                 --
                                 -- Note that it does /not/ scope over the data
                                 -- constructors.

        famTcFlav    :: FamTyConFlav, -- ^ Type family flavour: open, closed,
                                      -- abstract, built-in. See comments for
                                      -- FamTyConFlav

        famTcParent  :: Maybe Class   -- ^ For *associated* type/data families
                                      -- The class in whose declaration the family is declared
                                      -- See Note [Associated families and their parent class]
    }

  -- | Primitive types; cannot be defined in Haskell. This includes
  --      - obvious ones like Int#, Float#
  --      - foreign-imported types
  --      - kinds (*, #, ?)
  | PrimTyCon {
        tyConUnique   :: Unique, -- ^ A Unique of this TyCon. Invariant:
                                 -- identical to Unique of Name stored in
                                 -- tyConName field.

        tyConName     :: Name,   -- ^ Name of the constructor

        tyConKind     :: Kind,   -- ^ Kind of this TyCon (full kind, not just
                                 -- the return kind)

        tyConArity    :: Arity,  -- ^ Number of arguments this TyCon must
                                 -- receive to be considered saturated
                                 -- (including implicit kind variables)

        tcRoles       :: [Role], -- ^ The role for each type variable
                                 -- See also Note [TyCon Role signatures]

        primTyConRep  :: PrimRep,-- ^ Many primitive tycons are unboxed, but
                                 -- some are boxed (represented by
                                 -- pointers). This 'PrimRep' holds that
                                 -- information.  Only relevant if tyConKind = *

        isUnLifted   :: Bool,    -- ^ Most primitive tycons are unlifted (may
                                 -- not contain bottom) but other are lifted,
                                 -- e.g. @RealWorld@
                                 -- Only relevant if tyConKind = *

        primRepName :: Maybe TyConRepName   -- Only relevant for kind TyCons
                                            -- i.e, *, #, ?
    }

  -- | Represents promoted data constructor.
  | PromotedDataCon {          -- See Note [Promoted data constructors]
        tyConUnique :: Unique, -- ^ Same Name and Unique as the
        tyConName   :: Name,   -- ^  underlying data constructor
        tyConArity  :: Arity,
        tyConKind   :: Kind,   -- ^ Translated type of the data constructor
        tcRoles     :: [Role], -- ^ Roles: N for kind vars, R for type vars
        dataCon     :: DataCon, -- ^ Corresponding data constructor
        tcRepName   :: TyConRepName
    }

  -- | Represents promoted type constructor.
  | PromotedTyCon {
        tyConUnique :: Unique, -- ^ Same Unique as the type constructor
        tyConName   :: Name,   -- ^ Same Name as the type constructor
        tyConArity  :: Arity,  -- ^ n if ty_con :: * -> ... -> *  n times
        tyConKind   :: Kind,   -- ^ Always TysPrim.superKind
        ty_con      :: TyCon,  -- ^ Corresponding type constructor
        tcRepName   :: TyConRepName
    }

  deriving Typeable

-- | Names of the fields in an algebraic record type
type FieldLabel = Name

-- | Represents right-hand-sides of 'TyCon's for algebraic types
data AlgTyConRhs

    -- | Says that we know nothing about this data type, except that
    -- it's represented by a pointer.  Used when we export a data type
    -- abstractly into an .hi file.
  = AbstractTyCon
      Bool      -- True  <=> It's definitely a distinct data type,
                --           equal only to itself; ie not a newtype
                -- False <=> Not sure

    -- | Information about those 'TyCon's derived from a @data@
    -- declaration. This includes data types with no constructors at
    -- all.
  | DataTyCon {
        data_cons :: [DataCon],
                          -- ^ The data type constructors; can be empty if the
                          --   user declares the type to have no constructors
                          --
                          -- INVARIANT: Kept in order of increasing 'DataCon'
                          -- tag (see the tag assignment in DataCon.mkDataCon)

        is_enum :: Bool   -- ^ Cached value: is this an enumeration type?
                          --   See Note [Enumeration types]
    }

  -- | Information about those 'TyCon's derived from a @newtype@ declaration
  | NewTyCon {
        data_con :: DataCon,    -- ^ The unique constructor for the @newtype@.
                                --   It has no existentials

        nt_rhs :: Type,         -- ^ Cached value: the argument type of the
                                -- constructor, which is just the representation
                                -- type of the 'TyCon' (remember that @newtype@s
                                -- do not exist at runtime so need a different
                                -- representation type).
                                --
                                -- The free 'TyVar's of this type are the
                                -- 'tyConTyVars' from the corresponding 'TyCon'

        nt_etad_rhs :: ([TyVar], Type),
                        -- ^ Same as the 'nt_rhs', but this time eta-reduced.
                        -- Hence the list of 'TyVar's in this field may be
                        -- shorter than the declared arity of the 'TyCon'.

                        -- See Note [Newtype eta]
        nt_co :: CoAxiom Unbranched
                             -- The axiom coercion that creates the @newtype@
                             -- from the representation 'Type'.

                             -- See Note [Newtype coercions]
                             -- Invariant: arity = #tvs in nt_etad_rhs;
                             -- See Note [Newtype eta]
                             -- Watch out!  If any newtypes become transparent
                             -- again check Trac #1072.
    }

data Promoted a = NotPromoted | Promoted a
  -- Isomorphic to Maybe, but used when the question is
  -- whether or not something is promoted

-- | Extract those 'DataCon's that we are able to learn about.  Note
-- that visibility in this sense does not correspond to visibility in
-- the context of any particular user program!
visibleDataCons :: AlgTyConRhs -> [DataCon]
visibleDataCons (AbstractTyCon {})            = []
visibleDataCons (DataTyCon{ data_cons = cs }) = cs
visibleDataCons (NewTyCon{ data_con = c })    = [c]

-- ^ Both type classes as well as family instances imply implicit
-- type constructors.  These implicit type constructors refer to their parent
-- structure (ie, the class or family from which they derive) using a type of
-- the following form.
data AlgTyConParent
  = -- | An ordinary type constructor has no parent.
    VanillaAlgTyCon
       TyConRepName

  -- | Type constructors representing a class dictionary.
  -- See Note [ATyCon for classes] in TypeRep
  | ClassTyCon
        Class           -- INVARIANT: the classTyCon of this Class is the
                        -- current tycon
        TyConRepName

  -- | Type constructors representing an *instance* of a *data* family.
  -- Parameters:
  --
  --  1) The type family in question
  --
  --  2) Instance types; free variables are the 'tyConTyVars'
  --  of the current 'TyCon' (not the family one). INVARIANT:
  --  the number of types matches the arity of the family 'TyCon'
  --
  --  3) A 'CoTyCon' identifying the representation
  --  type with the type instance family
  | DataFamInstTyCon          -- See Note [Data type families]
        (CoAxiom Unbranched)  -- The coercion axiom.
               -- Generally of kind   T ty1 ty2 ~ R:T a b c
               -- where T is the family TyCon,
               -- and R:T is the representation TyCon (ie this one)
               -- and a,b,c are the tyConTyVars of this TyCon
               --
               -- BUT may be eta-reduced; see TcInstDcls
               --     Note [Eta reduction for data family axioms]

          -- Cached fields of the CoAxiom, but adjusted to
          -- use the tyConTyVars of this TyCon
        TyCon   -- The family TyCon
        [Type]  -- Argument types (mentions the tyConTyVars of this TyCon)
                -- Match in length the tyConTyVars of the family TyCon

        -- E.g.  data intance T [a] = ...
        -- gives a representation tycon:
        --      data R:TList a = ...
        --      axiom co a :: T [a] ~ R:TList a
        -- with R:TList's algTcParent = DataFamInstTyCon T [a] co

instance Outputable AlgTyConParent where
    ppr (VanillaAlgTyCon {})        = text "Vanilla ADT"
    ppr (ClassTyCon cls _)          = text "Class parent" <+> ppr cls
    ppr (DataFamInstTyCon _ tc tys) =
        text "Family parent (family instance)" <+> ppr tc <+> sep (map ppr tys)

-- | Checks the invariants of a 'TyConParent' given the appropriate type class
-- name, if any
okParent :: Name -> AlgTyConParent -> Bool
okParent _       (VanillaAlgTyCon {})            = True
okParent tc_name (ClassTyCon cls _)              = tc_name == tyConName (classTyCon cls)
okParent _       (DataFamInstTyCon _ fam_tc tys) = tyConArity fam_tc == length tys

isNoParent :: AlgTyConParent -> Bool
isNoParent (VanillaAlgTyCon {}) = True
isNoParent _                   = False

--------------------

-- | Information pertaining to the expansion of a type synonym (@type@)
data FamTyConFlav
  = -- | Represents an open type family without a fixed right hand
    -- side.  Additional instances can appear at any time.
    --
    -- These are introduced by either a top level declaration:
    --
    -- > data T a :: *
    --
    -- Or an associated data type declaration, within a class declaration:
    --
    -- > class C a b where
    -- >   data T b :: *
     DataFamilyTyCon
       TyConRepName

     -- | An open type synonym family  e.g. @type family F x y :: * -> *@
   | OpenSynFamilyTyCon

   -- | A closed type synonym family  e.g.
   -- @type family F x where { F Int = Bool }@
   | ClosedSynFamilyTyCon
       (CoAxiom Branched) -- The one axiom for this family

   -- | A closed type synonym family declared in an hs-boot file with
   -- type family F a where ..
   | AbstractClosedSynFamilyTyCon

   -- | Built-in type family used by the TypeNats solver
   | BuiltInSynFamTyCon BuiltInSynFamily

{-
Note [Closed type families]
~~~~~~~~~~~~~~~~~~~~~~~~~
* In an open type family you can add new instances later.  This is the
  usual case.

* In a closed type family you can only put equations where the family
  is defined.


Note [Promoted data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A data constructor can be promoted to become a type constructor,
via the PromotedTyCon alternative in TyCon.

* Only data constructors with
     (a) no kind polymorphism
     (b) no constraints in its type (eg GADTs)
  are promoted.  Existentials are ok; see Trac #7347.

* The TyCon promoted from a DataCon has the *same* Name and Unique as
  the DataCon.  Eg. If the data constructor Data.Maybe.Just(unique 78,
  say) is promoted to a TyCon whose name is Data.Maybe.Just(unique 78)

* The *kind* of a promoted DataCon may be polymorphic.  Example:
    type of DataCon           Just :: forall (a:*). a -> Maybe a
    kind of (promoted) tycon  Just :: forall (a:box). a -> Maybe a
  The kind is not identical to the type, because of the */box
  kind signature on the forall'd variable; so the tyConKind field of
  PromotedTyCon is not identical to the dataConUserType of the
  DataCon.  But it's the same modulo changing the variable kinds,
  done by DataCon.promoteType.

* Small note: We promote the *user* type of the DataCon.  Eg
     data T = MkT {-# UNPACK #-} !(Bool, Bool)
  The promoted kind is
     MkT :: (Bool,Bool) -> T
  *not*
     MkT :: Bool -> Bool -> T

Note [Enumeration types]
~~~~~~~~~~~~~~~~~~~~~~~~
We define datatypes with no constructors to *not* be
enumerations; this fixes trac #2578,  Otherwise we
end up generating an empty table for
  <mod>_<type>_closure_tbl
which is used by tagToEnum# to map Int# to constructors
in an enumeration. The empty table apparently upset
the linker.

Moreover, all the data constructor must be enumerations, meaning
they have type  (forall abc. T a b c).  GADTs are not enumerations.
For example consider
    data T a where
      T1 :: T Int
      T2 :: T Bool
      T3 :: T a
What would [T1 ..] be?  [T1,T3] :: T Int? Easiest thing is to exclude them.
See Trac #4528.

Note [Newtype coercions]
~~~~~~~~~~~~~~~~~~~~~~~~
The NewTyCon field nt_co is a CoAxiom which is used for coercing from
the representation type of the newtype, to the newtype itself. For
example,

   newtype T a = MkT (a -> a)

the NewTyCon for T will contain nt_co = CoT where CoT t : T t ~ t -> t.

In the case that the right hand side is a type application
ending with the same type variables as the left hand side, we
"eta-contract" the coercion.  So if we had

   newtype S a = MkT [a]

then we would generate the arity 0 axiom CoS : S ~ [].  The
primary reason we do this is to make newtype deriving cleaner.

In the paper we'd write
        axiom CoT : (forall t. T t) ~ (forall t. [t])
and then when we used CoT at a particular type, s, we'd say
        CoT @ s
which encodes as (TyConApp instCoercionTyCon [TyConApp CoT [], s])

Note [Newtype eta]
~~~~~~~~~~~~~~~~~~
Consider
        newtype Parser a = MkParser (IO a) deriving Monad
Are these two types equal (to Core)?
        Monad Parser
        Monad IO
which we need to make the derived instance for Monad Parser.

Well, yes.  But to see that easily we eta-reduce the RHS type of
Parser, in this case to ([], Froogle), so that even unsaturated applications
of Parser will work right.  This eta reduction is done when the type
constructor is built, and cached in NewTyCon.

Here's an example that I think showed up in practice
Source code:
        newtype T a = MkT [a]
        newtype Foo m = MkFoo (forall a. m a -> Int)

        w1 :: Foo []
        w1 = ...

        w2 :: Foo T
        w2 = MkFoo (\(MkT x) -> case w1 of MkFoo f -> f x)

After desugaring, and discarding the data constructors for the newtypes,
we get:
        w2 = w1 `cast` Foo CoT
so the coercion tycon CoT must have
        kind:    T ~ []
 and    arity:   0

************************************************************************
*                                                                      *
                 PrimRep
*                                                                      *
********************************************************************* -}

type TyConRepName = Name -- The Name of the top-level declaration
                         --    $tcMaybe :: Data.Typeable.Internal.TyCon
                         --    $tcMaybe = TyCon { tyConName = "Maybe", ... }

tyConRepName_maybe :: TyCon -> Maybe TyConRepName
tyConRepName_maybe (FunTyCon   { tcRepName = rep_nm })
  = Just rep_nm
tyConRepName_maybe (PrimTyCon  { primRepName = mb_rep_nm })
  = mb_rep_nm
tyConRepName_maybe (TupleTyCon { tupRepName = mb_rep_nm })
  = mb_rep_nm
tyConRepName_maybe (AlgTyCon { algTcParent = parent })
  | VanillaAlgTyCon rep_nm <- parent = Just rep_nm
  | ClassTyCon _ rep_nm    <- parent = Just rep_nm
tyConRepName_maybe (FamilyTyCon { famTcFlav = DataFamilyTyCon rep_nm })
  = Just rep_nm
tyConRepName_maybe (PromotedDataCon { tcRepName = rep_nm })
  = Just rep_nm
tyConRepName_maybe (PromotedTyCon { tcRepName = rep_nm })
  = Just rep_nm
tyConRepName_maybe _ = Nothing


{- *********************************************************************
*                                                                      *
                 PrimRep
*                                                                      *
************************************************************************

Note [rep swamp]

GHC has a rich selection of types that represent "primitive types" of
one kind or another.  Each of them makes a different set of
distinctions, and mostly the differences are for good reasons,
although it's probably true that we could merge some of these.

Roughly in order of "includes more information":

 - A Width (cmm/CmmType) is simply a binary value with the specified
   number of bits.  It may represent a signed or unsigned integer, a
   floating-point value, or an address.

    data Width = W8 | W16 | W32 | W64 | W80 | W128

 - Size, which is used in the native code generator, is Width +
   floating point information.

   data Size = II8 | II16 | II32 | II64 | FF32 | FF64 | FF80

   it is necessary because e.g. the instruction to move a 64-bit float
   on x86 (movsd) is different from the instruction to move a 64-bit
   integer (movq), so the mov instruction is parameterised by Size.

 - CmmType wraps Width with more information: GC ptr, float, or
   other value.

    data CmmType = CmmType CmmCat Width

    data CmmCat     -- "Category" (not exported)
       = GcPtrCat   -- GC pointer
       | BitsCat    -- Non-pointer
       | FloatCat   -- Float

   It is important to have GcPtr information in Cmm, since we generate
   info tables containing pointerhood for the GC from this.  As for
   why we have float (and not signed/unsigned) here, see Note [Signed
   vs unsigned].

 - ArgRep makes only the distinctions necessary for the call and
   return conventions of the STG machine.  It is essentially CmmType
   + void.

 - PrimRep makes a few more distinctions than ArgRep: it divides
   non-GC-pointers into signed/unsigned and addresses, information
   that is necessary for passing these values to foreign functions.

There's another tension here: whether the type encodes its size in
bytes, or whether its size depends on the machine word size.  Width
and CmmType have the size built-in, whereas ArgRep and PrimRep do not.

This means to turn an ArgRep/PrimRep into a CmmType requires DynFlags.

On the other hand, CmmType includes some "nonsense" values, such as
CmmType GcPtrCat W32 on a 64-bit machine.
-}

-- | A 'PrimRep' is an abstraction of a type.  It contains information that
-- the code generator needs in order to pass arguments, return results,
-- and store values of this type.
data PrimRep
  = VoidRep
  | PtrRep
  | IntRep        -- ^ Signed, word-sized value
  | WordRep       -- ^ Unsigned, word-sized value
  | Int64Rep      -- ^ Signed, 64 bit value (with 32-bit words only)
  | Word64Rep     -- ^ Unsigned, 64 bit value (with 32-bit words only)
  | AddrRep       -- ^ A pointer, but /not/ to a Haskell value (use 'PtrRep')
  | FloatRep
  | DoubleRep
  | VecRep Int PrimElemRep  -- ^ A vector
  deriving( Eq, Show )

data PrimElemRep
  = Int8ElemRep
  | Int16ElemRep
  | Int32ElemRep
  | Int64ElemRep
  | Word8ElemRep
  | Word16ElemRep
  | Word32ElemRep
  | Word64ElemRep
  | FloatElemRep
  | DoubleElemRep
   deriving( Eq, Show )

instance Outputable PrimRep where
  ppr r = text (show r)

instance Outputable PrimElemRep where
  ppr r = text (show r)

isVoidRep :: PrimRep -> Bool
isVoidRep VoidRep = True
isVoidRep _other  = False

isGcPtrRep :: PrimRep -> Bool
isGcPtrRep PtrRep = True
isGcPtrRep _      = False

-- | Find the size of a 'PrimRep', in words
primRepSizeW :: DynFlags -> PrimRep -> Int
primRepSizeW _      IntRep           = 1
primRepSizeW _      WordRep          = 1
primRepSizeW dflags Int64Rep         = wORD64_SIZE `quot` wORD_SIZE dflags
primRepSizeW dflags Word64Rep        = wORD64_SIZE `quot` wORD_SIZE dflags
primRepSizeW _      FloatRep         = 1    -- NB. might not take a full word
primRepSizeW dflags DoubleRep        = dOUBLE_SIZE dflags `quot` wORD_SIZE dflags
primRepSizeW _      AddrRep          = 1
primRepSizeW _      PtrRep           = 1
primRepSizeW _      VoidRep          = 0
primRepSizeW dflags (VecRep len rep) = len * primElemRepSizeB rep `quot` wORD_SIZE dflags

primElemRepSizeB :: PrimElemRep -> Int
primElemRepSizeB Int8ElemRep   = 1
primElemRepSizeB Int16ElemRep  = 2
primElemRepSizeB Int32ElemRep  = 4
primElemRepSizeB Int64ElemRep  = 8
primElemRepSizeB Word8ElemRep  = 1
primElemRepSizeB Word16ElemRep = 2
primElemRepSizeB Word32ElemRep = 4
primElemRepSizeB Word64ElemRep = 8
primElemRepSizeB FloatElemRep  = 4
primElemRepSizeB DoubleElemRep = 8

-- | Return if Rep stands for floating type,
-- returns Nothing for vector types.
primRepIsFloat :: PrimRep -> Maybe Bool
primRepIsFloat  FloatRep     = Just True
primRepIsFloat  DoubleRep    = Just True
primRepIsFloat  (VecRep _ _) = Nothing
primRepIsFloat  _            = Just False

{-
************************************************************************
*                                                                      *
\subsection{TyCon Construction}
*                                                                      *
************************************************************************

Note: the TyCon constructors all take a Kind as one argument, even though
they could, in principle, work out their Kind from their other arguments.
But to do so they need functions from Types, and that makes a nasty
module mutual-recursion.  And they aren't called from many places.
So we compromise, and move their Kind calculation to the call site.
-}

-- | Given the name of the function type constructor and it's kind, create the
-- corresponding 'TyCon'. It is reccomended to use 'TypeRep.funTyCon' if you want
-- this functionality
mkFunTyCon :: Name -> Kind -> Name -> TyCon
mkFunTyCon name kind rep_nm
  = FunTyCon {
        tyConUnique = nameUnique name,
        tyConName   = name,
        tyConKind   = kind,
        tyConArity  = 2,
        tcRepName   = rep_nm
    }

-- | This is the making of an algebraic 'TyCon'. Notably, you have to
-- pass in the generic (in the -XGenerics sense) information about the
-- type constructor - you can get hold of it easily (see Generics
-- module)
mkAlgTyCon :: Name
           -> Kind              -- ^ Kind of the resulting 'TyCon'
           -> [TyVar]           -- ^ 'TyVar's scoped over: see 'tyConTyVars'.
                                --   Arity is inferred from the length of this
                                --   list
           -> [Role]            -- ^ The roles for each TyVar
           -> Maybe CType       -- ^ The C type this type corresponds to
                                --   when using the CAPI FFI
           -> [PredType]        -- ^ Stupid theta: see 'algTcStupidTheta'
           -> AlgTyConRhs       -- ^ Information about dat aconstructors
           -> AlgTyConParent
           -> RecFlag           -- ^ Is the 'TyCon' recursive?
           -> Bool              -- ^ Was the 'TyCon' declared with GADT syntax?
           -> Promoted TyCon    -- ^ Promoted version
           -> TyCon
mkAlgTyCon name kind tyvars roles cType stupid rhs parent is_rec gadt_syn prom_tc
  = AlgTyCon {
        tyConName        = name,
        tyConUnique      = nameUnique name,
        tyConKind        = kind,
        tyConArity       = length tyvars,
        tyConTyVars      = tyvars,
        tcRoles          = roles,
        tyConCType       = cType,
        algTcStupidTheta = stupid,
        algTcRhs         = rhs,
        algTcParent      = ASSERT2( okParent name parent, ppr name $$ ppr parent ) parent,
        algTcRec         = is_rec,
        algTcGadtSyntax  = gadt_syn,
        tcPromoted       = prom_tc
    }

-- | Simpler specialization of 'mkAlgTyCon' for classes
mkClassTyCon :: Name -> Kind -> [TyVar] -> [Role] -> AlgTyConRhs -> Class
             -> RecFlag -> Name -> TyCon
mkClassTyCon name kind tyvars roles rhs clas is_rec tc_rep_name
  = mkAlgTyCon name kind tyvars roles Nothing [] rhs
               (ClassTyCon clas tc_rep_name)
               is_rec False
               NotPromoted    -- Class TyCons are not promoted

mkTupleTyCon :: Name
             -> Kind    -- ^ Kind of the resulting 'TyCon'
             -> Arity   -- ^ Arity of the tuple
             -> [TyVar] -- ^ 'TyVar's scoped over: see 'tyConTyVars'
             -> DataCon
             -> TupleSort    -- ^ Whether the tuple is boxed or unboxed
             -> Maybe TyConRepName
             -> Promoted TyCon  -- ^ Promoted version
             -> TyCon
mkTupleTyCon name kind arity tyvars con sort rep_nm prom_tc
  = TupleTyCon {
        tyConUnique = nameUnique name,
        tyConName = name,
        tyConKind = kind,
        tyConArity = arity,
        tyConTupleSort = sort,
        tyConTyVars = tyvars,
        dataCon = con,
        tupRepName = rep_nm,
        tcPromoted = prom_tc
    }

-- | Create an unlifted primitive 'TyCon', such as @Int#@
mkPrimTyCon :: Name  -> Kind -> [Role] -> PrimRep -> TyCon
mkPrimTyCon name kind roles rep
  = mkPrimTyCon' name kind roles rep True Nothing

-- | Kind constructors
mkKindTyCon :: Name -> Kind -> Name -> TyCon
mkKindTyCon name kind rep_nm
  = mkPrimTyCon' name kind [] VoidRep True (Just rep_nm)

-- | Create a lifted primitive 'TyCon' such as @RealWorld@
mkLiftedPrimTyCon :: Name  -> Kind -> [Role] -> PrimRep -> TyCon
mkLiftedPrimTyCon name kind roles rep
  = mkPrimTyCon' name kind roles rep False Nothing

mkPrimTyCon' :: Name  -> Kind -> [Role] -> PrimRep
             -> Bool -> Maybe TyConRepName -> TyCon
mkPrimTyCon' name kind roles rep is_unlifted rep_nm
  = PrimTyCon {
        tyConName    = name,
        tyConUnique  = nameUnique name,
        tyConKind    = kind,
        tyConArity   = length roles,
        tcRoles      = roles,
        primTyConRep = rep,
        isUnLifted   = is_unlifted,
        primRepName  = rep_nm
    }

-- | Create a type synonym 'TyCon'
mkSynonymTyCon :: Name -> Kind -> [TyVar] -> [Role] -> Type -> TyCon
mkSynonymTyCon name kind tyvars roles rhs
  = SynonymTyCon {
        tyConName   = name,
        tyConUnique = nameUnique name,
        tyConKind   = kind,
        tyConArity  = length tyvars,
        tyConTyVars = tyvars,
        tcRoles     = roles,
        synTcRhs    = rhs
    }

-- | Create a type family 'TyCon'
mkFamilyTyCon :: Name -> Kind -> [TyVar] -> FamTyConFlav
              -> Maybe Class
              -> TyCon
mkFamilyTyCon name kind tyvars flav parent
  = FamilyTyCon
      { tyConUnique = nameUnique name
      , tyConName   = name
      , tyConKind   = kind
      , tyConArity  = length tyvars
      , tyConTyVars = tyvars
      , famTcFlav   = flav
      , famTcParent = parent
      }


-- | Create a promoted data constructor 'TyCon'
-- Somewhat dodgily, we give it the same Name
-- as the data constructor itself; when we pretty-print
-- the TyCon we add a quote; see the Outputable TyCon instance
mkPromotedDataCon :: DataCon -> Name -> TyConRepName -> Kind -> [Role] -> TyCon
mkPromotedDataCon con name rep_name kind roles
  = PromotedDataCon {
        tyConUnique = nameUnique name,
        tyConName   = name,
        tyConArity  = arity,
        tcRoles     = roles,
        tyConKind   = kind,
        dataCon     = con,
        tcRepName   = rep_name
  }
  where
    arity = length roles

-- | Create a promoted type constructor 'TyCon'
-- Somewhat dodgily, we give it the same Name
-- as the type constructor itself
mkPromotedTyCon :: TyCon -> Kind -> TyCon
mkPromotedTyCon tc kind
  = PromotedTyCon {
        tyConName   = getName tc,
        tyConUnique = getUnique tc,
        tyConArity  = tyConArity tc,
        tyConKind   = kind,
        ty_con      = tc,
        tcRepName   = case tyConRepName_maybe tc of
                        Just rep_nm -> rep_nm
                        Nothing     -> pprPanic "mkPromotedTyCon" (ppr tc)
                      -- Promoted TyCons always have a TyConRepName
  }

isFunTyCon :: TyCon -> Bool
isFunTyCon (FunTyCon {}) = True
isFunTyCon _             = False

-- | Test if the 'TyCon' is algebraic but abstract (invisible data constructors)
isAbstractTyCon :: TyCon -> Bool
isAbstractTyCon (AlgTyCon { algTcRhs = AbstractTyCon {} }) = True
isAbstractTyCon _ = False

-- | Make an algebraic 'TyCon' abstract. Panics if the supplied 'TyCon' is not
-- algebraic
makeTyConAbstract :: TyCon -> TyCon
makeTyConAbstract tc@(AlgTyCon { algTcRhs = rhs })
  = tc { algTcRhs = AbstractTyCon (isDistinctAlgRhs rhs) }
makeTyConAbstract tc = pprPanic "makeTyConAbstract" (ppr tc)

-- | Does this 'TyCon' represent something that cannot be defined in Haskell?
isPrimTyCon :: TyCon -> Bool
isPrimTyCon (PrimTyCon {}) = True
isPrimTyCon _              = False

-- | Is this 'TyCon' unlifted (i.e. cannot contain bottom)? Note that this can
-- only be true for primitive and unboxed-tuple 'TyCon's
isUnLiftedTyCon :: TyCon -> Bool
isUnLiftedTyCon (PrimTyCon  {isUnLifted = is_unlifted}) = is_unlifted
isUnLiftedTyCon (TupleTyCon {tyConTupleSort = sort})
    = not (isBoxed (tupleSortBoxity sort))
isUnLiftedTyCon _                                       = False

-- | Returns @True@ if the supplied 'TyCon' resulted from either a
-- @data@ or @newtype@ declaration
isAlgTyCon :: TyCon -> Bool
isAlgTyCon (AlgTyCon {})   = True
isAlgTyCon (TupleTyCon {}) = True
isAlgTyCon _               = False

isDataTyCon :: TyCon -> Bool
-- ^ Returns @True@ for data types that are /definitely/ represented by
-- heap-allocated constructors.  These are scrutinised by Core-level
-- @case@ expressions, and they get info tables allocated for them.
--
-- Generally, the function will be true for all @data@ types and false
-- for @newtype@s, unboxed tuples and type family 'TyCon's. But it is
-- not guaranteed to return @True@ in all cases that it could.
--
-- NB: for a data type family, only the /instance/ 'TyCon's
--     get an info table.  The family declaration 'TyCon' does not
isDataTyCon (AlgTyCon {algTcRhs = rhs})
  = case rhs of
        DataTyCon {}       -> True
        NewTyCon {}        -> False
        AbstractTyCon {}   -> False      -- We don't know, so return False
isDataTyCon (TupleTyCon {tyConTupleSort = sort}) = isBoxed (tupleSortBoxity sort)
isDataTyCon _ = False

-- | 'isDistinctTyCon' is true of 'TyCon's that are equal only to
-- themselves, even via coercions (except for unsafeCoerce).
-- This excludes newtypes, type functions, type synonyms.
-- It relates directly to the FC consistency story:
--     If the axioms are consistent,
--     and  co : S tys ~ T tys, and S,T are "distinct" TyCons,
--     then S=T.
-- Cf Note [Pruning dead case alternatives] in Unify
isDistinctTyCon :: TyCon -> Bool
isDistinctTyCon (AlgTyCon {algTcRhs = rhs})                      = isDistinctAlgRhs rhs
isDistinctTyCon (FunTyCon {})                                    = True
isDistinctTyCon (TupleTyCon {})                                  = True
isDistinctTyCon (PrimTyCon {})                                   = True
isDistinctTyCon (PromotedDataCon {})                             = True
isDistinctTyCon (FamilyTyCon { famTcFlav = DataFamilyTyCon {} }) = True
isDistinctTyCon _                                                = False

isDistinctAlgRhs :: AlgTyConRhs -> Bool
isDistinctAlgRhs (AbstractTyCon distinct) = distinct
isDistinctAlgRhs (DataTyCon {})           = True
isDistinctAlgRhs (NewTyCon {})            = False

-- | Is this 'TyCon' that for a @newtype@
isNewTyCon :: TyCon -> Bool
isNewTyCon (AlgTyCon {algTcRhs = NewTyCon {}}) = True
isNewTyCon _                                   = False

-- | Take a 'TyCon' apart into the 'TyVar's it scopes over, the 'Type' it expands
-- into, and (possibly) a coercion from the representation type to the @newtype@.
-- Returns @Nothing@ if this is not possible.
unwrapNewTyCon_maybe :: TyCon -> Maybe ([TyVar], Type, CoAxiom Unbranched)
unwrapNewTyCon_maybe (AlgTyCon { tyConTyVars = tvs,
                                 algTcRhs = NewTyCon { nt_co = co,
                                                       nt_rhs = rhs }})
                           = Just (tvs, rhs, co)
unwrapNewTyCon_maybe _     = Nothing

unwrapNewTyConEtad_maybe :: TyCon -> Maybe ([TyVar], Type, CoAxiom Unbranched)
unwrapNewTyConEtad_maybe (AlgTyCon { algTcRhs = NewTyCon { nt_co = co,
                                                           nt_etad_rhs = (tvs,rhs) }})
                           = Just (tvs, rhs, co)
unwrapNewTyConEtad_maybe _ = Nothing

isProductTyCon :: TyCon -> Bool
-- True of datatypes or newtypes that have
--   one, vanilla, data constructor
isProductTyCon tc@(AlgTyCon {}) = case algTcRhs tc of
                                    DataTyCon{ data_cons = [data_con] }
                                                -> isVanillaDataCon data_con
                                    NewTyCon {} -> True
                                    _           -> False
isProductTyCon (TupleTyCon {})  = True
isProductTyCon _                = False


isDataProductTyCon_maybe :: TyCon -> Maybe DataCon
-- True of datatypes (not newtypes) with
--   one, vanilla, data constructor
isDataProductTyCon_maybe (AlgTyCon { algTcRhs = DataTyCon { data_cons = cons } })
  | [con] <- cons         -- Singleton
  , isVanillaDataCon con  -- Vanilla
  = Just con
isDataProductTyCon_maybe (TupleTyCon { dataCon = con })
  = Just con
isDataProductTyCon_maybe _ = Nothing

-- | Is this a 'TyCon' representing a regular H98 type synonym (@type@)?
isTypeSynonymTyCon :: TyCon -> Bool
isTypeSynonymTyCon (SynonymTyCon {}) = True
isTypeSynonymTyCon _                 = False


-- As for newtypes, it is in some contexts important to distinguish between
-- closed synonyms and synonym families, as synonym families have no unique
-- right hand side to which a synonym family application can expand.
--

isDecomposableTyCon :: TyCon -> Bool
-- True iff we can decompose (T a b c) into ((T a b) c)
--   I.e. is it injective?
-- Specifically NOT true of synonyms (open and otherwise)
-- Ultimately we may have injective associated types
-- in which case this test will become more interesting
--
-- It'd be unusual to call isDecomposableTyCon on a regular H98
-- type synonym, because you should probably have expanded it first
-- But regardless, it's not decomposable
isDecomposableTyCon (SynonymTyCon {})                   = False
isDecomposableTyCon (FamilyTyCon  { famTcFlav = flav }) = isDataFamFlav flav
isDecomposableTyCon _other                              = True

-- | Is this an algebraic 'TyCon' declared with the GADT syntax?
isGadtSyntaxTyCon :: TyCon -> Bool
isGadtSyntaxTyCon (AlgTyCon { algTcGadtSyntax = res }) = res
isGadtSyntaxTyCon _                                    = False

-- | Is this an algebraic 'TyCon' which is just an enumeration of values?
isEnumerationTyCon :: TyCon -> Bool
-- See Note [Enumeration types] in TyCon
isEnumerationTyCon (AlgTyCon {algTcRhs = DataTyCon { is_enum = res }}) = res
isEnumerationTyCon (TupleTyCon {tyConArity = arity}) = arity == 0
isEnumerationTyCon _                                                   = False

-- | Is this a 'TyCon', synonym or otherwise, that defines a family?
isFamilyTyCon :: TyCon -> Bool
isFamilyTyCon (FamilyTyCon {}) = True
isFamilyTyCon _                = False

-- | Is this a 'TyCon', synonym or otherwise, that defines a family with
-- instances?
isOpenFamilyTyCon :: TyCon -> Bool
isOpenFamilyTyCon (FamilyTyCon {famTcFlav = flav })
  | OpenSynFamilyTyCon <- flav = True
  | DataFamilyTyCon {} <- flav = True
isOpenFamilyTyCon _            = False

-- | Is this a synonym 'TyCon' that can have may have further instances appear?
isTypeFamilyTyCon :: TyCon -> Bool
isTypeFamilyTyCon (FamilyTyCon { famTcFlav = flav }) = not (isDataFamFlav flav)
isTypeFamilyTyCon _                                  = False

-- | Is this a synonym 'TyCon' that can have may have further instances appear?
isDataFamilyTyCon :: TyCon -> Bool
isDataFamilyTyCon (FamilyTyCon { famTcFlav = flav }) = isDataFamFlav flav
isDataFamilyTyCon _                                  = False

isOpenTypeFamilyTyCon :: TyCon -> Bool
isOpenTypeFamilyTyCon (FamilyTyCon {famTcFlav = OpenSynFamilyTyCon }) = True
isOpenTypeFamilyTyCon _                                               = False

-- leave out abstract closed families here
isClosedSynFamilyTyCon_maybe :: TyCon -> Maybe (CoAxiom Branched)
isClosedSynFamilyTyCon_maybe
  (FamilyTyCon {famTcFlav = ClosedSynFamilyTyCon ax}) = Just ax
isClosedSynFamilyTyCon_maybe _                        = Nothing

isBuiltInSynFamTyCon_maybe :: TyCon -> Maybe BuiltInSynFamily
isBuiltInSynFamTyCon_maybe
  (FamilyTyCon {famTcFlav = BuiltInSynFamTyCon ops }) = Just ops
isBuiltInSynFamTyCon_maybe _                          = Nothing

isDataFamFlav :: FamTyConFlav -> Bool
isDataFamFlav (DataFamilyTyCon {}) = True   -- Data family
isDataFamFlav _                    = False  -- Type synonym family

-- | Are we able to extract informationa 'TyVar' to class argument list
-- mappping from a given 'TyCon'?
isTyConAssoc :: TyCon -> Bool
isTyConAssoc tc = isJust (tyConAssoc_maybe tc)

tyConAssoc_maybe :: TyCon -> Maybe Class
tyConAssoc_maybe (FamilyTyCon { famTcParent = mb_cls }) = mb_cls
tyConAssoc_maybe _                                      = Nothing

-- The unit tycon didn't used to be classed as a tuple tycon
-- but I thought that was silly so I've undone it
-- If it can't be for some reason, it should be a AlgTyCon
isTupleTyCon :: TyCon -> Bool
-- ^ Does this 'TyCon' represent a tuple?
--
-- NB: when compiling @Data.Tuple@, the tycons won't reply @True@ to
-- 'isTupleTyCon', because they are built as 'AlgTyCons'.  However they
-- get spat into the interface file as tuple tycons, so I don't think
-- it matters.
isTupleTyCon (TupleTyCon {}) = True
isTupleTyCon _               = False

-- | Is this the 'TyCon' for an unboxed tuple?
isUnboxedTupleTyCon :: TyCon -> Bool
isUnboxedTupleTyCon (TupleTyCon {tyConTupleSort = sort}) =
    not (isBoxed (tupleSortBoxity sort))
isUnboxedTupleTyCon _                                    = False

-- | Is this the 'TyCon' for a boxed tuple?
isBoxedTupleTyCon :: TyCon -> Bool
isBoxedTupleTyCon (TupleTyCon {tyConTupleSort = sort}) = isBoxed (tupleSortBoxity sort)
isBoxedTupleTyCon _                                    = False

-- | Extract the boxity of the given 'TyCon', if it is a 'TupleTyCon'.
-- Panics otherwise
tupleTyConBoxity :: TyCon -> Boxity
tupleTyConBoxity tc = tupleSortBoxity (tyConTupleSort tc)

-- | Extract the 'TupleSort' of the given 'TyCon', if it is a 'TupleTyCon'.
-- Panics otherwise
tupleTyConSort :: TyCon -> TupleSort
tupleTyConSort tc = tyConTupleSort tc

-- | Extract the arity of the given 'TyCon', if it is a 'TupleTyCon'.
-- Panics otherwise
tupleTyConArity :: TyCon -> Arity
tupleTyConArity tc = tyConArity tc

-- | Is this a recursive 'TyCon'?
isRecursiveTyCon :: TyCon -> Bool
isRecursiveTyCon (AlgTyCon {algTcRec = Recursive}) = True
isRecursiveTyCon _                                 = False

promotableTyCon_maybe :: TyCon -> Promoted TyCon
promotableTyCon_maybe (AlgTyCon { tcPromoted = prom })   = prom
promotableTyCon_maybe (TupleTyCon { tcPromoted = prom }) = prom
promotableTyCon_maybe _                                  = NotPromoted

isPromotableTyCon :: TyCon -> Bool
isPromotableTyCon tc = case promotableTyCon_maybe tc of
                         Promoted {} -> True
                         NotPromoted -> False

promoteTyCon :: TyCon -> TyCon
promoteTyCon tc = case promotableTyCon_maybe tc of
                    Promoted prom_tc -> prom_tc
                    NotPromoted      -> pprPanic "promoteTyCon" (ppr tc)

-- | Is this a PromotedTyCon?
isPromotedTyCon :: TyCon -> Bool
isPromotedTyCon (PromotedTyCon {}) = True
isPromotedTyCon _                  = False

-- | Retrieves the promoted TyCon if this is a PromotedTyCon;
isPromotedTyCon_maybe :: TyCon -> Maybe TyCon
isPromotedTyCon_maybe (PromotedTyCon { ty_con = tc }) = Just tc
isPromotedTyCon_maybe _ = Nothing

-- | Is this a PromotedDataCon?
isPromotedDataCon :: TyCon -> Bool
isPromotedDataCon (PromotedDataCon {}) = True
isPromotedDataCon _                    = False

-- | Retrieves the promoted DataCon if this is a PromotedDataCon;
isPromotedDataCon_maybe :: TyCon -> Maybe DataCon
isPromotedDataCon_maybe (PromotedDataCon { dataCon = dc }) = Just dc
isPromotedDataCon_maybe _ = Nothing

-- | Identifies implicit tycons that, in particular, do not go into interface
-- files (because they are implicitly reconstructed when the interface is
-- read).
--
-- Note that:
--
-- * Associated families are implicit, as they are re-constructed from
--   the class declaration in which they reside, and
--
-- * Family instances are /not/ implicit as they represent the instance body
--   (similar to a @dfun@ does that for a class instance).
isImplicitTyCon :: TyCon -> Bool
isImplicitTyCon (FunTyCon {})        = True
isImplicitTyCon (TupleTyCon {})      = True
isImplicitTyCon (PrimTyCon {})       = True
isImplicitTyCon (PromotedDataCon {}) = True
isImplicitTyCon (PromotedTyCon {})   = True
isImplicitTyCon (FamilyTyCon { famTcParent = Just {} }) = True
isImplicitTyCon (AlgTyCon {})                           = False
isImplicitTyCon (FamilyTyCon {})                        = False
isImplicitTyCon (SynonymTyCon {})                       = False

tyConCType_maybe :: TyCon -> Maybe CType
tyConCType_maybe tc@(AlgTyCon {}) = tyConCType tc
tyConCType_maybe _ = Nothing

{-
-----------------------------------------------
--      Expand type-constructor applications
-----------------------------------------------
-}

expandSynTyCon_maybe
        :: TyCon
        -> [tyco]                 -- ^ Arguments to 'TyCon'
        -> Maybe ([(TyVar,tyco)],
                  Type,
                  [tyco])         -- ^ Returns a 'TyVar' substitution, the body
                                  -- type of the synonym (not yet substituted)
                                  -- and any arguments remaining from the
                                  -- application

-- ^ Expand a type synonym application, if any
expandSynTyCon_maybe tc tys
  | SynonymTyCon { tyConTyVars = tvs, synTcRhs = rhs } <- tc
  , let n_tvs = length tvs
  = case n_tvs `compare` length tys of
        LT -> Just (tvs `zip` tys, rhs, drop n_tvs tys)
        EQ -> Just (tvs `zip` tys, rhs, [])
        GT -> Nothing
   | otherwise
   = Nothing

----------------

-- | As 'tyConDataCons_maybe', but returns the empty list of constructors if no
-- constructors could be found
tyConDataCons :: TyCon -> [DataCon]
-- It's convenient for tyConDataCons to return the
-- empty list for type synonyms etc
tyConDataCons tycon = tyConDataCons_maybe tycon `orElse` []

-- | Determine the 'DataCon's originating from the given 'TyCon', if the 'TyCon'
-- is the sort that can have any constructors (note: this does not include
-- abstract algebraic types)
tyConDataCons_maybe :: TyCon -> Maybe [DataCon]
tyConDataCons_maybe (AlgTyCon {algTcRhs = DataTyCon { data_cons = cons }})
    = Just cons
tyConDataCons_maybe (AlgTyCon {algTcRhs = NewTyCon { data_con = con }})
    = Just [con]
tyConDataCons_maybe (TupleTyCon {dataCon = con})
    = Just [con]
tyConDataCons_maybe _
    = Nothing

-- | Determine the number of value constructors a 'TyCon' has. Panics if the
-- 'TyCon' is not algebraic or a tuple
tyConFamilySize  :: TyCon -> Int
tyConFamilySize (AlgTyCon   {algTcRhs = DataTyCon {data_cons = cons}}) =
  length cons
tyConFamilySize (AlgTyCon   {algTcRhs = NewTyCon {}})        = 1
tyConFamilySize (TupleTyCon {})                              = 1
tyConFamilySize other = pprPanic "tyConFamilySize:" (ppr other)

-- | Extract an 'AlgTyConRhs' with information about data constructors from an
-- algebraic or tuple 'TyCon'. Panics for any other sort of 'TyCon'
algTyConRhs :: TyCon -> AlgTyConRhs
algTyConRhs (AlgTyCon {algTcRhs = rhs}) = rhs
algTyConRhs (TupleTyCon {dataCon = con, tyConArity = arity})
    = DataTyCon { data_cons = [con], is_enum = arity == 0 }
algTyConRhs other = pprPanic "algTyConRhs" (ppr other)

-- | Get the list of roles for the type parameters of a TyCon
tyConRoles :: TyCon -> [Role]
-- See also Note [TyCon Role signatures]
tyConRoles tc
  = case tc of
    { FunTyCon {}                         -> const_role Representational
    ; AlgTyCon { tcRoles = roles }        -> roles
    ; TupleTyCon {}                       -> const_role Representational
    ; SynonymTyCon { tcRoles = roles }    -> roles
    ; FamilyTyCon {}                      -> const_role Nominal
    ; PrimTyCon { tcRoles = roles }       -> roles
    ; PromotedDataCon { tcRoles = roles } -> roles
    ; PromotedTyCon {}                    -> const_role Nominal
    }
  where
    const_role r = replicate (tyConArity tc) r

-- | Extract the bound type variables and type expansion of a type synonym
-- 'TyCon'. Panics if the 'TyCon' is not a synonym
newTyConRhs :: TyCon -> ([TyVar], Type)
newTyConRhs (AlgTyCon {tyConTyVars = tvs, algTcRhs = NewTyCon { nt_rhs = rhs }})
    = (tvs, rhs)
newTyConRhs tycon = pprPanic "newTyConRhs" (ppr tycon)

-- | The number of type parameters that need to be passed to a newtype to
-- resolve it. May be less than in the definition if it can be eta-contracted.
newTyConEtadArity :: TyCon -> Int
newTyConEtadArity (AlgTyCon {algTcRhs = NewTyCon { nt_etad_rhs = tvs_rhs }})
        = length (fst tvs_rhs)
newTyConEtadArity tycon = pprPanic "newTyConEtadArity" (ppr tycon)

-- | Extract the bound type variables and type expansion of an eta-contracted
-- type synonym 'TyCon'.  Panics if the 'TyCon' is not a synonym
newTyConEtadRhs :: TyCon -> ([TyVar], Type)
newTyConEtadRhs (AlgTyCon {algTcRhs = NewTyCon { nt_etad_rhs = tvs_rhs }}) = tvs_rhs
newTyConEtadRhs tycon = pprPanic "newTyConEtadRhs" (ppr tycon)

-- | Extracts the @newtype@ coercion from such a 'TyCon', which can be used to
-- construct something with the @newtype@s type from its representation type
-- (right hand side). If the supplied 'TyCon' is not a @newtype@, returns
-- @Nothing@
newTyConCo_maybe :: TyCon -> Maybe (CoAxiom Unbranched)
newTyConCo_maybe (AlgTyCon {algTcRhs = NewTyCon { nt_co = co }}) = Just co
newTyConCo_maybe _                                               = Nothing

newTyConCo :: TyCon -> CoAxiom Unbranched
newTyConCo tc = case newTyConCo_maybe tc of
                 Just co -> co
                 Nothing -> pprPanic "newTyConCo" (ppr tc)

-- | Find the primitive representation of a 'TyCon'
tyConPrimRep :: TyCon -> PrimRep
tyConPrimRep (PrimTyCon {primTyConRep = rep}) = rep
tyConPrimRep tc = ASSERT(not (isUnboxedTupleTyCon tc)) PtrRep

-- | Find the \"stupid theta\" of the 'TyCon'. A \"stupid theta\" is the context
-- to the left of an algebraic type declaration, e.g. @Eq a@ in the declaration
-- @data Eq a => T a ...@
tyConStupidTheta :: TyCon -> [PredType]
tyConStupidTheta (AlgTyCon {algTcStupidTheta = stupid}) = stupid
tyConStupidTheta (TupleTyCon {})                        = []
tyConStupidTheta tycon = pprPanic "tyConStupidTheta" (ppr tycon)

-- | Extract the 'TyVar's bound by a vanilla type synonym
-- and the corresponding (unsubstituted) right hand side.
synTyConDefn_maybe :: TyCon -> Maybe ([TyVar], Type)
synTyConDefn_maybe (SynonymTyCon {tyConTyVars = tyvars, synTcRhs = ty})
  = Just (tyvars, ty)
synTyConDefn_maybe _ = Nothing

-- | Extract the information pertaining to the right hand side of a type synonym
-- (@type@) declaration.
synTyConRhs_maybe :: TyCon -> Maybe Type
synTyConRhs_maybe (SynonymTyCon {synTcRhs = rhs}) = Just rhs
synTyConRhs_maybe _                               = Nothing

-- | Extract the flavour of a type family (with all the extra information that
-- it carries)
famTyConFlav_maybe :: TyCon -> Maybe FamTyConFlav
famTyConFlav_maybe (FamilyTyCon {famTcFlav = flav}) = Just flav
famTyConFlav_maybe _                                = Nothing

-- | If the given 'TyCon' has a /single/ data constructor, i.e. it is a @data@
-- type with one alternative, a tuple type or a @newtype@ then that constructor
-- is returned. If the 'TyCon' has more than one constructor, or represents a
-- primitive or function type constructor then @Nothing@ is returned. In any
-- other case, the function panics
tyConSingleDataCon_maybe :: TyCon -> Maybe DataCon
tyConSingleDataCon_maybe (TupleTyCon {dataCon = c})
    = Just c
tyConSingleDataCon_maybe (AlgTyCon {algTcRhs = DataTyCon { data_cons = [c] }})
    = Just c
tyConSingleDataCon_maybe (AlgTyCon {algTcRhs = NewTyCon { data_con = c }})
    = Just c
tyConSingleDataCon_maybe _
    = Nothing

tyConSingleAlgDataCon_maybe :: TyCon -> Maybe DataCon
-- Returns (Just con) for single-constructor *algebraic* data types
-- *not* newtypes
tyConSingleAlgDataCon_maybe (TupleTyCon {dataCon = c})
    = Just c
tyConSingleAlgDataCon_maybe (AlgTyCon {algTcRhs = DataTyCon { data_cons= [c] }})
    = Just c
tyConSingleAlgDataCon_maybe _
    = Nothing

-- | Is this 'TyCon' that for a class instance?
isClassTyCon :: TyCon -> Bool
isClassTyCon (AlgTyCon {algTcParent = ClassTyCon {}}) = True
isClassTyCon _                                        = False

-- | If this 'TyCon' is that for a class instance, return the class it is for.
-- Otherwise returns @Nothing@
tyConClass_maybe :: TyCon -> Maybe Class
tyConClass_maybe (AlgTyCon {algTcParent = ClassTyCon clas _}) = Just clas
tyConClass_maybe _                                            = Nothing

tyConTuple_maybe :: TyCon -> Maybe TupleSort
tyConTuple_maybe (TupleTyCon {tyConTupleSort = sort}) = Just sort
tyConTuple_maybe _                                    = Nothing

----------------------------------------------------------------------------
-- | Is this 'TyCon' that for a data family instance?
isFamInstTyCon :: TyCon -> Bool
isFamInstTyCon (AlgTyCon {algTcParent = DataFamInstTyCon {} })
  = True
isFamInstTyCon _ = False

tyConFamInstSig_maybe :: TyCon -> Maybe (TyCon, [Type], CoAxiom Unbranched)
tyConFamInstSig_maybe (AlgTyCon {algTcParent = DataFamInstTyCon ax f ts })
  = Just (f, ts, ax)
tyConFamInstSig_maybe _ = Nothing

-- | If this 'TyCon' is that of a data family instance, return the family in question
-- and the instance types. Otherwise, return @Nothing@
tyConFamInst_maybe :: TyCon -> Maybe (TyCon, [Type])
tyConFamInst_maybe (AlgTyCon {algTcParent = DataFamInstTyCon _ f ts })
  = Just (f, ts)
tyConFamInst_maybe _ = Nothing

-- | If this 'TyCon' is that of a data family instance, return a 'TyCon' which
-- represents a coercion identifying the representation type with the type
-- instance family.  Otherwise, return @Nothing@
tyConFamilyCoercion_maybe :: TyCon -> Maybe (CoAxiom Unbranched)
tyConFamilyCoercion_maybe (AlgTyCon {algTcParent = DataFamInstTyCon ax _ _ })
  = Just ax
tyConFamilyCoercion_maybe _ = Nothing

{-
************************************************************************
*                                                                      *
\subsection[TyCon-instances]{Instance declarations for @TyCon@}
*                                                                      *
************************************************************************

@TyCon@s are compared by comparing their @Unique@s.

The strictness analyser needs @Ord@. It is a lexicographic order with
the property @(a<=b) || (b<=a)@.
-}

instance Eq TyCon where
    a == b = case (a `compare` b) of { EQ -> True;   _ -> False }
    a /= b = case (a `compare` b) of { EQ -> False;  _ -> True  }

instance Ord TyCon where
    a <= b = case (a `compare` b) of { LT -> True;  EQ -> True;  GT -> False }
    a <  b = case (a `compare` b) of { LT -> True;  EQ -> False; GT -> False }
    a >= b = case (a `compare` b) of { LT -> False; EQ -> True;  GT -> True  }
    a >  b = case (a `compare` b) of { LT -> False; EQ -> False; GT -> True  }
    compare a b = getUnique a `compare` getUnique b

instance Uniquable TyCon where
    getUnique tc = tyConUnique tc

instance Outputable TyCon where
  -- At the moment a promoted TyCon has the same Name as its
  -- corresponding TyCon, so we add the quote to distinguish it here
  ppr tc = pprPromotionQuote tc <> ppr (tyConName tc)

pprPromotionQuote :: TyCon -> SDoc
-- Promoted data constructors already have a tick in their OccName
pprPromotionQuote tc
  = case tc of
      PromotedDataCon {} -> char '\'' -- Always quote promoted DataCons in types

      PromotedTyCon {}   -> ifPprDebug (char '\'')
                            -- However, we don't quote TyCons in kinds, except with -dppr-debug
                            -- e.g. type family T a :: Bool -> *
                            -- cf Trac #5952.
      _                  -> empty

instance NamedThing TyCon where
    getName = tyConName

instance Data.Data TyCon where
    -- don't traverse?
    toConstr _   = abstractConstr "TyCon"
    gunfold _ _  = error "gunfold"
    dataTypeOf _ = mkNoRepType "TyCon"

{-
************************************************************************
*                                                                      *
           Walking over recursive TyCons
*                                                                      *
************************************************************************

Note [Expanding newtypes and products]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When expanding a type to expose a data-type constructor, we need to be
careful about newtypes, lest we fall into an infinite loop. Here are
the key examples:

  newtype Id  x = MkId x
  newtype Fix f = MkFix (f (Fix f))
  newtype T     = MkT (T -> T)

  Type           Expansion
 --------------------------
  T              T -> T
  Fix Maybe      Maybe (Fix Maybe)
  Id (Id Int)    Int
  Fix Id         NO NO NO

Notice that we can expand T, even though it's recursive.
And we can expand Id (Id Int), even though the Id shows up
twice at the outer level.

So, when expanding, we keep track of when we've seen a recursive
newtype at outermost level; and bale out if we see it again.

We sometimes want to do the same for product types, so that the
strictness analyser doesn't unbox infinitely deeply.

The function that manages this is checkRecTc.
-}

newtype RecTcChecker = RC NameSet

initRecTc :: RecTcChecker
initRecTc = RC emptyNameSet

checkRecTc :: RecTcChecker -> TyCon -> Maybe RecTcChecker
-- Nothing      => Recursion detected
-- Just rec_tcs => Keep going
checkRecTc (RC rec_nts) tc
  | not (isRecursiveTyCon tc)     = Just (RC rec_nts)
  | tc_name `elemNameSet` rec_nts = Nothing
  | otherwise                     = Just (RC (extendNameSet rec_nts tc_name))
  where
    tc_name = tyConName tc