summaryrefslogtreecommitdiff
path: root/compiler/types/Type.lhs
blob: 4726f262131ac7998dbbd5a9afd171cdf3e16986 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1998
%

Type - public interface

\begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

-- | Main functions for manipulating types and type-related things
module Type (
	-- Note some of this is just re-exports from TyCon..

        -- * Main data types representing Types
	-- $type_classification
	
        -- $representation_types
        TyThing(..), Type, KindOrType, PredType, ThetaType,
        Var, TyVar, isTyVar, 

        -- ** Constructing and deconstructing types
        mkTyVarTy, mkTyVarTys, getTyVar, getTyVar_maybe,

	mkAppTy, mkAppTys, mkNakedAppTys, splitAppTy, splitAppTys, 
	splitAppTy_maybe, repSplitAppTy_maybe,

	mkFunTy, mkFunTys, splitFunTy, splitFunTy_maybe, 
	splitFunTys, splitFunTysN,
	funResultTy, funArgTy, zipFunTys, 

	mkTyConApp, mkTyConTy,
	tyConAppTyCon_maybe, tyConAppArgs_maybe, tyConAppTyCon, tyConAppArgs, 
	splitTyConApp_maybe, splitTyConApp, tyConAppArgN,

        mkForAllTy, mkForAllTys, splitForAllTy_maybe, splitForAllTys, 
        mkPiKinds, mkPiType, mkPiTypes,
	applyTy, applyTys, applyTysD, isForAllTy, dropForAlls,

        mkNumLitTy, isNumLitTy,
        mkStrLitTy, isStrLitTy,
	
	-- (Newtypes)
	newTyConInstRhs, carefullySplitNewType_maybe,
	
	-- Pred types
        mkFamilyTyConApp,
	isDictLikeTy,
        mkEqPred, mkPrimEqPred,
        mkClassPred,
	mkIPPred,
        noParenPred, isClassPred, isEqPred, isIPPred,
        
        -- Deconstructing predicate types
        PredTree(..), predTreePredType, classifyPredType,
        getClassPredTys, getClassPredTys_maybe,
        getEqPredTys, getEqPredTys_maybe,
        getIPPredTy_maybe,

	-- ** Common type constructors
        funTyCon,

        -- ** Predicates on types
        isTypeVar, isKindVar,
        isTyVarTy, isFunTy, isDictTy, isPredTy, isKindTy,

	-- (Lifting and boxity)
	isUnLiftedType, isUnboxedTupleType, isAlgType, isClosedAlgType,
	isPrimitiveType, isStrictType,

	-- * Main data types representing Kinds
	-- $kind_subtyping
        Kind, SimpleKind, MetaKindVar,

        -- ** Finding the kind of a type
        typeKind,
        
        -- ** Common Kinds and SuperKinds
        anyKind, liftedTypeKind, unliftedTypeKind, openTypeKind,
        constraintKind, superKind, 

        -- ** Common Kind type constructors
        liftedTypeKindTyCon, openTypeKindTyCon, unliftedTypeKindTyCon,
        constraintKindTyCon, anyKindTyCon,

	-- * Type free variables
	tyVarsOfType, tyVarsOfTypes,
	expandTypeSynonyms, 
	typeSize, varSetElemsKvsFirst, 

	-- * Type comparison
        eqType, eqTypeX, eqTypes, cmpType, cmpTypes, 
	eqPred, eqPredX, cmpPred, eqKind,

	-- * Forcing evaluation of types
        seqType, seqTypes,

        -- * Other views onto Types
        coreView, tcView, 

        UnaryType, RepType(..), flattenRepType, repType,

	-- * Type representation for the code generator
	typePrimRep, typeRepArity,

	-- * Main type substitution data types
	TvSubstEnv,	-- Representation widely visible
	TvSubst(..), 	-- Representation visible to a few friends
	
	-- ** Manipulating type substitutions
	emptyTvSubstEnv, emptyTvSubst,
	
	mkTvSubst, mkOpenTvSubst, zipOpenTvSubst, zipTopTvSubst, mkTopTvSubst, notElemTvSubst,
        getTvSubstEnv, setTvSubstEnv,
        zapTvSubstEnv, getTvInScope,
        extendTvInScope, extendTvInScopeList,
 	extendTvSubst, extendTvSubstList,
        isInScope, composeTvSubst, zipTyEnv,
        isEmptyTvSubst, unionTvSubst,

	-- ** Performing substitution on types and kinds
	substTy, substTys, substTyWith, substTysWith, substTheta, 
        substTyVar, substTyVars, substTyVarBndr,
        cloneTyVarBndr, deShadowTy, lookupTyVar,
        substKiWith, substKisWith,

	-- * Pretty-printing
	pprType, pprParendType, pprTypeApp, pprTyThingCategory, pprTyThing, 
        pprTvBndr, pprTvBndrs, pprForAll, pprSigmaType,
	pprEqPred, pprTheta, pprThetaArrowTy, pprClassPred, 
        pprKind, pprParendKind, pprSourceTyCon,
    ) where

#include "HsVersions.h"

-- We import the representation and primitive functions from TypeRep.
-- Many things are reexported, but not the representation!

import Kind
import TypeRep

-- friends:
import Var
import VarEnv
import VarSet

import Class
import TyCon
import TysPrim
import {-# SOURCE #-} TysWiredIn ( eqTyCon, mkBoxedTupleTy )
import PrelNames	         ( eqTyConKey )

-- others
import {-# SOURCE #-} IParam ( ipTyCon )
import Unique		( Unique, hasKey )
import BasicTypes	( Arity, RepArity, IPName(..) )
import Name		( Name )
import NameSet
import StaticFlags
import Util
import Outputable
import FastString

import Data.List        ( partition )
import Maybes		( orElse )
import Data.Maybe	( isJust )

infixr 3 `mkFunTy`	-- Associates to the right
\end{code}

\begin{code}
-- $type_classification
-- #type_classification#
-- 
-- Types are one of:
-- 
-- [Unboxed]            Iff its representation is other than a pointer
-- 			Unboxed types are also unlifted.
-- 
-- [Lifted]             Iff it has bottom as an element.
-- 			Closures always have lifted types: i.e. any
-- 			let-bound identifier in Core must have a lifted
-- 			type. Operationally, a lifted object is one that
-- 			can be entered.
-- 			Only lifted types may be unified with a type variable.
-- 
-- [Algebraic]          Iff it is a type with one or more constructors, whether
-- 			declared with @data@ or @newtype@.
-- 			An algebraic type is one that can be deconstructed
-- 			with a case expression. This is /not/ the same as 
--			lifted types, because we also include unboxed
-- 			tuples in this classification.
-- 
-- [Data]               Iff it is a type declared with @data@, or a boxed tuple.
-- 
-- [Primitive]          Iff it is a built-in type that can't be expressed in Haskell.
-- 
-- Currently, all primitive types are unlifted, but that's not necessarily
-- the case: for example, @Int@ could be primitive.
-- 
-- Some primitive types are unboxed, such as @Int#@, whereas some are boxed
-- but unlifted (such as @ByteArray#@).  The only primitive types that we
-- classify as algebraic are the unboxed tuples.
-- 
-- Some examples of type classifications that may make this a bit clearer are:
-- 
-- @
-- Type         primitive       boxed           lifted          algebraic
-- -----------------------------------------------------------------------------
-- Int#         Yes             No              No              No
-- ByteArray#   Yes             Yes             No              No
-- (\# a, b \#)   Yes             No              No              Yes
-- (  a, b  )   No              Yes             Yes             Yes
-- [a]          No              Yes             Yes             Yes
-- @

-- $representation_types
-- A /source type/ is a type that is a separate type as far as the type checker is
-- concerned, but which has a more low-level representation as far as Core-to-Core
-- passes and the rest of the back end is concerned.
--
-- You don't normally have to worry about this, as the utility functions in
-- this module will automatically convert a source into a representation type
-- if they are spotted, to the best of it's abilities. If you don't want this
-- to happen, use the equivalent functions from the "TcType" module.
\end{code}

%************************************************************************
%*									*
		Type representation
%*									*
%************************************************************************

\begin{code}
{-# INLINE coreView #-}
coreView :: Type -> Maybe Type
-- ^ In Core, we \"look through\" non-recursive newtypes and 'PredTypes': this
-- function tries to obtain a different view of the supplied type given this
--
-- Strips off the /top layer only/ of a type to give 
-- its underlying representation type. 
-- Returns Nothing if there is nothing to look through.
--
-- By being non-recursive and inlined, this case analysis gets efficiently
-- joined onto the case analysis that the caller is already doing
coreView (TyConApp tc tys) | Just (tenv, rhs, tys') <- coreExpandTyCon_maybe tc tys 
              = Just (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys')
               -- Its important to use mkAppTys, rather than (foldl AppTy),
               -- because the function part might well return a 
               -- partially-applied type constructor; indeed, usually will!
coreView _                 = Nothing

-----------------------------------------------
{-# INLINE tcView #-}
tcView :: Type -> Maybe Type
-- ^ Similar to 'coreView', but for the type checker, which just looks through synonyms
tcView (TyConApp tc tys) | Just (tenv, rhs, tys') <- tcExpandTyCon_maybe tc tys 
			 = Just (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys')
tcView _                 = Nothing
  -- You might think that tcView belows in TcType rather than Type, but unfortunately
  -- it is needed by Unify, which is turn imported by Coercion (for MatchEnv and matchList).
  -- So we will leave it here to avoid module loops.

-----------------------------------------------
expandTypeSynonyms :: Type -> Type
-- ^ Expand out all type synonyms.  Actually, it'd suffice to expand out
-- just the ones that discard type variables (e.g.  type Funny a = Int)
-- But we don't know which those are currently, so we just expand all.
expandTypeSynonyms ty 
  = go ty
  where
    go (TyConApp tc tys)
      | Just (tenv, rhs, tys') <- tcExpandTyCon_maybe tc tys 
      = go (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys')
      | otherwise
      = TyConApp tc (map go tys)
    go (LitTy l)       = LitTy l
    go (TyVarTy tv)    = TyVarTy tv
    go (AppTy t1 t2)   = mkAppTy (go t1) (go t2)
    go (FunTy t1 t2)   = FunTy (go t1) (go t2)
    go (ForAllTy tv t) = ForAllTy tv (go t)
\end{code}


%************************************************************************
%*									*
\subsection{Constructor-specific functions}
%*									*
%************************************************************************


---------------------------------------------------------------------
				TyVarTy
				~~~~~~~
\begin{code}
-- | Attempts to obtain the type variable underlying a 'Type', and panics with the
-- given message if this is not a type variable type. See also 'getTyVar_maybe'
getTyVar :: String -> Type -> TyVar
getTyVar msg ty = case getTyVar_maybe ty of
		    Just tv -> tv
		    Nothing -> panic ("getTyVar: " ++ msg)

isTyVarTy :: Type -> Bool
isTyVarTy ty = isJust (getTyVar_maybe ty)

-- | Attempts to obtain the type variable underlying a 'Type'
getTyVar_maybe :: Type -> Maybe TyVar
getTyVar_maybe ty | Just ty' <- coreView ty = getTyVar_maybe ty'
getTyVar_maybe (TyVarTy tv) 	 	    = Just tv  
getTyVar_maybe _                            = Nothing

\end{code}


---------------------------------------------------------------------
				AppTy
				~~~~~
We need to be pretty careful with AppTy to make sure we obey the 
invariant that a TyConApp is always visibly so.  mkAppTy maintains the
invariant: use it.

\begin{code}
-- | Applies a type to another, as in e.g. @k a@
mkAppTy :: Type -> Type -> Type
mkAppTy (TyConApp tc tys) ty2 = mkTyConApp tc (tys ++ [ty2])
mkAppTy ty1               ty2 = AppTy ty1 ty2
	-- Note that the TyConApp could be an 
	-- under-saturated type synonym.  GHC allows that; e.g.
	--	type Foo k = k a -> k a
	--	type Id x = x
	--	foo :: Foo Id -> Foo Id
	--
	-- Here Id is partially applied in the type sig for Foo,
	-- but once the type synonyms are expanded all is well

mkAppTys :: Type -> [Type] -> Type
mkAppTys ty1                []	 = ty1
mkAppTys (TyConApp tc tys1) tys2 = mkTyConApp tc (tys1 ++ tys2)
mkAppTys ty1                tys2 = foldl AppTy ty1 tys2

mkNakedAppTys :: Type -> [Type] -> Type
mkNakedAppTys ty1           []	 = ty1
mkNakedAppTys (TyConApp tc tys1) tys2 = mkNakedTyConApp tc (tys1 ++ tys2)
mkNakedAppTys ty1                tys2 = foldl AppTy ty1 tys2

-------------
splitAppTy_maybe :: Type -> Maybe (Type, Type)
-- ^ Attempt to take a type application apart, whether it is a
-- function, type constructor, or plain type application. Note
-- that type family applications are NEVER unsaturated by this!
splitAppTy_maybe ty | Just ty' <- coreView ty
		    = splitAppTy_maybe ty'
splitAppTy_maybe ty = repSplitAppTy_maybe ty

-------------
repSplitAppTy_maybe :: Type -> Maybe (Type,Type)
-- ^ Does the AppTy split as in 'splitAppTy_maybe', but assumes that 
-- any Core view stuff is already done
repSplitAppTy_maybe (FunTy ty1 ty2)   = Just (TyConApp funTyCon [ty1], ty2)
repSplitAppTy_maybe (AppTy ty1 ty2)   = Just (ty1, ty2)
repSplitAppTy_maybe (TyConApp tc tys) 
  | isDecomposableTyCon tc || tys `lengthExceeds` tyConArity tc 
  , Just (tys', ty') <- snocView tys
  = Just (TyConApp tc tys', ty')    -- Never create unsaturated type family apps!
repSplitAppTy_maybe _other = Nothing
-------------
splitAppTy :: Type -> (Type, Type)
-- ^ Attempts to take a type application apart, as in 'splitAppTy_maybe',
-- and panics if this is not possible
splitAppTy ty = case splitAppTy_maybe ty of
			Just pr -> pr
			Nothing -> panic "splitAppTy"

-------------
splitAppTys :: Type -> (Type, [Type])
-- ^ Recursively splits a type as far as is possible, leaving a residual
-- type being applied to and the type arguments applied to it. Never fails,
-- even if that means returning an empty list of type applications.
splitAppTys ty = split ty ty []
  where
    split orig_ty ty args | Just ty' <- coreView ty = split orig_ty ty' args
    split _       (AppTy ty arg)        args = split ty ty (arg:args)
    split _       (TyConApp tc tc_args) args
      = let -- keep type families saturated
            n | isDecomposableTyCon tc = 0
              | otherwise              = tyConArity tc
            (tc_args1, tc_args2) = splitAt n tc_args
        in
        (TyConApp tc tc_args1, tc_args2 ++ args)
    split _       (FunTy ty1 ty2)       args = ASSERT( null args )
					       (TyConApp funTyCon [], [ty1,ty2])
    split orig_ty _                     args = (orig_ty, args)

\end{code}


                      LitTy
                      ~~~~~

\begin{code}
mkNumLitTy :: Integer -> Type
mkNumLitTy n = LitTy (NumTyLit n)

isNumLitTy :: Type -> Maybe Integer
isNumLitTy (LitTy (NumTyLit n)) = Just n
isNumLitTy _                    = Nothing

mkStrLitTy :: FastString -> Type
mkStrLitTy s = LitTy (StrTyLit s)

isStrLitTy :: Type -> Maybe FastString
isStrLitTy (LitTy (StrTyLit s)) = Just s
isStrLitTy _                    = Nothing

\end{code}


---------------------------------------------------------------------
				FunTy
				~~~~~

\begin{code}
mkFunTy :: Type -> Type -> Type
-- ^ Creates a function type from the given argument and result type
mkFunTy arg res = FunTy arg res

mkFunTys :: [Type] -> Type -> Type
mkFunTys tys ty = foldr mkFunTy ty tys

isFunTy :: Type -> Bool 
isFunTy ty = isJust (splitFunTy_maybe ty)

splitFunTy :: Type -> (Type, Type)
-- ^ Attempts to extract the argument and result types from a type, and
-- panics if that is not possible. See also 'splitFunTy_maybe'
splitFunTy ty | Just ty' <- coreView ty = splitFunTy ty'
splitFunTy (FunTy arg res)   = (arg, res)
splitFunTy other	     = pprPanic "splitFunTy" (ppr other)

splitFunTy_maybe :: Type -> Maybe (Type, Type)
-- ^ Attempts to extract the argument and result types from a type
splitFunTy_maybe ty | Just ty' <- coreView ty = splitFunTy_maybe ty'
splitFunTy_maybe (FunTy arg res)   = Just (arg, res)
splitFunTy_maybe _                 = Nothing

splitFunTys :: Type -> ([Type], Type)
splitFunTys ty = split [] ty ty
  where
    split args orig_ty ty | Just ty' <- coreView ty = split args orig_ty ty'
    split args _       (FunTy arg res)   = split (arg:args) res res
    split args orig_ty _                 = (reverse args, orig_ty)

splitFunTysN :: Int -> Type -> ([Type], Type)
-- ^ Split off exactly the given number argument types, and panics if that is not possible
splitFunTysN 0 ty = ([], ty)
splitFunTysN n ty = ASSERT2( isFunTy ty, int n <+> ppr ty )
                    case splitFunTy ty of { (arg, res) ->
		    case splitFunTysN (n-1) res of { (args, res) ->
		    (arg:args, res) }}

-- | Splits off argument types from the given type and associating
-- them with the things in the input list from left to right. The
-- final result type is returned, along with the resulting pairs of
-- objects and types, albeit with the list of pairs in reverse order.
-- Panics if there are not enough argument types for the input list.
zipFunTys :: Outputable a => [a] -> Type -> ([(a, Type)], Type)
zipFunTys orig_xs orig_ty = split [] orig_xs orig_ty orig_ty
  where
    split acc []     nty _                 = (reverse acc, nty)
    split acc xs     nty ty 
	  | Just ty' <- coreView ty 	   = split acc xs nty ty'
    split acc (x:xs) _   (FunTy arg res)   = split ((x,arg):acc) xs res res
    split _   _      _   _                 = pprPanic "zipFunTys" (ppr orig_xs <+> ppr orig_ty)
    
funResultTy :: Type -> Type
-- ^ Extract the function result type and panic if that is not possible
funResultTy ty | Just ty' <- coreView ty = funResultTy ty'
funResultTy (FunTy _arg res)  = res
funResultTy ty                = pprPanic "funResultTy" (ppr ty)

funArgTy :: Type -> Type
-- ^ Extract the function argument type and panic if that is not possible
funArgTy ty | Just ty' <- coreView ty = funArgTy ty'
funArgTy (FunTy arg _res)  = arg
funArgTy ty                = pprPanic "funArgTy" (ppr ty)
\end{code}

---------------------------------------------------------------------
				TyConApp
				~~~~~~~~

\begin{code}
-- | A key function: builds a 'TyConApp' or 'FunTy' as apppropriate to 
-- its arguments.  Applies its arguments to the constructor from left to right.
mkTyConApp :: TyCon -> [Type] -> Type
mkTyConApp tycon tys
  | isFunTyCon tycon, [ty1,ty2] <- tys
  = FunTy ty1 ty2

  | otherwise
  = TyConApp tycon tys

-- splitTyConApp "looks through" synonyms, because they don't
-- mean a distinct type, but all other type-constructor applications
-- including functions are returned as Just ..

-- | The same as @fst . splitTyConApp@
tyConAppTyCon_maybe :: Type -> Maybe TyCon
tyConAppTyCon_maybe ty | Just ty' <- coreView ty = tyConAppTyCon_maybe ty'
tyConAppTyCon_maybe (TyConApp tc _) = Just tc
tyConAppTyCon_maybe (FunTy {})      = Just funTyCon
tyConAppTyCon_maybe _               = Nothing

tyConAppTyCon :: Type -> TyCon
tyConAppTyCon ty = tyConAppTyCon_maybe ty `orElse` pprPanic "tyConAppTyCon" (ppr ty)

-- | The same as @snd . splitTyConApp@
tyConAppArgs_maybe :: Type -> Maybe [Type]
tyConAppArgs_maybe ty | Just ty' <- coreView ty = tyConAppArgs_maybe ty'
tyConAppArgs_maybe (TyConApp _ tys) = Just tys
tyConAppArgs_maybe (FunTy arg res)  = Just [arg,res]
tyConAppArgs_maybe _                = Nothing


tyConAppArgs :: Type -> [Type]
tyConAppArgs ty = tyConAppArgs_maybe ty `orElse` pprPanic "tyConAppArgs" (ppr ty)

tyConAppArgN :: Int -> Type -> Type
-- Executing Nth
tyConAppArgN n ty 
  = case tyConAppArgs_maybe ty of
      Just tys -> ASSERT2( n < length tys, ppr n <+> ppr tys ) tys !! n
      Nothing  -> pprPanic "tyConAppArgN" (ppr n <+> ppr ty)

-- | Attempts to tease a type apart into a type constructor and the application
-- of a number of arguments to that constructor. Panics if that is not possible.
-- See also 'splitTyConApp_maybe'
splitTyConApp :: Type -> (TyCon, [Type])
splitTyConApp ty = case splitTyConApp_maybe ty of
			Just stuff -> stuff
			Nothing	   -> pprPanic "splitTyConApp" (ppr ty)

-- | Attempts to tease a type apart into a type constructor and the application
-- of a number of arguments to that constructor
splitTyConApp_maybe :: Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe ty | Just ty' <- coreView ty = splitTyConApp_maybe ty'
splitTyConApp_maybe (TyConApp tc tys) = Just (tc, tys)
splitTyConApp_maybe (FunTy arg res)   = Just (funTyCon, [arg,res])
splitTyConApp_maybe _                 = Nothing

newTyConInstRhs :: TyCon -> [Type] -> Type
-- ^ Unwrap one 'layer' of newtype on a type constructor and its arguments, using an 
-- eta-reduced version of the @newtype@ if possible
newTyConInstRhs tycon tys 
    = ASSERT2( equalLength tvs tys1, ppr tycon $$ ppr tys $$ ppr tvs )
      mkAppTys (substTyWith tvs tys1 ty) tys2
  where
    (tvs, ty)    = newTyConEtadRhs tycon
    (tys1, tys2) = splitAtList tvs tys
\end{code}


---------------------------------------------------------------------
				SynTy
				~~~~~

Notes on type synonyms
~~~~~~~~~~~~~~~~~~~~~~
The various "split" functions (splitFunTy, splitRhoTy, splitForAllTy) try
to return type synonyms whereever possible. Thus

	type Foo a = a -> a

we want 
	splitFunTys (a -> Foo a) = ([a], Foo a)
not			           ([a], a -> a)

The reason is that we then get better (shorter) type signatures in 
interfaces.  Notably this plays a role in tcTySigs in TcBinds.lhs.


Note [Expanding newtypes]
~~~~~~~~~~~~~~~~~~~~~~~~~
When expanding a type to expose a data-type constructor, we need to be
careful about newtypes, lest we fall into an infinite loop. Here are
the key examples:

  newtype Id  x = MkId x
  newtype Fix f = MkFix (f (Fix f))
  newtype T     = MkT (T -> T) 
  
  Type	         Expansion
 --------------------------
  T		 T -> T
  Fix Maybe      Maybe (Fix Maybe)
  Id (Id Int)    Int
  Fix Id         NO NO NO

Notice that we can expand T, even though it's recursive.
And we can expand Id (Id Int), even though the Id shows up
twice at the outer level.  

So, when expanding, we keep track of when we've seen a recursive
newtype at outermost level; and bale out if we see it again.


		Representation types
		~~~~~~~~~~~~~~~~~~~~

Note [Nullary unboxed tuple]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We represent the nullary unboxed tuple as the unary (but void) type State# RealWorld.
The reason for this is that the ReprArity is never less than the Arity (as it would
otherwise be for a function type like (# #) -> Int).

As a result, ReprArity is always strictly positive if Arity is. This is important
because it allows us to distinguish at runtime between a thunk and a function
 takes a nullary unboxed tuple as an argument!

\begin{code}
type UnaryType = Type

data RepType = UbxTupleRep [UnaryType] -- INVARIANT: never an empty list (see Note [Nullary unboxed tuple])
             | UnaryRep UnaryType

flattenRepType :: RepType -> [UnaryType]
flattenRepType (UbxTupleRep tys) = tys
flattenRepType (UnaryRep ty)     = [ty]

-- | Looks through:
--
--	1. For-alls
--	2. Synonyms
--	3. Predicates
--	4. All newtypes, including recursive ones, but not newtype families
--
-- It's useful in the back end of the compiler.
repType :: Type -> RepType
repType ty
  = go emptyNameSet ty
  where
    go :: NameSet -> Type -> RepType
    go rec_nts ty    	  		-- Expand predicates and synonyms
      | Just ty' <- coreView ty
      = go rec_nts ty'

    go rec_nts (ForAllTy _ ty)		-- Drop foralls
	= go rec_nts ty

    go rec_nts (TyConApp tc tys)	-- Expand newtypes
      | Just (rec_nts', ty') <- carefullySplitNewType_maybe rec_nts tc tys
      = go rec_nts' ty'

      | isUnboxedTupleTyCon tc
      = if null tys
         then UnaryRep realWorldStatePrimTy -- See Note [Nullary unboxed tuple]
         else UbxTupleRep (concatMap (flattenRepType . go rec_nts) tys)

    go _ ty = UnaryRep ty

carefullySplitNewType_maybe :: NameSet -> TyCon -> [Type] -> Maybe (NameSet,Type)
-- Return the representation of a newtype, unless 
-- we've seen it already: see Note [Expanding newtypes]
-- Assumes the newtype is saturated
carefullySplitNewType_maybe rec_nts tc tys
  | isNewTyCon tc
  , tys `lengthAtLeast` tyConArity tc
  , not (tc_name `elemNameSet` rec_nts) = Just (rec_nts', newTyConInstRhs tc tys)
  | otherwise	   	                = Nothing
  where
    tc_name = tyConName tc
    rec_nts' | isRecursiveTyCon tc = addOneToNameSet rec_nts tc_name
	     | otherwise	   = rec_nts


-- ToDo: this could be moved to the code generator, using splitTyConApp instead
-- of inspecting the type directly.

-- | Discovers the primitive representation of a more abstract 'UnaryType'
typePrimRep :: UnaryType -> PrimRep
typePrimRep ty
  = case repType ty of
      UbxTupleRep _ -> pprPanic "typePrimRep: UbxTupleRep" (ppr ty)
      UnaryRep rep -> case rep of
        TyConApp tc _ -> tyConPrimRep tc
        FunTy _ _     -> PtrRep
        AppTy _ _     -> PtrRep      -- See Note [AppTy rep] 
        TyVarTy _     -> PtrRep
        _             -> pprPanic "typePrimRep: UnaryRep" (ppr ty)

typeRepArity :: Arity -> Type -> RepArity
typeRepArity 0 _ = 0
typeRepArity n ty = case repType ty of
  UnaryRep (FunTy ty1 ty2) -> length (flattenRepType (repType ty1)) + typeRepArity (n - 1) ty2
  _                        -> pprPanic "typeRepArity: arity greater than type can handle" (ppr (n, ty))
\end{code}

Note [AppTy rep]
~~~~~~~~~~~~~~~~
Types of the form 'f a' must be of kind *, not #, so we are guaranteed
that they are represented by pointers.  The reason is that f must have
kind (kk -> kk) and kk cannot be unlifted; see Note [The kind invariant] 
in TypeRep.

---------------------------------------------------------------------
				ForAllTy
				~~~~~~~~

\begin{code}
mkForAllTy :: TyVar -> Type -> Type
mkForAllTy tyvar ty
  = ForAllTy tyvar ty

-- | Wraps foralls over the type using the provided 'TyVar's from left to right
mkForAllTys :: [TyVar] -> Type -> Type
mkForAllTys tyvars ty = foldr ForAllTy ty tyvars

mkPiKinds :: [TyVar] -> Kind -> Kind
-- mkPiKinds [k1, k2, (a:k1 -> *)] k2
-- returns forall k1 k2. (k1 -> *) -> k2
mkPiKinds [] res = res
mkPiKinds (tv:tvs) res 
  | isKindVar tv = ForAllTy tv          (mkPiKinds tvs res)
  | otherwise    = FunTy (tyVarKind tv) (mkPiKinds tvs res)

mkPiType  :: Var -> Type -> Type
-- ^ Makes a @(->)@ type or a forall type, depending
-- on whether it is given a type variable or a term variable.
mkPiTypes :: [Var] -> Type -> Type
-- ^ 'mkPiType' for multiple type or value arguments

mkPiType v ty
   | isId v    = mkFunTy (varType v) ty
   | otherwise = mkForAllTy v ty

mkPiTypes vs ty = foldr mkPiType ty vs

isForAllTy :: Type -> Bool
isForAllTy (ForAllTy _ _) = True
isForAllTy _              = False

-- | Attempts to take a forall type apart, returning the bound type variable
-- and the remainder of the type
splitForAllTy_maybe :: Type -> Maybe (TyVar, Type)
splitForAllTy_maybe ty = splitFAT_m ty
  where
    splitFAT_m ty | Just ty' <- coreView ty = splitFAT_m ty'
    splitFAT_m (ForAllTy tyvar ty)	    = Just(tyvar, ty)
    splitFAT_m _			    = Nothing

-- | Attempts to take a forall type apart, returning all the immediate such bound
-- type variables and the remainder of the type. Always suceeds, even if that means
-- returning an empty list of 'TyVar's
splitForAllTys :: Type -> ([TyVar], Type)
splitForAllTys ty = split ty ty []
   where
     split orig_ty ty tvs | Just ty' <- coreView ty = split orig_ty ty' tvs
     split _       (ForAllTy tv ty)  tvs = split ty ty (tv:tvs)
     split orig_ty _                 tvs = (reverse tvs, orig_ty)

-- | Equivalent to @snd . splitForAllTys@
dropForAlls :: Type -> Type
dropForAlls ty = snd (splitForAllTys ty)
\end{code}

-- (mkPiType now in CoreUtils)

applyTy, applyTys
~~~~~~~~~~~~~~~~~

\begin{code}
-- | Instantiate a forall type with one or more type arguments.
-- Used when we have a polymorphic function applied to type args:
--
-- > f t1 t2
--
-- We use @applyTys type-of-f [t1,t2]@ to compute the type of the expression.
-- Panics if no application is possible.
applyTy :: Type -> KindOrType -> Type
applyTy ty arg | Just ty' <- coreView ty = applyTy ty' arg
applyTy (ForAllTy tv ty) arg = substTyWith [tv] [arg] ty
applyTy _                _   = panic "applyTy"

applyTys :: Type -> [KindOrType] -> Type
-- ^ This function is interesting because:
--
--	1. The function may have more for-alls than there are args
--
--	2. Less obviously, it may have fewer for-alls
--
-- For case 2. think of:
--
-- > applyTys (forall a.a) [forall b.b, Int]
--
-- This really can happen, but only (I think) in situations involving
-- undefined.  For example:
--       undefined :: forall a. a
-- Term: undefined @(forall b. b->b) @Int 
-- This term should have type (Int -> Int), but notice that
-- there are more type args than foralls in 'undefined's type.

applyTys ty args = applyTysD empty ty args

applyTysD :: SDoc -> Type -> [Type] -> Type	-- Debug version
applyTysD _   orig_fun_ty []      = orig_fun_ty
applyTysD doc orig_fun_ty arg_tys 
  | n_tvs == n_args 	-- The vastly common case
  = substTyWith tvs arg_tys rho_ty
  | n_tvs > n_args 	-- Too many for-alls
  = substTyWith (take n_args tvs) arg_tys 
		(mkForAllTys (drop n_args tvs) rho_ty)
  | otherwise		-- Too many type args
  = ASSERT2( n_tvs > 0, doc $$ ppr orig_fun_ty )	-- Zero case gives infnite loop!
    applyTysD doc (substTyWith tvs (take n_tvs arg_tys) rho_ty)
	          (drop n_tvs arg_tys)
  where
    (tvs, rho_ty) = splitForAllTys orig_fun_ty 
    n_tvs = length tvs
    n_args = length arg_tys     
\end{code}


%************************************************************************
%*									*
                         Pred
%*									*
%************************************************************************

Predicates on PredType

\begin{code}
noParenPred :: PredType -> Bool
-- A predicate that can appear without parens before a "=>"
--       C a => a -> a
--       a~b => a -> b
-- But   (?x::Int) => Int -> Int
noParenPred p = isClassPred p || isEqPred p

isPredTy :: Type -> Bool
isPredTy ty
  | isSuperKind ty = False
  | otherwise = typeKind ty `eqKind` constraintKind

isKindTy :: Type -> Bool
isKindTy = isSuperKind . typeKind

isClassPred, isEqPred, isIPPred :: PredType -> Bool
isClassPred ty = case tyConAppTyCon_maybe ty of
    Just tyCon | isClassTyCon tyCon -> True
    _                               -> False
isEqPred ty = case tyConAppTyCon_maybe ty of
    Just tyCon -> tyCon `hasKey` eqTyConKey
    _          -> False
isIPPred ty = case tyConAppTyCon_maybe ty of
    Just tyCon | Just _ <- tyConIP_maybe tyCon -> True
    _                                          -> False
\end{code}

Make PredTypes

--------------------- Equality types ---------------------------------
\begin{code}
-- | Creates a type equality predicate
mkEqPred :: Type -> Type -> PredType
mkEqPred ty1 ty2
  = WARN( not (k `eqKind` typeKind ty2), ppr ty1 $$ ppr ty2 )
    TyConApp eqTyCon [k, ty1, ty2]
  where 
    k = typeKind ty1

mkPrimEqPred :: Type -> Type -> Type
mkPrimEqPred ty1  ty2
  = WARN( not (k `eqKind` typeKind ty2), ppr ty1 $$ ppr ty2 )
    TyConApp eqPrimTyCon [k, ty1, ty2]
  where 
    k = typeKind ty1
\end{code}

--------------------- Implicit parameters ---------------------------------

\begin{code}
mkIPPred :: IPName Name -> Type -> PredType
mkIPPred ip ty = TyConApp (ipTyCon ip) [ty]
\end{code}

--------------------- Dictionary types ---------------------------------
\begin{code}
mkClassPred :: Class -> [Type] -> PredType
mkClassPred clas tys = TyConApp (classTyCon clas) tys

isDictTy :: Type -> Bool
isDictTy = isClassPred

isDictLikeTy :: Type -> Bool
-- Note [Dictionary-like types]
isDictLikeTy ty | Just ty' <- coreView ty = isDictLikeTy ty'
isDictLikeTy ty = case splitTyConApp_maybe ty of
	Just (tc, tys) | isClassTyCon tc -> True
	 			   | isTupleTyCon tc -> all isDictLikeTy tys
	_other                           -> False
\end{code}

Note [Dictionary-like types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Being "dictionary-like" means either a dictionary type or a tuple thereof.
In GHC 6.10 we build implication constraints which construct such tuples,
and if we land up with a binding
    t :: (C [a], Eq [a])
    t = blah
then we want to treat t as cheap under "-fdicts-cheap" for example.
(Implication constraints are normally inlined, but sadly not if the
occurrence is itself inside an INLINE function!  Until we revise the 
handling of implication constraints, that is.)  This turned out to
be important in getting good arities in DPH code.  Example:

    class C a
    class D a where { foo :: a -> a }
    instance C a => D (Maybe a) where { foo x = x }

    bar :: (C a, C b) => a -> b -> (Maybe a, Maybe b)
    {-# INLINE bar #-}
    bar x y = (foo (Just x), foo (Just y))

Then 'bar' should jolly well have arity 4 (two dicts, two args), but
we ended up with something like
   bar = __inline_me__ (\d1,d2. let t :: (D (Maybe a), D (Maybe b)) = ...
                                in \x,y. <blah>)

This is all a bit ad-hoc; eg it relies on knowing that implication
constraints build tuples.


Decomposing PredType

\begin{code}
data PredTree = ClassPred Class [Type]
              | EqPred Type Type
              | IPPred (IPName Name) Type
              | TuplePred [PredType]
              | IrredPred PredType

predTreePredType :: PredTree -> PredType
predTreePredType (ClassPred clas tys) = mkClassPred clas tys
predTreePredType (EqPred ty1 ty2)     = mkEqPred ty1 ty2
predTreePredType (IPPred ip ty)       = mkIPPred ip ty
predTreePredType (TuplePred tys)      = mkBoxedTupleTy tys
predTreePredType (IrredPred ty)       = ty

classifyPredType :: PredType -> PredTree
classifyPredType ev_ty = case splitTyConApp_maybe ev_ty of
    Just (tc, tys) | Just clas <- tyConClass_maybe tc
                   -> ClassPred clas tys
    Just (tc, tys) | tc `hasKey` eqTyConKey
                   , let [_, ty1, ty2] = tys
                   -> EqPred ty1 ty2
    Just (tc, tys) | Just ip <- tyConIP_maybe tc
                   , let [ty] = tys
                   -> IPPred ip ty
    Just (tc, tys) | isTupleTyCon tc
                   -> TuplePred tys
    _ -> IrredPred ev_ty
\end{code}

\begin{code}
getClassPredTys :: PredType -> (Class, [Type])
getClassPredTys ty = case getClassPredTys_maybe ty of
        Just (clas, tys) -> (clas, tys)
        Nothing          -> pprPanic "getClassPredTys" (ppr ty)

getClassPredTys_maybe :: PredType -> Maybe (Class, [Type])
getClassPredTys_maybe ty = case splitTyConApp_maybe ty of 
        Just (tc, tys) | Just clas <- tyConClass_maybe tc -> Just (clas, tys)
        _ -> Nothing

getEqPredTys :: PredType -> (Type, Type)
getEqPredTys ty 
  = case splitTyConApp_maybe ty of 
      Just (tc, (_ : ty1 : ty2 : tys)) -> ASSERT( tc `hasKey` eqTyConKey && null tys )
                                          (ty1, ty2)
      _ -> pprPanic "getEqPredTys" (ppr ty)

getEqPredTys_maybe :: PredType -> Maybe (Type, Type)
getEqPredTys_maybe ty 
  = case splitTyConApp_maybe ty of 
      Just (tc, [_, ty1, ty2]) | tc `hasKey` eqTyConKey -> Just (ty1, ty2)
      _ -> Nothing

getIPPredTy_maybe :: PredType -> Maybe (IPName Name, Type)
getIPPredTy_maybe ty = case splitTyConApp_maybe ty of 
        Just (tc, [ty1]) | Just ip <- tyConIP_maybe tc -> Just (ip, ty1)
        _ -> Nothing
\end{code}

%************************************************************************
%*									*
                   Size									
%*									*
%************************************************************************

\begin{code}
typeSize :: Type -> Int
typeSize (LitTy {})      = 1
typeSize (TyVarTy {})    = 1
typeSize (AppTy t1 t2)   = typeSize t1 + typeSize t2
typeSize (FunTy t1 t2)   = typeSize t1 + typeSize t2
typeSize (ForAllTy _ t)  = 1 + typeSize t
typeSize (TyConApp _ ts) = 1 + sum (map typeSize ts)

varSetElemsKvsFirst :: VarSet -> [TyVar]
-- {k1,a,k2,b} --> [k1,k2,a,b]
varSetElemsKvsFirst set 
  = kvs ++ tvs
  where
    (kvs, tvs) = partition isKindVar (varSetElems set)
\end{code}


%************************************************************************
%*									*
\subsection{Type families}
%*									*
%************************************************************************

\begin{code}
mkFamilyTyConApp :: TyCon -> [Type] -> Type
-- ^ Given a family instance TyCon and its arg types, return the
-- corresponding family type.  E.g:
--
-- > data family T a
-- > data instance T (Maybe b) = MkT b
--
-- Where the instance tycon is :RTL, so:
--
-- > mkFamilyTyConApp :RTL Int  =  T (Maybe Int)
mkFamilyTyConApp tc tys
  | Just (fam_tc, fam_tys) <- tyConFamInst_maybe tc
  , let fam_subst = zipTopTvSubst (tyConTyVars tc) tys
  = mkTyConApp fam_tc (substTys fam_subst fam_tys)
  | otherwise
  = mkTyConApp tc tys

-- | Pretty prints a 'TyCon', using the family instance in case of a
-- representation tycon.  For example:
--
-- > data T [a] = ...
--
-- In that case we want to print @T [a]@, where @T@ is the family 'TyCon'
pprSourceTyCon :: TyCon -> SDoc
pprSourceTyCon tycon 
  | Just (fam_tc, tys) <- tyConFamInst_maybe tycon
  = ppr $ fam_tc `TyConApp` tys	       -- can't be FunTyCon
  | otherwise
  = ppr tycon
\end{code}

%************************************************************************
%*									*
\subsection{Liftedness}
%*									*
%************************************************************************

\begin{code}
-- | See "Type#type_classification" for what an unlifted type is
isUnLiftedType :: Type -> Bool
	-- isUnLiftedType returns True for forall'd unlifted types:
	--	x :: forall a. Int#
	-- I found bindings like these were getting floated to the top level.
	-- They are pretty bogus types, mind you.  It would be better never to
	-- construct them

isUnLiftedType ty | Just ty' <- coreView ty = isUnLiftedType ty'
isUnLiftedType (ForAllTy _ ty)      = isUnLiftedType ty
isUnLiftedType (TyConApp tc _)      = isUnLiftedTyCon tc
isUnLiftedType _                    = False

isUnboxedTupleType :: Type -> Bool
isUnboxedTupleType ty = case tyConAppTyCon_maybe ty of
                           Just tc -> isUnboxedTupleTyCon tc
                           _       -> False

-- | See "Type#type_classification" for what an algebraic type is.
-- Should only be applied to /types/, as opposed to e.g. partially
-- saturated type constructors
isAlgType :: Type -> Bool
isAlgType ty 
  = case splitTyConApp_maybe ty of
      Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc )
			    isAlgTyCon tc
      _other	         -> False

-- | See "Type#type_classification" for what an algebraic type is.
-- Should only be applied to /types/, as opposed to e.g. partially
-- saturated type constructors. Closed type constructors are those
-- with a fixed right hand side, as opposed to e.g. associated types
isClosedAlgType :: Type -> Bool
isClosedAlgType ty
  = case splitTyConApp_maybe ty of
      Just (tc, ty_args) | isAlgTyCon tc && not (isFamilyTyCon tc)
             -> ASSERT2( ty_args `lengthIs` tyConArity tc, ppr ty ) True
      _other -> False
\end{code}

\begin{code}
-- | Computes whether an argument (or let right hand side) should
-- be computed strictly or lazily, based only on its type.
-- Works just like 'isUnLiftedType', except that it has a special case 
-- for dictionaries (i.e. does not work purely on representation types)

-- Since it takes account of class 'PredType's, you might think
-- this function should be in 'TcType', but 'isStrictType' is used by 'DataCon',
-- which is below 'TcType' in the hierarchy, so it's convenient to put it here.
--
-- We may be strict in dictionary types, but only if it 
-- has more than one component.
--
-- (Being strict in a single-component dictionary risks
--  poking the dictionary component, which is wrong.)
isStrictType :: Type -> Bool
isStrictType ty | Just ty' <- coreView ty = isStrictType ty'
isStrictType (ForAllTy _ ty)   = isStrictType ty
isStrictType (TyConApp tc _)
 | isUnLiftedTyCon tc               = True
 | isClassTyCon tc, opt_DictsStrict = True
isStrictType _                      = False
\end{code}

\begin{code}
isPrimitiveType :: Type -> Bool
-- ^ Returns true of types that are opaque to Haskell.
-- Most of these are unlifted, but now that we interact with .NET, we
-- may have primtive (foreign-imported) types that are lifted
isPrimitiveType ty = case splitTyConApp_maybe ty of
			Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc )
					      isPrimTyCon tc
			_                  -> False
\end{code}


%************************************************************************
%*									*
\subsection{Sequencing on types}
%*									*
%************************************************************************

\begin{code}
seqType :: Type -> ()
seqType (LitTy n)         = n `seq` ()
seqType (TyVarTy tv) 	  = tv `seq` ()
seqType (AppTy t1 t2) 	  = seqType t1 `seq` seqType t2
seqType (FunTy t1 t2) 	  = seqType t1 `seq` seqType t2
seqType (TyConApp tc tys) = tc `seq` seqTypes tys
seqType (ForAllTy tv ty)  = tv `seq` seqType ty

seqTypes :: [Type] -> ()
seqTypes []       = ()
seqTypes (ty:tys) = seqType ty `seq` seqTypes tys
\end{code}


%************************************************************************
%*									*
		Comparision for types 
	(We don't use instances so that we know where it happens)
%*									*
%************************************************************************

\begin{code}
eqKind :: Kind -> Kind -> Bool
eqKind = eqType

eqType :: Type -> Type -> Bool
-- ^ Type equality on source types. Does not look through @newtypes@ or 
-- 'PredType's, but it does look through type synonyms.
eqType t1 t2 = isEqual $ cmpType t1 t2

eqTypeX :: RnEnv2 -> Type -> Type -> Bool
eqTypeX env t1 t2 = isEqual $ cmpTypeX env t1 t2

eqTypes :: [Type] -> [Type] -> Bool
eqTypes tys1 tys2 = isEqual $ cmpTypes tys1 tys2

eqPred :: PredType -> PredType -> Bool
eqPred = eqType

eqPredX :: RnEnv2 -> PredType -> PredType -> Bool
eqPredX env p1 p2 = isEqual $ cmpTypeX env p1 p2
\end{code}

Now here comes the real worker

\begin{code}
cmpType :: Type -> Type -> Ordering
cmpType t1 t2 = cmpTypeX rn_env t1 t2
  where
    rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfType t1 `unionVarSet` tyVarsOfType t2))

cmpTypes :: [Type] -> [Type] -> Ordering
cmpTypes ts1 ts2 = cmpTypesX rn_env ts1 ts2
  where
    rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfTypes ts1 `unionVarSet` tyVarsOfTypes ts2))

cmpPred :: PredType -> PredType -> Ordering
cmpPred p1 p2 = cmpTypeX rn_env p1 p2
  where
    rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfType p1 `unionVarSet` tyVarsOfType p2))

cmpTypeX :: RnEnv2 -> Type -> Type -> Ordering	-- Main workhorse
cmpTypeX env t1 t2 | Just t1' <- coreView t1 = cmpTypeX env t1' t2
		   | Just t2' <- coreView t2 = cmpTypeX env t1 t2'
-- We expand predicate types, because in Core-land we have
-- lots of definitions like
--      fOrdBool :: Ord Bool
--      fOrdBool = D:Ord .. .. ..
-- So the RHS has a data type

cmpTypeX env (TyVarTy tv1)       (TyVarTy tv2)       = rnOccL env tv1 `compare` rnOccR env tv2
cmpTypeX env (ForAllTy tv1 t1)   (ForAllTy tv2 t2)   = cmpTypeX (rnBndr2 env tv1 tv2) t1 t2
cmpTypeX env (AppTy s1 t1)       (AppTy s2 t2)       = cmpTypeX env s1 s2 `thenCmp` cmpTypeX env t1 t2
cmpTypeX env (FunTy s1 t1)       (FunTy s2 t2)       = cmpTypeX env s1 s2 `thenCmp` cmpTypeX env t1 t2
cmpTypeX env (TyConApp tc1 tys1) (TyConApp tc2 tys2) = (tc1 `compare` tc2) `thenCmp` cmpTypesX env tys1 tys2
cmpTypeX _   (LitTy l1)          (LitTy l2)          = compare l1 l2

    -- Deal with the rest: TyVarTy < AppTy < FunTy < LitTy < TyConApp < ForAllTy < PredTy
cmpTypeX _ (AppTy _ _)    (TyVarTy _)    = GT

cmpTypeX _ (FunTy _ _)    (TyVarTy _)    = GT
cmpTypeX _ (FunTy _ _)    (AppTy _ _)    = GT

cmpTypeX _ (LitTy _)      (TyVarTy _)    = GT
cmpTypeX _ (LitTy _)      (AppTy _ _)    = GT
cmpTypeX _ (LitTy _)      (FunTy _ _)    = GT

cmpTypeX _ (TyConApp _ _) (TyVarTy _)    = GT
cmpTypeX _ (TyConApp _ _) (AppTy _ _)    = GT
cmpTypeX _ (TyConApp _ _) (FunTy _ _)    = GT
cmpTypeX _ (TyConApp _ _) (LitTy _)      = GT

cmpTypeX _ (ForAllTy _ _) (TyVarTy _)    = GT
cmpTypeX _ (ForAllTy _ _) (AppTy _ _)    = GT
cmpTypeX _ (ForAllTy _ _) (FunTy _ _)    = GT
cmpTypeX _ (ForAllTy _ _) (LitTy _)      = GT
cmpTypeX _ (ForAllTy _ _) (TyConApp _ _) = GT

cmpTypeX _ _              _              = LT

-------------
cmpTypesX :: RnEnv2 -> [Type] -> [Type] -> Ordering
cmpTypesX _   []        []        = EQ
cmpTypesX env (t1:tys1) (t2:tys2) = cmpTypeX env t1 t2 `thenCmp` cmpTypesX env tys1 tys2
cmpTypesX _   []        _         = LT
cmpTypesX _   _         []        = GT
\end{code}

Note [cmpTypeX]
~~~~~~~~~~~~~~~

When we compare foralls, we should look at the kinds. But if we do so,
we get a corelint error like the following (in
libraries/ghc-prim/GHC/PrimopWrappers.hs):

    Binder's type: forall (o_abY :: *).
                   o_abY
                   -> GHC.Prim.State# GHC.Prim.RealWorld
                   -> GHC.Prim.State# GHC.Prim.RealWorld
    Rhs type: forall (a_12 :: ?).
              a_12
              -> GHC.Prim.State# GHC.Prim.RealWorld
              -> GHC.Prim.State# GHC.Prim.RealWorld

This is why we don't look at the kind. Maybe we should look if the
kinds are compatible.

-- cmpTypeX env (ForAllTy tv1 t1)   (ForAllTy tv2 t2)
--   = cmpTypeX env (tyVarKind tv1) (tyVarKind tv2) `thenCmp`
--     cmpTypeX (rnBndr2 env tv1 tv2) t1 t2

%************************************************************************
%*									*
		Type substitutions
%*									*
%************************************************************************

\begin{code}
emptyTvSubstEnv :: TvSubstEnv
emptyTvSubstEnv = emptyVarEnv

composeTvSubst :: InScopeSet -> TvSubstEnv -> TvSubstEnv -> TvSubstEnv
-- ^ @(compose env1 env2)(x)@ is @env1(env2(x))@; i.e. apply @env2@ then @env1@.
-- It assumes that both are idempotent.
-- Typically, @env1@ is the refinement to a base substitution @env2@
composeTvSubst in_scope env1 env2
  = env1 `plusVarEnv` mapVarEnv (substTy subst1) env2
	-- First apply env1 to the range of env2
	-- Then combine the two, making sure that env1 loses if
	-- both bind the same variable; that's why env1 is the
	--  *left* argument to plusVarEnv, because the right arg wins
  where
    subst1 = TvSubst in_scope env1

emptyTvSubst :: TvSubst
emptyTvSubst = TvSubst emptyInScopeSet emptyTvSubstEnv

isEmptyTvSubst :: TvSubst -> Bool
	 -- See Note [Extending the TvSubstEnv]
isEmptyTvSubst (TvSubst _ tenv) = isEmptyVarEnv tenv

mkTvSubst :: InScopeSet -> TvSubstEnv -> TvSubst
mkTvSubst = TvSubst

getTvSubstEnv :: TvSubst -> TvSubstEnv
getTvSubstEnv (TvSubst _ env) = env

getTvInScope :: TvSubst -> InScopeSet
getTvInScope (TvSubst in_scope _) = in_scope

isInScope :: Var -> TvSubst -> Bool
isInScope v (TvSubst in_scope _) = v `elemInScopeSet` in_scope

notElemTvSubst :: CoVar -> TvSubst -> Bool
notElemTvSubst v (TvSubst _ tenv) = not (v `elemVarEnv` tenv)

setTvSubstEnv :: TvSubst -> TvSubstEnv -> TvSubst
setTvSubstEnv (TvSubst in_scope _) tenv = TvSubst in_scope tenv

zapTvSubstEnv :: TvSubst -> TvSubst
zapTvSubstEnv (TvSubst in_scope _) = TvSubst in_scope emptyVarEnv

extendTvInScope :: TvSubst -> Var -> TvSubst
extendTvInScope (TvSubst in_scope tenv) var = TvSubst (extendInScopeSet in_scope var) tenv

extendTvInScopeList :: TvSubst -> [Var] -> TvSubst
extendTvInScopeList (TvSubst in_scope tenv) vars = TvSubst (extendInScopeSetList in_scope vars) tenv

extendTvSubst :: TvSubst -> TyVar -> Type -> TvSubst
extendTvSubst (TvSubst in_scope tenv) tv ty = TvSubst in_scope (extendVarEnv tenv tv ty)

extendTvSubstList :: TvSubst -> [TyVar] -> [Type] -> TvSubst
extendTvSubstList (TvSubst in_scope tenv) tvs tys 
  = TvSubst in_scope (extendVarEnvList tenv (tvs `zip` tys))

unionTvSubst :: TvSubst -> TvSubst -> TvSubst
-- Works when the ranges are disjoint
unionTvSubst (TvSubst in_scope1 tenv1) (TvSubst in_scope2 tenv2)
  = ASSERT( not (tenv1 `intersectsVarEnv` tenv2) )
    TvSubst (in_scope1 `unionInScope` in_scope2)
            (tenv1     `plusVarEnv`   tenv2)

-- mkOpenTvSubst and zipOpenTvSubst generate the in-scope set from
-- the types given; but it's just a thunk so with a bit of luck
-- it'll never be evaluated

-- Note [Generating the in-scope set for a substitution]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- If we want to substitute [a -> ty1, b -> ty2] I used to 
-- think it was enough to generate an in-scope set that includes
-- fv(ty1,ty2).  But that's not enough; we really should also take the
-- free vars of the type we are substituting into!  Example:
--	(forall b. (a,b,x)) [a -> List b]
-- Then if we use the in-scope set {b}, there is a danger we will rename
-- the forall'd variable to 'x' by mistake, getting this:
--	(forall x. (List b, x, x)
-- Urk!  This means looking at all the calls to mkOpenTvSubst....


-- | Generates the in-scope set for the 'TvSubst' from the types in the incoming
-- environment, hence "open"
mkOpenTvSubst :: TvSubstEnv -> TvSubst
mkOpenTvSubst tenv = TvSubst (mkInScopeSet (tyVarsOfTypes (varEnvElts tenv))) tenv

-- | Generates the in-scope set for the 'TvSubst' from the types in the incoming
-- environment, hence "open"
zipOpenTvSubst :: [TyVar] -> [Type] -> TvSubst
zipOpenTvSubst tyvars tys 
  | debugIsOn && (length tyvars /= length tys)
  = pprTrace "zipOpenTvSubst" (ppr tyvars $$ ppr tys) emptyTvSubst
  | otherwise
  = TvSubst (mkInScopeSet (tyVarsOfTypes tys)) (zipTyEnv tyvars tys)

-- | Called when doing top-level substitutions. Here we expect that the 
-- free vars of the range of the substitution will be empty.
mkTopTvSubst :: [(TyVar, Type)] -> TvSubst
mkTopTvSubst prs = TvSubst emptyInScopeSet (mkVarEnv prs)

zipTopTvSubst :: [TyVar] -> [Type] -> TvSubst
zipTopTvSubst tyvars tys 
  | debugIsOn && (length tyvars /= length tys)
  = pprTrace "zipTopTvSubst" (ppr tyvars $$ ppr tys) emptyTvSubst
  | otherwise
  = TvSubst emptyInScopeSet (zipTyEnv tyvars tys)

zipTyEnv :: [TyVar] -> [Type] -> TvSubstEnv
zipTyEnv tyvars tys
  | debugIsOn && (length tyvars /= length tys)
  = pprTrace "zipTyEnv" (ppr tyvars $$ ppr tys) emptyVarEnv
  | otherwise
  = zip_ty_env tyvars tys emptyVarEnv

-- Later substitutions in the list over-ride earlier ones, 
-- but there should be no loops
zip_ty_env :: [TyVar] -> [Type] -> TvSubstEnv -> TvSubstEnv
zip_ty_env []       []       env = env
zip_ty_env (tv:tvs) (ty:tys) env = zip_ty_env tvs tys (extendVarEnv env tv ty)
	-- There used to be a special case for when 
	--	ty == TyVarTy tv
	-- (a not-uncommon case) in which case the substitution was dropped.
	-- But the type-tidier changes the print-name of a type variable without
	-- changing the unique, and that led to a bug.   Why?  Pre-tidying, we had 
	-- a type {Foo t}, where Foo is a one-method class.  So Foo is really a newtype.
	-- And it happened that t was the type variable of the class.  Post-tiding, 
	-- it got turned into {Foo t2}.  The ext-core printer expanded this using
	-- sourceTypeRep, but that said "Oh, t == t2" because they have the same unique,
	-- and so generated a rep type mentioning t not t2.  
	--
	-- Simplest fix is to nuke the "optimisation"
zip_ty_env tvs      tys      env   = pprTrace "Var/Type length mismatch: " (ppr tvs $$ ppr tys) env
-- zip_ty_env _ _ env = env

instance Outputable TvSubst where
  ppr (TvSubst ins tenv)
    = brackets $ sep[ ptext (sLit "TvSubst"),
		      nest 2 (ptext (sLit "In scope:") <+> ppr ins), 
		      nest 2 (ptext (sLit "Type env:") <+> ppr tenv) ]
\end{code}

%************************************************************************
%*									*
		Performing type or kind substitutions
%*									*
%************************************************************************

\begin{code}
-- | Type substitution making use of an 'TvSubst' that
-- is assumed to be open, see 'zipOpenTvSubst'
substTyWith :: [TyVar] -> [Type] -> Type -> Type
substTyWith tvs tys = ASSERT( length tvs == length tys )
		      substTy (zipOpenTvSubst tvs tys)

substKiWith :: [KindVar] -> [Kind] -> Kind -> Kind
substKiWith = substTyWith

-- | Type substitution making use of an 'TvSubst' that
-- is assumed to be open, see 'zipOpenTvSubst'
substTysWith :: [TyVar] -> [Type] -> [Type] -> [Type]
substTysWith tvs tys = ASSERT( length tvs == length tys )
		       substTys (zipOpenTvSubst tvs tys)

substKisWith :: [KindVar] -> [Kind] -> [Kind] -> [Kind]
substKisWith = substTysWith

-- | Substitute within a 'Type'
substTy :: TvSubst -> Type  -> Type
substTy subst ty | isEmptyTvSubst subst = ty
		 | otherwise	        = subst_ty subst ty

-- | Substitute within several 'Type's
substTys :: TvSubst -> [Type] -> [Type]
substTys subst tys | isEmptyTvSubst subst = tys
	           | otherwise	          = map (subst_ty subst) tys

-- | Substitute within a 'ThetaType'
substTheta :: TvSubst -> ThetaType -> ThetaType
substTheta subst theta
  | isEmptyTvSubst subst = theta
  | otherwise	         = map (substTy subst) theta

-- | Remove any nested binders mentioning the 'TyVar's in the 'TyVarSet'
deShadowTy :: TyVarSet -> Type -> Type
deShadowTy tvs ty 
  = subst_ty (mkTvSubst in_scope emptyTvSubstEnv) ty
  where
    in_scope = mkInScopeSet tvs

subst_ty :: TvSubst -> Type -> Type
-- subst_ty is the main workhorse for type substitution
--
-- Note that the in_scope set is poked only if we hit a forall
-- so it may often never be fully computed 
subst_ty subst ty
   = go ty
  where
    go (LitTy n)         = n `seq` LitTy n
    go (TyVarTy tv)      = substTyVar subst tv
    go (TyConApp tc tys) = let args = map go tys
                           in  args `seqList` TyConApp tc args

    go (FunTy arg res)   = (FunTy $! (go arg)) $! (go res)
    go (AppTy fun arg)   = mkAppTy (go fun) $! (go arg)
                -- The mkAppTy smart constructor is important
                -- we might be replacing (a Int), represented with App
                -- by [Int], represented with TyConApp
    go (ForAllTy tv ty)  = case substTyVarBndr subst tv of
                              (subst', tv') ->
                                 ForAllTy tv' $! (subst_ty subst' ty)

substTyVar :: TvSubst -> TyVar  -> Type
substTyVar (TvSubst _ tenv) tv
  | Just ty  <- lookupVarEnv tenv tv      = ty  -- See Note [Apply Once]
  | otherwise = ASSERT( isTyVar tv ) TyVarTy tv
  -- We do not require that the tyvar is in scope
  -- Reason: we do quite a bit of (substTyWith [tv] [ty] tau)
  -- and it's a nuisance to bring all the free vars of tau into
  -- scope --- and then force that thunk at every tyvar
  -- Instead we have an ASSERT in substTyVarBndr to check for capture

substTyVars :: TvSubst -> [TyVar] -> [Type]
substTyVars subst tvs = map (substTyVar subst) tvs

lookupTyVar :: TvSubst -> TyVar  -> Maybe Type
	-- See Note [Extending the TvSubst]
lookupTyVar (TvSubst _ tenv) tv = lookupVarEnv tenv tv

substTyVarBndr :: TvSubst -> TyVar -> (TvSubst, TyVar)
substTyVarBndr subst@(TvSubst in_scope tenv) old_var
  = ASSERT2( _no_capture, ppr old_var $$ ppr subst ) 
    (TvSubst (in_scope `extendInScopeSet` new_var) new_env, new_var)
  where
    new_env | no_change = delVarEnv tenv old_var
	    | otherwise = extendVarEnv tenv old_var (TyVarTy new_var)

    _no_capture = not (new_var `elemVarSet` tyVarsOfTypes (varEnvElts tenv))
    -- Assertion check that we are not capturing something in the substitution

    old_ki = tyVarKind old_var
    no_kind_change = isEmptyVarSet (tyVarsOfType old_ki) -- verify that kind is closed
    no_change = no_kind_change && (new_var == old_var)
	-- no_change means that the new_var is identical in
	-- all respects to the old_var (same unique, same kind)
	-- See Note [Extending the TvSubst]
	--
	-- In that case we don't need to extend the substitution
	-- to map old to new.  But instead we must zap any 
	-- current substitution for the variable. For example:
	--	(\x.e) with id_subst = [x |-> e']
	-- Here we must simply zap the substitution for x

    new_var | no_kind_change = uniqAway in_scope old_var
            | otherwise = uniqAway in_scope $ updateTyVarKind (substTy subst) old_var
	-- The uniqAway part makes sure the new variable is not already in scope

cloneTyVarBndr :: TvSubst -> TyVar -> Unique -> (TvSubst, TyVar)
cloneTyVarBndr (TvSubst in_scope tv_env) tv uniq
  = (TvSubst (extendInScopeSet in_scope tv')
             (extendVarEnv tv_env tv (mkTyVarTy tv')), tv')
  where
    tv' = setVarUnique tv uniq	-- Simply set the unique; the kind
    	  	       	  	-- has no type variables to worry about
\end{code}

----------------------------------------------------
-- Kind Stuff

Kinds
~~~~~

For the description of subkinding in GHC, see
  http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/TypeType#Kinds

\begin{code}
type MetaKindVar = TyVar  -- invariant: MetaKindVar will always be a
                          -- TcTyVar with details MetaTv TauTv ...
-- meta kind var constructors and functions are in TcType

type SimpleKind = Kind
\end{code}

%************************************************************************
%*                                                                      *
        The kind of a type
%*                                                                      *
%************************************************************************

\begin{code}
typeKind :: Type -> Kind
typeKind (TyConApp tc tys)
  | isPromotedTyCon tc
  = ASSERT( tyConArity tc == length tys ) superKind
  | otherwise
  = kindAppResult (tyConKind tc) tys

typeKind (AppTy fun arg)      = kindAppResult (typeKind fun) [arg]
typeKind (LitTy l)            = typeLiteralKind l
typeKind (ForAllTy _ ty)      = typeKind ty
typeKind (TyVarTy tyvar)      = tyVarKind tyvar
typeKind _ty@(FunTy _arg res)
    -- Hack alert.  The kind of (Int -> Int#) is liftedTypeKind (*), 
    --              not unliftedTypKind (#)
    -- The only things that can be after a function arrow are
    --   (a) types (of kind openTypeKind or its sub-kinds)
    --   (b) kinds (of super-kind TY) (e.g. * -> (* -> *))
    | isSuperKind k         = k
    | otherwise             = ASSERT2( isSubOpenTypeKind k, ppr _ty $$ ppr k ) liftedTypeKind
    where
      k = typeKind res


typeLiteralKind :: TyLit -> Kind
typeLiteralKind l =
  case l of
    NumTyLit _ -> typeNatKind
    StrTyLit _ -> typeStringKind

\end{code}

Kind inference
~~~~~~~~~~~~~~
During kind inference, a kind variable unifies only with 
a "simple kind", sk
	sk ::= * | sk1 -> sk2
For example 
	data T a = MkT a (T Int#)
fails.  We give T the kind (k -> *), and the kind variable k won't unify
with # (the kind of Int#).

Type inference
~~~~~~~~~~~~~~
When creating a fresh internal type variable, we give it a kind to express 
constraints on it.  E.g. in (\x->e) we make up a fresh type variable for x, 
with kind ??.  

During unification we only bind an internal type variable to a type
whose kind is lower in the sub-kind hierarchy than the kind of the tyvar.

When unifying two internal type variables, we collect their kind constraints by
finding the GLB of the two.  Since the partial order is a tree, they only
have a glb if one is a sub-kind of the other.  In that case, we bind the
less-informative one to the more informative one.  Neat, eh?